linux中的线程(线程的创建,销毁)附例程

合集下载

Linux杀掉进程的某个线程

Linux杀掉进程的某个线程

Linux杀掉进程的某个线程⼀、查看进程所有线程的⽅法1、top⽅法ps -ef|grep 进程名称或者进程号top -H -p 进程号2、ps ⽅法ps -T -p 进程号3、pstreepstree -Aup -h pid4、Htop需要安装Htop⼆、杀掉某个进程的线程(未找到相关⽅法)1、lsof ⽅法lsof -iTCP |grep ip列出某个ip的tcp链接,查出pid,并杀掉2、杀死僵⼫进程查看僵死进程:ps -A -o stat,ppid,pid,cmd | grep -e '^[Zz]'杀掉kill -9 pid⾃动查杀僵死进程指令:ps -A -o stat,ppid,pid,cmd | grep -e '^[Zz]' | awk '{print $2}' | xargs kill -9附录:各种信号及其⽤途Signal Description Signal number on Linuxx86[1]SIGABRT Process aborted # 进程中⽌6 SIGALRM Signal raised by alarm # 报警信号14SIGBUS Bus error: "access to undefined portion of memory object" #总线错误:“访问内存对象的未定义部分”7SIGCHLD Child process terminated, stopped (or continued*) # ⼦进程终⽌、停⽌(或继续*)17 SIGCONT Continue if stopped # 如果停⽌了继续18 SIGFPE Floating point exception: "erroneous arithmetic operation" # 浮点异常:“错误的算术运算”8 SIGHUP Hangup # 暂停1 SIGILL Illegal instruction # ⾮法指令4 SIGINT Interrupt # 中断2 SIGKILL Kill (terminate immediately) # 杀(⽴即终⽌)9 SIGPIPE Write to pipe with no one reading # 写管道没有⼈读13 SIGQUIT Quit and dump core # 退出3 SIGSEGV Segmentation violation # 内存段异常11 SIGSTOP Stop executing temporarily # 暂时停⽌执⾏19 SIGTERM Termination (request to terminate) # 终⽌(请求终⽌)15SIGTERM Termination (request to terminate) # 终⽌(请求终⽌)15 SIGTSTP Terminal stop signal # 终端停⽌信号20 SIGTTIN Background process attempting to read from tty ("in") # 试图从tty读取数据的后台进程(“in”)21 SIGTTOU Background process attempting to write to tty ("out") # 试图写⼊tty的后台进程(“out”)22 SIGUSR1User-defined 1 # ⽤户⾃定义110 SIGUSR2User-defined 2 # ⽤户⾃定义212 SIGPOLL Pollable event # 可投票的事件29 SIGPROF Profiling timer expired # 仿形计时器过期27 SIGSYS Bad syscall # 糟糕的系统调⽤31 SIGTRAP Trace/breakpoint trap # 跟踪/断点陷阱5 SIGURG Urgent data available on socket # 紧急数据在插座上可⽤23SIGVTALRM Signal raised by timer counting virtual time: "virtual timer expired" # 计时器计数虚拟时间引起的信号:“虚拟计时器过期”26SIGXCPU CPU time limit exceeded # 中央处理器时限超过24 SIGXFSZ File size limit exceeded # 超过档案⼤⼩限制25。

linux多线程 pthread常用函数详解

linux多线程 pthread常用函数详解

linux多线程pthread常用函数详解Linux多线程是指在Linux操作系统中运行的多个线程。

线程是执行程序的基本单位,它独立于其他线程而存在,但共享相同的地址空间。

在Linux中,我们可以使用pthread库来实现多线程程序。

本文将详细介绍pthread库中常用的函数,包括线程的创建、退出、同步等。

一、线程创建函数1. pthread_create函数pthread_create函数用于创建一个新线程。

其原型如下:cint pthread_create(pthread_t *thread, const pthread_attr_t *attr, void*(*start_routine) (void *), void *arg);参数说明:- thread:用于存储新线程的ID- attr:线程的属性,通常为NULL- start_routine:线程要执行的函数地址- arg:传递给线程函数的参数2. pthread_join函数pthread_join函数用于等待一个线程的结束。

