广东省广州市越秀区华侨中学中考数学二模试卷
2024年广东省广州市越秀区华侨中学中考二模数学试题

2024年广东省广州市越秀区华侨中学中考二模数学试题一、单选题1.在实数π-,3-,1 )A .3-B .π-C .1D 2.数轴上的点A 到原点的距离是5,则点A 表示的数为( )A .-5B .5C .5或-5D .2.5或-2.5 3.方程2131x x =++解是( ) A .2x =B .5x =C .1x =D .2x =- 4.下列计算正确的是( )A .325a a a +=B .22a a a -=C .()236a a -=D .5 5.下列命题中,属于假命题的是( )A .两条平行线被第三条直线所截,内错角相等B .在同一平面内,有且只有一条直线与已知直线垂直C .同旁内角互补,两直线平行D .对顶角相等6.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )A .12 B .14 C .16 D .1127.如图,在正方形ABCD 中,E 是对角线AC 上一点,作EF AB ⊥于点F ,连接DE ,若62BC BF ==,.则DE =( )A .B .C .D .8.已知二次函数()245y x a x a =+-+-(a 为常数)的图象经过()m n -,和()m n ,两点,则二次函数与y 轴的交点坐标为( )A .()0,1B .()0,1-C .()0,5-D .()0,49.如图,ABC V 中,80ACB ∠=︒,将ABC V 绕点C 顺时针旋转得到EDC △,使点B 的对应点D 恰好落在AB 边上,AC 、ED 交于点F .若BCD α∠=,则EFC ∠的度数是( )(用含α的代数式表示)A .3802α︒+B .31702α︒+C .31702α︒-D .32α 10.如图,抛物线y=-13(x-t )(x-t+6)与直线y=x-1有两个交点,这两个交点的纵坐标为m 、n .双曲线y=mn x的两个分支分别位于第二、四象限,则t 的取值范围是( )A .t <0B .0<t <6C .1<t <7D .t <1或t >6二、填空题11.甲、乙两名学生最近4次数学考试平均分都是128分,方差222.2 6.6S S ==甲乙,,则这两名学生的数学成绩最稳定的是 .12.分解因式:228a -=.13.反比例函数y=3k x-的图象,当x >0时,y 随x 的增大而增大,则k 的取值范围是. 14.一个几何体的三视图如图所示,则该几何体的侧面积为.15.若一元二次方程x 2+2x ﹣m =0无实数根,则一次函数y =(m+1)x+m ﹣1的图象不经过第象限.16.如图,在矩形ABCD 中,6AD =,AE BD ⊥,垂足为E .(1)若4AB =,则AE =;(2)若3ED BE =,点P 、Q 分别在BD ,AD 上,则AP PQ +的最小值为.三、解答题17.解方程组:3125x y x y +=⎧⎨-=-⎩18.如图,已知AC 平分∠BAD ,AB=AD .求证:△ABC ≌△ADC19.已知22411()4422a a P a a a a -+=-÷-+-+). (1)化简P ;(2)如图,在ABC V 中,7,5AB BC ==,AC 的垂直平分线交AB 于点E ,交AC 于点D ,BCE V 的周长等于a ,求P 的值.20.为提高学生的法律意识,某中学开展了一系列的法律进校园活动,组织九年级全体学生进行了《法律知识知多少》知识竞答,学校随机抽取m 名学生的竞答成绩,对成绩(百分制)进行整理、描述和分析,成绩划分为()90100A x ≤≤,()8090B x ≤<,()7080C x ≤<,()6070D x ≤<,四个等级,并制作出不完整的统计图,如图所示.已知:B 等级数据(单位:分):80、80、81、82、85、86、86、87、88、89; 根据以上信息,回答下列问题:(1)填空:m =,n =;(2)补全条形统计图;(3)抽取的m 名学生中,成绩的中位数是分,在扇形统计图中,C 等级扇形圆心角的度数是;(4)这所学校共有2100名学生,若全部参加这次竞答,请你估计成绩能达到B 等级及以上的学生人数.21.高尔基说:“书籍是人类进步的阶梯”.为提高学生的阅读水平,某中学购买了“科普类”和“文学类”两种书籍,其中“科普类”图书的单价比“文学类”图书的单价多4元,购买30本“科普类”图书和40本“文学类”图书共花费1240元.(1)求这两种图书的单价分别是多少元?(2)学校决定再次购买这两种图书共100本,总费用超过1790元但不超过1800元,则学校有哪几种购买方案,并计算每种方案的总费用.22.