聚多巴胺-纳米金修饰玻碳电极检测芦丁

合集下载

纳米金_碳纳米管_聚硫堇修饰玻碳电极检测甲基对硫磷

纳米金_碳纳米管_聚硫堇修饰玻碳电极检测甲基对硫磷

Based on gold nanoparticles/carbon nanotubes/PTH modified glass carbon electrode for determination of methyl parathion
Li Zhen, Luo Qi-mei*, Liu Deng-you, Wang Hui-xian, Zhou Hua, Wang Lin (Science Insititute Applied Chemsitry, Hunan Agricultural University, Changsha 410128, China) Abstract: An electrochemical sensor was developed for the detection of methyl parathion(MP) based on electrode position of gold nanoparticles on a multi-walled carbonnanotubes modified the poly (thionine)(PTH) film that was electropolymerized on the glassy carbon electrode (GCE). Cyclic voltammetry (CV) was employed in the process of electrodeposition and electropolymerization. MP were determined using different pulse voltammetry (DPV). A highly linear response to MP in the concentration range from 5.0 ×10 -8 to 5.0 ×10 -4 mol/L was observed ,with a correlation coefficient of 0.990 6, with a detection limit of 1.0 ×10 -8 mol/L estimated at a signal-to-noise ratio of 3. The method has been applied to the analysis of MP in real samples. Key words: carbon nanotubes ; poly(thionine) ; gold nanoparticles ; methyl parathion

芦丁修饰玻碳电极对烟酰胺腺嘌呤二核苷酸的电催化氧化

芦丁修饰玻碳电极对烟酰胺腺嘌呤二核苷酸的电催化氧化

修饰电 极的 制备: 将处理好的 玻碳电极置入 01 m l 2O 一4e 1 十 .× 0 o L .0 o LtP 4 t o 一 10 1 / 4 2 4 m l 芦丁的 / 溶
收 稿 E期 :0 7—1 —2 l 20 1 0
基金项 目: 国家 自然科学 基金( 准号 :0 70 2 , 批 26 50 ) 作 者简介 : 张莉萍(9 1 , , 1 8 一) 女 广东佛山人 , 士研究 生. 硕 张玉忠 (9 5一)安徽歙县人 , 16 , 教授 , 博士
关键 词 : 酰胺腺 嘌呤 二 核苷 酸 ; 丁 ; 饰 电极 ;电催化 烟 芦 修 中图分 类号 : 5 .7 06 7 1 文 献标 识码 : 文章 编号 :0 1 4 3 2 0 )2 1 5 4 1 0 —2 4 ( 0 8 0 —0 5 ~0
烟酰 胺腺 嘌呤 二核 苷 酸 ( D 广 泛存在 于 动植 物 和微 生 物 的 活细 胞 中 , 目前 已知 30多种 脱氢 酶 NA H) 是 0 的辅 酶 , 同时也 是许 多 生物 氧化 还原 电子传递链 中 的重要 物 质 . 因此 NA H 是研究 生 物 、 D 生命 和生理 过程 的 重要 基础 物质 . 人们 对其 电化 学 性质 进行 了许 多探 讨 . 它在裸 电极 上具 有较 大 的氧化 过 电位 且其 氧化产 物易 在 电极 表 面吸 附而 引起 电极 的钝 化 , 得 NA 使 DH 的直接 电化 学 测量 十分 困难 , 克服 这 个 困难 的方 法 之一 通
蒸馏水 .
1 2 实验方 法 .
玻碳 电极 的预 处理 [ ]将玻碳 电极 ( =3 : 3 吊 mm) 金 相砂纸 上 抛光 成镜 面 , 在 然后依 次用 l1 O3 : :HN ,ll乙 醇和 纯水 超声 清 洗 ( 5 n )然 后 , 入 10to/ O 溶 液 中 , 电位 +12 下 恒 电位 电解 5分 一1mi欣 . 放 . lL Na H o 于 .V 钟 , 后在 0 1 lL磷酸 盐溶 液 中于 一10一十10 进行 循环 扫描 至稳 定 . 然 .mo/ . .V

两种不同形貌的纳米金修饰的碳纤维超微电极的电化学性能研究

两种不同形貌的纳米金修饰的碳纤维超微电极的电化学性能研究

两种不同形貌的纳米金修饰的碳纤维超微电极的电化学性能研究摘要:本文中球状和线状纳米金由柠檬酸三钠还原氯金酸的方法制备得到,并通过透射式电子显微镜(TEM)对球状、线状两种形貌纳米金形貌进行表征。

将不同纳米金通过电沉积法分别修饰在碳纤维超微电极表面,采用差分脉冲伏安法(DPV)和循环伏安法(CV)分别对多巴胺(DA,1×10-5mol/L)在两种形貌纳米金修饰后的碳纤维超微电极上的电化学响应进行对比研究。

结果表明使用球状纳米金修饰碳纤维电极检测多巴胺的氧化峰电流稳定性最佳、修饰碳纤维电极测定多巴胺氧化峰电流增幅最明显。

关键词:两种形貌纳米金;碳纤维超微电极;;电化学性能Study on the Electrocatalytic Performance of Carbon Fiber Ultramicroelectrode modifiedwithTwoshapes of Nano-gold particalesAbstract:In this paper, trisodium citrate was used to reduce chloroauric acid to prepare spherical nano-gold and linear nano-gold.The gold nanoparticlesof spherical, lineamorphologies was characterized by transmission electron microscopy (TEM). Differential pulsevoltammetry (DPV) and cyclic voltammetry (CV) were used to compare dopami ne (1×10-5mol/L) on two shapes of nano-goldmodified carbon fiber ultramicroelectrode.The results show that the carbon fiber electrode modified with spherical nano-gold has the best stability in detecting the oxidation peak current of dopamineandthe largest increase in detecting the oxidation peak current of dopamine .Keywords:Two shapes of Nano-gold; Carbon fiber ultramicroelectroe; Electrochemical performance前言纳米材料性能独特[1],具备卓越的物理化学性质,对不同的复合纳米材料进行加工制作,可获得具有特定性质的复合型纳米材料。

