曝气生物滤池计算(完整资料).doc

合集下载

曝气生物滤池设计计算详解

曝气生物滤池设计计算详解

曝气生物滤池设计计算详解生物滤池是一种将水中的有机污染物通过微生物代谢转化为无机物的处理设施,它广泛应用于废水处理、养殖废水处理等领域。

设计一个有效的生物滤池需要进行一系列的计算。

首先,需要确定生物滤池的尺寸。

生物滤池的尺寸主要取决于处理的水量和水质参数。

一般来说,生物滤池的尺寸应根据日最大流量来确定。

根据流量公式Q=F×V,其中Q为流量,F为日最大通量,V为通量系数,一般取0.4-0.6、例如,如果日最大通量为1000m³/日,通量系数取0.6,那么生物滤池的尺寸为1000×0.6=600m³。

接下来,需要计算生物滤池的曝气量。

曝气是为了提供足够的氧气供给微生物进行代谢活动,从而促进有机污染物的降解。

曝气量的计算可以通过需氧量和比表面积来确定。

一般来说,曝气量需要根据曝气装置的功率来确定。

曝气功率一般取决于氧的传输效率、气泡的大小和数量等因素。

需氧量是衡量有机污染物浓度的标准,可以通过实验测定。

根据经验,一般曝气量为需氧量的1.5-3倍。

例如,需氧量为500mg/L,曝气量取需氧量的2倍,那么曝气量为1000mg/L。

最后,需要进行生物滤池的水力计算。

水力计算主要包括水力负荷和水力停留时间。

水力负荷是指单位面积的滤池所能承受的水量,一般取决于水流速度和填料层的深度。

水流速度一般取决于水质要求和滤池的尺寸。

填料层的深度一般取决于处理效果的要求。

水力负荷的计算公式为水力负荷=Q/A,其中Q为流量,A为滤池的有效面积。

水力停留时间是指水在滤池中停留的时间,一般取决于滤池的尺寸和水流速度。

水力停留时间的计算公式为水力停留时间=滤池体积/Q。

在实际设计中,还需要考虑其他因素,如进出水口的位置、管道连接方式、排污设施等。

综上所述,生物滤池的设计计算包括尺寸计算、填料量计算、曝气量计算和水力计算等。

这些计算可根据水量、水质参数和处理效果要求进行详细设计。

设计一个合理的生物滤池可以提高废水处理效果,保护环境。

N型曝气生物滤池计算

N型曝气生物滤池计算

进水出水基础数据BOD(mg/L)3010COD(mg/L)8050SS(mg/L)2010NH3-N 82TP 1.50.5水量1920T/D 1NH3-N去除率86.66667%2查负荷表得滤池的NH3-N滤料的面积负荷:NA 0.25NH3-N/(m2.d)3陶粒滤料比表面积:A'1200m2/m34N滤池滤料总面积:A表115200m25N滤池滤料总体积:V 96m36计算N滤池容积负荷:NV 0.3KgNH3-N/(m3.d)结论超出范围0.4-0.8,取0.45后反推0.45N滤池滤料总体积:V 64m3N滤池滤料总面积:A表76800m2滤池的NH3-N滤料的面积负荷:NA 0.375NH3-N/(m2.d)设计滤池分,3格每格滤料高度:h33米则单格面积A 7.111111平方过滤池为方形,则每边长 2.666667米滤池超高h10.5m 稳水层h20.8m 滤料层h33m 承托层h40.3m 配水区h5 1.5m 滤池总高H 6.1m过滤速率校核: 3.657979m3/m2/h 结论过滤速率符合一般规定2~8m3/m2/h 三、水力停留时间空床水力停留时间:t 0.820125h 实际水力停留时间:t'0.410063hBOD容积负荷NV0.6KgBOD5/(m3.d)计算BOD负荷满足设计要求小于2KgBOD5/(m3.d)每1kgBOD需氧量1.1kgO2降解BOD5的实际需氧量AOR' 1.76KgO2/h 硝化NH3-N实际需氧量AOR” 4.7528KgO2/h 实际总需氧量AOR6.5128KgO2/h 换算成标准总需氧量SOR 11.93709KgO2/h 需气量GS248.6894m3/h五、需氧量计算一、滤料体积计算:二、滤池尺寸计算:四、BOD容积负荷校核曝气负荷校核:N气8.528444m3/m2/h 结论曝气速率符合一般规定4~15m3/m2/h 六反冲洗系统计算气反洗强度12L/ m2.s反洗气量(单台反洗) 5.2488m3/min水反洗强度 5.6L/ m2.s反洗水量(单台反洗)146.9664m3/h七污泥量计算曝气滤池污泥产率0.25Kg/kgBOD5BOD产泥 4.8Kg/DSS产泥30.72Kg/D设计进水取值202015151.208926取整:2.7米0.9-1.4。