如图,在平面直角坐标系内,点A 的坐标为(0,24 ),经过原点的直线l 1与经过点A 的直线l 2相交于点B ,点B 坐标为(18,6).(1)求直线l 1,l 2的表达式.(2)点C 为线段OB 上一动点(点C 不与点O ,B 重合),CD ∥y 轴交直线l 2于点D ,CE ∥l 2交y 轴于点E.①若点C 的横坐标为m ,求四边形AECD 的面积S 与m 的函数关系式;②当S 最大时,求出点C 的坐标.23.如图,在ABC V 中,90C ∠=︒,BAC ∠的平分线交BC 于点D ,过点D 作AD 的垂线交AB 于点E .(1)请画出ADE V 的外接圆O e (尺规作图,不写作法,保留作图痕迹);(2)求证:BC 是O e 的切线;(3)过点D 作DF AE ⊥于点F ,延长DF 交O e 于点G ,若8DG =,2EF =.求O e 的半径.24.在平面直角坐标系xOy 中,已知抛物线()2240y ax ax a a =-+-≠.(1)求抛物线224y ax ax a =-+-的顶点坐标;(2)当15x -≤≤时,y 的最大值为12;①请求出a 的值;②若()1,A m y ,()2,B m t y +是抛物线上两点,其中0t >,记抛物线在A ,B 之间的部分为图象G (包含A ,B 两点),若图象G 上最高点与最低点的纵坐标之差为4,直接写出t 的取值范围.。
2024年广东省广州市越秀区华侨外国语学校中考数学二模试卷(含答案)

2024年广东省广州市越秀区华侨外国语学校中考数学二模试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.−2的倒数是( )A. −2B. −12C. 12D. 22.四个大小相同的正方体搭成的几何体如图所示,从正面得到的视图是( )A.B.C.D.3.不等式x+1≥2的解集在数轴上表示为( )A. B.C. D.4.2024年体育中考男生引体向上15个就能得到100分.为了力争优秀成绩,七年级的学生就已经开始努力训练,现葵城中学七(1)班的6位同学在一节体育课上进行引体向上训练时,统计数据分别为7,12,10,6,9,6则这组数据的中位数是( )A. 6B. 7C. 8D. 95.下列运算正确的是( )A. 2(a−1)=2a−2B. (a+b)2=a2+b2C. 3a+2a=5a2D. (ab)2=ab26.有两辆车按1,2编号,张、李两位老师可任意选坐一辆车,则两位老师同坐1号车的概率是( )A. 1B. 12C. 14D. 167.一次函数y=kx+b中,y随x的增大而减小,b<0,则这个函数的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限(k2≠0)的图象相交于A,B两点,点A 8.如图,一次函数y1=k1x+b(k1≠0)的图象与反比例函数y2=k2x的横坐标为1,点B的横坐标为−2,当y1≥y2时,x的取值范围是( )A. x≤−2或x≥1B. x≤−2或0<x≤1C. −2≤x<0或x≥1D. −2≤x<0或0<x≤19.如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠D=30°,OD=4,则AC等于( )A. 6B. 4C. 23D. 310.已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0)经过点(−1,−1),(0,1),当x=−2时,与其对应的函数值y>1.有下列结论:①abc>0;②关于x的方程ax2+bx+c−3=0有两个不等的实数根;③a+b+c>7.其中,正确结论的个数是( )A. 0B. 1C. 2D. 3二、填空题:本题共6小题,每小题3分,共18分。
2022年广东省中考数学 二模试题【共5套】(原卷版)

3.下列倡导节约的图案中,是轴对称图形的是()
A. B. C. D.
4.实数 在数轴上的对应点的位置如图所示.若实数 满足 ,则 的值可以是()
A.2B.-1C.-2D.-3
5.如图,△ABC与△DEF位似,点O为位似中心.已知OA∶OD=1∶2,则△ABC与△DEF的面积比为( )
15.如图,已知正方形DEFG的顶点D、E在△ABC的边BC上,顶点G、F分别在边AB、AC上.如果BC=4,△ABC的面积是6,那么这个正方形的边长是_____.
16.在边长为4的等边三角形ABC中,P是BC边上的一个动点,过点P分别作PM⊥AB于M,PN⊥AC于N,连接PA,则下列说法正确的是______(填序号).
