电化学 纳米金修饰电极检测VC和尿酸

合集下载

尿酸在普鲁士蓝修饰电极上的电化学行为及其分析应用

尿酸在普鲁士蓝修饰电极上的电化学行为及其分析应用

+K
+
和 Fe
Ⅲ/Ⅱ
分别代表高自旋和低自旋的铁离子或亚铁离子 。
3. 2 UA 在修饰电极上的伏安特性
图 2 为 1. 0 × 10 mol/L 的 UA 在普鲁士蓝修饰玻碳电极和裸玻碳电极上的循环伏安曲线 。由图 可见 , UA 在裸电极上的氧化峰非常弱 ; 而在修饰电极上则出现一强氧化峰 。值得注意的是 , UA 在修饰 电极上的氧化电位比裸电极上降低了 37mV ,峰电流增大 13 倍 。实验结果表明 ,普鲁士蓝对 UA 的电化 [ 12 ] 学氧化具有非常强的催化作用 ,并用方波伏安法测得其半峰宽 W 1 /2为 67 mV ,根据公式 : ξ ξ W 1 / 2 = ( R T / nF ) [ 3. 53 + 3. 46 S W / ( S W + 8. 1 ) ]
sion , 2001 , 38 ( 5 ) : 1101 ~1106
3 FiliSetti2 Cozzi, Carp ita N C. A na l . B iochem. , 1991 , 197: 157 ~162 4 Abdel2 Hay M H , Barary M H , Elsayed M A , Hassan E M. A na l . L ett . , 1991 , 24: 1517 ~1530 5 Guilbgault G G, Hodapp P. A na l . L ett . , 1968 , 1: 789 ~802 6 Ferraris S P, Lew H , Elsayed N M. A na l . B iochem. , 1991 , 195: 116 ~121 7 Bhargava A K, Lal H , Pundir C S . J. B iochem. B iophys . M ethods . , 1999 , 39: 125 ~136 8 Raj C R , Ohsaka T . J. E lectroana l . Chem. , 2003 , 540: 69 ~77 9 L i Z, Feng M L , Lu J R. M icrochem ica l . J ou rna l, 1998 , 59: 278 ~283 10 Czauderna M , Kowalczyk J. J. Ch rom a tog raphy. B. , 2000 , 744: 129 ~138 11 Itaya K . J. E lectrochem. S oc . , 1982 , 129: 1498 ~1500 12 Aoki K, Tokuda K, M atsuda H , O steryoung J. J. E lectroana l . Chem. , 1986 , 207: 25 ~39

尿酸在聚亚甲基蓝修饰金电极上的电化学及电化学动力学性质

尿酸在聚亚甲基蓝修饰金电极上的电化学及电化学动力学性质
图 2 1. 0 ×1023 mol·L21UA在 Au ( b)和 PMB /Au ( c)上的循环伏安曲线. Fig. 2 The CV curves of 1. 0 ×1023 mol·L21 UA at ( b) Au, ( c) PMB /Au electrode and PMB /Au ( a) in
(1. 北方民族大学 ,预科教育学院 ,宁夏 银川 750021; 2. 宁夏大学能源化工重点实验室化学化工学院 ,宁夏 银川 750021)
关键词 :尿酸 ;聚亚甲基蓝 ;修饰电极 ;电化学性质 中图分类号 : O657 文献标识码 : A
尿酸 (U ric acid, UA )是人体内嘌呤核苷酸分 解代谢过程中的最终产物 。体液中尿酸的含量变 化可以充分反映出人体新陈代谢 、免疫等机能状 况 ,同时 也 可 间 接 反 映 出 与 嘌 呤 代 谢 的 有 关 疾 病 [ 1 ] 。有关 UA 在修饰电极上的电化学分析方法 研究已有不少相关文献报道 ,如多壁炭纳米管修 饰电极 [ 2 ] ,生物胆碱修饰电极 [ 3 ] ,自组装修饰金电 极 [ 4 ]等 [ 527 ] 。
在 20. 10 ~ 1. 0 V 电位窗口及 0. 10 mol·L21 PB S (pH 6. 8 ) 水溶液中研究了 1. 0 ×1023 mol·L21 UA 在裸 Au和 PMB /Au上的循环伏安行为 ,如图 2所示 。UA 在 Au电极上 (图 2b曲线 ) Epa为 770 mV ,而在 PMB /Au 上 (图 2c 曲线 ) Epa为 700mV。 与裸 Au相比 , UA 在 PMB /Au上 Epa负移 70 mV , Ipa明显增大 。表明 PMB /Au对 UA 的电化学氧化 产生了催化作用 。催化的可能原因是 : UA ( pKa = 5. 80)在 PBS ( pH6. 8 )水溶液中以阴离子形式存 在 [ 13 ] ,而 MB 中 2N ( CH3 ) 2与 H +结合成阳离子 ,同 时 MB 发生电化学氧化成为氧化态 ,使得 MB 修饰 电极表面带有高密度的正电荷 ,两者存在强烈的 静电相互作用 , UA 与氧化态 MB 发生化学反应被 催化氧化 , MB 被还原 ,从而导致 UA 的氧化峰电 位负移 ,峰电流 Ipa增加 。