曝气生物滤池计算书

曝气生物滤池计算书

曝气生物滤池1:滤池尺寸的计算 ①滤料体积W N S Q W 1000∆==dm kgBOD dkgBOD ∙⨯⨯⨯3/21000/2024670=160.8m 3其中,BAF 除碳的滤料负荷为2~6d m kgBOD ∙3/,取2d m kgBOD ∙3/ ②滤池表面积BAF 的滤料高度一般为2~4m ,取3m ,则BAF 的表面积为53.6m 2滤池面积过大时,会不利于布水布气的均匀,因此滤池面积过大时应当分格。

因此将滤池分六格,并联运行,单格表面积为:6mx6m (考虑到水力负荷将滤池面积适当扩大)正常水力负荷:670/36/6=3.10h m m ∙2/3当有一格滤池反洗时,最大水力负荷为:670/36/3=3.72h m m ∙2/3 满足除碳时最大水力负荷6.0h m m ∙2/3的要求。

③滤池深度 滤料层高度3m 配水配气室高度1.2m 承托层高度0.3m 清水区高度1.5m 超高0.5m则滤池的总深度为6.5m(承托层,清水区,配气配水室高度不确定,只在一些地方看到滤料被淹没1.5~m 比较好)2:反冲洗水量计算在资料中共查到如下几个数:室外给水设计规范P206:活性炭11.1(大粒径)或6.7S m L ∙2/(小粒径),15~20min 城镇给水第3册过滤那一章:P609固定式表面冲洗2~3S m L ∙2/,冲洗水头0.2MPa P612常用气水冲洗:先气冲——再气水同时(3~4S m L ∙2/)——后水冲(4~10S m L ∙2/) P617快滤池,只水冲时12~15S m L ∙2/ 参考的华北院项目中一般取18S m L ∙2/按水冲洗强度5S m L ∙2/则水量为5x6x6=180L/Sx3.6=648m3/h 。

可选三台反洗水泵,两用一备,单台能力为350 m3/h 反洗水量使用RO 浓水。

3:反冲洗气量计算在资料中共查到如下几个数:室外给水设计规范P206:活性炭13.9(大粒径)或13.9S m L ∙2/(小粒径) 5min 城镇给水第3册P612常用气水冲洗:先气冲(15~20S m L ∙2/)——再气水同时(12~18S m L ∙2/)——后水冲 一般取3.3S m L ∙2/(觉得此值不对,气水比应当是1~3比1)按气冲洗强度15S m L ∙2/则水量为15x6x6=540L/Sx3.6=1944m3/h=32.4 m3/min 可选两台鼓风机,一用一备,单台能力为33m3/min 。

曝气生物滤池总高度

曝气生物滤池总高度

曝气生物滤池总高度摘要:一、引言二、曝气生物滤池的定义与作用三、曝气生物滤池总高度的计算方法四、曝气生物滤池总高度对处理效果的影响五、如何选择合适的曝气生物滤池总高度六、总结正文:一、引言曝气生物滤池是一种常用的污水处理设备,广泛应用于生活、工业等各个领域的污水处理。