一种在抗坏血酸存在的条件下检测多巴胺的修饰玻碳电极、制备方法及应用[发明专利]

一种在抗坏血酸存在的条件下检测多巴胺的修饰玻碳电极、制备方法及应用[发明专利]

专利名称:一种在抗坏血酸存在的条件下检测多巴胺的修饰玻碳电极、制备方法及应用
专利类型:发明专利
发明人:茆卉,梁家琛,张海凤,纪春光,宋溪明
申请号:CN201610005256.0
申请日:20160106
公开号:CN105572200A
公开日:
20160511
专利内容由知识产权出版社提供
摘要:本发明公开一种在抗坏血酸存在的条件下检测多巴胺的修饰玻碳电极,所述修饰玻碳电极为聚合离子液体/聚吡咯/氧化石墨烯纳米片修饰的玻碳电极,聚吡咯/氧化石墨烯纳米片中的聚吡咯与氧化石墨烯通过氢键的方式复合,聚合离子液体通过非共价键的方式与聚吡咯/氧化石墨烯纳米片相连。

该修饰玻碳电极可作为一种新型的电化学生物传感器,可用于在抗坏血酸存在下,实现对多巴胺的检测,具有制备方法简单、快速,选择性良好等优点。

申请人:辽宁大学
地址:110000 辽宁省沈阳市沈北新区道义南大街58号
国籍:CN
代理机构:沈阳杰克知识产权代理有限公司
代理人:胡洋
更多信息请下载全文后查看。

聚多巴胺-银纳米粒子修饰电极的制备r及对氟他胺的电化学传感检测

聚多巴胺-银纳米粒子修饰电极的制备r及对氟他胺的电化学传感检测
聚多巴胺-银纳米粒子修饰电极的制备r及对氟他胺的电化学传感检测
李艳彩;江莹莹;宋莹莹;张颖贞
【摘 要】利用聚合物原位化学还原法,制备了聚多巴胺(PDA)功能化银纳米粒子(AgNPs)复合材料修饰金电极(GE),并用扫描电子显微镜(SEM)对所合成材料的形貌进行表征,通过电化学交流阻抗(EIS)及伏安法研究该修饰电极电化学性质及对氟他胺(FLT)的电催化性能.结果表明,该修饰电极对FLT的还原具有良好的电催化作用,可用于FLT的电化学传感检测,其对FLT的线性响应范围为1.6~70.0μmol·L-1,检测限为0.7μmol·L-1(S/N=3),且具有良好的抗干扰性、重现性和稳定性.因此,PDA-AgNPs纳米复合材料在氟他胺传感检测方面具有很好的应用前景.
图3 PDA-AgNPs/GE(a)在0.1 mol·L-1 pH 9.0 PBS中的循环伏安曲线和GE(b),PDA/GE(c),PDA-AgNPs/GE(d)分别在0.1 mol·L-1 pH 9.0 PBS中加入0.020 mmol·L-1 FLT的循环伏安曲线(扫速:100 mVs-1)Fig.3 CV of PDA-AgNPs/GE (a) in 0.1 mol·L-1 pH 9.0 PBS;CVs of bare GE (b),PDA/GE (c) and PDA-AgNPs/GE (c) in 0.1 mol·L-1 pH 9.0 PBS containing 0.020 mmol·L-1 FLT(scan rate:100 mVs-1)
1 实验部分
1.1 试剂
硝酸银、无水乙醇、二水合磷酸二氢钠均购自国药集团化学试剂有限公司,十二水合磷酸氢二钠、无水甲醇均购自西陇化工股份有限公司,氟他胺、多巴胺、三羟甲基氨基甲烷均购自Sigma公司.FLT溶液用无水甲醇和去离子水(体积比1∶1)为溶剂配制;0.01 mol·L-1 Tris溶液由一定量的三羟甲基氨基甲烷与二次蒸馏水配制;0.1 mol·L-1不同pH的磷酸盐缓冲溶液(PBS)通过混合Na2HPO4和NaH2PO4的标准溶液,并加入KCl作支持电解质配制.本实验所有化学试剂均为AR级别,实验用水均为二次去离子水.