A. B. C. D.
9.如图,在四边形ABCD中,已知AB=CD,M、N、P分别是AD、BC、BD的中点∠ABD=20°,∠BDC=70°,则∠NMP的度数为( )
A.50°B.25°C.15°D.20
10. ⊙O是半径为1的圆,点O到直线L的距离为3,过直线L上的任一点P作⊙O的切线,切点为Q;若以PQ为边作正方形PQRS,则正方形PQRS的面积最小为()
2022年广东省中考数学二模试题【共5套】
2022年广东省中考数学 二模试题1
数学试卷
一、单选题(本题共有10小题,每小题3分,共30分.每小题给出的四个选项,只有一项是符合题目要求的)
1.下列各数中,负数是( )
A.﹣(﹣2)B.|﹣2|C.﹣23D.(﹣2)2
2.如图是某几何体的三视图,该几何体是()
①若PB=1,则 ;②若PB=2,则S△ABC=8S△BMP;③ ;④若0<PB≤1,则S四边形AMPN最大值是 .
2024年广东省广州市越秀区中考数学二模试卷+答案解析

2024年广东省广州市越秀区中考数学二模试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.当前,手机移动支付已成为当下流行的消费支付方式.如果在微信零钱记录中,收入100元,记作元,那么支出50元应记作为()A.元B.元C.元D.元2.剪纸是中国的传统艺术.下列剪纸图案既是轴对称图形,又是中心对称图形的是()A. B. C. D.3.下列运算正确的是()A. B. C. D.4.如图是某一物体的三视图,则此三视图对应的物体是()A.B.C.D.5.若点在平面直角坐标系的第三象限内,则x的取值范围在数轴上可表示为()A.B.C.D.6.如图,将沿BC方向平移到,若A,D之间的距离为2,,则BF等于()A.6B.7C.8D.97.若关于x的一元二次方程有两个不相等的实数根,则实数m的值可以是()A.5B.4C.3D.28.正方形网格中,如图放置,则的值为()A.B.C.D.29.已知二次函数为常数,且的图象上有四点,,,,则,,的大小关系是()A. B. C. D.10.如图,在正方形ABCD中,E是边BC上一点,F是CD延长线上一点,连接EF交对角线BD于点G,连接AG,若,,则()A.B.C.D.二、填空题:本题共6小题,每小题3分,共18分。
11.“白日不到处,青春恰自来,苔花如米小,也学牡丹开”.这是一首用苔藓比喻人生的励志小诗.目前在全世界约有23000种苔藓植物.将数据23000用科学记数法表示为______.12.分解因式:______.13.如图,圆锥的母线长为10cm,高为8cm,则该圆锥的侧面展开图扇形的弧长为______结果用表示14.如图,一束光线从点出发,经过y轴上的点反射后经过点,则的值是______.15.如图,在平面直角坐标系中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且位似比为点A、B、E在x轴上,若正方形BEFG的边长为6,则C点坐标为______.16.如图,是的外接圆,,于点D,BO的延长线交CD于点______填“>,<或=”;若,,则______.三、解答题:本题共9小题,共72分。
2023年广东省广州市越秀区中考数学二模试卷(含解析)

2023年广东省广州市越秀区中考数学二模试卷学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 下列实数中,比―3小的数是( )A. ―2B. 4C. ―5D. 12. 下列图形中,既是中心对称图形又是轴对称图形的是( )A. B. C. D.3. 某校开展了“空中云班会”的满意度调查,九年级各班满意的人数分别为34,35,35,36.下列关于这组数据描述错误的是( )A. 中位数是35B. 众数是35C. 平均数是35D. 方差是24. 下列运算正确的是( )A. (2a2)3=6a6B. 2a2+3a4=5a6D. a2(a3―2a)=a6―2a3C. (2a)―2=14a25.如图,AB是⊙O的直径,点C,D都是⊙O上的点,若∠CAB=30°,则∠ADC的度数是( )A. 65°B. 55°C. 60°D. 70°6. 若点P(1,3)在直线l:y=2x+b上,则下列各点也在直线l上的是( )A. (2,―1)B. (2,5)C. (―2,3)D. (―2,9)7.如图,一个圆锥的主视图是边长为3的等边三角形,则该圆锥的侧面展开图的面积是( )A. 9π2B. 934C. 9πD. 934π8.