然而,在实际应用中,如何确定曝气生物滤池的总高度以达到最佳处理效果,是许多工程技术人员关心的问题。

本文将详细介绍曝气生物滤池总高度的相关知识,以帮助大家更好地理解和应用这一参数。

二、曝气生物滤池的定义与作用曝气生物滤池是一种生物处理设备,通过向滤料层中通入空气,使污水中的有机物质在生物降解作用下转化为无害物质,从而达到净化污水的目的。

曝气生物滤池具有处理效果好、占地面积小、投资省等优点,广泛应用于各种污水处理工程。

三、曝气生物滤池总高度的计算方法曝气生物滤池总高度是指从滤池底部到滤池顶部的垂直距离。

计算曝气生物滤池总高度时,需要考虑以下因素:滤料层厚度、承托层厚度、生物膜厚度、空气分配器高度等。

计算公式为:曝气生物滤池总高度= 滤料层厚度+ 承托层厚度+ 生物膜厚度+ 空气分配器高度。

四、曝气生物滤池总高度对处理效果的影响曝气生物滤池总高度对处理效果具有重要影响。

若总高度过低,可能导致污水在滤料层中的停留时间不足,影响处理效果;若总高度过高,将增加投资和运行费用。

因此,选择合适的曝气生物滤池总高度对提高处理效果和降低成本具有重要意义。

五、如何选择合适的曝气生物滤池总高度在选择曝气生物滤池总高度时,需要综合考虑以下因素:处理规模、水质特性、滤料类型、运行条件等。

具体操作时,可参考相关设计规范和工程实例,结合实际情况进行优化调整。

六、总结本文详细介绍了曝气生物滤池总高度的计算方法、影响因素及选择合适的总高度的方法。

在实际应用中,选择合适的曝气生物滤池总高度,可有效提高处理效果,降低投资和运行费用。

曝气生物滤池计算【最新】

曝气生物滤池计算【最新】
C / N上向流曝气生物滤池将水解(酸化)池出水中的碳化有机物进行好氧生物降解,并将TKN转化为氨氮并进行氨氮的部分硝化。上向流曝气生物滤池主要包括缓冲配水室,曝气系统,承托层和滤料层,出水系统,反冲洗系统等,所以曝气生物滤池的计算主要包括上述各部分的计算。
表1-1
第169面
(1)C / N曝气生物滤池池体的设计在本工程中,由于处理对象为医疗废水,曝气生物滤池的作用包括对污水中有机物的去除和对污水中的营养物质如氨氮、磷的去除。C / N曝气生物滤池主要用于去除污水中的有机污染物并进行部分硝化脱氮,其池体的设计计算分按有机负荷法计算与按有机物降解动力学公式计算两种方法,由于按有机负荷法计算方法比较成熟,所以本工程滤池池体按有机负荷法计算。
水解酸化池的布水系统形式有多种,布水系统兼有配水和水力搅拌的功能,为了保证这两个功能的实现,需要满足以下原则。
1、确保各可能满足水力搅拌需要,保证进水有机物与污泥迅速混合;
3、易观察到进水管的堵塞,并当堵塞发生后很容易被清除。
(三)C / N曝气生物滤池
对于水解酸化反应器,为了保持其处理的高效率,必须保持池内足够多的活性污泥,同时要使进入反应器的废水尽量快地与活性污泥混合,增加活性污泥与进水有机物的接触,这就要求上升流速越高越好。但过高的上升流速又会破坏活性污泥层对进水中SS的生物截留作用,并对活性污泥床进行冲刷,从而将活性污泥带入反应器的出水系统中,使活性污泥流失并使出水效果变差,所以保持合适的上升流速是必要的。
7.栅槽总长度:
L=l1+l2+1.0+0.5+H1/tga
=0.06+0.03+0.5+0.8+0.2/tg60o≈1.413m
8.每日渣量:

曝气生物滤池计算

曝气生物滤池计算

曝气生物滤池计算转载的资料:曝气生物滤池上向流曝气生物滤池将水解(酸化)池出水中的碳化有机物进行好氧生物降解,并将TKN转化为氨氮并进行氨氮的部分硝化。

上向流曝气生物滤池主要包括缓冲配水室,曝气系统,承托层和滤料层,出水系统,反冲洗系统等,所以曝气生物滤池的计算主要包括上述各部分的计算。

1)曝气生物滤池池体的设计在本工程中,由于处理对象为医疗废水,曝气生物滤池的作用包括对污水中有机物的去除和对污水中的营养物质如氨氮、磷的去除。

曝气生物滤池主要用于去除污水中的有机污染物并进行部分硝化脱氮,其池体的设计计算分按有机负荷法计算与按有机物降解动力学公式计算两种方法,由于按有机负荷法计算方法比较成熟,所以本工程滤池池体按有机负荷法计算。

按有机负荷法计算的设计参数主要是BOD有机负荷,COD有机负荷和水力负荷。

设计时根据BOD有机负荷进行计算,并用COD有机负荷和水力负荷进行校核。

当进水BOD为 71-140 mg/L 时,BOD容积负荷可达 1.3 - 2.6 kgBOD/(m3 滤料•d,而其COD有机负荷一般控制在 6 kgCOD/(m3 滤料•d以下,空塔水力负荷一般为 1.5 - 3.5 m3 /(m2 • h)之间。

在本工程中,经水解(酸化)池每天进入C / N 曝气生物滤池的污水量 Q = 400 m3/d,在C / N 曝气生物滤池中,每天所要求去除的BOD5 的重量为:△WBOD = (Q△CBOD)/1000代入数据后,则:△WBOD = [400 ×(121-30)]/1000 = 36.4 kg/d取BOD有机负荷 qBOD = 1.3 kgBOD/(m3 滤料 d ,则所需滤料体积V滤料= △WBOD / qBOD = 36.4 / 1.3 = 28 m3采用COD有机负荷进行校核:当滤料体积为 28 m3 时,每天经 C / N 曝气生物滤池去除的COD的重量为:△WCOD = (Q△CCOD)/1000式中△WBOD ——在曝气生物滤池中每天需去除的COD重量,kg/dQ -—每天进入曝气生物滤池的废水量,m3/d;△CBOD ——进入曝气生物滤池的COD浓度差,mg/L.代入数据后,则:△WBOD = [400 ×(300 - 100)]/1000 = 80 kg/d实际上,C / N 曝气生物滤池内COD的有机负荷为:qBOD = △WCOD/ V滤料 = 80/28 = 2.86 kgCOD/(m3 滤料·d 所以, C / N 曝气生物滤池内的实际COD有机负荷小于 6 kgBOD/(m3 滤料·d ,满足要求。

曝气生物滤池计算

曝气生物滤池计算

5.主要构筑物与设备参数(一)格栅见草图:1.栅条的间隙数:设栅前水深 h=0.1m ,栅前流速 u1 =0.4m /S过栅流速 u = 0.6 m/S,栅条间宽度e=20mm,格栅安装倾斜角a=60on=Qmax×(Sina)1/2/(bhv)= 0.00463×(Sin60o)1/2/(0.018×0.1×0.6)≈42.栅条宽度:设栅条宽度为 S=0.01mB=S(n-1)+bn=0.01×(4-1)+0.018×4=0.102m3.进水水渠道渐宽部分长度:设进水水渠宽B1=0.06m,渐宽部分展开角a1=20ol1=(B-B1)/(2tga1)=(0.102-0.06)/(2tg20o)=0.06m4.栅槽与出水渠连接处的渐窄部分长度l2=l1/2=0.06/2=0.03m5.通过格栅的水头损失:设栅条为矩形断面,取k=2.5h1=β(s/b)4/3sinαk(v2/2g)=2.5×2.42×(0.01/0.018)4/3×0.866×(0.62/19.6)= 0.044 m6.槽后槽总高度:取栅前渠道超高h2=0.1m,有总高度H=h+h1+h2=0.1+0.1+0.044=0.244m7.栅槽总长度:L=l1+l2+1.0+0.5+H1/tga=0.06+0.03+0.5+0.8+0.2/tg60o≈1.413m8.每日渣量:取W1=0.07m3/103m3(污水)所以,W=Qmax×W1×86400/K2/1000=0.0463×0.07×86400/2.5/1000≈0.0112m3/d≤0.2m3/d栅渣量极小,适宜人工清渣。