(分析化学专业论文)金纳米粒子及硫酸特布他林和尿酸的毛细管电泳化学发光检测法研究

(分析化学专业论文)金纳米粒子及硫酸特布他林和尿酸的毛细管电泳化学发光检测法研究

金纳米粒子及硫酸特布他林和尿酸的毛细管电泳化学发光检测法研究研究生:王坚石指导老师:赵书林教授学科专业:分析化学年级:2004级摘要毛细管电泳是上世纪80年代发展起来的一种新型分离分析新技术,具有分离效率高、分析速度快、仪器操作简单、样品用量少和试剂消耗少、容易实现自动化等优点。

毛细管电泳已经成功地与许多检测器联用,如紫外检测器、激光诱导荧光检测器、电化学检测器、质谱检测器、电致化学发光检测器、化学发光检测器等。

化学发光检测无需激发光源、无背景光源干扰、仪器设备简单、操作方便、灵敏度高、线性响应范围宽等优点,是一种有效的微量和痕量分析手段,已在环境科学、临床医学、药物分析、工业分析等领域得到广泛的应用。

将毛细管电泳和化学发光联用,同时具有毛细管电泳的高效分离和化学发光的高灵敏度,该联用技术已广泛应用于金属离子、氨基酸、蛋白质和多肽、三磷酸腺苷、生物碱、药物等的分析检测。

纳米科技的迅猛发展,对生命科学研究和可持续发展战略具有重要意义。

纳米粒子具有特殊的物理和化学性质,在光学、电学、磁学、催化、生物医药及材料科学等领域具有广阔的应用前景。

准确快速地表征和检测纳米材料,对于促进纳米技术的发展具有重要意义。

药物分析主要有光度法和色谱法等,一般需要对复杂的生物样品进行前处理,同时需要的样品及试剂用量大。

毛细管电泳技术对样品的需求量少,因此,基于毛细管电泳技术建立快速、准确、灵敏的毛细管电泳药物检测方法,对其药理学、病理学和临床医学的研究均具有重要的意义。

通过对生物体液中某些生物活性物质的直接检测,对其含量的高低进行评价,可以对疾病的诊断和治疗做出结论。

因此,建立快速、准确的检测生物活性物质的方法,对其临床医学的研究具有重要的实际意义。

本论文基于鲁米诺化学发光反应体系,采用实验室自组装的毛细管电泳化学发光仪,对金纳米粒子、硫酸特布他林和尿酸的检测进行了研究。

论文的研究工作主要包括以下几个部分:1. 基于金纳米粒子对鲁米诺-过氧化氢化学发光体系的增敏作用,建立了一种毛细管电泳化学发光检测金纳米粒子的新方法。

尿酸在连续碱基DNA-纳米金复合膜修饰电极上的电化学行为及应用研究

尿酸在连续碱基DNA-纳米金复合膜修饰电极上的电化学行为及应用研究

例如:痛风、高尿酸血症等[3]。因此,对体液中 UA
浓度的监测临床上具有重要的意义。 目前,测定尿酸类物质的方法有很多,如:
HPLC[4]、化学发光法[5]、毛细管电泳[6]等,但这些 方法多具有耗时、前处理复杂,而且需要专业操作 人员,设备昂贵等缺点。电化学法[7]以其方便、快 捷、灵敏度高、设备廉价等优点应用广泛。例如,
尿酸(2,6,8三羟基嘌呤,UA)是人体内嘌呤
代谢的主要产物[1]。血清中 UA 的正常水平为
· ,尿液中 的正常 2 4×10-4 ~ 5 2×10-4 mol L-1
UA
浓度为 · 。血液或 1 4×10-3 ~ 4 4×10-3 mol L-1 [2]
尿液中 UA 浓度异常通常预示着很多疾病的发生,
CdSe 量子点修饰的中空纤维石墨电极检测了肌苷
酸和尿酸[11]。而近年来,DNA 传感器日益受到研
究工作者的关注。组装 DNA 传感器的关键是
DNA 在修饰电极上的组装[12]。因为纳米金具有
良好的生物相容性、导电性,高的比表面积而多用
来承载 DNA[1315]。通常情况下,将 DNA 一端修饰
第 期
第 卷第 30 年 72018 7
7月期
董振明,等:基于Ch席em夫化ica碱l学R水e研s解ear究的ch
比色荧光探针的研究 与 应 用
aHndSOAp-4plication
文章编号: ( ) 10041656 2018 07107506
, Vol. 30 No. , July 2018