在某校的科技节活动中,九年级开展了测量教学楼高度的实践活动.“阳光小组”决定利用无人机A测量教学楼BC的高度.如图,已知无人机A与教学楼的水平距离AD为m米,在无人机上测得教学楼底部B的俯角为α,测得教学楼顶部C的仰角为β.根据以上信息,可以表示教学楼BC(单位:米)的高度是( )A. mtanα+mtanβB. mtanα+mtanβC. msinα+msinβD. msinα+msinβ9. 抛物线G:y=―13x2+3与x轴负半轴交于点A,与y轴交于点B,将抛物线G沿直线AB平移得到抛物线H,若抛物线H与y轴交于点D,则点D的纵坐标的最大值是( )A. 415B. 154C. 32D. 2310. 如图,四边形ABCD的对角线AC与BD交于点E,且AC⊥BD,AC=AD,∠CBD=∠CAD,CB=5,CD=45,则AD的长是( )A. 9B. 10C. 403D. 443第II卷(非选择题)二、填空题(本大题共6小题,共18.0分)11. 在函数y=2x―1中,自变量x的取值范围是.12. 在平面直角坐标系xOy中,点A(3,a)关于x轴的对称点为B(b,4),则a+b的值是______ .13. 分解因式:ax2―4ax+4a=.14.在“玩转数学”活动中,小林剪掉等边三角形纸片的一角,如图所示,发现得到的∠1与∠2的和总是一个定值.则∠1+∠2=______度.15.如图,在菱形ABCD中,AD与⊙O相切于点A,CD与⊙O相切于点C,点B在⊙O上,则sinB=______ .16.如图,矩形ABCD中,AB=6,BC=4,点E,F分别为边AB,CD上的动点,且AE=CF,将线段EF绕点F逆时针旋转90°得到线段FG,连接DG.(1)当点E为AB的中点时,线段DG的长是______ ;(2)当点E在边AB上运动时,线段DG的最小值是______ .三、解答题(本大题共9小题,共72.0分。
2024年中考数学第二次模拟考试+解析(广东广州卷)

2024年中考第二次模拟考试(广州卷)数学·全解全析一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.若一个数与它的相反数在数轴上对应的点之间的距离为4,则这个数是()A.-2B.0C.±2D.±4【答案】C【分析】根据相反数的性质,结合数轴确定出所求即可.【详解】解:若一个数与它的相反数在数轴上对应点之间的距离为4,则这个数是±2,故选:C.【点睛】此题考查了数轴,以及相反数,熟练掌握相反数的性质是解本题的关键.2.一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.【答案】D【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行解答即可.2【详解】解:根据主视图和左视图为矩形可判断出该几何体是柱体, 根据俯视图是两个矩形可判断出该几何体为.故选:D .【点睛】本题考查由三视图想象立体图形.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.3.如图,ABC 内接于⊙O ,30A ∠=︒,则BOC ∠的度数为( )A .30︒B .60︒C .75°D .120°【答案】B【分析】本题考查了圆周角定理,直接利用圆周角定理即可得出答案. 【详解】解:∵弧BC 对的圆心角是BOC ∠,对的圆周角是A ∠,∴12A BOC ∠=∠,∴223060BOC A ∠=∠=⨯︒=︒. 故选:B .4.下列运算结果正确的是( ) A .347a a a += B .3332a a a ⋅= C .339236a a a ⋅=D .()362-a a =−【答案】D【分析】依次根据合并同类项,同底数幂的乘法(m n mna a a ⋅= ),单项式乘单项式,幂的乘方公式(()m n mna a =)对各选项判断即可.【详解】A .3a 与4a 不是同类项不能合并,故该选项错误;B .33336a a a a +⋅==,故该选项错误;C .633236a a a ⋅=,故该选项错误;D .()362-a a =−,故该选项正确.故选:D .【点睛】本题考查合并同类项、幂的相关计算和单项式乘单项式.解题的关键是掌握幂的乘方、合并同类项法则、同底数幂的乘法及单项式乘单项式的运算法则. 5.一个不等式组12322x x x x−⎧<⎪⎨⎪−≥⎩,那么它的解集在数轴上表示正确的是( )A .B .C .D .