七下平面直角坐标系压轴题

合集下载

平面直角坐标系 压轴题

平面直角坐标系 压轴题

平面直角坐标系压轴题
例题1:如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第81个点的坐标为();
例题2:在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2016个点的横坐标为( )
思路:
如图:
图1中圆范围内有1=12个点,
图2中圆范围内有4=22个点,
图3中圆范围内有9=32个点,
图4中圆范围内有16=16=42个点,
······
右下角的点的横坐标为n时,共有n2个,
观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方。

并且右下角的点的横坐标是奇数时最后以横坐标为该数,纵坐标为0结束;
当右下角的点横坐标是偶数时,以横坐标为1,纵坐标为右下角横坐标的偶数减1的点结束。

例题1解答:
∵92=81,9是奇数,
∴第81个点是(9,0),
例题2解答:
右下角的点的横坐标为n时,共有n2个,
∵452=2025,45是奇数,
∴第2025个点是(45,0),
第2016个点是(45,9),
所以,第2016个点的横坐标为45.
故答案为:45.。

七年级下册数学培优训练 平面直角坐标系综合问题(压轴题)

七年级下册数学培优训练  平面直角坐标系综合问题(压轴题)
(1)求C点坐标;
(2)设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交与点P,求∠APD的度数?
(3)当D点在线段OB上运动时,作DM⊥AD交CB于M,∠BMD,∠DAO的平分线交于N,则D点在运动的过程中∠N的大小是否变化,若不变,求出其值;若变化,请说明理由。
【例7】在平面直角坐标系中,点B(0,4),C(-5,4),点A是x轴负半轴上一点,S四边形AOBC=24.
(1)线段BC的长为,点A的坐标为;
(2)如图1,EA平分∠CAO,DA平分∠CAH,CF⊥AE点F,试给出∠ECF与∠DAH之间满足的数量关系式,并说明理由;
(3)若点P是在直线CB与直线AO之间的一点,连接BP、OP,BN平分 ,ON平分 ,BN交ON于N,请依题意画出图形,给出 与 之间满足的数量关系式,并说明理由.
(4)在y轴上是否存在一点P,使线段AB平移至线段PQ时,由A、B、P、Q构成的四边形是平行四边形面积为10,若存在,求出P、Q的坐标,若不存在,说明理由;
【例3】如图,△ABC的三个顶点位置分别是A(1,0),B(-2,3),C(-3,0).
(1)求△ABC的面积;
(2)若把△ABC向下平移2个单位长度,再向右平移3个单位长度,得到△ ,请你在图中画出△ ;
(3)若点A、C的位置不变,当点P在y轴上什么位置时,使 ;
(4)若点B、 C的位置不变,当点Q在x轴上什么位置时,使 .
【例4】如图1,在平面直角坐标系中,于B.
(1)求三角形ABC的面积;
(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数;
(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等,若存在,求出P点坐标;若不存在,请说明理由.