尿酸在连上续的碱电基化D学NA行纳为米及金应复用合研膜究修饰电极
翟一静,王 玮,康维钧,牛凌梅
(河北医科大学公共卫生学院,河北 石家庄,050017)

纳米金-壳聚糖修饰电极循环伏安法测定抗坏血酸

纳米金-壳聚糖修饰电极循环伏安法测定抗坏血酸

纳米金-壳聚糖修饰电极循环伏安法测定抗坏血酸王岩玲;程云环【摘要】介绍纳米金-壳聚糖修饰电极的制备方法及其测定抗坏血酸的分析应用.采用电沉积方法,将氯金酸与壳聚糖的混合电解液直接共沉积,制备了壳聚糖-纳米金修饰玻碳电极的电化学传感器.利用循环伏安法研究了抗坏血酸浓度、pH值等对抗坏血酸在修饰电极上的电化学行为的影响.实验结果表明,修饰电极对抗坏血酸具有良好的电催化氧化作用,抗坏血酸浓度在5×10-5~1×10-3 mol/L范围内线性良好,回归方程为Ip=0.4338c+0.8819,相关系数为0.99871.该法可指导纳米金-壳聚糖修饰电极的制备及抗坏血酸含量的测定.%It was introduced of the method to prepare the electrodes modified by Au nanoparticles and chitosan and the usage to determine ascorbic acid. The electrochemical sensor of glassy carbon electrode modified by chitosan and gold nanoparticles were prepared by electrodeposition with chloroauric acid and chitosan as the mixed electrolyte. The effects of ascorbic acid concentration and pH value on the electrochemical behavior of ascorbic acid over the modified electrodes were investigated by cyclic voltammetry. The results showed that the ascorbic acid possessed high activity for electric catalytic oxidation on the modified electrodes. A good linear relationship was shown when the conc entration of ascorbic acid changed from 5×10-5 mol/L to 1×10-3 mol/L. The equation of linear regression was Ip=0.4338c+0.8819 with the linear correlation coefficient of 0.99871. This method can guide to the preparation of the electodes modified by Au nanoparticales and chitosan and determination of ascorbic acid.【期刊名称】《化学分析计量》【年(卷),期】2017(026)005【总页数】4页(P36-39)【关键词】纳米金;壳聚糖;电化学传感器;循环伏安法;抗坏血酸【作者】王岩玲;程云环【作者单位】淮北师范大学化学与材料科学学院,安徽淮北 235000;淮北师范大学化学与材料科学学院,安徽淮北 235000【正文语种】中文【中图分类】O657.14纳米金修饰电极具有优良的电催化性能,在食品、医药、环境保护等领域具有广泛的应用前景。

金纳米修饰电极 电化学检测

金纳米修饰电极 电化学检测

金纳米修饰电极电化学检测金纳米修饰电极是一种常用于电化学检测的技术,通过在电极表面修饰金纳米颗粒,可以提高电极的灵敏度和稳定性,从而实现对目标物质的高灵敏检测。

本文将从金纳米修饰电极的原理、制备方法以及应用领域等方面进行探讨。

我们来了解一下金纳米修饰电极的原理。

金纳米颗粒具有较大的比表面积和良好的导电性能,可以提高电极与电解质溶液的接触面积,增加电极反应的速率。

此外,金纳米颗粒还具有优异的催化性能,可以促进电极反应的进行。

因此,将金纳米颗粒修饰在电极表面,可以提高电极的灵敏度和稳定性,使其在电化学检测中具有更好的性能。

我们来看一下金纳米修饰电极的制备方法。

目前常用的制备方法主要包括溶液法、电化学法和物理气相沉积法等。

溶液法是最常用的制备方法之一,它通过在金盐溶液中加入还原剂,使金离子还原成金纳米颗粒,并将其沉积在电极表面。

电化学法则是利用电化学反应在电极表面生成金纳米颗粒,通过调节电极电位和电解液中的金离子浓度来控制金纳米颗粒的尺寸和形貌。

物理气相沉积法则是通过在高温条件下将金属蒸发,然后在电极表面沉积金纳米颗粒。

金纳米修饰电极在生物传感、环境监测、食品安全等领域具有广泛的应用。

例如,在生物传感领域,金纳米修饰电极可以用于检测生物分子的浓度和活性,实现对生物过程的监测。

在环境监测领域,金纳米修饰电极可以用于检测水体和空气中的有害物质,实现对环境污染的监测和预警。

在食品安全领域,金纳米修饰电极可以用于检测食品中的添加剂和有害物质,保障食品的质量和安全。

总结起来,金纳米修饰电极是一种常用于电化学检测的技术,通过在电极表面修饰金纳米颗粒,可以提高电极的灵敏度和稳定性,实现对目标物质的高灵敏检测。

金纳米修饰电极具有制备方法简单、应用领域广泛等优点,因此在生物传感、环境监测、食品安全等领域具有重要的应用价值。

相信随着科技的不断发展,金纳米修饰电极在电化学检测中的应用将会越来越广泛,为我们生活的质量和安全提供更好的保障。

金属有机框架纳米功能界面的构筑及用于电化学同时检测嘌呤代谢物

金属有机框架纳米功能界面的构筑及用于电化学同时检测嘌呤代谢物

金属有机框架纳米功能界面的构筑及用于电化学同时检测嘌呤代谢物摘要:同时检测DNA代谢物,黄嘌呤(XA),次黄嘌呤(HX)和尿酸(UA)对于早期诊断和预防由代谢紊乱引起的相关疾病非常重要。