其原型如下:int pthread_join(pthread_t thread, void retval);参数说明:- thread:要等待结束的线程ID- retval:用于存储线程的返回值3. pthread_detach函数pthread_detach函数用于将一个线程设置为分离状态,使其在退出时可以自动释放资源。

其原型如下:cint pthread_detach(pthread_t thread);参数说明:- thread:要设置为分离状态的线程ID二、线程退出函数1. pthread_exit函数pthread_exit函数用于退出当前线程,并返回一个值。

其原型如下:cvoid pthread_exit(void *retval);参数说明:- retval:线程的返回值2. pthread_cancel函数pthread_cancel函数用于取消一个线程的执行。

Linux线程的状态与调度

Linux线程的状态与调度

Linux线程的状态与调度1,线程的⽣命周期线程从创建、运⾏到结束总是处于下⾯五个状态之⼀:新建状态、就绪状态、运⾏状态、阻塞状态及死亡状态。

1.新建状态(New):当⽤new操作符创建⼀个线程时,例如new Thread(r),线程还没有开始运⾏,此时线程处在新建状态。

当⼀个线程处于新⽣状态时,程序还没有开始运⾏线程中的代码2.就绪状态(Runnable)⼀个新创建的线程并不⾃动开始运⾏,要执⾏线程,必须调⽤线程的start()⽅法。

当线程对象调⽤start()⽅法即启动了线程,start()⽅法创建线程运⾏的系统资源,并调度线程运⾏run()⽅法。

当start()⽅法返回后,线程就处于就绪状态。

处于就绪状态的线程并不⼀定⽴即运⾏run()⽅法,线程还必须同其他线程竞争CPU时间,只有获得CPU时间才可以运⾏线程。

因为在单CPU的计算机系统中,不可能同时运⾏多个线程,⼀个时刻仅有⼀个线程处于运⾏状态。

因此此时可能有多个线程处于就绪状态。

对多个处于就绪状态的线程是由Java运⾏时系统的线程调度程序(thread scheduler)来调度的。

3.运⾏状态(Running)当线程获得CPU时间后,它才进⼊运⾏状态,真正开始执⾏run()⽅法.4. 阻塞状态(Blocked)线程运⾏过程中,可能由于各种原因进⼊阻塞状态:1>线程通过调⽤sleep⽅法进⼊睡眠状态;2>线程调⽤⼀个在I/O上被阻塞的操作,即该操作在输⼊输出操作完成之前不会返回到它的调⽤者;3>线程试图得到⼀个锁,⽽该锁正被其他线程持有;4>线程在等待某个触发条件;......所谓阻塞状态是正在运⾏的线程没有运⾏结束,暂时让出CPU,这时其他处于就绪状态的线程就可以获得CPU时间,进⼊运⾏状态。

5. 死亡状态(Dead)有两个原因会导致线程死亡:1) run⽅法正常退出⽽⾃然死亡,2) ⼀个未捕获的异常终⽌了run⽅法⽽使线程猝死。

线程实例实验报告总结

线程实例实验报告总结

一、实验目的本次实验旨在通过实例操作,深入了解线程的概念、创建、同步与通信机制,以及线程在实际编程中的应用。

通过实验,提高对线程的理解和运用能力,为以后开发多线程程序打下坚实基础。

二、实验环境1. 操作系统:Windows 102. 开发工具:Visual Studio 20193. 编程语言:C#三、实验内容1. 线程的基本概念线程是程序执行的最小单位,是操作系统进行资源分配和调度的基本单位。

线程具有以下特点:(1)线程是轻量级的,创建、销毁线程的开销较小。

(2)线程共享进程的资源,如内存、文件等。

(3)线程之间可以并发执行。

2. 线程的创建在C#中,可以使用以下方式创建线程:(1)使用Thread类```csharpThread thread = new Thread(new ThreadStart(MethodName));thread.Start();```(2)使用lambda表达式```csharpThread thread = new Thread(() => MethodName());thread.Start();```(3)使用匿名方法```csharpThread thread = new Thread(delegate () { MethodName(); });thread.Start();```3. 线程的同步线程同步是指多个线程在执行过程中,为了防止资源冲突而采取的协调机制。