七年级数学下册期末几何压轴题试题(带答案) (一)解析

七年级数学下册期末几何压轴题试题(带答案) (一)解析

一、解答题1.如图,在平面直角坐标系中,()()()A 1,0,B 3,0,C 0,2-,CD//x 轴,CD=AB .(1)求点D 的坐标:(2)四边形OCDB 的面积S 四边形OCDB ;(3)在y 轴上是否存在点P ,使S △PAB =S 四边形OCDB ;若存在,求出点P 的坐标,若不存在,请说明理由.2.如图1,把一块含30°的直角三角板ABC 的BC 边放置于长方形直尺DEFG 的EF 边上. (1)根据图1填空:∠1= °,∠2= °;(2)现把三角板绕B 点逆时针旋转n °.①如图2,当n =25°,且点C 恰好落在DG 边上时,求∠1、∠2的度数;②当0°<n <180°时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n 的值和对应的那两条垂线;如果不存在,请说明理由.3.已知:如图,直线AB //CD ,直线EF 交AB ,CD 于P ,Q 两点,点M ,点N 分别是直线CD ,EF 上一点(不与P ,Q 重合),连接PM ,MN .(1)点M,N分别在射线QC,QF上(不与点Q重合),当∠APM+∠QMN=90°时,①试判断PM与MN的位置关系,并说明理由;②若PA平分∠EPM,∠MNQ=20°,求∠EPB的度数.(提示:过N点作AB的平行线)(2)点M,N分别在直线CD,EF上时,请你在备用图中画出满足PM⊥MN条件的图形,并直接写出此时∠APM与∠QMN的关系.(注:此题说理时不能使用没有学过的定理)4.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC的度数.小明的思路是:过P作PE∥AB,通过平行线性质,可得∠APC=∠APE+∠CPE=50°+60°=110°.问题解决:(1)如图2,AB∥CD,直线l分别与AB、CD交于点M、N,点P在直线I上运动,当点P 在线段MN上运动时(不与点M、N重合),∠PAB=α,∠PCD=β,判断∠APC、α、β之间的数量关系并说明理由;(2)在(1)的条件下,如果点P在线段MN或NM的延长线上运动时.请直接写出∠APC、α、B之间的数量关系;(3)如图3,AB∥CD,点P是AB、CD之间的一点(点P在点A、C右侧),连接PA、PC,∠BAP和∠DCP的平分线交于点Q.若∠APC=116°,请结合(2)中的规律,求∠AQC 的度数.5.如图,∠EBF=50°,点C是∠EBF的边BF上一点.动点A从点B出发在∠EBF的边BE 上,沿BE方向运动,在动点A运动的过程中,始终有过点A的射线AD∥BC.(1)在动点A运动的过程中,(填“是”或“否”)存在某一时刻,使得AD平分∠EAC?(2)假设存在AD平分∠EAC,在此情形下,你能猜想∠B和∠ACB之间有何数量关系?并请说明理由;(3)当AC ⊥BC 时,直接写出∠BAC 的度数和此时AD 与AC 之间的位置关系.6.已知,AB ∥CD ,点E 为射线FG 上一点.(1)如图1,若∠EAF =25°,∠EDG =45°,则∠AED = .(2)如图2,当点E 在FG 延长线上时,此时CD 与AE 交于点H ,则∠AE D 、∠EAF 、∠EDG 之间满足怎样的关系,请说明你的结论;(3)如图3,当点E 在FG 延长线上时,DP 平分∠EDC ,∠AED =32°,∠P =30°,求∠EKD 的度数.7.阅读下面的文字,解答问题 22的小数部分我们不可能全部212 21,将这个数减去其整数部分,差就是小数部分. 479273,∴7272)请解答:(157整数部分是 ,小数部分是 .(211a 7b ,求|a ﹣b 11(3)已知:5x +y ,其中x 是整数,且0<y <1,求x ﹣y 的相反数.8.对任意一个三位数n ,如果n 满足各数位上的数字互不相同,且都不为零,那么称这个数为“梦幻数”,将一个“梦幻数”任意两个数位上的数字对调后可以得到三个不同的新三数,把这三个新三位数的和与111的商记为K (n ),例如123n =,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213321132666++=,6661116÷=,所以()1236K =.(1)计算:()342K 和()658K ;(2)若x 是“梦幻数”,说明:()K x 等于x 的各数位上的数字之和;(3)若x ,y 都是“梦幻数”,且1000x y +=,猜想:()()K x K y +=________,并说明你猜想的正确性.9.阅读下面的文字,解答问题:是无理数,而无理数是无限不循环小数,的小数部分我们不可能全部写出来,而121.请解答下列问题:_______,小数部分是_________;(2)的小数部分为a b ,求a b +(3)已知:100x y +=+,其中x 是整数,且01y <<,求24x y -的平方根. 10.规定:求若千个相同的有理数(均不等于0)的除法运算叫做除方,如()()()()2223333÷÷-÷-÷-÷-,等,类比有理数的乘方,我们把222÷÷记作()32,读作“2的圈3次方”,()()()()3333-÷-÷-÷-记作()()43-,读作“3-的圈4次方”,一般地,把n a a a a a↑÷÷÷⋯⋯÷记作()n a ,读作“a ”的圈n 次方.(初步探究)(1)直接写出计算结果:()()32=- ;()()42=- ;(2)关于除方,下列说法错误的是( )A .任何非零数的圈2次方都等于1B .对于任何正整数(),1=1n nC .()()433=4D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数 (深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(3)试一试:()()()2446113=5=35⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,,依照前面的算式,将()93,()1012⎛⎫- ⎪⎝⎭的运算结果直接写成幂的形式是()93= ,()101=2⎛⎫- ⎪⎝⎭; (4)想一想:将一个非零有理数a 的圆n 次方写成幂的形式是:()n a = ; (5)算一算:()()()()4652311122333⎛⎫⎛⎫÷-⨯---÷ ⎪ ⎪⎝⎭⎝⎭.11.我们知道,正整数按照能否被2整除可以分成两类:正奇数和正偶数,小华受此启发,按照一个正整数被3除的余数把正整数分成了三类:如果一个正整数被3除余数为1,则这个正整数属于A 类,例如1,4,7等;如果一个正整数被3除余数为2,则这个正整数属于B 类,例如2,5,8等;如果一个正整数被3整除,则这个正整数属于C 类,例如3,6,9等.(1)2020属于 类(填A ,B 或C );(2)①从A 类数中任取两个数,则它们的和属于 类(填A ,B 或C );②从A 、B 类数中任取一数,则它们的和属于 类(填A ,B 或C );③从A 类数中任意取出8个数,从B 类数中任意取出9个数,从C 类数中任意取出10个数,把它们都加起来,则最后的结果属于 类(填A ,B 或C );(3)从A 类数中任意取出m 个数,从B 类数中任意取出n 个数,把它们都加起来,若最后的结果属于C 类,则下列关于m ,n 的叙述中正确的是 (填序号). ①2m n +属于C 类;②m n -属于A 类;③m ,n 属于同一类.12.观察下面的变形规律:;;;….解答下面的问题:(1)仿照上面的格式请写出= ; (2)若n 为正整数,请你猜想= ; (3)基础应用:计算:. (4)拓展应用1:解方程:=2016 (5)拓展应用2:计算:. 13.如图1在平面直角坐标系中,大正方形OABC 的边长为m 厘米,小正方形ODEF 的边长为n 厘米,且|m ﹣4|+2n -=0.(1)求点B 、点D 的坐标.(2)起始状态如图1所示,将大正方形固定不动,小正方形以1厘米/秒的速度沿x 轴向右平移,如图2.设平移的时间为t 秒,在平移过程中两个正方形重叠部分的面积为S 平方厘米.①当t =1.5时,S = 平方厘米;②在2≤t ≤4这段时间内,小正方形的一条对角线扫过的图形的面积为 平方厘米; ③在小正方形平移过程中,若S =2,则小正方形平移的时间t 为 秒.(3)将大正方形固定不动,小正方形从图1中起始状态沿x 轴向右平移,在平移过程中,连接AD ,过D 点作DM ⊥AD 交直线BC 于M ,∠DAx 的角平分线所在直线和∠CMD 的角平分线所在直线交于N (不考虑N 点与A 点重合的情形),求∠ANM 的大小并说明理由. 14.如图,直线//PQ MN ,一副直角三角板,ABC DEF ∆∆中,90,45,30,60ACB EDF ABC BAC DFE DEF ︒︒︒︒∠=∠=∠=∠=∠=∠=.(1)若DEF ∆如图1摆放,当ED 平分PEF ∠时,证明:FD 平分EFM ∠.(2)若,ABC DEF ∆∆如图2摆放时,则PDE ∠=(3)若图2中ABC ∆固定,将DEF ∆沿着AC 方向平移,边DF 与直线PQ 相交于点G ,作FGQ ∠和GFA ∠的角平分线GH FH 、相交于点H (如图3),求GHF ∠的度数.(4)若图2中DEF ∆的周长35,5cm AF cm =,现将ABC ∆固定,将DEF ∆沿着CA 方向平移至点F 与A 重合,平移后的得到''D E A ∆,点D E 、的对应点分别是''D E 、,请直接写出四边形'DEAD 的周长.(5)若图2中DEF ∆固定,(如图4)将ABC ∆绕点A 顺时针旋转,1分钟转半圈,旋转至AC 与直线AN 首次重合的过程中,当线段BC 与DEF ∆的一条边平行时,请直接写出旋转的时间.15.如图,在平面直角坐标系中,点A B 、的坐标分别为(1,0)、(-2,0),现同时将点A B 、分别向上平移2个单位,再向左平移1个单位,分别得到点AB 、的对应点CD 、,连接AC 、BD 、CD .(1)若在y 轴上存在点M ,连接MA MB 、,使S △ABM =S □ABDC ,求出点M 的坐标; (2)若点P 在线段BD 上运动,连接PC PO 、,求S =S △PCD +S △POB 的取值范围; (3)若P 在直线BD 上运动,请直接写出CPO DCP BOP ∠∠∠、、的数量关系.16.对x ,y 定义一种新的运算P ,规定:,()(,),()mx ny x y P x y nx my x y +≥⎧=⎨+<⎩(其中0mn ≠).已知(2,1)7P =,(1,1)1P -=-.(1)求m 、n 的值;(2)若0a >,解不等式组(2,1)4111,523P a a P a a -<⎧⎪⎨⎛⎫---≤- ⎪⎪⎝⎭⎩. 17.如图1,在平面直角坐标系中,点A 为x 轴负半轴上一点,点B 为x 轴正半轴上一点,()0,C a ,(),D b a ,其中a 、b 满足关系式:24(1)0a b a ++--=.()1a =______,b =______,BCD 的面积为______;()2如图2,石AC BC ⊥于点C ,点P 是线段OC 上一点,连接BP ,延长BP 交AC 于点.Q 当CPQ CQP ∠=∠时,求证:BP 平分ABC ∠;(提示:三角形三个内角和等于180) ()3如图3,若AC BC ⊥,点E 是点A 与点B 之间上一点连接CE ,且CB 平分.ECF ∠问BEC ∠与BCO ∠有什么数量关系?请写出它们之间的数量关系并请说明理由.18.如图,在下面直角坐标系中,已知()0,A a ,(),0B b ,(),C b c 三点,其中a ,b ,c 满足关系式()22340a b c ---=.(1)求a ,b ,c 的值;(2)如果在第二象限内有一点1,2P m ⎛⎫ ⎪⎝⎭,请用含m 的式子表示四边形ABOP 的面积; (3)在(2)的条件下,是否存在点P ,使四边形ABOP 的面积与三角形ABC 的面积相等?若存在,求出点P 的坐标,若不存在,请说明理由.19.先阅读下面材料,再完成任务:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x ,y 满足35x y -=,……①,237x y +=,……②,求4x y -和75x y +的值. 本题常规思路是将①②两式联立组成方程组,解得x ,y 的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①-②可得42x y -=-,由①+②×2可得7519x y +=,这样的解题思想就是通常所说的“整体思想”解决问题:(1)已知二元一次方程组322233x y x y -=-⎧⎨-=-⎩,则x y -=______,x y +=______; (2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记木共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?(3)对于实数x ,y ,定义新运算:x y ax by c *=++,其中a ,b ,c 是常数,等式右边是通常的加法和乘法运算.已知3515*=,4728*=,那么11*=______.20.阅读下列材料,解答下面的问题:我们知道方程2312x y +=有无数个解,但在实际生活中我们往往只需求出其正整数解.例:由2312x y +=,得:1222433x x y -==-,(x 、y 为正整数) ∴01220x x >⎧⎨->⎩,则有06x <<.又243x y =-为正整数,则23x 为正整数.由2与3互质,可知:x 为3的倍数,从而x=3,代入2423x y =-=∴2x+3y=12的正整数解为32x y =⎧⎨=⎩ 问题:(1)请你写出方程25x y +=的一组正整数解: .(2)若62x -为自然数,则满足条件的x 值为 .(3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?21.某校规划在一块长AD为18 m、宽AB为13 m的长方形场地ABCD上,设计分别与AD,AB平行的横向通道和纵向通道,其余部分铺上草皮,如图所示,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM∶AN=8∶9,问通道的宽是多少?22.某公园的门票价格如下表所示:某中学七年级(1)、(2)两个班计划去游览该公园,其中(I)班的人数较少,不足 50 人;(2) 班人数略多,有 50 多人.如果两个班都以班为单位分别购票,则一共应付 1172 元,如果两个班联合起来,作为一个团体购票,则需付 1078 元.(1)列方程求出两个班各有多少学生;(2)如果两个班联合起来买票,是否可以买单价为 9 元的票?你有什么省钱的方法来帮他们买票呢?请给出最省钱的方案.23.小明为班级购买信息学编程竞赛的奖品后,回学校向班主任李老师汇报说:“我买了两种书,共30本,单价分别为20元和24元,买书前我领了700元,现在还余38元.”李老师算了一下,说:“你肯定搞错了.”(1)李老师为什么说他搞错了?试用方程的知识给予解释;(2)小明连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,如果单价为20元的书多于24元的书,请问:笔记本的单价为多少元?24.对a,b定义一种新运算T,规定:T(a,b)=(a+2b)(ax+by)(其中x,y均为非零实数).例如:T(1,1)=3x+3y.(1)已知T(1,﹣1)=0,T(0,2)=8,求x,y的值;(2)已知关于x,y的方程组()()113028T aT a⎧-=-⎪⎨=⎪⎩,,,若a≥﹣2,求x+y的取值范围;(3)在(2)的条件下,已知平面直角坐标系上的点A(x,y)落在坐标轴上,将线段OA 沿x轴向右平移2个单位,得线段O′A′,坐标轴上有一点B满足三角形BOA′的面积为9,请直接写出点B的坐标.25.某校为了丰富同学们的课外活动,决定给全校20个班每班配4副乒乓球拍和若干乒乓球,两家体育用品商店对同一款乒乓球拍和乒乓球推出让利活动,甲商店买一副乒乓球拍送10个乒乓球,乙商店所有商品均打九折(按标价的90%)销售,已知2副乒乓球拍和10个乒乓球110元,3副乒乓球拍和20个乒乓球170元。