在这项研究中,基于有机框架材料与具有羟基的金属(OH-MIL-101(Fe),称为OH-MOF)和电化学还原氧化石墨烯(ERGO)纳米功能的协同催化作用,设计并构建了OH-MOF-ERGO。

该界面通过电化学方法同时检测血清中的尿酸、黄嘌呤和次黄嘌呤。

通过超声混合法制备了纳米复合功能材料,并通过XRD,FT-IR和UV-vis方法对其进行了表征,通过滴涂和电化学还原法在玻璃碳电极(GCE)的表面上构建OH-MOFs-ERGO/GCE。

该修饰电极用于检测UA,XA和HX的线性范围为0.20微摩尔/升?1150微摩尔/升,0.15?800微摩尔/升和0.40?600微摩尔/升,检出限分别为0.12、0分别为10微摩尔/升和0.20微摩尔/升(S/N=3),真实血清样品中富集的回收率在96.1%到106.6%之间。

这种方法为研究与嘌呤代谢相关的生理学和病理学提供了一个简单而又快捷的检测方法。

关键词:铁基金属有机框架材料; 电化学还原石墨烯; 同时检测; 嘌呤代谢物引言:作为DNA代谢产物的诸如黄嘌呤(XA)、次黄嘌呤(HX)和尿酸(UA)等,在生物体的能量供应和代谢调节中起着非常重要的生理功能。

XA、HX和UA在血清和尿液中的异常代谢会引起痛风、高尿酸血症、高血压、脑梗塞、糖尿病以及其他疾病。

因此可以用同时检测黄嘌呤、次黄嘌呤和尿酸的方法,以用于早期诊断和预防相关疾病。

现在拥有的嘌呤检测方法主要是高效液相色谱、毛细管电泳和光谱法。

这些检测方法通常需要昂贵的仪器和设备,并且样品制备更加复杂。

电化学检测方法的优点是设备简单且易于小型化,尤其是在实时在线检测方面更为便利。

这为研究涉及嘌呤和其他物质的生理和病理过程的创造了一种理想方法。

苝酐-纳米金修饰电极同时检测抗坏血酸、多巴胺和尿酸的研究

苝酐-纳米金修饰电极同时检测抗坏血酸、多巴胺和尿酸的研究

苝酐-纳米金修饰电极同时检测抗坏血酸、多巴胺和尿酸的研究归国风;宋鹏;孙小媛【摘要】多孔结构的3,4,9,10-苝四甲酸二酐(PTCDA)作为骨架,用抗坏血酸做还原剂制备纳米金(GNPs),制备了高催化活性的PTC-GNPs复合纳米材料.将该材料用于玻碳电极的修饰(GCE),制得PTC-GNPs复合材料修饰的电极(PTC-GNPs/GCE).该修饰电极能够同时对尿酸(UA)、多巴胺(DA)和抗坏血酸(AA)进行检测.分别使用循环伏安法(CV)和差分脉冲伏安法(DPV)对UA、DA和AA和在修饰电极上的电化学行为进行研究.实验结果表明,在pH=5.0的PBS缓冲体系中,该修饰电极对UA、DA和AA的线性响应范围分别为0.002~0.462 mol/L、0.002~0.352 mol/L和0.04~1.54 mol/L.该传感在临床医学检测领域具有一定的应用前景.【期刊名称】《化学传感器》【年(卷),期】2014(034)004【总页数】5页(P34-38)【关键词】苝四甲酸二酐;纳米金;多巴胺;尿酸;抗坏血酸;伏安法【作者】归国风;宋鹏;孙小媛【作者单位】贵州工程应用技术学院化学工程学院,贵州毕节551700;贵州工程应用技术学院化学工程学院,贵州毕节551700;贵州工程应用技术学院化学工程学院,贵州毕节551700【正文语种】中文生物活性小分子物质在哺乳动物及人类体内发挥着重要的作用。