(二) 水解酸化池体的计算(1)水解(酸化)池有效池容V有效是根据污水在池内的水力停留时间计算的。

水解(酸化)池内水力停留时间需根据污水可生化性、进水有机物浓度、当地的平均气温情况综合而定,一般为 2.5-4.5h.考虑综合情况,本工程设计中水力停留时间取 T = 4 h,本工程设计流量 Q = 400 m3/d =16.67 m3/h,取 T = 4 h,则有效池容为:水解酸化池的有效容积 V有效 = QT式中 V有效——水解酸化池的有效容积,m3 ,Q----进入水解酸化池的废水平均流量,m3/h ;T----废水在水解酸化池中的水力停留时间, h本工程 Q = 16.67 m3/h,T = 4 h,代入公式后:V有效 = 16.67 × 4 = 66.68 m3 ,对于水解酸化反应器,为了保持其处理的高效率,必须保持池内足够多的活性污泥,同时要使进入反应器的废水尽量快地与活性污泥混合,增加活性污泥与进水有机物的接触,这就要求上升流速越高越好。

曝气生物滤池计算

曝气生物滤池计算

曝气生物滤池计算曝气生物滤池是一种常用的水处理设备,其主要原理是通过曝气作用将废水中的有机物质转化成无机物质,从而达到净化水质的目的。

下面,我们来详细了解一下曝气生物滤池的计算方法。

首先,我们需要明确曝气生物滤池的主要参数,包括进水量、处理效率、曝气量和处理时间等。

其中,进水量和处理效率是两个非常重要的参数,因为它们直接影响到水质的净化效果。

进水量的计算方法非常简单,只需要将所需处理的水量除以处理时间即可。

例如,我们需要处理1000吨污水,处理时间为24小时,那么每小时进水量就是1000/24=41.67吨。

处理效率则需要根据具体的水质情况来确定。

一般来说,曝气生物滤池的处理效率可以达到60%以上,但如果污水中含有较高浓度的有机物质,处理效率可能会降低。

因此,在计算处理效率时,需要考虑水质的实际情况并根据经验值进行估算。

一旦确定了进水量和处理效率,就可以根据计算公式来确定曝气量。

曝气量是指需要向曝气生物滤池中注入的气体量,其大小与进水量和处理效率有关。

一般来说,曝气量可以根据下列公式来计算:曝气量(m3/h)=(进水量(m3/h)×BOD5浓度(mg/L)×K)÷(处理效率×24)其中,BOD5是有机污染物在5天内生化需氧量的浓度,也是衡量水质净化效果的一个重要指标。

K是一个经验常数,通常为0.1~0.3。

除了上述参数之外,曝气生物滤池还需要考虑其他参数,如悬浮物负荷、曝气设备功率以及排放标准等。

在设计和使用曝气生物滤池时,需要根据水质情况和实际需要进行综合考虑,以确保其正常运行和水质净化效果的达标。

综上所述,曝气生物滤池的计算方法涉及众多参数和公式,但只有在充分理解和掌握相关知识的前提下,才能准确计算和使用曝气生物滤池,保障水质的安全和健康。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