【答案】B【分析】先求出每个不等式的解集,后把解集表示到数轴上即可. 【详解】解:12322 x x x x −⎧<⎪⎨⎪−≥⎩①②,解不等式①,得:1x >−, 解不等式②,得:2x ≥, ∴该不等式组的解集为2x ≥, 其解集在数轴上表示如下:故选:B .【点睛】本题考查了一元一次不等式组的解法,解集的数轴表示,熟练求得不等式组的解集是解题的关键.6.如果当0x >时,反比例函数(0)ky k x=≠的函数值随x 的增大而增大,那么一次函数123y kx k =−的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限4【答案】B【分析】本题考查了一次函数的图象性质:y kx b =+与y 轴交于()0,b ,当0b >时,()0,b 在y 轴的正半轴上,直线与y 轴交于正半轴;当0b <时,()0,b 在y 轴的负半轴,直线与y 轴交于负半轴.①0,0k b y kx b >>⇔=+的图象在一、二、三象限;②0,0k b y kx b ><⇔=+的图象在一、三、四象限;③0,0k b y kx b <>⇔=+的图象在一、二、四象限;④0,0k b y kx b <<⇔=+的图象在二、三、四象限.反比例函数的图象性质,反比例函数(0)ky k x =≠的图象是双曲线,当0k >,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小;当0k <,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大.由反比例函数的性质可判断k 的符号,再根据一次函数的性质即可判断一次函数的图象经过的象限. 【详解】解:由题意得:0k <, 103k ∴<,20k −>,∴一次函数123y kx k=−的图象经过第一、二、四象限,故选:B .7.某班进行演讲比赛,其中6人的成绩如下:9.4,9.0,9.6,9.6,9.3,9.5(单位:分),则下列说法不正确的是( ) A .这组数据的众数是9.6分 B .这组数据的方差是13300C .这组数据的平均数是9.4分D .这组数据的中位数是9.5分【答案】D【分析】根据平均数、众数、中位数和方差的定义分别计算即可. 【详解】解:这组数据从大到小排列为9.6,9.6,9.5,9.4,9.3,9.0,9.6分出现次数最多,则这组数据的众数是9.6分,故A 选项正确,不符合题意;处于中间的两个数是9.5,9.4,则这组数据的中位数是9.45分,故D 选项错误,符合题意;这组数据的平均数为9.629.59.49.399.46⨯++++=,故C 选项正确,不符合题意; 方差为()()()()()22222129.69.49.59.49.49.49.39.49.09.46⎡⎤⨯⨯−+−+−+−+−⎣⎦ 13300=,故B 选项正确,不符合题意;故选:D .【点睛】本题主要考查方差,解题的关键是掌握平均数、众数、中位数和方差的定义. 8.如图,在坡角为30°的斜坡上要栽两棵树,要求它们之间的水平距离AC 为9m ,则这两棵树之间的坡面AB 的长为( )A .18mB .C .D .【答案】C【分析】AB 是Rt ABC △的斜边,这个直角三角形中,已知一边和一锐角,满足解直角三角形的条件,可求出AB 的长.【详解】解:如图,30BAC ∠=︒,90ACB ∠=︒,9AC =m , ∴AB=2BC ,∴222AC BC AB +=,即22294BC BC +=,解得:BC =,∴AB =, 故选:C .【点睛】本题考查了坡度坡角问题,直角三角形的性质,勾股定理.应用问题尽管题型千变万化,但关键是设法化归为解直角三角形问题,必要时应添加辅助线,构造出直角三角形.9.课本习题:“A ,B 两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运30kg ,A 型机器人搬运900kg 所用时间与B 型机器人搬运600kg 所用时间相等,两种机器人每小时分别搬运多少化工原料?”下列四位同学列方程正确的是( ) ①设A 型机器人每小时搬运x kg 化工原料,则: 甲列的方程为:90060030x x =+;乙列的方程为:90060030x x =− ②设A 型机器人搬运900kg 化工原料需要x 小时,则: 丙列的方程为:90060030x x +=;丁列的方程为:60090030x x+=6A .甲、丙B .甲、丁C .乙、丙D .乙、丁【答案】D【分析】分别从不同角度设未知数列出方程进行判断即可.