不同的活性小分子物质在细胞信号转导、基因表达调控和生物学效应上形成复杂的调节网络,承担着调节机体稳态的重要使命。

目前,在电化学领域研究比较多的生物活性小分子物质主要有H2O2[1],多巴胺(DA)[2],抗坏血酸(AA)[3],尿酸(UA)[4]等。

其中DA是一种重要的神经递质[5],UA是人体最基础的代谢产物[6],AA是维持人体健康必需的维生素[7],三者作为生物活性小分子同时存在于体液当中,其含量对于人体的健康有着极大的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Published:April 02,2011/acElectrochemical Sensing Using Quantum-Sized Gold NanoparticlesS.Senthil Kumar,Kyuju Kwak,and Dongil Lee*Department of Chemistry,Yonsei University,Seoul 120-749,KoreabSupporting Information Recent advances in the synthesis of ultrasmall gold nanoparticles protected with organothiolate (SR)have opened the possibility to synthesize stable,atomically monodisperse gold nanoparticles.1À4Au 25(SR)18,Au 38(SR)24,and Au 144(SR)60are the examples of the quantum-sized gold nanoparticles that exhibit discrete electronic states and quantum con finement e ffects.5,6These nanoparticles have received considerable attention recently because of their unique size-dependent electrochemical,optical,and catalytic properties.1À9Much progress has been made toward understanding their structures and fundamental physical and chemical properties.For example,electrochemical and optical study of the Au 25nanoparticles has revealed that Au 25has the highest occupied molecular orbital (HOMO)Àlowest unoccupied molecular orbital (LUMO)gap of ca.1.33eV,representing the molecule-like property.5However,the technological application of such nanoparticles is still scarce.7À9It will be of great interest to utilize these functional materials in technolog-ical areas such as nanoelectronics,optoelectronics,and sensors since these nanoparticles could exhibit unique properties that di ffer sub-stantially from the corresponding atoms and bulk materials.Herein,we report the first utilization of the quantum-sized Au 25nanoparticles in electrocatalysis and electrochemical sensing.The sol Àgel technique has been used to immobilize gold nanoparticles to form a modi fied electrode.10À12Gold nanoparticles employed for electrochemical sensing thus far were,however,redox inactive nanoparticles with core diameters usually larger than 3nm and,thus,they were entrapped into the sol Àgel network along with redox mediators or redox enzymes.10À12The sol Àgel matrix provides stability to the redox mediator or the enzyme that interacts selectively with the target analyte,and the gold nanoparticles act as tiny con-ductors.In the present study,the unique electrochemical properties of Au 25nanoparticles o ffer particular virtues for the development of the modi fied electrode in which Au 25can serve as an electronic conductor as well as a redox mediator.Highly monodisperse,hexanethiolate-pro-tected Au 25nanoparticles (Au 25)were synthesized and characterized as [Au 25(SC 6H 13)18]À(see Supporting Information for experimental details).Au 25nanoparticles were entrapped into the sol Àgel networkby the hydrolysis of ethyltrimethoxy silane according to a literature procedure 13with slight modi fication.In a typical procedure,Au 25solution (10mg in 0.2mL of CH 2Cl 2)was mixed with 0.1mL of water containing 25%(v/v)glutaraldehyde and 0.2mL of ethyltri-methoxy silane,and the mixture was sonicated for 30min.The resulting homogeneous solution was subsequently stored at room temperature for 2h.10μL of this mixture was then dropcast on the surface of a glassy carbon electrode (GCE,3mm diameter)and allowed to dry overnight at room temperature to form the modi fied sol Àgel electrode (Au 25SGE).The Au 25SGE was then washed thoroughly with water and used as a working electrode.Scheme 1depicts the cartoon of Au 25SGE 14with the Au 25entrapped in the sol Àgel network.The square wave voltammogram (SWV)of Au 25in CH 2Cl 2shown in Figure 1A displays the redox characteristics of Au 25;three sets of well-de fined redox peaks with formal potentials at 0.62,0.31,and À1.33V vs Ag wire quasi-reference electrode (AgQRE)can be assigned to Au 251þ/0,Au 250/1Àand Au 251À/2Àredox couples,respectively.1Cyclic voltammogram (CV)of the Au 25SGE in 0.1M KCl (Figure 1B)also shows well-de fined and reversible redox peaks with formal potential at 0.34V vs Ag/AgCl corresponding to Au 250/1Àcouple.The redox peaks of Au 251þ/0couple are not well-resolved,and they appear as a small shoulder around 0.43V.The reason for this behavior is unclear at this time.It could re flect the fact that small peak spacings between Au 251þ/0and Au 250/1Àcouples are expected when the dielectric constant of the medium is higher.5It could also be due to the fact that limited charge-compensating counterions are available in the sol Àgel network for Au 251þ/0upon the first oxidation (Au 