此文档下载后即可编辑
春柳河污水处理厂提供的中水水质
水量Q=1600m 3/h ,取NH 3-N 负荷为d m N kgNH ⋅-33/5.0 故:3316901000
5.0)
325(241600m N N NH Q V
V =⨯-⨯⨯=-∆=
取填料层高度为H=3.4m ,则滤池总平面积为24974
.31690m H Q A === 取单池面积为A=297m ⨯,则所需池个数为个89
7497=⨯==A V n 水力负荷h m m A Q ⋅=⨯⨯==
23/2.38
971600
q 水力停留时间h Q V 1.11600
1690t === 滤池总高度:m h h h h H H 4.65.00.13.02.14.343210=++++=++++=
曝气风机计算:
微生物需氧量=降解有机物需氧量+硝化需氧量
d
kg C Q C Q R N NH BOD
/48201000
)]325(57.4)530[(241600100057.410003=-⨯+-⨯⨯=∆⨯+∆=
-滤池氧的利用率取30%,从滤池中逸出气体中含氧量的百分率Q t 为:
%7.15)
3.01(2179)
3.01(21)1(2179)1(21=-⨯+-⨯=-⨯+-⨯=
A A t E E O
当滤池水面压力Pa P 510013.1⨯=时,曝气器安装在水面下H=4.6m 深度时,曝气器处的绝对压力为:
Pa H P P b 5353104638.16.4108.910013.1108.9⨯=⨯⨯+⨯=⨯+=
当水温为25℃时,清水中的饱和溶解氧浓度为C S =8.4mg/L ,则25℃时滤池内混合液溶解氧饱和浓度的平均值C Sm(25)为:
L mg P Q C C b t S Sm /21.9)10
026.2104638.1427.15(4.8)10026.242(5
5
5)
25(=⨯⨯+⨯=⨯+⨯= 水温为25℃时,BAF 的实际需氧量R 为:
]
[025
.11)25()
20()
25(0C C C R R S T Sm -⨯=
-βρα 式中L mg C /3,1,9.0,8.01====ρβα
代入公式后可得:
d
kg R /10809]
34.819.0[025.18.021
.94820)2025(=-⨯⨯⨯⨯=
-
则总供气量为:
min /83/12010010030
3.010809
1003.033m d m E R G A S ==⨯⨯=⨯=

每个单孔膜滤池专用曝气器供气量为h m ⋅个/3.0~2.03,取供气量为
h m ⋅个/25.03
则所需曝气器数量为个2001625.0/608325.0/60=⨯=⨯=∑S G n ,曝气器间距为125mm
为了布气均匀,取8台风机为8个滤池供氧,故每台供气量为:
min /375.103m
曝气风机所需压力(取曝气器安装水深H=4.6m ):
m kPa H h h h h P 678.598.9)6.45.1(8.9)5.1(4321==⨯+=⨯+=+++=
取风量15m 3/min ,风压6.5m ,N=30kW 的罗茨风机FSR150型10台,8用2备
反洗风机计算:
采用气水联合反冲洗,气洗强度为s m m ⋅23/10,则每格滤池所需风量为:
m in
/8.376097101033m Q =⨯⨯⨯⨯=-
选取2台Q=50 m 3/min ,H=0.065~0.08MPa ,N=90kW 的罗茨风机2台,一用一备
反洗水泵计算: 反洗所需压力:
543210h h h h h h H +++++=
h 0=8.4m (静水压力)
h 1:配水管路水头损失。

取管道长度100m ,反冲洗强度为s m L ⋅2/5,每格滤池面积为63m 2,故反冲洗水量为:s m Q /315.06353=⨯=,水洗时,冲洗时间为10min 。