C#提供了以下同步机制:(1)互斥锁(Mutex)```csharpMutex mutex = new Mutex();mutex.WaitOne();// 线程同步代码mutex.ReleaseMutex();```(2)信号量(Semaphore)```csharpSemaphore semaphore = new Semaphore(1, 1);semaphore.WaitOne();// 线程同步代码semaphore.Release();```(3)读写锁(ReaderWriterLock)```csharpReaderWriterLock rwlock = new ReaderWriterLock();rwlock.AcquireReaderLock();// 读取操作rwlock.ReleaseReaderLock();```4. 线程的通信线程通信是指线程之间传递消息、共享数据的过程。

线程并发实验报告

线程并发实验报告

一、实验目的1. 理解线程的概念和并发编程的基本原理。

2. 掌握线程的创建、同步和通信方法。

3. 通过实验加深对线程并发编程的理解,提高编程能力。

二、实验环境1. 操作系统:Windows 102. 开发工具:Visual Studio 20193. 编程语言:C++三、实验内容本次实验主要涉及以下内容:1. 线程的创建与销毁2. 线程的同步与互斥3. 线程的通信4. 线程池的使用四、实验步骤1. 线程的创建与销毁(1)创建线程:使用C++11标准中的`std::thread`类创建线程。

```cpp#include <iostream>#include <thread>void threadFunction() {std::cout << "Thread ID: " << std::this_thread::get_id() << std::endl;}int main() {std::thread t1(threadFunction);std::thread t2(threadFunction);t1.join(); // 等待线程t1结束t2.join(); // 等待线程t2结束return 0;}```(2)销毁线程:线程会在任务执行完毕后自动销毁,无需手动销毁。

2. 线程的同步与互斥(1)互斥锁:使用`std::mutex`类实现线程间的互斥。

```cpp#include <iostream>#include <thread>#include <mutex>std::mutex mtx;void threadFunction() {mtx.lock();std::cout << "Thread ID: " << std::this_thread::get_id() << std::endl;mtx.unlock();}int main() {std::thread t1(threadFunction);t1.join();t2.join();return 0;}```(2)条件变量:使用`std::condition_variable`类实现线程间的条件同步。

linux下C语言多线程编程实例

linux下C语言多线程编程实例
互斥锁相关
互斥锁用来保证一段时间内只有一个线程在执行一段代码。
一 pthread_mutex_init
函数 pthread_mutex_init 用来生成一个互斥锁。NULL 参数表明使用默认属性。如果需要声明特 定属性的互斥锁,须调用函数 pthread_mutexattr_init。函数 pthread_mutexattr_setpshared 和函数 pthread_mutexattr_settype 用来设置互斥锁属性。前一个函数设置属性 pshared,它有 两个取值, PTHREAD_PROCESS_PRIVATE 和 PTHREAD_PROCESS_SHARED。前者用来不同进程中的线 程同步,后者用于同步本进程的不同线程。在上面的例子中,我们使用的是默认属性 PTHREAD_PROCESS_ PRIVATE。后者用来设置互斥锁类型,可选的类型有 PTHREAD_MUTEX_NORMAL、 PTHREAD_MUTEX_ERRORCHECK、 PTHREAD_MUTEX_RECURSIVE 和 PTHREAD _MUTEX_DEFAULT。它们分 别定义了不同的上所、解锁机制,一般情况下,选用最后一个默认属性。
void thread_create(void)
{
int temp;
memset(&thread, 0, sizeof(thread));
//comment1
/*创建线程*/
if((temp = pthread_create(&thread[0], NULL, thread1, NULL)) != 0)
下面是我们的代码: /*thread_example.c : c multiple thread programming in linux