七年级下册数学压轴题训练——坐标系求面积

七年级下册数学压轴题训练——坐标系求面积

压轴题训练——坐标系求面积1.在平面直角坐标系中,O 为坐标原点,点A 的坐标为(),a a -,点B 坐标为(),b c ,a 、b 、c 满足32824a b c a b c ++=⎧⎨-+=-⎩. (1)若a 没有平方根,判断点A 在第几象限并说明理由;(2)若点A 到y 轴的距离是点B 到y 轴距离的3倍,求点B 的坐标;(3)点D 的坐标为()2,4-,OAB ∆的面积是DAB ∆面积的2倍,求点B 的坐标.2.如图,已知()2,0A -,()4,0B ,()2,4C ,()0,2D(1)求三角形ABC 的面积;(2)设P 为坐标轴上一点,若12APC ABC S S =△△,求P 点的坐标.3.如图,在直角坐标系xoy 中,点A 、B 的坐标分别是A (-1,0),B (3,0),将线段AB 向上平移2个单位,再向右平移1个单位,得到线段DC ,点A 、B 的对应点分别是D 、C ,连接AD 、BC .(1)直接写出点C ,D 的坐标;(2)求四边形ABCD 的面积;(3)点P 为线段BC 上任意一点(与点B 、C 不重合),连接PD ,PO .求证:∠CDP+∠BOP=∠OPD .4.如图,在平面直角坐标系中,已知(,0)A a ,(,0)B b ,其中a ,b |1|0a +=,点M 为第三象限内一点.(1)若(2,210)M m m --到坐标轴的距离相等,MN AB ,且NM AB =,求N 点坐标(2)若M 为(2,)m -,请用含m 的式子表示ABM ∆的面积.(3)在(2)条件下,当1m =-时,在y 轴上有点P ,使得ABP ∆的面积是ABM ∆的面积的2倍,请求出点P 的坐标.5.如图,在平面直角坐标系中,已知∠ABC,点A 的坐标是(4,0),点B 的坐标是(2,3),点C 在x 轴的负半轴上,且AC=6.(1)直接写出点C 的坐标.(2)在y 轴上是否存在点P ,使得S ∠POB =23S ∠ABC 若存在,求出点P 的坐标;若不存在,请说明理由. (3)把点C 往上平移3个单位得到点H ,作射线CH,连接BH ,点M 在射线CH 上运动(不与点C 、H 重合).试探究∠HBM ,∠BMA ,∠MAC 之间的数量关系,并证明你的结论.6.如图,在下面直角坐标系中,已知()0,A a ,(),0B b ,(),C b c 三点,其中a 、b 、c ()230b -=,()240c -≤.(1)求a 、b 、c 的值;(2)如果在第二象限内有一点1,2P m ⎛⎫ ⎪⎝⎭,请用含m 的式子表示四边形ABOP 的面积; (3)在(2)的条件下,是否存在点P ,使四边形ABOP 的面积与ABC ∆的面积相等?若存在,求出点P 的坐标,若不存在,请说明理由.7.如图,在下面直角坐标系中,已知()0,A a ,(),0B b ,(),C b c 三点,其中a ,b ,c 满足关系式()2240a c --=.(1)求a ,b ,c 的值;(2)如果在第二象限内有一点1,2P m ⎛⎫ ⎪⎝⎭,请用含m 的式子表示四边形ABOP 的面积; (3)在(2)的条件下,是否存在点P ,使四边形ABOP 的面积与三角形ABC 的面积相等?若存在,求出点P 的坐标,若不存在,请说明理由.8.如图,在平面直角坐标系xoy 中,已知A (6,0),B (8,6),将线段OA 平移至CB ,点D 在x 轴正半轴上(不与点A 重合),连接OC 、AB 、CD 、BD .(1)写出点C 的坐标;(2)当∠ODC 的面积是∠ABD 的面积的3倍时,求点D 的坐标;(3)设∠OCD =α,∠DBA =β,∠BDC =θ,判断α、β、θ之间的数量关系,并说明理由.9.如图,在直角坐标系xOy 中,己知()0A ,()6B ,将线段OA 平移至CB ,点D 在x 轴正半轴上(不与点A 重合),连接OC ,AB ,CD ,BD .(1)直接写出点C 的坐标;(2)当∠ODC 的面积是∠ABD 的面积的2倍时,求点D 的坐标;(3)若∠OCD=25°,∠DBA=15°,求∠BDC .并说明理由.10.如图①,在平面直角坐标系中,A(a ,0),C(b ,2),且满足(a+2)2,过C 作CB∠x 轴于B .(1)求三角形ABC 的面积;(2)如图②,若过B 作BD∠AC 交y 轴于D ,且AE ,DE 分别平分∠CAB ,∠ODB ,求∠AED 的度数;(3)在y 轴上是否存在点P ,使得三角形ACP 和三角形ABC 的面积相等?若存在,求出P 点的坐标;若不存在,请说明理由.11.如图①,在平面直角坐标系中,A ()0a ,,C ()2b ,,且满足()220a ++=,过点C 作CB∠x 轴于点B . (1)__________ABC a b S ===,,;(2)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等?若存在,求出点P 的坐标;若不存在,请说明理由;(3)如图②,若过点B 作BD∠AC 交y 轴于点D ,且AE 、DE 分别平分∠CAB 、∠ODB ,求∠AED 的度数.12.如图(1),在平面直角坐标系中,A (a ,0),C (b ,2),过C 作CB∠x 轴,且满足(a+b )2+=0.(1)求三角形ABC 的面积.(2)若过B 作BD∠AC 交y 轴于D ,且AE ,DE 分别平分∠CAB ,∠ODB ,如图2,求∠AED 的度数.(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等?若存在,求出P 点坐标;若不存在,请说明理由.13.如图1,已知点A(-2,0).点D在y轴上,连接AD并将它沿x轴向右平移至BC的位置,且点B坐标为(4,0),连接CD,OD=12 AB.(1)线段CD的长为,点C的坐标为;(2)如图2,若点M从点B出发,以1个单位长度/秒的速度沿着x轴向左运动,同时点N从原点O出发,以相同的速度沿折线OD→DC运动(当N到达点C时,两点均停止运动).假设运动时间为t秒.①t为何值时,MN∠y轴;②求t为何值时,S∠BCM=2S∠ADN.14.如图,在平面直角坐标系中,点A,B的坐标分别为A(0,α),B(b,α),且α、b满足(a﹣2)2+|b﹣4|=0,现同时将点A,B分别向下平移2个单位,再向左平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,AB.(1)求点C,D的坐标及四边形ABDC的面积S四边形ABCD(2)在y轴上是否存在一点M,连接MC,MD,使S∠MCD=S四边形ABDC?若存在这样一点,求出点M的坐标,若不存在,试说明理由.(3)点P是线段BD上的一个动点,连接PA,PO,当点P在BD上移动时(不与B,D重合)BAP DOPAPO∠+∠∠的值是否发生变化,并说明理由.15.如图1,在平面直角坐标系中,点A,B的坐标分别是(-2,0),(4,0),现同时将点A、B分别向上平移2个单位长度,再向右平移2个单位长度,得到A,B的对应点C,D.连接AC、BD、CD.(1)点C的坐标为,点D的坐标为,四边形ABDC的面积为.(2)在x轴上是否存在一点E,使得∠DEC的面积是∠DEB面积的2倍?若存在,请求出点E的坐标;若不存在,请说明理由.。