反冲洗干管管径DN600,流速为1.08m/s ,符合干管流速在1.0~1.5m/s 的范围。

计算水头损失为h 1=0.32m
h 2:配水孔水头损失。

m g q h 44.08
.921)68.0%25.0105(21)10(222=⨯⨯⨯⨯=⨯=αμ
h 3:承托层水头损失。

m q H h a 03.053.0022.0022.03=⨯⨯==
h 4:过滤水头损失。

31.04.3)55.01(1
2.12
.1)1(1
04=⨯-⨯-=
--=
b H m h ρρ h 5:安全水头,取2.0m
则:m H 5.110.231.003.044.032.04.8=+++++=
因为随着过滤时间的推移,滤料层的水头损失会逐渐增大,为保证过滤的正常进行,再增加2.5m 的备用水头,所以H=14m 反洗泵流量Q=0.315m 3/s=1134 m 3/h
选用350S16型离心泵两台,一用一备,离心泵Q=1200 m 3/h ,H=14m ,N=75kW
BAF 进水泵计算:
选KDB350-20A 离心泵三台,两用一备,离心泵Q=995 m 3/h ,H=17m ,N=75kW
污泥计算:
污泥浓缩池采用间歇进水,间歇排泥的运行方式,污泥浓缩池的有效容积按照收集一天BAF 反洗水的水量计算,
3151286010315.0m V =⨯⨯⨯=
浓缩池高度取4m ,采用辐流式浓缩池,直径D=22m 污泥量计算:BAF 反洗水SS 取1000mg/L , 则干污泥量为:
kg W 1512100010001512=÷⨯=
参考排水规范,前置投加混凝剂化学除磷时,附加的污泥为不除磷产生污泥量的50%~75%,本计算取75%。

假设附加的污泥量是在含水率为99%的污泥的基础上附加,则含水率为99%的污泥量为:
d m W
Q /265%)751(%
9913'=+⨯-=
浓缩池浓缩后的污泥浓度取96%,直接送往离心机脱水。

则浓缩后的污泥量为:
d m Q Q /25.66%
961%
9913'=--⨯
= 污泥输送泵和离心机每天运行8h ,则 污泥输送泵流量为h m Q /28.88
25
.663==
,取h m /103,H=10m 离心机处理污泥量也取h m /103 污泥输送泵和离心机都采用一用一备
Al 2(SO 4)3加药量计算:
采用Al 2(SO 4)3·18H 2O 作为化学除磷的混凝剂,投加浓度取5%(扣除结晶水的重量)。

理论上,三价铝离子与等摩尔磷酸反应生成磷酸铝,由于污水成分及其复杂,含有大量阴离子,铝离子也会与他们反应从而消耗混凝剂,根据经验投加时,其摩尔比采用1.5~3,本计算取摩尔比为2 投加Al 2(SO 4)3·18H 2O 的干重为:
h kg mol g mol
g h m L mg W /2.115/5582/312/1600/)45(3=⨯÷⨯⨯-=
则混凝剂投加量为:
h m mol
g mol
g h kg mol g mol g W Q /1%
5/558/234/2.115%5/558/2343=⨯
=⨯=
水溶液的密度取
1kg/L
N a ClO 加药量计算:
消毒采用市场售含10%有效氯的N a ClO ,加药量为8mg/L ,则N a ClO 加药量为:
h L Q /128%1010816003=÷⨯⨯=-
水溶液的密度取1kg/L
取两天的加药量,则溶液箱的容积为6m 3,采用Φ2000×2000mm 的溶液箱1台,Q=400L/h 的计量泵2台,一用一备 PAM 加药量计算:
PAM 配置成0.1%的水溶液,投加量为5mg/L ,则计量泵流量为
h kg Q /05.01000105=÷⨯=
配成0.1%的水溶液为:0.05/0.001=50L/h 水溶液的密度取1kg/L
取2台200L/h 的计量泵,一用一备;
溶液箱储存2d 的加药量,V=2.4m 3,尺寸为Φ1500×1500mm
HCl 加药量的计算:
当出水pH 由9调节到7时,[OH -]由10-5 mol/L 变为10-7 mol/L ,
理论上OH -与H +等当量反应,则需要投加的[H +]为10-5mol/L ,HCl 的投加量为:
h g W /5845.3610001600105=⨯⨯⨯=-
HCl 的浓度取30%,则计量泵的流量为:
h L W
Q /2%
30==
水溶液的密度取1kg/L
HCl 溶液箱取1m 3,尺寸Φ1000×1500mm ,计量泵一用一备
NaOH 加药量的计算:
NaOH 溶液浓度取40%,其加药设备同HCl 加药设备。

相关文档
最新文档