【35】金修饰在聚咪唑修饰的玻碳电极同时检测多巴胺尿素等

【35】金修饰在聚咪唑修饰的玻碳电极同时检测多巴胺尿素等

Analytica Chimica Acta 741 (2012) 15–20Contents lists available at SciVerse ScienceDirectAnalytica ChimicaActaj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /a caSimultaneous determination of ascorbic acid,dopamine,uric acid and tryptophan on gold nanoparticles/overoxidized-polyimidazole composite modified glassy carbon electrodeCun Wang,Ruo Yuan ∗,Yaqin Chai,Shihong Chen,Fangxin Hu,Meihe ZhangEducation Ministry Key Laboratory on Luminescence and Real-Time Analysis,College of Chemistry and Chemical Engineering,Southwest University,Chongqing 400715,Chinah i g h l i g h t sThe electropolymerization of imida-zole (Im)on GCE was first reported. The PIm film can be overoxidized to form the overoxidized polyimidazole (PImox).PImox allows dispersing of Au and generates additional electrocatalytic sites. The overlapping voltammetric response of AA,DA,UA and Trp is well-resolved.g r a p h i c a la b s t r a c tElectropolymerization of Im on the GCE,the PIm modified electrode was denoted as PIm/GCE.Subse-quently,the PIm/GCE was washed with doubly distilled water,and then transferred to 0.1M PBS (pH 4.0)for electrochemical oxidation at +1.8V for 250s.The obtained electrode was denoted as PImox/GCE (Fig.A).Then,the deposition of GNPs on PImox/GCE was carried out.The obtained electrode was described as GNPs/PImox/GCE (Fig.B).a r t i c l ei n f oArticle history:Received 13March 2012Received in revised form 18June 2012Accepted 19June 2012Available online 4 July 2012Keywords:ImidazoleGold nanoparticles Ascorbic acid Dopamine Uric acid Tryptophana b s t r a c tA novel electrode was developed through electrodepositing gold nanoparticles (GNPs)on overoxidized-polyimidazole (PImox)film modified glassy carbon electrode (GCE).The combination of GNPs and the PImox film endowed the GNPs/PImox/GCE with good biological compatibility,high selectivity and sensi-tivity and excellent electrochemical catalytic activities towards ascorbic acid (AA),dopamine (DA),uric acid (UA)and tryptophan (Trp).In the fourfold co-existence system,the peak separations between AA–DA,DA–UA and UA–Trp were large up to 186,165and 285mV,respectively.The calibration curves for AA,DA and UA were obtained in the range of 210.0–1010.0␮M,5.0–268.0␮M and 6.0–486.0␮M with detection limits (S/N =3)of 2.0␮M,0.08␮M and 0.5␮M,respectively.Two linear calibrations for Trp were obtained over ranges of 3.0–34.0␮M and 84.0–464.0␮M with detection limit (S/N =3)of 0.7␮M.In addition,the modified electrode was applied to detect AA,DA,UA and Trp in samples using standard addition method with satisfactory results.© 2012 Elsevier B.V. All rights reserved.1.IntroductionAscorbic acid (AA)is very popular for its antioxidant property,and present in the human diet as a vital vitamin.Moreover,it is∗Corresponding author at:College of Chemistry and Chemical Engineer-ing,Southwest University,Chongqing Key Laboratory of Analytical Chemistry,Chongqing,400715,PR China.Tel.:+862368252277;fax:+862368253172.E-mail address:yuanruo@ (R.Yuan).also used for the prevention and treatment of common cold,men-tal illness,infertility,cancer and AIDS [1].Dopamine (DA)is one of the most significant catecholamines.It plays a very important role in the functioning of the central nervous,cardiovascular,renal and hormonal systems as well as in drug addiction and Parkin-son’s disease [2].Uric acid (UA)is the primary end product of purine metabolism.Abnormal levels of UA are symptoms of several diseases,including gout,hyperuricemia and Lesch Nyan disease [3,4].Tryptophan (Trp)is an essential amino acid for human and0003-2670/$–see front matter © 2012 Elsevier B.V. All rights reserved./10.1016/j.aca.2012.06.04516 C.Wang et al./Analytica Chimica Acta741 (2012) 15–20herbivores[5].In addition,it has been implicated as a possible cause of schizophrenia in people who cannot properly metabo-lize it[6].It is known to all,AA,DA,UA and Trp usually coexist in biological samples.Therefore,a sensitive and selective method for their simultaneous determination is highly desirable for analyt-ical application and diagnostic research.A major problem for their simultaneous determination is that AA,DA,UA and Trp undergo the same potential at conventional electrodes with a pronounced foul-ing effect,resulting in poor reproducibility.Besides,many reported detection methods were complicated,expensive,and suffered from sensitivity as well as selectivity.To overcome these problems,many materials have been employed to modify electrodes,such as gold nanocluster/overoxidized-polypyrrole composite[7]and iron(III) doped zeolite[5].Recently,polymerfilm and metal nanoparticles have been arose great attentions due to their wide applications in thefields of chemical modified electrodes[8,9].As is well-known,metal nanoparticles especially gold nanoparticles(GNPs)can enhance the conductivity,facilitate the electron transfer and improve the detection limit of electrode[10].Among various types of conduc-tive polymers[11–14],polyimidazole(PIm)has many attractive features,for example thefilm is very stable and hard to be taken off from the surface unless the electrode is heavily polished.It has high selectivity and sensitivity due to the chemically stable homogeneousfilm with controlled thickness[12].Furthermore, the PImfilm can be further overoxidized at higher potentials to form the overoxidized-polyimidazole(PImox),resulting in an insulating membrane with lower background current.The overox-idizedfilm has large surface area because of the porous structure. Moreover,the porous structure of the PImoxfilm is in favor of dispersing metal nanoparticles into the polymer matrix and gener-ates additional electrocatalytic sites[7,15].Since the combination of the polymerfilms and metal nanoparticles not only signifi-cantly improve the electrocatalytic properties of substrates and the stability and reproducibility of the electrode but also decrease the overpotential and increase the reaction rate[14].For exam-ple,gold nanocluster/overoxidized-polypyrrole composite[7]and overoxidized poly(N-acetylaniline)[16]modified electrodes have been used for the determination of DA or serotonin.However, compared with the methods mentioned above,the modified electrode in our work exhibits its peculiar advantages,such as higher sensitivity,selectivity,reproducibility and relatively low cost.In this study,a novel electrode based on the PImoxfilm incorporated with GNPs was constructed for the simultaneous determination of AA,DA,UA and Trp.Due to the synergic effect between PImox and GNPs,the overlapping voltammetric response of AA,DA,UA and Trp is well-resolved from each other with lowered oxidation pared with the GNPs/GCE,PIm/GCE and PImox/GCE,the GNPs/PImox/GCE exhibited obviously enhanced responses towards AA,DA,UA and Trp.Furthermore,the practi-cal application was investigated using standard addition method and satisfactory results were obtained.2.Materials and methods2.1.ChemicalsChloroauric acid(HAuCl4)and imidazole(Im)were pur-chased from Sigma Chemical Co.