Linux系统编程之进程控制(进程创建、终止、等待及替换)

Linux系统编程之进程控制(进程创建、终止、等待及替换)

Linux系统编程之进程控制(进程创建、终⽌、等待及替换)进程创建在上⼀节讲解进程概念时,我们提到fork函数是从已经存在的进程中创建⼀个新进程。

那么,系统是如何创建⼀个新进程的呢?这就需要我们更深⼊的剖析fork 函数。

1.1 fork函数的返回值调⽤fork创建进程时,原进程为⽗进程,新进程为⼦进程。

运⾏man fork后,我们可以看到如下信息:#include <unistd.h>pid_t fork(void);fork函数有两个返回值,⼦进程中返回0,⽗进程返回⼦进程pid,如果创建失败则返回-1。

实际上,当我们调⽤fork后,系统内核将会做:分配新的内存块和内核数据结构(如task_struct)给⼦进程将⽗进程的部分数据结构内容拷贝⾄⼦进程添加⼦进程到系统进程列表中fork返回,开始调度1.2 写时拷贝在创建进程的过程中,默认情况下,⽗⼦进程共享代码,但是数据是各⾃私有⼀份的。

如果⽗⼦只需要对数据进⾏读取,那么⼤多数的数据是不需要私有的。

这⾥有三点需要注意:第⼀,为什么⼦进程也会从fork之后开始执⾏?因为⽗⼦进程是共享代码的,在给⼦进程创建PCB时,⼦进程PCB中的⼤多数数据是⽗进程的拷贝,这⾥⾯就包括了程序计数器(PC)。

由于PC中的数据是即将执⾏的下⼀条指令的地址,所以当fork返回之后,⼦进程会和⽗进程⼀样,都执⾏fork之后的代码。

第⼆,创建进程时,⼦进程需要拷贝⽗进程所有的数据吗?⽗进程的数据有很多,但并不是所有的数据都要⽴马使⽤,因此并不是所有的数据都进⾏拷贝。

⼀般情况下,只有当⽗进程或者⼦进程对某些数据进⾏写操作时,操作系统才会从内存中申请内存块,将新的数据拷写⼊申请的内存块中,并且更改页表对应的页表项,这就是写时拷贝。

原理如下图所⽰:第三,为什么数据要各⾃私有?这是因为进程具有独⽴性,每个进程的运⾏不能⼲扰彼此。

1.3 fork函数的⽤法及其调⽤失败的原因fork函数的⽤法:⼀个⽗进程希望复制⾃⼰,通过条件判断,使⽗⼦进程分流同时执⾏不同的代码段。

Linux系统线程创建及同步互斥方法简要说明(供查考)

Linux系统线程创建及同步互斥方法简要说明(供查考)

Linux系统线程创建及同步互斥方法简要说明(供查考)1、.POSIX线程函数的定义在头文件pthread.h中,所有的多线程程序都必须通过使用#include<pthread.h>包含这个头文件2、用gcc编译多线程程序时,必须与pthread函数库连接。