250/1À)reaction,as has been observed in the voltammogram of a Langmuir monolayer of similar particles.15The first oxidation (Au 250/1À)appears,however,to be very stable and reproducible;the peak potentials and peak currents of the Au 25SGEReceived:February 14,2011Accepted:April 2,2011ABSTRACT:This paper describes the electrocatalytic activity of quantum-sized thiolate protected Au 25nanoparticles and their use in electrochemical sensing.The Au 25film modi fied electrode exhibited excellent mediated electrocatalytic activity that was utilized for amperometric sensing of biologically relevant ana-lytes,namely,ascorbic acid and uric acid.The electron transfer dynamics in the Au 25film was examined as a function of Au 25concentration,which manifested the dual role of Au 25as an electronic conductor as well as a redox mediator.The electrontransfer study has further revealed the correlation between the electronic conductivity of the Au 25film and the sensingsensitivity.were found to remain unaltered for 25continuous cycles (Figure 1B),re flecting the stable immobilization of the Au 25in the sol Àgel network.The electrocatalytic activity of the Au 25SGE toward the oxidation of biologically relevant analytes,namely,ascorbic acid (AA)and uric acid (UA),has been examined.Figure 2shows the CVs of Au 25SGE and bare GCE (inset to Figure 2)recorded in the absence and presence of the analytes in 0.1M KCl.As shown in the figures,there is a dramatic enhancement in the anodic peak current at the Au 25SGE (curves b Àf)upon the addition of analytes in 1μM increments,whereas only a slight increase in the anodic current was observed at the bare GCE even after the addition of 5μM of the analytes (curve h).Both AA and UA are known to undergo irreversible oxidation,16and thus,the en-hancement was observed only in the anodic current.Moreover,AA and UA were found to undergo oxidation,respectively,at 380and 405mV,signi ficantly lower potentials at the Au 25SGE than those at the bare GCE,as compared in Table 1.The oxidation potentials of AA and UA at the Au 25SGE are also considerably lower than those at the bare gold electrode,which were found to be 460and 574mV for AA and UA,respectively.The decrease in the potential for oxidation of these analytes to a potential closer to the oxidation potential of Au 25,accompanied with an en-hancement in anodic current,clearly demonstrates the mediated electrocatalytic activity 17of the immobilized Au 25according to the following reactions:Au 25Àf Au 250ð1ÞAu 250þanalyte ðreduced Þf Au 25Àþanalyte ðoxidized Þð2ÞThe Au 25nanoparticles in the sol Àgel network are first oxidized at the electrode (eq 1).In the presence of analyte,the oxidized Au 250electrocatalytically oxidizes the analyte while it is reduced to Au 25À(eq 2).The unique electronic structure of Au 25nanoparticles has been computed,18,19which reveals uneven charge distribution between the Au 13core and the Au 12shell.The electron-de ficient Au 12shell and low-coordinate surface gold atoms 9appear to be responsible for the observed electrocatalytic activity of the Au 25nanoparticles.The regeneration of Au 25Àwould result in an increase in the anodic current with increasing analyte concentra-tion.In addition,the oxidation of AA and UA at the Au 25SGE (Figure 2A,B)shows only one peak nearer to the oxidation peak of the mediator (Au 25),indicating that all the available AA and UA undergo mediated electrocatalytic oxidation at the Au 25SGE.As can be seen in the calibration graphs in Figure 2,the increases in the anodic peak currents were found to vary linearly with the concentration of the analyte added for both analytes.The amperometric sensing performance of Au 25SGE summar-ized in Table 1shows that the Au 25SGE can be employed for the amperometric determination of these analytes over a good linear range with low detection limit and high sensitivity.The obtained linear range,detection limit,and sensitivity are comparable or better than the recently reported electrochemical sensors for the determination of these analytes.16,20À22To the best of our knowledge,this is the first result demonstrating amperometric sensing based on a redox-active gold nanoparticle.As noted above,Au 25could play the dual role as an electronic conductor as well as a redox mediator.In order to gain further insights into the role of Au 25as a conductor,we examined the elec-tron transport in the Au 25SGE as a function of the Au 25concentra-tion (C ).24Stable voltammetric responses were observed for all the concentrations in the range from 3.94to 15.97mM.A representativeScheme 1.Mechanism Depicting the Mediated Electrocata-lytic Oxidation and Ensuing Electron Transport Across the EntrappedAu 25inAu 25SGEFigure 1.