部编数学七年级下册期末难点特训(三)和平面直角坐标系有关的压轴题(解析版)含答案

部编数学七年级下册期末难点特训(三)和平面直角坐标系有关的压轴题(解析版)含答案

(1)已知点A的坐标为(﹣3,1),(1)请直接写出点A ,B ,C 的坐标;(2)如图(1),若点D 的坐标为()1,0-,点(),F m n 为线段DE 12,求m 的取值范围;(3)如图(2),若DE 与y 轴的交点G 在B 点上方,点P 为EBO Ð,BPD Ð,PDA Ð之间的数量关系.【答案】(1)()4,0A ,()0,2B ,()0,3C -14Q 将线段AB 平移到DE ,AB DE \=,AB DE ∥,AD =\四边形ABED 的面积25=´=152ABF ABEDS S D \==四边形,ABF ADF ABO ABFD S S S S D D D =+=+Q 四边形11155422(222n m \+´´=´´+´´-Q将线段AB平移到DE \∥,AD BE AB DE∥ADP BFD\Ð=Ð,\Ð=°-Ð=180180 PFB BFD Q,Ð=Ð+ÐEBO BPD BFPEBO BPD\Ð=Ð+°-Ð180Q将线段AB平移到DE \∥,AD BE\Ð+Ð=°,PDA BFD180\Ð=°-Ð,180BFP PDAÐ=Ð+ÐQ,EBO BFP BPF\Ð=°-Ð+180180 EBO PDA如图,当点P 在AD 的延长线与y 轴的交点T 上方时,EBO BEG EGB Ð=Ð+ÐQ ,又BE AD Q ∥,BEG GDT \Ð=Ð,由对顶角得EGB TGD Ð=Ð,PTD TGD TDG Ð=Ð+ÐQ ,PTD EBO \Ð=Ð,PDA PTD TPD Ð=Ð+ÐQ ,PDA EBO BPD\Ð=Ð+Ð综上所述:当点P 在点B 的下方时,180EBO BPD ADP Ð=Ð+°-Ð;当点P 在B 、与AD 的延长线与y 轴的交点之间时,360EBO PDA BPD Ð+Ð+Ð=°;当点P 在AD 的延长线与y 轴的交点T 上方时,PDA EBO BPD Ð=Ð+Ð.【点睛】本题是三角形综合题,考查了平移的性质,三角形面积公式,利用分类讨论思想解决问题是解题的关键.3.如图所示,在平面直角坐标系中,如图①,将线段AB 平移至线段CD ,点A 在x 轴的负半轴,点C 在y 轴的正半轴上,连接AC 、BD .(1)若(3,0)A -、(2,2)B --,(0,2)C ,直接写出点D 的坐标;(2)如图②,在平面直角坐标系中,已知一定点(2,0)M ,两个动点(,21)E a a +、(,23)F b b -+.请你探索是否存在以两个动点E 、F 为端点的线段EF 平行于线段OM 且等于线段OM ,若存在,求点E 、F 的坐标;若不存在,请说明理由;(3)如图③,在直线EF 上有两点A 、C ,分别引两条射线AB 、CD .110BAF Ð=°,//EF OM Q ,EF OM =,\点E 与F 的纵坐标相等,横坐标的差的绝对值为即2123a b +=-+,||a b -=如图①,AB 与CD 在EF 的两侧时,110BAF Ð=°Q ,60DCF Ð=°,18060312031203ACD t t t \Ð=°-°-°´=°-°´=°-°要使//AB CD ,则ACD BAF ÐÐ=,即120°-解得5t =,此时(18060)340°-°¸°=,040t \<<,∴a−6=0,c+8=0,∴a=6,c=−8,∴A(6,0),B(6,−8).当点P到AB的距离为2个单位长度时,运动路程s=6−2=4或s=6+8+2=16,∴4÷2=2s或16÷2=8s,故答案为:2s或8s;(2)①当0≤t≤3时,点P在OA上,此时,P(2t,0);②当3≤t≤7时,点P在AB上,此时PA=2t−6,由于点P在第四象限,纵坐标小于0,则P (6,6−2t);③当7≤t≤10时,点P在BC上,此时PB=2t−OA−AB=2t−14,PC=BC−PB=6−(2t−14)=20−2t,∴P(20−2t,−8);(3)当点P在线段AB上时,分两种情况:①如图3中,结论:∠PEA+∠PFC=160°,理由如下:连接OP,∵∠PFC=∠FPO+∠FOP,∠AEP=∠EOP+∠EPO,∴∠PEA+∠PFC=∠FPO+∠FOP+∠EOP+∠EPO=∠AOF+∠EPF=90°+70°=160°;②如图4中,结论:∠PFC−∠AEP=20°,理由如下:a______,b=______;(1)直接写出=轴上一点,且三角形ABP的面积为12,求点P=,设OC mAE BDQ∥,\ADQ=(1)求B 点的坐标时,小明是这样想的:先设B 点坐标为以()m n ,是方程2x y -=-的解;又因为B 点在直线BC 解,从而m ,n 满足228m n m n -=-ìí+=î,据此可求出B 点坐标为______;C 点坐标为______.(均直接写出结果)(2)若线段BC 上存在一点D ,使12OCD ABC S S =△△(O∵S△ABM+S梯形AMNF=S△FBN,∴1 2×4×4+12(4+FN)×3=12×FN×7,∴FN=7,∴F(-5,-3),过点∠MDQ=90°,△MDQ是等腰直角三角形,过点D作DG⊥x轴于E,过点M作MG⊥DG于G,同理得△BOA≌△AED,△MGD≌△DEQ,∴DE=MG=OA=2,OE=2+6=8,∴OE=8=m+2,∴m=6,∴OQ=OE+EQ=OE+DG=8+2+3m-6=3m+4=22,∴Q(22,0);③如图4,∠MDQ=90°,△MDQ 是等腰直角三角形,过点D作DE⊥x轴于E,过M作MG∥y轴,过点D作DG⊥MG于G,同理得:OA=DE=DG=2,∴m=2+6+2=10,∴OQ=EQ-OE=MG-OE=2+3m-6-8=18,∴Q(-18,0);综上,点Q的坐标为(-3,0)或(22,0)或(-18,0).【点睛】本题是三角形的综合题,考查了坐标与图形性质及非负数的性质,等腰直角三角形的性质和判定,三角形全等的性质和判定等知识,解决本题的关键是作辅助线构建三角形全等.过点过点过点(1)求点A ,B 的坐标;(2)如图1,将AB 平移到A B ¢¢,使点B 的对应点B ¢落在x 轴的正半轴上,在且20ABP Ð=°,试判断PB A ¢¢Ð与B PB ¢Ð之间的数量关系,并说明理由;(3)如图2,线段AB 与y 轴交于点M ,将AB 平移到A B ¢¢,连接MA ¢∵由平移得:AB A B ¢¢∥∴PQ A B ¢¢∥∴QPB PB A ¢¢¢Ð=Ð,20QPB PBA Ð=Ð=°∴PB A QPB B PB QPB B PB PBA ¢¢¢¢¢Ð=Ð=Ð+Ð=Ð+Ð∵ACDB ACOM OMDBS S S =+梯形梯形梯形∴()()(111826246222m ´´+=´++´´解得:4m =如图3,过点A ¢、B ¢构造矩形A GEF ¢∴A B M A GB MEB A GEF S S S S ¢¢¢¢¢¢=---矩形△△△(1118884488222n n =´-´´-´×-´×-64162324n n---+216n =+\Ð∵Q由平移可得:,MN PQ ∥180,MNQ PQN EQP MNE ENQ EQN \Ð+Ð=°=Ð+Ð+Ð+Ð 180,NEQ ENQ EQN Ð+Ð+Ð=°Q,NEQ EQP MNE \Ð=Ð+Ð如图,当E 在NQ 的右边,直线MN 的左边时,(包括E 在这两条直线上),同理可得:180,180,MNQ PQN QNE NEQ NQE Ð+Ð=°Ð+Ð+Ð=° 360,MNE NEQ EQP \Ð+Ð+Ð=°如图,当E 在直线MN 的右边时,记直线MN 与EQ 的交点为F ,同理,当C 点平移后的点不是“自大点时”, 1t …或3t …,\当平移后的正方形边界及其内部的所有点都不是“自大点”时,1t …或7t …,故答案为:1t …或7t ….【点睛】本题主要考查正方形的性质,坐标与图形的平移变化,根据题意,准确找出“自大点”的纵横坐标满足的关系是解答此题的关键.。

七(下)培优训练(三)平面直角坐标系综合问题(压轴题)

七(下)培优训练(三)平面直角坐标系综合问题(压轴题)