可以使用以下两种方式编译(建议使用第一种)(1)gcc –D_REENTRANT -o 编译后的目标文件名源文件名-lpthread例如:gcc –D_REENTRANT -o pthread_create pthread_create.c -lpthread (执行该编译结果的方式为:./pthread_create)(2)gcc -pthread -o 编译后的文件名源文件名例如:gcc -pthread -o example example.c一、需要用到的函数的用法提示1、创建线程函数pthread_t a_thread; /*声明a_thread变量,用来存放创建的新线程的线程ID(线程标识符)*/int res=pthread_create(&a_thread,NULL,thread_function,NULL);/*创建一个执行函数thread_function的新线程,线程ID存放在变量a_thread */ 2、退出线程函数pthread_exit(NULL);/*那个线程在执行中调用了该方法,那个线程就退出*/创建和退出线程实例3、连接(等待)线程函数int error;int *exitcodeppthread_t tid; /*用来表示一个已经存在的线程*/error=pthread_join(tid,&exitcodep); /*执行该方法的线程将要一直等待,直到tid 表示的线程执行结束,exitcodep 存放线程tid退出时的返回值*/4、返回线程ID的函数pthread_t t/*声明表示线程的变量t */t=pthread_self( ) /*返回调用该方法的线程的线程ID*/5、判断两个线程是否相等的函数(pthread_equal)int pthread_equal(pthread_t t1, pthread_t t2);/*判断线程t1与线程t2是否线程ID相等*/二、线程同步1、使用互斥量同步线程(实现互斥)(1)互斥量的创建和初始化pthread_mutex_t a_mutex=PTHREAD_MUTEX_INITIALIZER/*声明a_mutex为互斥量,并且初始化为PTHREAD_MUTEX_INITIALIZER */ (2)锁定和解除锁定互斥量pthread_mutex_t a_mutex=PTHREAD_MUTEX_INITIALIZER/*声明互斥量a_mutex*/int rc=pthread_mutex_lock(&a_mutex) /*锁定互斥量a_mutex*/ ………………………………/*锁定后的操作*/int rd= pthread_mutex_unlock(&a_mutex) /*解除对互斥量a_mutex的锁定*/例子:利用互斥量来保护一个临界区pthread_mutex_t a_mutex=PTHREAD_MUTEX_INITIALIZER;pthread_mutex_lock(&a_mutex) /*锁定互斥量a_mutex*//*临界区资源*/pthread_mutex_unlock(&a_mutex) /*解除互斥量a_mutex的锁定*/(3)销毁互斥量Int rc=pthread_mutex_destory(&a_mutex) /*销毁互斥量a_mutex*/2、用条件变量同步线程(实现真正的同步)条件变量是利用线程间共享的全局变量进行同步的一种机制,主要包括两个动作:一个线程等待"条件变量的条件成立"而挂起;另一个线程使"条件成立"(给出条件成立信号)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

注意! ! ! ! ! ! ! ! ! ! ! ! ! ! 比如你的源程序叫做 myapp.c, 目标编译时 myapp, 则: gcc -o myapp myapp.c -lpthread 表示链接到 pthread creation failed”); exit(1); } } for (i=0;i<TN;i++) pthread_join(thread[i],NULL); puts(“main thread exiting ”); return 0; } void routine(void *arg) { int j; for(j=0;j<5;j++) { sleep(1+(int)(5.0*rand()/(RAND_MAX+1.0))); printf(“%s:”,(char*)arg); printf(“%d\n”,j); } return; }
处理 Linux 中的线程 1. 线程的创建 pthread_create() #include <pthread.h> int pthread_create(pthread_t*thread,pthread_attr_t*attr,void*(*start_routine)(void*),void*arg); thread 指向一个 pthread_t 结构,新创建线程的标识就存放在这里; attr 用来指定即将创建的新线程的属性,若为 NULL,则用默认属性; start_routine 是新线程所执行的函数; arg 是执行函数的参数。 若返回 0:线程标识存放在 thread 中。 错误返回非零:非 0 的错误码。 2. 线程的终止 pthread_exit() #include<pthread.h> void pthread_exit(void*retval); pthread_exit 终止线程的运行。线程函数中的 returen 也有同样的作用。 retval 是线程的返回码,可被 pthread_join()使用。 返回:无 3. 等待子线程的终止 pthread_join() #include<pthread.h> int pthread_join(pthread_t th,void **thread_return); th 为等待终止的子线程。若 thread_return 不为 NULL,则线程 th 的返回值存放在 thread_return 所指向的地方。 4. 多线程编程举例 #include<pthread.h> #include<stdio.h> #include<unistd.h> #include<stdlib.h> #include<string.h> #define TN 3 void routine(void*arg); int main() { pthread_t thread[TN]; int retval,i; char msg[TN][10]; puts(“main thread is running.”) for(i=0;i<TN;i++) { sprint(msg[i],”thread %d”,i); retval=pthread_create(&thread[i],NULL,(void*)routine,msg[i]); if(retval!=0) {
相关文档
最新文档