(St.Louis,Mo,USA).Sodium dodecylsulfate(SDS),uric acid,tryptophan,ascorbic acid and dopamine were purchased from Chemical Reagent Co.(Chongqing, China).Phosphate buffer solutions(PBS)(0.1M)at various pH were prepared using0.1M Na2HPO4,0.1M KH2PO4,and 0.1M KCl.Double-distilled water was used throughout the experiments.2.2.ApparatusAll electrochemical experiments were performed with a CHI 660D electrochemical workstation(Shanghai Chenhua Instrument Co.,China).The conventional three-electrode system included a modified glassy carbon electrode(GCE)as working electrode,a platinum wire as auxiliary electrode and a saturated calomel electrode(SCE)as a reference electrode.The morphological char-acterization of thefilms was examined by scanning electron microscope(SEM,S-4800,Hitachi,Japan).All measurements were carried out at room temperature.2.3.Preparation of GNPs/PImox modified electrodeThe glassy carbon electrode(diameter4.0mm)was successively polished to a mirror using0.3and0.05␮m alumina slurry.After-ward,the electrode was washed thoroughly with ethanol and water and dried at room temperature.Electropolymerization of Im on the GCE was carried out by8 circles between–0.2and0.8V at0.1V s–1in0.1M SDS containing 0.1M Im[14].The SDS was used as assisted reagent and support-ing electrolyte for the electropolymerization of Im[14].Moreover, the SDS could form a complex with Im,resulting in porous struc-ture with a large surface area[14,17].Eight circles were chosen to deposit the Imfilm because the highest sensitivity towards the biomolecules was obtained under this case(Fig.1S).Subsequently, the PIm modified electrode(PIm/GCE)was washed with double distilled water,and then transferred to0.1M PBS(pH4.0)for elec-trochemical oxidation at+1.8V to250s,obtaining PImox modified electrode(PImox/GCE).The deposition of GNPs on PImox/GCE was carried out in a mixture of H2SO4(0.5M)and HAuCl4(1mM)at –0.2V for80s[9].The80s was the optimal deposition time accord-ing to our studies(Fig.2S).The obtained electrode was described as GNPs/PImox/GCE.For comparison,PIm/GCE,PImox/GCE and GNPs/GCE were pre-pared using the same procedure.3.Results and discussion3.1.SEM of the modified electrodeThe morphology of modifiedfilms was investigated by scanning electron microscopy(SEM).As shown in Fig.1A,PImoxfilm appears a comparatively smooth and homogeneous surface.However,after electrodepositing GNPs,flower-like nanostructures were observed in Fig.1B,indicating that GNPs were obtained.As seen from Fig.1B, the particle size of theflower-like GNPs was ranging from250to 450nm.Also,the GNPs look very pretty,and the keen-edged leaves make the surface of GNPs very rough and many leaves possess a large specific surface area.The results indicated that the PImox and GNPs/PImoxfilms were effectively immobilized on the electrode surface.3.2.The influence of pH on the oxidation of AA,DA,UA and Trp at the GNPs/PImox/GCEThe effect of pH value for the simultaneous determination of AA, DA,UA and Trp at GNPs/PImox/GCE was thoroughly investigated by differential pulse voltammetry(DPV).Fig.2showed the effect of pH value on the peak current and peak potential.From Fig.2A,the peak current of AA and Trp initially increased and reached a maximum value at pH4.0,then,another maximum value was observed at neu-tral pH with pH increasing.DA and UA give the highest response at pH4.0with pH increasing.The reason may be related to the change in electrostatic interaction between the four substances and GNPs/PImoxfilm.In Fig.2B,the linear regression equations for AA,C.Wang et al./Analytica Chimica Acta741 (2012) 15–2017Fig.1.SEM images of(A)PImox/GCE and(B)GNPs/PImox/GCE.DA,and Trp were obtained as:E DA(mV)=421.30–18.08pH,E UA (mV)=628.59–27.23pH and E Trp(mV)=789.21–17.37pH.All the peak potentials of AA,DA,UA and Trp shifted to more negative val-ues with the pH increasing.This is a consequence of a deprotonation step involved in all oxidation processes that is facilitated at higher pH values[18].AA(p K a=4.10),DA(p K a=8.87),UA(p K a=5.7)and Trp(p K a=5.89)exist as cationic form in pH4.0PBS(0.1M)[12]. Moreover,overoxidation in the Im ring leads to effective collection of the cationic species[7,19].It was expected that cationic forms of AA,DA,UA and Trp were electrostatically interacted with the poly-mer backbone at pH4.0[12].In addition,the maximum separation of peak potentials for AA–DA,DA–UA and UA–Trp is observed at pH 4.0.In order to obtain a high sensitivity and selectivity,pH4.0PBS (0.1M)was selected for further experiments.3.3.Cyclic voltammetric behaviors of the modified electrodeFig.3A showed the cyclic voltammograms(CVs)of different modified electrodes in0.1M PBS(pH4.0).As seen from Fig.3A, PImox/GCE(curve b)showed almost the same background current with the bare GCE(curve a),indicating anodic polarization at+1.8V maybe turn the PImfilm into an insulating PImoxfilm with the loss of electroactivity[20].However,after modified with GNPs,the background signal increased for GNPs/PImox/GCE(curve c),and this may be resulted from the larger effective surface area of GNPs. The inset Fig.3A showed the electropolymerization process.The Fig.2.Effect of pH on(A)the peak current and(B)the peak potential for the oxi-dation of150␮M AA,15␮M DA,80␮M UA and80␮M Trp in0.1M PBS(pH4.0). DPV