培优训练三:平面直角坐标系(压轴题)一、坐标与面积:【例1】如图,在平面直角坐标中,A (0,1),B (2,0),C (2,1.5). (1)求△AB C的面积;(2)如果在第二象限内有一点P(a ,0.5),试用a 的式子表示四边形ABOP 的面积;(3)在(2)的条件下,是否存在这样的点P ,使四边形ABOP 的面积与△AB C的面积相等?若存在,求出点P 的坐标,若不存在,请说明理由.yxPOCBA【例2】在平面直角坐标系中,已知A (-3,0),B (-2,-2),将线段AB 平移至线段CD .图1y xDO CB A图2y xDOCB AyxOBAyxOBA(1)如图1,直接写出图中相等的线段,平行的线段;(2)如图2,若线段AB 移动到CD ,C 、D 两点恰好都在坐标轴上,求C 、D 的坐标;(3)若点C 在y 轴的正半轴上,点D在第一象限内,且S△ACD =5,求C、D 的坐标;(4)在y 轴上是否存在一点P ,使线段AB 平移至线段PQ 时,由A 、B 、P、Q 构成的四边形是平行四边形面积为10,若存在,求出P 、Q的坐标,若不存在,说明理由;【例3】如图,△ABC 的三个顶点位置分别是A (1,0),B (-2,3),C (-3,0).(1)求△ABC 的面积;(2)若把△AB C向下平移2个单位长度,再向右平移3个单位长度,得到△A B C ''',请你在图中画出△A B C '''; (3)若点A、C的位置不变,当点P 在y 轴上什么位置时,使2ACPABCS S=;(4)若点B 、C的位置不变,当点Q在x 轴上什么位置时,使2BCQABCS S=.【例4】如图1,在平面直角坐标系中,A (a ,0),C (b,2),且满足2(2)20a b ++-=,过C 作CB ⊥x 轴于B.(1)求三角形ABC 的面积;(2)若过B作BD ∥AC 交y 轴于D,且AE ,D E分别平分∠CA B,∠ODB ,如图2,求∠AE D的度数;(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形A CP 的面积相等,若存在,求出P 点坐标;若不存在,请说明理由.【例5】如图,在平面直角坐标系中,四边形AB CD 各顶点的坐标分别是A(0,0),B(7,0),C (9,5),D (2,7)(1)在坐标系中,画出此四边形; (2)求此四边形的面积;(3)在坐标轴上,你能否找一个点P ,使S △PBC =50, 若能,求出P 点坐标,若不能,说明理由.【例6】如图,A点坐标为(-2, 0), B 点坐标为(0, -3). (1)作图,将△ABO沿x轴正方向平移4个单位, 得到△DEF , 延长ED 交y 轴于C点, 过O点作O G⊥C E, 垂足为G ;(2) 在(1)的条件下, 求证: ∠C OG =∠E DF ; (3)求运动过程中线段A B扫过的图形的面积.【例7】在平面直角坐标系中,点B (0,4),C(-5,4),点A 是x轴负半轴上一点,S四边形A OBC =24.图1yxHOFEDAC B(1)线段B C的长为 ,点A的坐标为 ;(2)如图1,EA 平分∠CAO ,DA 平分∠CA H,CF ⊥A E点F,试给出∠ECF 与∠DAH 之间满足的数量关系式,并说明理由;(3)若点P 是在直线C B与直线AO 之间的一点,连接BP 、OP ,BN 平分CBP ∠,ON平分AOP ∠,BN 交ON 于N,请依题意画出图形,给出BPO ∠与BNO ∠之间满足的数量关系式,并说明理由. 【例8】在平面直角坐标系中,OA=4,O C=8,四边形ABC O是平行四边形.A(-2,0)B(0,-3)y x 0(1)求点B 的坐标及的面积ABCO S 四边形;(2)若点P 从点C以2单位长度/秒的速度沿CO 方向移动,同时点Q 从点O 以1单位长度/秒的速度沿OA 方向移动,设移动的时间为t 秒,△AQ B与△BPC 的面积分别记为AQB S ∆,BPC S ∆,是否存在某个时间,使AQB S ∆=3OQBPS 四边形,若存在,求出t 的值,若不存在,试说明理由;(3)在(2)的条件下,四边形Q BPO 的面积是否发生变化,若不变,求出并证明你的结论,若变化,求出变化的范围.【例9】如图,在平面直角坐标系中,点A ,B的坐标分别为(-1,0),(3,0),现同时将点A,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A,B 的对应点C,D 连结AC ,B D. (1)求点C ,D 的坐标及四边形ABD C的面积S 四边形ABDC ;(2)在y轴上是否存在一点P ,连结P A ,PB ,使S △PAB =S △明理由;(3)若点Q自O 点以0.5个单位/s 的速度在线段AB上移动,运动到B点就停止,设移动的时间为t 秒,(1)是否是否存在一个时刻,使得梯形CDQB 的面积是四边形ABCD 面积的三分之一?(4)是否是否存在一个时刻,使得梯形CDQB 的面积等于△ACO 面积的二分之一?【例10】在直角坐标系中,△AB C的顶点A (—2,0),B (2,4),C (5,0). (1)求△ABC 的面积(2)点D 为y负半轴上一动点,连BD 交x 轴于E ,是否存在点D 使得ADE BCE S S ∆∆=?若存在,请求出点D 的坐标;若不存在,请说明理由.(3)点F (5,n )是第一象限内一点,,连BF ,CF ,G 是x轴上一点,若△ABG 的面积等于四边形ABDC 的面积,则点G 的坐标为 (用含n 的式子表示)二、坐标与几何:【例1】如图,已知A (0,a),B (0,b),C (m ,b)且(a -4)2+|b+3|=0,S △ABC =14. (1)求C点坐标(2)作DE ⊥DC,交y 轴于E点,EF 为∠AED 的平分线,且∠DF E=900.求证:FD 平分∠ADO;(3)E 在y 轴负半轴上运动时,连E C,点P为A C延长线上一点,EM 平分∠AEC,且PM ⊥EM,PN ⊥x 轴于N点,PQ 平分∠APN,交x轴于Q点,则E 在运动过程中,错误!的大小是否发生变化,若不变,求出其值.【例2】如图,在平面直角坐标系中,已知点A(-5,0),B(5.0),D(2,7), (1)求C点的坐标;(2)动点P 从B 点出发以每秒1个单位的速度沿BA 方向运动,同时动点Q从C 点出发也以每秒1位的速度沿y轴正半轴方向运动(当P 点运动到A 点时,两点都停止运动)。

初一平面直角坐标系所有知识点总结和常考题提高难题压轴题练习(含答案解析)

初一平面直角坐标系所有知识点总结和常考题提高难题压轴题练习(含答案解析)

初一平面直角坐标系所有知识点总结和常考题提高难题压轴题练习知识点:1、对应关系:平面直角坐标系内的点与有序实数对一一对应。

2、平面内两条互相垂直、原点重合组成的数轴组成平面直角坐标系。

水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴为y轴或纵轴,取向上为正方向;两个坐标轴的交点为平面直角坐标系的原点。

坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。

象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。

坐标轴上的点不在任何一个象限内3、三大规律(1)平移规律:点的平移规律左右平移→纵坐标不变,横坐标左减右加;上下平移→横坐标不变,纵坐标上加下减。

图形的平移规律找特殊点(2)对称规律关于x轴对称→横坐标不变,纵坐标互为相反数;关于y轴对称→横坐标互为相反数,纵坐标不变;关于原点对称→横纵坐标都互为相反数。

x轴上→纵坐标为0;y轴上→横坐标为0;第一、三象限夹角平分线上→横纵坐标相等;一.选择题(共15小题)1.点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为()A.(﹣4,3)B.(﹣3,﹣4)C.(﹣3,4)D.(3,﹣4)2.如图,小手盖住的点的坐标可能为()A.(5,2) B.(﹣6,3)C.(﹣4,﹣6)D.(3,﹣4)3.如图,已知棋子“车”的坐标为(﹣2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为()A.(3,2) B.(3,1) C.(2,2) D.(﹣2,2)4.在平面直角坐标系中,点(﹣1,m2+1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限5.线段CD是由线段AB平移得到的.点A(﹣1,4)的对应点为C(4,7),则点B (﹣4,﹣1)的对应点D的坐标为()A.(2,9) B.(5,3) C.(1,2) D.(﹣9,﹣4)6.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.57.点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为()A.(﹣3,0)B.(﹣1,6)C.(﹣3,﹣6)D.(﹣1,0)8.如果点P(m+3,m+1)在直角坐标系的x轴上,P点坐标为()A.(0,2) B.(2,0) C.(4,0) D.(0,﹣4)9.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4) B.(4,5) C.(3,4) D.(4,3)10.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,2)重合,则点A的坐标是()A.(2,5) B.(﹣8,5)C.(﹣8,﹣1)D.(2,﹣1)11.在平面直角坐标系中,若点P(m﹣3,m+1)在第二象限,则m的取值范围为()A.﹣1<m<3 B.m>3 C.m<﹣1 D.m>﹣112.若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在()A.第一象限B.第二象限C.第三象限D.第四象限13.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n 被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)14.小明的家,学校和书店依次坐落在一条南北方向的大街上,学校在家南边20米,书店在家北边100米,小明从家出来向北走了50米,又向北走了﹣70米,此时,小明的位置在()A.家B.学校C.书店D.不在上述地方15.如图为小杰使用手机内的通讯软件跟小智对话的纪录.根据图中两人的对话纪录,若下列有一种走法能从邮局出发走到小杰家,则此走法为何?()A.向北直走700公尺,再向西直走100公尺B.向北直走100公尺,再向东直走700公尺C.向北直走300公尺,再向西直走400公尺D.向北直走400公尺,再向东直走300公尺二.填空题(共10小题)16.在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:(1)f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);(2)g(m,n)=(﹣m,﹣n),如g (2,1)=(﹣2,﹣1)按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(﹣3,2)]=.17.已知点M(3,﹣2),将它先向左平移4个单位,再向上平移3个单位后得到点N,则点N的坐标是.18.如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(﹣2,3),嘴唇C 点的坐标为(﹣1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B的坐标是.19.若第二象限内的点P(x,y)满足|x|=3,y2=25,则点P的坐标是.20.如图的围棋盘放在某个平面直角坐标系内,白棋②的坐标为(﹣7,﹣4),白棋④的坐标为(﹣6,﹣8),那么黑棋①的坐标应该是.21.如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标分别变为原来的,那么点A的对应点A′的坐标是.22.如图,这是台州市地图的一部分,分别以正东、正北方向为x轴、y轴的正方向建立直角坐标系,规定一个单位长度表示1km,甲、乙两人对着地图如下描述路桥区A处的位置.则椒江区B处的坐标是.23.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(用n表示).24.一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第35秒时质点所在位置的坐标是.25.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)(4,0)根据这个规律探索可得,第100个点的坐标为.三.解答题(共15小题)26.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B的坐标:A(,)、B(,)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(,)、B′(,)、C′(,).(3)△ABC的面积为.27.王霞和爸爸、妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴.只知道游乐园D的坐标为(2,﹣2),你能帮她求出其他各景点的坐标吗?28.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+3),从B到A记为:A→B(﹣1,﹣3),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)A→C(,),B→D(,),C→(+1,);(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程;(3)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置.29.如图所示的直角坐标系中,四边形ABCD各顶点的坐标分别为A(0,0)、B(9,0)、C(7,5)、D(2,7).求四边形ABCD的面积.30.小明的爷爷退休生活可丰富了!下表是他某日的活动安排.和平广场位于爷爷家东400米,老年大学位于爷爷家西600米.从爷爷家到和平路小学需先向南走300米,A、老年大学B与和平路小学的位置;(2)求爷爷家到和平路小学的直线距离.31.已知点A(﹣1,﹣2),点B(1,4)(1)试建立相应的平面直角坐标系;(2)描出线段AB的中点C,并写出其坐标;(3)将线段AB沿水平方向向右平移3个单位长度得到线段A1B1,写出线段A1B1两个端点及线段中点C1的坐标.32.在平面直角坐标系中,点M的坐标为(a,﹣2a).(1)当a=﹣1时,点M在坐标系的第象限;(直接填写答案)(2)将点M向左平移2个单位,再向上平移1个单位后得到点N,当点N在第三象限时,求a的取值范围.33.已知:A(0,1),B(2,0),C(4,3)(1)求△ABC的面积;(2)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.34.如图,在下面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a、b、c满足关系式|a﹣2|+(b﹣3)2=0,(c﹣4)2≤0(1)求a、b、c的值;(2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标,若不存在,请说明理由.35.如图,已知A(﹣2,3)、B(4,3)、C(﹣1,﹣3)(1)求点C到x轴的距离;(2)求△ABC的面积;(3)点P在y轴上,当△ABP的面积为6时,请直接写出点P的坐标.36.有趣玩一玩:中国象棋中的马颇有骑士风度,自古有“马踏八方”之说,如图,按中国象棋中“马”的行棋规则,图中的马下一步有A、B、C、D、E、F、G、H八种不同选择,它的走法就象一步从“日”字形长方形的对角线的一个端点到另一个端点,不能多也不能少.要将图中的马走到指定的位置P处,即从(四,6)走到(六,4),现提供一种走法:(四,6)→(六,5)→(四,4)→(五,2)→(六,4)(1)下面是提供的另一走法,请你填上其中所缺的一步:(四,6)→(五,8)→(七,7)→→(六,4)(2)请你再给出另一种走法(只要与前面的两种走法不完全相同即可,步数不限),你的走法是:.你还能再写出一种走法吗.37.如图,在直角坐标系中,四边形ABCD各个顶点的坐标分别是A(﹣2,﹣3)、B (5,﹣2)、C(2,4)、D(﹣2,2),求这个四边形的面积.38.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD.;(1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC=S四边形ABDC?若存在这样一点,(2)在y轴上是否存在一点P,连接PA,PB,使S△PAB求出点P的坐标;若不存在,试说明理由.39.如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C 点的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线移动(即:沿着长方形移动一周).(1)写出点B的坐标().(2)当点P移动了4秒时,描出此时P点的位置,并求出点P的坐标.(3)在移动过程中,当点P到x轴距离为5个单位长度时,求点P移动的时间.40.先阅读下列一段文字,在回答后面的问题.已知在平面内两点P1(x1,y1)、P2(x2,y2),其两点间的距离公式,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(2,4)、B(﹣3,﹣8),试求A、B两点间的距离;(2)已知A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,试求A、B两点间的距离.(3)已知一个三角形各顶点坐标为A(0,6)、B(﹣3,2)、C(3,2),你能判定此三角形的形状吗?说明理由.初一平面直角坐标系所有知识点总结和常考题提高难题压轴题练习(含答案解析)参考答案与试题解析一.选择题(共15小题)1.(2007•舟山)点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为()A.(﹣4,3)B.(﹣3,﹣4)C.(﹣3,4)D.(3,﹣4)【分析】先根据P在第二象限内判断出点P横纵坐标的符号,再根据点到坐标轴距离的意义即可求出点P的坐标.【解答】解:∵点P在第二象限内,∴点的横坐标<0,纵坐标>0,又∵P到x轴的距离是4,即纵坐标是4,到y轴的距离是3,横坐标是﹣3,∴点P的坐标为(﹣3,4).故选:C.【点评】解答此题的关键是熟记平面直角坐标系中各个象限内点的坐标符号,及点的坐标的几何意义.2.(2007•长春)如图,小手盖住的点的坐标可能为()A.(5,2) B.(﹣6,3)C.(﹣4,﹣6)D.(3,﹣4)【分析】根据题意,小手盖住的点在第四象限,结合第四象限点的坐标特点,分析选项可得答案.【解答】解:根据图示,小手盖住的点在第四象限,第四象限的点坐标特点是:横正纵负;分析选项可得只有D符合.故选D.【点评】解决本题解决的关键是记住各象限内点的坐标的符号,进而对号入座,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.(2007•盐城)如图,已知棋子“车”的坐标为(﹣2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为()A.(3,2) B.(3,1) C.(2,2) D.(﹣2,2)【分析】根据已知两点的坐标确定符合条件的平面直角坐标系,然后确定其它点的坐标.【解答】解:由棋子“车”的坐标为(﹣2,3)、棋子“马”的坐标为(1,3)可知,平面直角坐标系的原点为底边正中间的点,以底边为x轴,向右为正方向,以左右正中间的线为y轴,向上为正方向;根据得出的坐标系可知,棋子“炮”的坐标为(3,2).故选:A.【点评】此题考查了点的坐标解决实际问题的能力和阅读理解能力,解决此类问题需要先确定原点的位置,再求未知点的位置.或者直接利用坐标系中的移动法则“右加左减,上加下减”来确定坐标.4.(2002•江西)在平面直角坐标系中,点(﹣1,m2+1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】应先判断出点的横纵坐标的符号,进而判断点所在的象限.【解答】解:因为点(﹣1,m2+1),横坐标<0,纵坐标m2+1一定大于0,所以满足点在第二象限的条件.故选B.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.(2017春•潮阳区期末)线段CD是由线段AB平移得到的.点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标为()A.(2,9) B.