(A)SWV of Au 25in CH 2Cl 2containing 0.1M Bu 4NPF 6at Pt working electrode.(B)CV of the Au 25SGE for 25continuous cycles in 0.1M KCl at 20mVs À1.Figure 2.Voltammograms demonstrating the electrocatalytic oxidation of (A)ascorbic acid and (B)uric acid in 0.1M KCl at 20mVs À1;(a)CV of Au 25SGE in the absence of analyte,(b Àf)in the presence of 1,2,3,4,and 5μM of the analyte,(g)CV of bare GCE in the absence of analyte,and (h)in the presence of 5μM of analyte,and calibration graphs for the determination of (C)ascorbic acid and (D)uric acid from the voltammograms of Au 25SGE.voltammetric response of the Au25SGE(C=15.97mM)at varying scan rate is shown in Figure S4(Supporting Information).Both anodic and cathodic peak currents for all the modified electrodes made with different Au25concentrations were found to vary linearly with the square root of scan rate from2to100mVsÀ1(Figure S5,Support-ing Information),indicating the electron transport in thefilm is a diffusion-controlled process.The apparent diffusion coefficients (D APP)were calculated from the peak currents.25The diffusion pro-cess may involve one or both of physical diffusion(D PHYS)and electron hopping diffusion(D E)between Au25cores(i.e.,electron self-exchange)in thefilm.The possible electrocatalytic reaction between the oxidized Au250and analyte and ensuing electron transport process across the Au25film is shown in Scheme1.To calculate the electron hopping rates from D E,we make the assumption that D E.D PHYS.This is entirely reasonable considering the Au25SGE structure (Scheme1)in which Au25nanoparticles are entrapped in the polymer network.Thus,the self-exchange rate constant(k EX)of the Au250/Àcouple in thefilm can be calculated from D E using26,27D APP¼D PHYSþD E%D E¼k EXδ2C=6ð3Þwhereδis the centerÀcenter Au25core separation.The calculated DE and k EX are plotted versus the Au25concentration in Figure3,and values are listed in Table S1(Supporting Information).The structurally well-defined Au25SGE opens the way to unravel the effect of the electronic conductivity of thefilm on electrochemical sensing.As can be seen in Figure3,both D E and k EX increase dramatically at lower Au25concentrations and gradually reach the maximum at concentrations higher than9.23mM.The consequence of this behavior is well reflected in the sensitivity results for ascorbic acid(S AA)and uric acid(S UA).Both S AA and S UA show more than a 25-fold increase as the concentration increases from3.94mM to 9.23mM by2.3-fold,whereas S AA and S UA increase almost linearly with concentration at concentrations higher than9.23mM.These results clearly indicate that the sensitivity is dominantly controlled by the electron transfer dynamics in thefilm at lower Au25concentra-tions.In addition,the fact that the sensitivity increases linearly with concentration at higher concentrations indicates that all Au25 nanoparticles in thefilm are electroactive and electronically well-connected with each other.Finally,the dependence of k EX on Au25 concentration provides new insights into the electron hopping mechanism in thefilm.When the Au25concentration is higher than 9.23mM,the k EX reaches the maximum rate which appears to be limited by the tunneling rate through the hexanethiolate ligands between the Au25cores.The maximum k EX of2.27Â108MÀ1sÀ1 (Table S1,Supporting Information)compares very well with those obtained from networkfilms of gold nanoparticles.28At lower concentrations(C<9.23mM),the electron hopping rate appears to be limited by the mass transport rate of Au25to form a precursor complex for electron transfer.26This interpretation is well supported by the structural data of Au25SGEs in Table S1(Supporting Infor-mation)in which the average Au25centerÀcenter distances29seem to be too long for the electron transfer to occur at that equilibrium distance.In summary,we have shown that redox-active Au25nanopar-ticles can be utilized to develop amperometric sensors based on their excellent electrocatalytic activity.The electron transfer dynamics study of the Au25modified electrode manifests that Au25nanopar-ticles play the dual role as an electronic conductor as well as a redox mediator.The electron transfer study further provides thefirst quantitative results,revealing the correlation between the electron transfer dynamics in the nanoparticlefilm and the sensing sensitivity. These studies are important to the frontier of fundamental science and also highly relevant to the potential technological applications of the quantum-sized gold nanoparticles.Another