【详解】解:设A 型机器人每小时搬运xkg 化工原料,则B 型机器人每小时搬运(x -30)kg 化工原料, 则90060030xx =− 故乙正确;设A 型机器人搬运900kg 化工原料需要x 小时,则60090030x x +=故丁正确. 故选:D .【点睛】本题考查由实际问题抽象出分式方程,解题关键是合理设元,找到等量关系列出方程.10.已知关于x 的方程()21210−−−=k x 有实数根,则k 的取值范围为( )A .2k ≥B .1k ≥−且12k ≠C .12k −≤≤且12k ≠D .12k −≤≤ 【答案】D【分析】根据已知分1-2k=0和1-2k≠0分别讨论求出k 的取值范围,再结合即可.【详解】解:∵关于x 的方程()21210−−−=k x 有实数根,若1-2k=0,则k=12,方程为10−=,此时方程有解,∴k=12;若1-2k≠0,则(()()24121k −⨯−⨯−−≥0,k+1≥0,分别解得:k≠12,k≤2,k≥-1,则k 的取值范围是:-1≤k≤2,且k≠12,综上:-1≤k≤2. 故选:D .【点睛】本题考查了根的判别式的应用,能根据题意分1-2k=0和1-2k≠0分别讨论求出k 的取值范围,当1-2k≠0时还需要满足(()()24121k −⨯−⨯−−≥0,k+1≥0.二、填空题(本大题共6个小题,每小题3分,共18分)11.5月5日,记者从襄阳市文化和旅游局获悉,五一长假期间,我市41家A 级景区全部开放,共接待游客约2270000人次.数据2270000用科学记数法表示为 . 【答案】62.2710⨯【分析】科学记数法的表现形式为10na ⨯的形式,其中110a ≤<,n 为整数,确定n的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正整数,当原数绝对值小于1时,n 是负整数. 【详解】解:2270000用科学记数法表示为 62.2710⨯,故答案为:62.2710⨯.【点睛】本题考查了科学记数法—表示较大的数,科学记数法的表现形式为10na ⨯的形式,其中110a ≤<,n 为整数,表示时关键是要正确确定a 的值以及n 的值.12.若二次函数2y x k =+的图像经过点()11,y −,()23,y ,则1y 2y (选填:﹥,﹤,=) 【答案】<【分析】本题考查了二次函数的图象与性质,根据二次函数的对称轴和开口方向,判断所给点到对称轴的距离大小即可求解.【详解】解:∵二次函数2y x k =+的对称轴为直线0x =,且图象开口向上, 又()011−−=,303−=,13<,∴1y 2y <故答案为:<13.明德华兴中学自2021年下学期恢复高中办学后,街舞社按四个年级分A 、B 、C 、D 四个学习小组,小明同学根据各小组的成员人数绘制了条形统计图(1),小华同学绘制了扇形统计图(2),其中m = .8【答案】72【分析】用360°乘以D 组的人数和总人数得出D 组所占的百分比即可得出答案. 【详解】解:四个小组的总人数为:4+8+12+6=30(人),D 组的人数在扇形统计图中所对应的圆心角的度数为:6360=7230⨯︒︒, ∴m=72, 故答案为:72.【点睛】本题考查了条形统计图、扇形统计图,以及用样本估计总体,弄清题意是解题的关键.14.若正方形的面积为36,则该正方形的对角线长为 .【答案】【分析】根据正方形面积公式,求出边长,再根据勾股定理即可求解. 【详解】解:∵正方形的面积为36, ∴6=,∴=,故答案为:【点睛】本题主要考查了正方形的性质,勾股定理,解题的关键是掌握正方形四条边相等.15.如图,已知BD CD ,分别是ABC ∠和ACE ∠的平分线,连接AD ,46DAC ∠=︒,BDC ∠= .【答案】44︒/44度【分析】过点D 作DF BA ⊥,交BA 的延长线于点F ,过点D 作DH AC ⊥于点H ,过点D 作DG BA ⊥,交BC 的延长线于点G ,根据角平分线的判定和性质可得DF DG DH ==,46DAC FAD ∠=∠=︒,从而得到88BAC ∠=︒,再由角平分线的性质和三角形外角的定义可得111222BDC ABC BAC ABC∠+∠=∠+∠,进行计算即可得到答案.