(5,3) C.(1,2) D.(﹣9,﹣4)【分析】直接利用平移中点的变化规律求解即可.【解答】解:平移中,对应点的对应坐标的差相等,设D的坐标为(x,y);根据题意:有4﹣(﹣1)=x﹣(﹣4);7﹣4=y﹣(﹣1),解可得:x=1,y=2;故D的坐标为(1,2).故选:C.【点评】本题考查点坐标的平移变换,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变.平移中,对应点的对应坐标的差相等.6.(2016•菏泽)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.5【分析】直接利用平移中点的变化规律求解即可.【解答】解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选:A.【点评】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.7.(2015•安顺)点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为()A.(﹣3,0)B.(﹣1,6)C.(﹣3,﹣6)D.(﹣1,0)【分析】根据平移时,坐标的变化规律“上加下减,左减右加”进行计算.【解答】解:根据题意,得点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,所得点的横坐标是﹣2﹣1=﹣3,纵坐标是﹣3+3=0,即新点的坐标为(﹣3,0).故选A.【点评】此题考查了平移时,点的坐标变化规律:横坐标右移加,左移减;纵坐标上移加,下移减.8.(2013秋•平川区期末)如果点P(m+3,m+1)在直角坐标系的x轴上,P点坐标为()A.(0,2) B.(2,0) C.(4,0) D.(0,﹣4)【分析】因为点P(m+3,m+1)在直角坐标系的x轴上,那么其纵坐标是0,即m+1=0,m=﹣1,进而可求得点P的横纵坐标.【解答】解:∵点P(m+3,m+1)在直角坐标系的x轴上,∴m+1=0,∴m=﹣1,把m=﹣1代入横坐标得:m+3=2.则P点坐标为(2,0).故选B.【点评】本题主要考查了点在x轴上时纵坐标为0的特点,比较简单.9.(2017春•和县期末)课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4) B.(4,5) C.(3,4) D.(4,3)【分析】根据已知两点的坐标确定平面直角坐标系,然后确定其它各点的坐标.【解答】解:如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,如图所示就是以小华为原点的平面直角坐标系的第一象限,所以小刚的位置为(4,3).故选D.【点评】本题利用平面直角坐标系表示点的位置,是学数学在生活中用的例子.10.(2015•钦州)在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,2)重合,则点A的坐标是()A.(2,5) B.(﹣8,5)C.(﹣8,﹣1)D.(2,﹣1)【分析】逆向思考,把点(﹣3,2)先向右平移5个单位,再向下平移3个单位后可得到A点坐标.【解答】解:在坐标系中,点(﹣3,2)先向右平移5个单位得(2,2),再把(2,2)向下平移3个单位后的坐标为(2,﹣1),则A点的坐标为(2,﹣1).故选:D.【点评】本题考查了坐标与图形变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.11.(2008•菏泽)在平面直角坐标系中,若点P(m﹣3,m+1)在第二象限,则m的取值范围为()A.﹣1<m<3 B.m>3 C.m<﹣1 D.m>﹣1【分析】根据点P(m﹣3,m+1)在第二象限及第二象限内点的符号特点,可得一个关于m的不等式组,解之即可得m的取值范围.【解答】解:∵点P(m﹣3,m+1)在第二象限,∴可得到,解得m的取值范围为﹣1<m<3.故选A.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号以及不等式组的解法,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).12.(2015•威海)若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据第二象限内的点的横坐标小于零,纵坐标大于零,可得关于a、b的不等式,再根据不等式的性质,可得B点的坐标符号.【解答】解:由A(a+1,b﹣2)在第二象限,得a+1<0,b﹣2>0.解得a<﹣1,b>2.由不等式的性质,得﹣a>1,b+1>3,点B(﹣a,b+1)在第一象限,故选:A.【点评】本题考查了点的坐标,利用第二象限内点的横坐标小于零,纵坐标大于零得出不等式,又利用不等式的性质得出B点的坐标符号是解题关键.13.(2014•株洲)在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)【分析】根据走法,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,用100除以3,然后根据商和余数的情况确定出所处位置的横坐标与纵坐标即可.【解答】解:由题意得,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,∵100÷3=33余1,∴走完第100步,为第34个循环组的第1步,所处位置的横坐标为33×3+1=100,纵坐标为33×1=33,∴棋子所处位置的坐标是(100,33).故选:C.【点评】本题考查了坐标确定位置,点的坐标位置的规律变化,读懂题目信息并理解每3步为一个循环组依次循环是解题的关键.14.(2009秋•杭州期末)小明的家,学校和书店依次坐落在一条南北方向的大街上,学校在家南边20米,书店在家北边100米,小明从家出来向北走了50米,又向北走了﹣70米,此时,小明的位置在()A.家B.学校C.书店D.不在上述地方【分析】以家为坐标原点建立坐标系,根据题意即可确定小明的位置.【解答】解:根据题意:小明从家出来向北走了50米,又向北走了﹣70米,即向南走了20米,而学校在家南边20米.故此时,小明的位置在学校.故选B.【点评】本题考查了类比点的坐标及学生的解决实际问题的能力和阅读理解能力,画出平面示意图能直观地得到答案.15.(2014•台湾)如图为小杰使用手机内的通讯软件跟小智对话的纪录.根据图中两人的对话纪录,若下列有一种走法能从邮局出发走到小杰家,则此走法为何?()A.向北直走700公尺,再向西直走100公尺B.向北直走100公尺,再向东直走700公尺C.向北直走300公尺,再向西直走400公尺D.向北直走400公尺,再向东直走300公尺【分析】根据题意先画出图形,可得出AE=400,AB=CD=300,再得出DE=100,即可得出邮局出发走到小杰家的路径为:向北直走AB+AE=700,再向西直走DE=100公尺.【解答】解:依题意,OA=OC=400=AE,AB=CD=300,DE=400﹣300=100,所以邮局出发走到小杰家的路径为,向北直走AB+AE=700,再向西直走DE=100公尺.故选:A.【点评】本题考查了坐标确定位置,根据题意画出图形是解题的关键.二.填空题(共10小题)16.(2014•黔西南州)在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:(1)f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);(2)g(m,n)=(﹣m,﹣n),如g (2,1)=(﹣2,﹣1)按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(﹣3,2)]=(3,2).【分析】由题意应先进行f方式的运算,再进行g方式的运算,注意运算顺序及坐标的符号变化.【解答】解:∵f(﹣3,2)=(﹣3,﹣2),∴g[f(﹣3,2)]=g(﹣3,﹣2)=(3,2),故答案为:(3,2).【点评】本题考查了一种新型的运算法则,考查了学生的阅读理解能力,此类题的难点是判断先进行哪个运算,关键是明白两种运算改变了哪个坐标的符号.17.(2013•天水)已知点M(3,﹣2),将它先向左平移4个单位,再向上平移3个单位后得到点N,则点N的坐标是(﹣1,1).【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:原来点的横坐标是3,纵坐标是﹣2,向左平移4个单位,再向上平移3个单位得到新点的横坐标是3﹣4=﹣1,纵坐标为﹣2+3=1.则点N的坐标是(﹣1,1).故答案填:(﹣1,1).【点评】解题关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.18.(2013•绵阳)如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B的坐标是(3,3).【分析】先确定右眼B的坐标,然后根据向右平移几个单位,这个点的横坐标加上几个单位,纵坐标不变,由此可得出答案.【解答】解:∵左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),∴右眼的坐标为(0,3),向右平移3个单位后右眼B的坐标为(3,3).故答案为:(3,3).【点评】本题考查了平移变换的知识,注意左右平移纵坐标不变,上下平移横坐标不变.19.(2015•广元)若第二象限内的点P(x,y)满足|x|=3,y2=25,则点P的坐标是(﹣3,5).【分析】根据绝对值的意义和平方根得到x=±5,y=±2,再根据第二象限的点的坐标特点得到x<0,y>0,于是x=﹣5,y=2,然后可直接写出P点坐标.【解答】解:∵|x|=3,y2=25,∴x=±3,y=±5,∵第二象限内的点P(x,y),∴x<0,y>0,∴x=﹣3,y=5,∴点P的坐标为(﹣3,5),故答案为:(﹣3,5).【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).20.(2005•杭州)如图的围棋盘放在某个平面直角坐标系内,白棋②的坐标为(﹣7,﹣4),白棋④的坐标为(﹣6,﹣8),那么黑棋①的坐标应该是(﹣3,﹣7).【分析】根据已知两点的坐标建立坐标系,然后确定其它点的坐标.【解答】解:由白棋②的坐标为(﹣7,﹣4),白棋④的坐标为(﹣6,﹣8)得出:棋盘的y轴是右侧第一条线,横坐标从右向左依次为﹣1,﹣2,﹣3,…;纵坐标是以上边第一条线为﹣1,向下依次为﹣2,﹣3,﹣4,….∴黑棋①的坐标应该是(﹣3,﹣7).故答案为:(﹣3,﹣7).【点评】考查类比点的坐标解决实际问题的能力和阅读理解能力.根据已知条件建立坐标系是关键,或者直接利用坐标系中的移动法则右加左减,上加下减来确定坐标.21.(2015•青岛)如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标分别变为原来的,那么点A的对应点A′的坐标是(2,3).【分析】先写出点A的坐标为(6,3),横坐标保持不变,纵坐标分别变为原来的,即可判断出答案.【解答】解:点A变化前的坐标为(6,3),将横坐标保持不变,纵坐标分别变为原来的,则点A的对应点的坐标是(2,3),故答案为(2,3).【点评】此题考查了坐标与图形性质的知识,根据图形得到点A的坐标是解答本题的关键.22.(2015•台州)如图,这是台州市地图的一部分,分别以正东、正北方向为x轴、y 轴的正方向建立直角坐标系,规定一个单位长度表示1km,甲、乙两人对着地图如下描述路桥区A处的位置.则椒江区B处的坐标是(10,8).【分析】根据A点坐标,可建立平面直角坐标系,根据直角三角形的性质,可得AC 的长,根据勾股定理,BC的长.【解答】解:如图:连接AB,作BC⊥x轴于C点,由题意,得AB=16,∠ABC=30°,AC=8,BC=8.OC=OA+AC=10,B(10,8).【点评】本题考查了坐标确定位置,利用A点坐标建立平面直角坐标系是解题关键,利用了直角三角形的性质:30°的角所对的直角边是斜边的一半.23.(2013•聊城)如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(2n,1)(用n 表示).的坐标,然后根据变化规律写【分析】根据图形分别求出n=1、2、3时对应的点A4n+1出即可.【解答】解:由图可知,n=1时,4×1+1=5,点A5(2,1),n=2时,4×2+1=9,点A9(4,1),n=3时,4×3+1=13,点A13(6,1),(2n,1).所以,点A4n+1故答案为:(2n,1).【点评】本题考查了点的坐标的变化规律,仔细观察图形,分别求出n=1、2、3时对应的点A4n的对应的坐标是解题的关键.+124.(2009•延庆县一模)一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第35秒时质点所在位置的坐标是(5,0).【分析】由题目中所给的质点运动的特点找出规律,即可解答.【解答】解:质点运动的速度是每秒运动一个单位长度,(0,0)→(0,1)→(1,1)→(1,0)用的秒数分别是1秒,2秒,3秒,到(2,0)用4秒,到(2,2)用6秒,到(0,2)用8秒,到(0,3)用9秒,到(3,3)用12秒,到(4,0)用16秒,依此类推,到(5,0)用35秒.故第35秒时质点所在位置的坐标是(5,0).【点评】解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间.25.(2007•德阳)如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)(4,0)根据这个规律探索可得,第100个点的坐标为(14,8).【分析】横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,2…横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数.【解答】解:因为1+2+3+…+13=91,所以第91个点的坐标为(13,0).。