conditions:scan rate,20mV s–1;amplitude,50mV;pulse width,50ms;pulse period,200ms.anodic peak potentials tended to be stable after8circles,suggesting a self-adjustment of the polymerfilm thickness at the GCE[21,22].The ability of GNPs/PImox/GCE to promote the voltammetric resolution of AA,DA,UA and Trp was investigated.Control exper-iments for the simultaneous determination of AA,DA,UA and Trp were carried out by CV at PIm/GCE,PImox/GCE,GNPs/GCE and GNPs/PImox/GCE,respectively.As can be seen from Fig.3B, PIm/GCE(curve a)and GNPs/GCE(curve c)only showed a broad and overlapped anodic peaks in the fourfold mixture.On the PImox/GCE (curve b)three peaks appeared at295,485and795mV for DA, UA and Trp,respectively,but simultaneous determination of AA, DA,UA and Trp could not be obtained due to the indistinguish-able and small response to AA.In contrast,the modification of the GCE surface with GNPs/PImoxfilm(curve d)resolved the merged voltammetric peak into four well-defined peaks at poten-tials around136,320,485and770mV with a remarkable increase in peak current for AA,DA,UA and Trp,respectively.The reasons for the oxidation of AA,DA,UA and Trp at a wide potential sep-aration are ascribed as follows:Firstly,the GNPs enhanced the catalytic activity of PImox/GCE by increasing the peak current due to the increasing electronic conductivity and effective surface area [21].Secondly,during the overoxidization process,higher density of groups such as C O,COO−,C OH and OH can be generated on the backbone of PImoxfilm.The existence of C O,COO−,C OH and OH on the PImoxfilm could provide a selective interface18 C.Wang et al./Analytica Chimica Acta 741 (2012) 15–20Fig.3.(A)CV responses of (a)bare GCE,(b)PImox/GCE and (c)GNPs/PImox/GCE in 0.1M PBS (pH 4.0).Inset of part (A)shows the CVs of polymerization of Im (0.1M)in 0.1M SDS solution on GCE in the potential range from –0.2to 0.8V.Scan rate,0.1V s –1;8circles.(B)CVs at (a)PIm/GCE,(b)PImox/GCE,(c)GNPs/GCE and (d)GNPs/PImox/GCE in 0.1M PBS (pH 4.0)containing 200␮M AA,20␮M DA,50␮M UA and 50␮M Trp.for the molecular interaction of AA,DA,UA and Trp via hydro-gen bonds with the proton-donating group such as NH and OH [15,16,21].Thirdly,AA,DA,UA and Trp exist as cationic form at pH 4.0.In addition,overoxidation in the Im ring leads to an effective rejection of the anionic species and preferential collection of the cationic species [19,23].It was expected that protonated forms of AA,DA,UA and Trp were electrostatically interacted with the poly-mer backbone.Thus,it effectively catalyzed the oxidation of four substances at low pH.Fourthly,the selective promising feature of PImox film especially the composite with GNPs imparted superior selectivity and sensitivity towards the AA,DA,UA and Trp [13].In a word,the synergic effect of PImox film and the GNPs endowed the GNPs/PImox/GCE with a lower detection limit,wider linear range,better electricity and higher selectivity and sensitivity than that of other electrodes in the literature (Table 1).3.4.Simultaneous determination of AA,DA,UA and TrpDPV was employed to detect AA,DA,UA and Trp because of its higher current sensitivity and better resolution than CV.In four-fold mixture,the electro-oxidation processes of AA,DA,UA and Trp in the mixture were investigated when the concentration of one species changed,whereas those of other three species are kept con-stant.Fig.4A depicted the DPV of AA containing 50␮M UA,15␮M DA and 50␮M Trp.The peak current of AA increased linearly with an increase in AA concentration from 210.0to 1010.0␮M,with theT a b l e 1C o m p a r i s o n o f t h e r e s p o n s e c h a r a c t e r i s t i c s o f d i f f e r e n t m o d i fie d e l e c t r o d e s .E l e c t r o d e m a t e r i a l sL i n e a r r a n g e (␮M )D e t e c t i o n l i m i t (␮M )P e a k p o t e n t i a l (V )R e f e r e n c eA AD AU AT r pA AD AU AT r pA AD AU AT r pF e 3+Y /Z C M E 0.6–100–0.3–7000.2–1500.21–0.080.06––––[5]M W C N T –F e N A Z –C H 7.77–8337.35–8330.23–83.30.074–34.51.111.050.0330.011––––[6]G N P /c h o l i n e –0.2–801.2–100––0.120.6––0.230.37–[9]2-a m i n o -1,3,4-t h i a d i a z o l e 30–3005–5010–100–2.010.330.19–0.200.330.49–[12]O v e r o x i d i z e d p o l y (N -a c e t y l a n i l i n e )–0.50–20.0–––0.0168–––0.12––[24]p o l y -c h r o m o t r o p e 2B –2.0–80.0–––0.30–––0.349––[25]G N P s /P I m o x210.0–1010.05.0–268.06.0–486.03.0–34.084.0–464.02.00.080.50.70.1360.3200.4850.770T h i s w o r kC.Wang et al./Analytica Chimica Acta741 (2012) 15–2019Fig.4.DPVs at the GNPs/PImox/GCE in0.1M PBS(pH4.0)(A)containing50␮M UA,15␮M DA,50␮M Trp and different concentrations of AA(from inner to outer):210, 310,460,610,710,810,960,1010␮M;(B)containing100␮M AA,50␮M UA,50␮M Trp and different concentrations of DA(from inner to outer):5,10,18,28,38,88,168, 268␮M;(C)containing100␮M AA,15␮M DA,50␮M Trp and different concentrations of UA(from inner to outer):6,11,36,86,166,266,366,486␮M and(D)containing 150␮M AA,20␮M UA,5␮M DA and different concentrations of Trp(from inner to outer):3,6,11,19,34,84,164,314,464␮M.Insets:plots of Ip vs.concentration for AA, DA,UA and Trp,respectively.linear function I p,AA(␮A)=23.02+0.01584C AA(␮M)(R=0.9975),and a detection limit of2.0␮M(S/N=3).Fig.4B illustrated the DPVof DA containing100␮M AA,50␮M UA and50␮M Trp.The linearrelationship between the peak current and the concentration of DAwas obtained in the concentration range of5.0to268.0␮M.Thelinear function was expressed as I p,DA(␮A)=17.26+0.07882C DA(␮M)(R=0.9827),and a detection limit of0.08␮M(S/N=3)wasobtained.Similarly,Fig.5C depicted the DPV response of UAinFig.5.DPVs of simultaneous determination of AA,DA,UA and Trp using GNPs/PImox modified GCE in0.1M PBS(pH4.0).Concentrations of the four compounds:AA(60, 120,180,280,380,480,680,920␮M),DA(5,10,15,20,25,30,40,60␮M),UA(5, 10,15,20,28,36,54,63␮M)and Trp(5,10,15,20,25,30,40,60␮M).the presence of100␮M AA,15␮M DA and50␮M Trp,which exhibited a linear relationship in the concentration range of6.0–486.0␮M,and its linear regression equation was defined asI p,UA(␮A)=10.59+0.03220C UA(␮M)(R=0.9898).The detection limit of0.5␮M(S/N=3)for UA was observed.Fig.5D illustrated the DPV of Trp