【详解】解:如图,过点D 作DF BA ⊥,交BA 的延长线于点F ,过点D 作DH AC ⊥于点H ,过点D 作DG BA ⊥,交BC 的延长线于点G ,BD CD ,分别是ABC ∠和ACE ∠的平分线,DF BA ⊥,DH AC ⊥,DG BA ⊥, DF DG DH ∴==,DH AC DF BA ⊥⊥,,DF DH =,AD ∴平分CAF ∠, 46DAC FAD ∴∠=∠=︒, 180DAC FAD BAC ∠+∠+∠=︒, 180464688BAC ∴∠=︒−︒−︒=︒,BD CD ,分别是ABC ∠和ACE ∠的平分线,12DCE ACE ∠=∠∴,12DBC ABC∠=∠,DCE BDC DBC ACE ABC BAC ∠=∠+∠∠=∠+∠,,()1122BDC DBC ACE BAC ABC ∴∠+∠=∠=∠+∠,111222BDC ABC BAC ABC∴∠+∠=∠+∠,11884422BDC BAC ∴∠=∠=⨯︒=︒,故答案为:44︒.【点睛】本题主要考查了角平分线的判定与性质,三角形外角的定义及性质,熟练掌握角平分线的判定与性质,三角形外角的定义及性质,添加适当的辅助线是解题的关键.1016.如图,在Rt △ABC 中∠BAC =90°,点D 和点E 分别是AB ,AC 的中点,点F 和点G 分别在BA 和CA 的延长线上,若BC =10,GF =6,EF =4,则GD 的长为 .【答案】【分析】先利用三角形的中位线的性质求得线段152DE BC ==,然后在ADE ∆,AEF ∆,ADG ∆,AGF ∆中分别利用勾股定理即可求解.【详解】解:∵点D 和点E 分别是AB ,AC 的中点,BC =10, ∴152DE BC ==,∵Rt △ABC 中∠BAC =90°,∴ADE ∆,AEF ∆,ADG ∆,AGF ∆都是直角三角形, ∵GF =6,EF =4,∴由勾股定理得,22236AF AG GF +== ①,22216AF AE EF +==②, 22225AD AE DE +==③,∴−+①②③,得2245AD AG +=,∵在Rt ADG ∆中,222AD AG GD +=,∴245GD =,解得GD =GD =−故答案为:【点睛】本题考查了三角形的中位线的性质及勾股定理的应用,此处勾股定理的灵活运算是解题的关键.三、解答题(本大题共9小题,共72分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分4分) 解方程:(21)2(21)x x x −=−. 【答案】12122x x ==,【分析】运用因式分解法求解即可.【详解】解:移项得:(21)2(21)0x x x −−−=, 因式分解得:()()2210x x −−=,∴20x −=或210x −=, 解得:12122x x ==,.【点睛】本题考查因式分解法解一元二次方程,掌握因式分解法解一元二次方程的一般步骤是解题的关键. 18.(本小题满分4分)如图,点B 在线段AC 上,BD CE ∥,AB EC =,DB BC =.求证:AD EB =.【答案】见解析【分析】首先根据平行线的性质得到ABD C ∠=∠,然后证明出()SAS ABD ECB ≌,最后根据全等三角形的性质求解即可. 【详解】证明:∵BD CE ∥, ∴ABD C ∠=∠,∴在ABD △和ECB 中,AB CE ABD C DB BC =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABD ECB ≌,∴AD EB =.【点睛】本题考查的知识点是全等三角形的性质和判定,解题的关键是熟练的掌握全等三角形的判定. 19.(本小题满分6分)12如图,ABC 在平面直角坐标系中,其中点()3,2A −−,点()4,1B −,点()1,3C −.(1)将ABC 向右平移4个单位得到111A B C △,在图中画出111A B C △,并写出点1A 的坐标; (2)求111A B C △的面积. 【答案】(1)见解析,()11,2A −(2)5.5【分析】(1)利用平移变换的性质分别作出A ,B ,C 的对应点1A ,1B ,1C 并顺次连接即可得到111A B C △,根据点1A 在坐标系中的位置即可写出坐标;(2)把三角形的面积看成矩形的面积减去周围的三个三角形面积即可. 【详解】(1)如图所示,111A B C △为所求,()11,2A −(2)111A 1113532313251535 5.52222B C S =⨯−⨯⨯−⨯⨯−⨯⨯=−−−=△【点睛】本题考查作图-平移变换,三角形的面积等知识,解题的关键是掌握平移变换的性质学会用割补法求三角形的面积. 20.(本小题满分6分)已知三个整式24x x +,44x +,2x .