初一数学平面直角坐标系压轴题

初一数学平面直角坐标系压轴题

初一数学平面直角坐标系压轴题一、在平面直角坐标系中,点A(3, -2)关于x轴对称的点的坐标是?A. (-3, -2)B. (3, 2)C. (-3, 2)D. (2, -3)(答案) B二、点B(-4, 5)关于y轴对称的点的坐标是什么?A. (-4, -5)B. (4, -5)C. (4, 5)D. (-4, 0)(答案) C三、若点C(a, b)在第二象限,则点C关于原点对称的点的坐标位于?A. 第一象限B. 第二象限C. 第三象限D. 第四象限(答案) D四、点D(6, -8)到x轴的距离是?A. 6B. 8C. -8D. -6(答案) B五、点E(-7, 9)到y轴的距离是?A. 7B. 9C. -7D. -9(答案) A六、在平面直角坐标系中,点F(0, -3)位于?A. x轴上B. y轴上C. 原点上D. 第一象限(答案) B七、点G(m, n)关于x轴对称的点与关于y轴对称的点重合,那么点G一定在?A. 第一象限B. 第二象限C. x轴上D. y轴上(答案) D八、若点H(p, q)关于原点对称的点的坐标是(2, -3),则p+q的值是?A. 5B. -5C. 1D. -1(答案) D九、在平面直角坐标系中,将点I(1, -2)向右平移3个单位,再向上平移4个单位,所得点的坐标是?A. (4, 2)B. (-2, -6)C. (-2, 2)D. (4, -6)(答案) A十、点J(x, y)满足x=y,且它到x轴的距离为5,则点J的坐标可能是?A. (5, -5)B. (-5, 5)C. (5, 5)D. (-5, -5)(答案) C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面直角坐标系压轴题 【1 】
①能闇练解平面直角坐标系中的面积压在性问题; ②能将几何问题代数化,并能应用数形联合思惟解题.
探讨案
【例1】如图,在平面直角坐标中,A (0,1),B (2,0),C (2,). (1)求△ABC 的面积;
(2)假如在第二象限内有一点P (a ,),试用a 的式子暗示四边形ABOP 的面积;
(3)在(2)的前提下,是否消失如许的点P ,使四边形ABOP 的面积与△ABC 的面积相等?若消失,求出点P 的坐标,若不消失,请解释来由.
y
x
P
O
C
B
A
【例2】在平面直角坐标系中,已知A (-3,0),B (-2,-2),将线段AB 平移至线段CD .
图1
y x
D
O C
B A
图2y x
D
O
C
B A
图3
y
x
O
B
A
图4
y
x
O
B
A
(1)如图1,直接写出图中相等的线段,平行的线段;
(2)如图2,若线段AB 移动到CD ,C .D 两点正好都在坐标轴上,求C .D 的坐标; (3)若点C 在y 轴的正半轴上,点D 在第一象限内,且S △ACD =5,求C .D 的坐标;
(4)在y 轴上是否消失一点P ,使线段AB 平移至线段PQ 时,由A .B .P .Q 组成的四边形是平行四边形面积为10,若消失,求出P .Q 的坐标,若不消失,解释来由;
【例3】如图,△ABC 的三个极点地位分离是A (1,0),B (-2,3),C (-3,0). (1)求△ABC 的面积;
(2)若把△ABC 向下平移2个单位长度,再向右平移3个单位长度,得到△A B C ''',
请你在图中画出△A B C ''';
(3)若点A .C 的地位不变,当点P 在y 轴上什么地位时,使2ACP
ABC
S
S
=;
(4)若点B .C 的地位不变,当点Q 在x 轴上什么地位时,使
2BCQ ABC
S
S
=.
【例4】如图1,在平面直角坐标系中,A (a ,0),C (b ,2),且知足
2
(2)20a b ++-=,过C 作CB ⊥x 轴于B .
(1)求三角形ABC 的面积;
(2)若过B 作BD ∥AC 交y 轴于D ,且AE ,DE 分离等分∠CAB ,∠ODB ,如图2,求∠AED 的度数;
(3)在y 轴上是否消失点P ,使得三角形ABC 和三角形ACP 的面积相等,若消失,求出P 点坐标;若不消失,请解释来由.
练习案
1.如图,在平面直角坐标系中,四边形ABCD 各极点的坐标分离是A (0,0),B (7,0),C (9,5),D (2,7)
(1)在坐标系中,画出此四边形; (2)求此四边形的面积;
(3)在坐标轴上,你可否找一个点P ,使S △PBC =50,若能,求出P 点坐标,若不克不及,解释来由. 2.如图,A 点坐标为(-2, 0),B 点坐标为(0,-3). (1)作图,将△ABO 沿x 轴正偏向平移4个单位,得到△DEF ,延伸ED 交y 轴于C 点,过O
点作OG ⊥CE ,垂足为G ;
(2) 在(1)的前提下,求证: ∠COG =∠EDF ; (3)求活动进程中线段AB 扫过的图形的面积.
3.在平面直角坐标系中,点B (0,4),C (-5,4),点A 是x 轴负半轴上一点,S 四边形AOBC =2
4.
A(-2,0)
B(0,-3)
y
x
图1
y
x
H
O
F
E
D
A
C B
(1)线段BC 的长为,点A 的坐标为;
(2)如图1,EA 等分∠CAO ,DA 等分∠CAH ,CF ⊥AE 点F ,试给出∠ECF 与∠DAH 之间知足的数目关系式,并解释来由; (3)若点P 是在直线CB 与直线AO 之间的一点,衔接BP.OP,BN 等分CBP ∠,ON 等分AOP ∠,BN 交ON 于N ,请依题
意画出图形,给出BPO ∠与BNO ∠之间知足的数目关系式,并解释来由. 4.在平面直角坐标系中,OA =4,OC =8,四边形ABCO 是平行四边形.
x
y O
C
B
A
P Q
x
y
O
C
B
A
(1)求点B 的坐标及的面积
ABCO
S 四边形;
(2)若点P 从点C 以2单位长度/秒的速度沿CO 偏向移动,同时点Q 从点O 以1单位长度/秒的速度沿OA 偏向移动,
设移动的时光为t 秒,△AQB 与△BPC 的面积分离记为AQB S ∆,BPC S ∆,是否消失某个时光,使AQB S
∆=
3
OQBP
S 四边形,
若消失,求出t 的值,若不消失,试解释来由;
(3)在(2)的前提下,四边形QBPO 的面积是否产生变更,若不变,求出并证实你的结论,若变更,求出变更的规模. 5.如图,在平面直角坐标系中,点A ,B 的坐标分离为(-1,0),(3,0),现同时将点A ,B 分离向上平移2个单位,再向右平移1个单位,分离得到点A ,B 的对应点C ,D 贯穿连接AC ,BD .
一个时刻,使得梯形CDQB 的面积是四边形ABCD 面积的三分之一?
(4)是否是否消失一个时刻,使得梯形CDQB 的面积等于△ACO 面积的二分之一? 6.在直角坐标系中,△ABC 的极点A (—2,0),B (2,4),C (5,0). (1)求△ABC 的面积
(2)点D 为y 负半轴上一动点,
BCE
S ∆=?若消失,要求出点D 的坐标;若不消失,请解释来由.
(3)点F (5,n 的面积等于四边形ABDC 的面积,则点G 的坐标为(用含n 的式子暗示)。

相关文档
最新文档