containing50␮M AA,20␮M UA and5␮M DA.Two lin-ear calibration ranges of3.0–34.0␮M,with the linear function I p,Trp (␮A)=9.549+0.2414C Trp(␮M)(R=0.9362)and84.0–464.0␮M, and the linear function I p,Trp(␮A)=18.18+0.03716C Trp(␮M) (R=0.9632)were obtained for the Trp determination.The detec-tion limit was found to be0.7␮M(S/N=3).The relative standard deviations(RSD)for determining AA,DA,UA and Trp(n=10)were 7.09%,4.37%,5.67%and2.23%,respectively.The drift of the oxida-tion peaks of AA,DA,UA and Trp were observed for further addition of the respective analytes.In addition,DPVs were also performed at GNPs/PImox/GCE while changing the concentrations of AA,DA, UA and Trp simultaneously(Fig.5).3.5.Interferences,stability and reproducibilityIn order to evaluate the ability of anti-interference,several com-pounds were selected.It was found that no significant interference for the detection of AA(150␮M),DA(10␮M),UA(50␮M)and Trp(50␮M)was observed for these compounds:NaCl,KCl,KNO3, CaCl2,MgSO4,ZnCl2,methenamine,ethylenediaminetetraacetic acid disodium salt,glucose,l-cysteine,glutathione,folic acid and levodopa.Stability of the GNPs/PImox/GCE was also investigated. The modified electrode was stored at room temperature when not used.The response of the electrode lost approximately6.3%,20 C.Wang et al./Analytica Chimica Acta741 (2012) 15–20Table2Determination of AA,DA,UA and Trp in dopamine hydrochloride injection,vitamin C tablets,human urine and serum samples.Sample Detected a(␮M)Added(␮M)Found a(␮M)Recovery(%) Urine1Uric acid36.3±1.710.045.0±1.397.2Ascorbic acid40.039.8±1.199.5Dopamine0.50.5±0.02100.0tryptophan30.030.5±0.7101.7Urine2Uric acid26.8±1.120.046.4±0.999.1Ascorbic acid80.081.3±2.4101.6Dopamine 2.5 2.4±0.196.0tryptophan40.040.1±1.0100.3 Serum1Uric acid12.1±0.415.026.8±0.698.9Ascorbic acid100.0100.2±3.7100.2Dopamine 2.0 1.9±0.195.0tryptophan50.050.2±1.8100.4 Serum2Uric acid13.6±0.620.035.0±0.9104.2Ascorbic acid150.0148.2±4.598.8Dopamine 1.0 1.0±0.04100.0tryptophan40.039.8±1.099.5 Vitamin C tablets Ascorbic acid399.0±10.250.0487.7±19.2108.6Dopamine 1.0 1.0±0.08100.0Uric acid10.09.9±0.699.0tryptophan40.039.0±1.197.5 Dopamine injection Ascorbic acid200.0207.7±4.9103.9Dopamine93.2±3.5 1.592.5±1.297.7Uric acid50.051.8±2.2103.6tryptophan50.051.3±1.8102.6All samples were analyzed using standard addition method(n=3).a Mean value±standard deviation(n=3).3.2%,5.6%and5.4%for AA,DA,UA and Trp of its original response after13days,respectively.The relative standard deviation(RSD) (n=10)for all these species was less than7.09%.Thus,the pro-posed electrode showed a high stability and good reproducibility and anti-interference ability.3.6.Sample analysisDopamine hydrochloride injection,vitamin C tablets,human urine and serum samples were selected for analysis using the stan-dard addition method.All samples were diluted with0.1M PBS (pH4.0)before the measurements to prevent the matrix effect of authentic samples.Then,appropriate amount of each sample was added into5mL0.1M PBS(pH4.0),respectively.To ascer-tain the correctness of the results,the samples were spiked with certain amounts of standard AA,DA,UA and Trp and then the total values were detected using DPV.The results were listed in Table2.The recovery rates of the samples ranged between95.0% and108.6%,showing that the proposed method could be effectively used for the determination of AA,DA,UA and Trp in commercial samples.4.ConclusionsIn conclusion,a novel GNPs/PImox/GCE was constructed to determine AA,DA,UA and Trp in this work.The modified elec-trode not only showed high selectivity towards the oxidation of AA, DA,UA and Trp,but also resolved their overlapped oxidation peaks into four well-defined peaks,respectively.This was attributed to a decrease of the reduction potential ability of PImox,the very high electron transfer rate of GNPs that can remarkable increase in peak current towards the compounds,and the remarkable syner-gistic effects of PImox and GNPs.The simple fabrication procedure, low detection limit,high selectivity,good stability and sensitivity, suggest that this modified electrode is an attractive candidate for practical applications.AcknowledgmentsThe National Natural Science Foundation of China(21075100), the Ministry of Education of China(Project708073),the Nature Science Foundation of Chongqing City(CSTC-2009BA1003, 2011BA7003)and State Key Laboratory of Electroanalytical Chem-istry(SKIEAC2010009),China supported this work.Appendix A.Supplementary dataSupplementary data associated with this article can be found,in the online version,at /10.1016/j.aca.2012.06.045. References[1]N.F.Atta,M.F.El-Kady,G.Ahmed,Anal.Biochem.400(2010)78–88.[2]J.W.Mo,B.Ogorevc,Anal.Chem.73(2001)1196–1202.[3]P.Elena,Y.Kubota,D.A.Tryk,A.Fujishima,Anal.Chem.72(2000)1724–1727.[4]J.M.Zen,P.J.Chen,Anal.Chem.69(1997)5087–5093.[5]A.Babaei,M.Zendehdel,B.Khalilzadeh,A.Taheri,Colloids Surf.B66(2008)226–232.[6]M.Noroozifar,M.Khorasani-Motlagh,R.Akbari,M.B.Parizi,Biosens.Bioelec-tron.28(2011)56–63.[7]J.Li,X.Q.Lin,Sens.Actuators B124(2007)486–493.[8]A.L.Liu,S.B.Zhang,W.Chen,X.H.Lin,X.H.Xia,Biosens.Bioelectron.23(2008)1488–1495.[9]P.Wang,Y.X.Li,X.Huang,L.Wang,Talanta73(2007)431–437.[10]S.Thiagarajan,S.M.Chen,Talanta74(2007)212–222.[11]K.C.Lin,T.H.Tsai,S.M.Chen,Biosens.Bioelectron.26(2010)608–614.[12]P.Kalimuthu,S.A.John,Talanta80(2010)1686–1691.[13]X.H.Jiang,X.Q.Lin,Anal.Chim.Acta537(2005)145–151.[14]Y.X.Li,P.Wang,L.Wang,X.Q.Lin,Biosens.Bioelectron.22(2007)3120–3125.[15]S.Ulubay,Z.Dursun,Talanta80(2010)1461–1466.[16]X.M.Tu,Q.J.Xie,S.Y.Jiang,S.Z.Yao,Biosens.Bioelectron.22(2007)2819–2826.[17]D.R.Albano,F.Sevilla,Sens.Actuators B121(2007)129–134.[18]B.Habibia,M.H.Pournaghi-Azar,Electrochim.Acta55(2010)5492–5498.[19]Z.D.Chen,Y.Takei,B.A.Deore,T.Nagaoka,Analyst125(2000)2249–2254.[20]L.S.Van Dyke,C.R.Martin,Langmuir6(1990)1118–1123.[21]A.A.Ensafi,M.Taei,T.Khayamian,A.Arabzadeh,Sens.Actuators B147(2010)213–221.[22]H.Yao,Y.Sun,X.Lin,Y.Tang,L.Huang,Electrochim.Acta52(2007)6165–6171.[23]M.S¸ahin,Y.S¸ahin,A.Özcan,Sens.Actuators B133(2008)5–14.[24]L.Z.Zheng,S.G.Wu,X.Q.Lin,L.Nie,L.Rui,Analyst126(2001)736–738.[25]X.H.Lin,Q.Zhuang,J.H.Chen,S.B.Zhang,Y.J.Zheng,Sens.Actuators B125(2007)240–245.。