potential advantage of these sensors is that it may be possible to engineer the ligand shell of the nanoparticles to improve the selectivity.This will be pursued in the future work.’ASSOCIATED CONTENTb Supporting Information.Experimental details including synthesis and characterization of Au25and electron transport data.This material is available free of charge via the Internet at .’AUTHOR INFORMATIONCorresponding Author*Phone:(þ82)2-2123-5638.Fax:(þ82)2-364-7050.E-mail: dongil@yonsei.ac.kr.Homepage:http://chem.yonsei.ac.kr/∼nanomat/.’ACKNOWLEDGMENTThis research was supported by World Class University(R32-2008-000-10217-0),Priority Research Centers(2009-0093823), and Basic Science Research(2010-0009244)Programs throughTable1.Electrocatalytic Activity and Amperometric Sensing Performance of Au25SGEoxidation potentials(mV)aanalyte BareGCE(E1)Au25SGE(E2)E1-E2linear range(μM)LOD(μM)b S(μA/μM)c AA450380700.13À11.60.068 1.556 UA5104051050.13À7.50.071 1.489a Oxidation potentials are compared at the analyte concentration of5μM.b Limit of detection.c Sensitivity of determinationof the analytes.23Figure3.Dependence of electron diffusion coefficient(D E),self-exchange rate constant(k EX),and sensitivity of determination for ascorbic acid(S AA)and uric acid(S UA)on the concentration of Au25.the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology and Yonsei University Research Fund.’REFERENCES(1)Murray,R.W.Chem.Rev.2008,108,2688–2720.(2)Jin,R.Nanoscale2010,2,343–362.(3)Parker,J.F.;Fields-Zinna,C.A.;Murray,R.W.Acc.Chem.Res. 2010,43,1289–1296.(4)Chaki,N.K.;Negishi,Y.;Tsunoyama,H.;Shichibu,Y.;Tsukuda, T.J.Am.Chem.Soc.2008,130,8608–8610.(5)Lee,D.;Donkers,R.L.;Wang,G.;Harper,A.S.;Murray,R.W. J.Am.Chem.Soc.2004,126,6193–6199.(6)Varnavski,O.;Ramakrishna,G.;Kim,J.;Lee,D.;Goodson,T. J.Am.Chem.Soc.2010,132,16–17.(7)Kim,J.;Lee,D.J.Am.Chem.Soc.2007,129,7706–7707.(8)Chen,W.;Chen,S.Angew.Chem.,Int.Ed.2009,48,4386–4389.(9)Zhu,Y.;Qian,H.;Drake,B.A.;Jin,R.Angew.Chem.,Int.Ed. 2010,49,1295–1298.(10)Jia,J.;Wang,B.;Wu,A.;Cheng,G.;Li,Z.;Dong,S.Anal.Chem. 2002,74,2217–2223.(11)Ma,L.;Yuan,R.;Chai,Y.;Chen,S.;Ling,S.Bioprocess.Biosyst. Eng.2009,32,537–544.(12)Qiu,J.-D.;Peng,H.-Z.;Liang,R.-P.;Li,J.;Xia,ngmuir 2007,23,2133–2137.(13)Thenmozhi,K.;Narayanan,S.S.Electroanalysis2007,19, 2362–2368.(14)If not otherwise mentioned,Au25SGE refers to the solÀgelfilm electrode with the Au25concentration of15.97mM.(15)Kim,J.;Lee,D.J.Am.Chem.Soc.2006,128,4518–4519.(16)Han,D.;Han,T.;Shan,C.;Ivaska,A.;Niu,L.Electroanalysis 2010,22,2001–2008.(17)Armstrong, F. A.;Wilson,G.S.Electrochim.Acta2000, 45,2623–2645.(18)Akola,J.;Walter,M.;Whetten,R.L.;Hakkinen,H.;Gronbeck,H.J.Am.Chem.Soc.2008,130,3756–3757.(19)Zhu,M.;Aikens,C.M.;Hendrich,M.P.;Gupta,R.;Qian,H.; Schatz,G.C.;Jin,R.J.Am.Chem.Soc.2009,131,2490–2492.(20)Hu,G.;Guo,Y.;Xue,Q.;Shao,S.Electrochim.Acta2010, 55,2799–2804.(21)Ensafi,A.A.;Taei,M.;Khayamian,T.Colloids Surf.,B2010, 79,480–487.(22)Nassef,H.M.;Radi,A.-E.;O’Sullivan,C.Anal.Chim.Acta 2007,583,182–189.(23)Linear range was obtained from the calibration graph(Figure S4,Supporting Information).Limit of detection was calculated using the formula(3σ/S),whereσand S represent the blank standard deviation and sensitivity of determination,respectively.σwas obtained from the change in the anodic peak current of the Au25SGE after the addition of a blank solution.(24)Au25SGEs containing different concentrations of Au25were fabricated by varying the amount of Au25in the solÀgel mixture;i.e., varying the weight of Au25as2.0,2.5,3.0,4.0,5.0,7.5,and10.0mg respectively,in0.5mL of the initial solÀgel mixture(before drying), resulting in the Au25SGEs with thefinal Au25concentration of3.94,4.87, 5.78,7.54,9.23,12.84,and15.97mM,respectively.Thefinal Au25 concentration in the Au25SGE was estimated by measuring thefinal volume of the Au25solÀgel mixture(with known Au25content)after drying in a100μL capillary.Thefilm thickness of the Au25SGE was estimated to be ca.5μm from the thickness measurement of thefilm on a glass slide using a surface profiler(Alpha Step500,KLA-Tenco).(25)The RandlesÀSevcik equation:i p=(2.69Â105)n3/2 ACD APP1/2ν1/2,where i p is the peak current,νis the scan rate,and the other symbols are as commonly known.(26)Majda,M.In Molecular Design of Electrode Surfaces;Murray, R.W.,Ed.;John Wiley&Sons:New York,1992;pp159À206.(27)Lee,D.;Donkers,R.L.;DeSimone,J.M.;Murray,R.W.J.Am. Chem.Soc.2003,125,1182–1183.(28)Hicks,J.F.;Zamborini,F.P.;Osisek,A.J.;Murray,R.W.J.Am. Chem.Soc.2001,123,7048–7053.(29)δwas calculated from C on the basis of a cubic lattice relation C=1/δ3N A,where N A is Avogadro’s number.。

相关文档
最新文档