金纳米管阵列修饰玻碳电极用于示差脉冲伏安法测定多巴胺

金纳米管阵列修饰玻碳电极用于示差脉冲伏安法测定多巴胺

金纳米管阵列修饰玻碳电极用于示差脉冲伏安法测定多巴胺徐国良;李羚;杨光明【摘要】Using polycarbonate template as Working electrode, gold nanotubes were prepared by electro deposition from a solulion of HAuCl, and HCIO. The template deposited with Au nanotubes was fixed on surface of glassy carbon electrode (GCE) and the GCE modified with arrayed Au nanotubes was prepared by dissolving the template from the electrode with CHCI:; for 7 min. The electrochemical behavior of dopamine (DA) at the modified electrode was studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). It was found that DA showed a pair of oxidation and reduction peaks at the modified electrode. A sensitive method for determination of DA by DPV was proposed. 1,inear relationship between values of oxidation peak current at + 0. 170 V and concentration of DA was obtained in the range of 4.95×10^- 7 --9.9×10^-2mol·L^-1 , with detection limit (3σ) of l. 06×10^-8mol·L^-1. The proposed method was applied to the determination of DA in human urine, giving values of recovery and RSD's (n=5) in ranges of 96.9% 101.4% and 3. 1%--4.2% respectively.%以聚碳酸酯模板为工作电极,采用电沉积法从氯金酸和高氯酸溶液中制得金纳米管。

聚多巴胺-纳米金修饰玻碳电极检测芦丁

聚多巴胺-纳米金修饰玻碳电极检测芦丁
c l a b e h a v i o r o f r u t i n a t t h e mo d i i f e d e l e c t r o d e w a s s t u d i e d, a n d he t e x p e ime r n t l a r e s u l t s i n d i c a t e d ha t t t h e p r o p o s e d s e n s o r e x h i b i t s
m e t h o d . T h e s u r f a c e m o r p h o l o g y o f m di o i f e d e l e c t r de o w a s c h a r a c t e r i z e d b y s c a n n i n g e l e c t r o n mi c r o s c o p y ( S E M) . T h e e l e c t r o c h e mi -
De t e r mi na t i o n o f r ut i n by po l y do p a mi ne - na no Au
mo d i ie f d g l a s s y c a r b o n e l e c t r o d e
ZHANG Yi n g , “
2. Ke y L a b o r a t o r y o f Gr e e n C a t a l y s i s o f S i c h u n a I n s t i t u t e s o f HJ i s h E d u c a i t o n, Z i g o n g 43 6 0 0 0, C h i n a ;
3 . C o H e g e o f Ma t e i r ls a a n d C h e m i c l a E n g i n e e i r n g , S i e h u n a U n i v e si r y t o f S c i e n C e nd a E n i g n e e i f n g , Z i g o n g 43 6 0 0 0, C h i n a )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

聚多巴胺-纳米金修饰玻碳电极检测芦丁
张英;张述林;任旺;蔡述兰;蒲勤;何华锋;凌淋;吴路宇;钟宵宇
【期刊名称】《化学研究与应用》
【年(卷),期】2013(000)009
【摘要】采用一锅法制备聚多巴胺-纳米金修饰玻碳电极(PDA-AuNPs/GCE),用扫描电子显微镜(SEM)对修饰电极进行表面形貌分析,并研究芦丁在该修饰电极上的电化学行为。

实验表明,PDA-AuNPs/GCE对芦丁有较好的电催化氧化性能,芦丁的氧化峰电流与其浓度在1.0×10-6~1.0×10-4 mol· L-1范围内成线性关系,检测下限为2.3×10-7mol· L-1(S/N=3)。

该修饰电极可用于复方芦丁片中芦丁含量的检测,效果良好。

%The polydopamine-gold nanoparticle modified glassy carbon electrode ( PDA-AuNPs/GCE ) was fabricated by one-pot method.The surface morphology of modified electrode was characterized by scanning electron microscopy ( SEM).The electrochemi-cal behavior of rutin at the modified electrode was studied ,and the experimental results indicated that the proposed sensor exhibits good electro-catalytic activity towards the oxidation of rutin.The oxidative peak currents(ipa)increase linearly with the concentration of rutin from 1.0 ×10-6 to 1.0 ×10-4 mol· L-1 with a detection limit of 2.3 ×10-7 mol· L-1.The modified electrode can be applied to the analysis of rutin in complex rutin tablet with good results.
【总页数】4页(P1299-1302)
【作者】张英;张述林;任旺;蔡述兰;蒲勤;何华锋;凌淋;吴路宇;钟宵宇
【作者单位】四川理工学院化学与制药工程学院,四川自贡 643000; 绿色催化四川省高校重点实验室,四川自贡 643000;四川理工学院材料与化学工程学院,四川自贡 643000;四川理工学院化学与制药工程学院,四川自贡 643000; 绿色催化四川省高校重点实验室,四川自贡 643000;四川理工学院化学与制药工程学院,四川自贡 643000;四川理工学院化学与制药工程学院,四川自贡 643000;四川理工学院化学与制药工程学院,四川自贡 643000;四川理工学院化学与制药工程学院,四川自贡 643000;四川理工学院化学与制药工程学院,四川自贡 643000;四川理工学院化学与制药工程学院,四川自贡 643000
【正文语种】中文
【中图分类】O657.1
【相关文献】
1.聚(三聚氰胺)与金纳米粒共修饰玻碳电极用于芦丁的电化学测定 [J], 冯利彬;齐崴;苏荣欣;何志敏
2.吲哚乙酸在纳米金/碳纳米管/壳聚糖修饰玻碳电极上的电化学行为及其检测 [J], 张学钰;刘兴梅;刘伟禄;杨明;张志权
3.纳米金/碳纳米管/聚硫堇修饰玻碳电极检测甲基对硫磷 [J], 李振;罗启枚;刘登友;王辉宪;周华;王玲
4.二氧化铈纳米棒修饰玻碳电极的制备及其对芦丁的检测 [J], 汪美芳;张伟;方宾
5.芦荟大黄素在石墨烯/聚多巴胺/金复合纳米材料修饰电极上的电化学行为及检测[J], 阳敬;兰慧;吴其国;蓝伦礼;庄晨曦;赵佳
因版权原因,仅展示原文概要,查看原文内容请购买。

相关文档
最新文档