(1)从中选出两个进行加法运算,使所得整式可以因式分解,并进行因式分解; (2)从中选出两个分别作为分式的分子与分母,要求这个分式不是最简分式,并对这个分式进行约分. 【答案】(1)见解析 (2)见解析【分析】(1)先找出两个整式的和,再看看能否分解因式即可;(2)先找出两个整式分别作为分式的分子与分母,再看看能否约分即可 【详解】(1)解:()2244(2)x x x ++=+或()()22242422x x x x x x x ++=+=+;(2)解:()222444x x x x x x x x +++==或()222444x x x x x x x x ==+++.【点睛】本题考查了最简分式,因式分解,约分等知识点,能熟记完全平方公式和能正确约分是解此题的关键. 21.(本小题满分8分)小明和小亮是一对双胞胎,他们的爸爸买了两套不同品牌的运动服送给他们,小明和小亮都想先挑选.于是小明设计了如下游戏来决定谁先挑选.游戏规则是:在一个不透明的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1,2,3,4.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为奇数,则小明先挑选;否则小亮先挑选. (1)用树状图或列表法求出小明先挑选的概率; (2)你认为这个游戏公平吗?请说明理由.【答案】(1)见解析,23;(2)不公平,见解析【分析】(1)用列表法表示所有可能出现的结果,进而求出相应的概率即可; (2)求出小明、小亮获胜的概率即可.14【详解】(1)解:根据题意可列表或树状图如下:从表可以看出所有可能结果共有12种,且每种结果发生的可能性相同,符合条件的结果有8种, ∴P (和为奇数)23=;(2)解:不公平.∵小明先挑选的概率是P (和为奇数)23=,小亮先挑选的概率是P (和为偶数)13=,2133≠, ∴不公平.【点睛】本题考查了列表法或树状图法求简单随机事件发生的概率,列举出所有可能出现的结果是正确解答的关键. 22.(本小题满分10分)金百超市经销某品牌童装,单价为每件50元时,每天销量为60件,当单价每件从50元降了20元时,一天销量为100件.设降x 元时,一天的销量为y 件.已知y 是x 的一次函数.(1)求y 与x 之间的关系式;(2)若某天销售童装80件,则该天童装的单价是多少? 【答案】(1)y 与x 之间的关系式为y=2x+60 (2)该天童装的单价是每件40元【分析】(1)根据题意先设出y 与x 的函数关系式y=kx+b ,再根据题目中的数据,即可求出该函数的解析式;(2)将y= 80代入(1) 中函数关系式,求出相应的x 的值即可. 【详解】(1)因为y 是x 的一次函数.所以,设y 与x 的函数关系式为y=kx+b ,由题意知,当x=0时, y=60 ;当x=20时, y= 100,所以,6020100b k b =⎧⎨+=⎩,解之得:602b k =⎧⎨=⎩ 所以y 与x 之间的关系式为y=2x+60 ; (2)当y=80时,由80=2x+60, 解得x=10, 所以50- 10= 40(元),所以该天童装的单价是每件40元.【点睛】本题考查一次函数的应用, 解答本题的关键是明确题意,求出相应的函数关系式.23.(本小题满分10分)已知抛物线224y ax ax a =++−的顶点为点P ,与x 轴分别交于A 、B 两点(A 点在B 点的左侧),与y 轴交于点C(1)直接写出点P 的坐标为 ;(2)如图,若A 、B 两点在原点的两侧,且3OA OB =,四边形MNEF 为正方形,其中顶点E 、F 在x 轴上,M 、N 位于抛物线上,求点E 的坐标; (3)若线段2AB =,点Q 为反比例函数ky x=与抛物线224y ax ax a =++−在第一象限内的交点,设Q 的横坐标为m ,当13m <<时,求k 的取值范围. 【答案】(1)()1,4P −−;(2))2,0E;(3)12180k <<.16【分析】(1)利用配方把解析式配成顶点式即可;(2)根据正方形的性质则可以得出EF EN =,再由抛物线点的特征列出一元二次方程,求解即可得出点E 坐标;(3)利用二次函数和反比例函数的增减性即可求解. 【详解】(1)∵()222414y ax ax a a x =++−=+−,∴顶点()1,4P −−,故答案为:()1,4−−,(2)设()1,0A x ,()2,0B x ,∵抛物线对称轴为直线=1x −, ∴122x x +=−, 又∵3OA OB =, ∴123x x −=, ∴13x =−,21x =, ∴()30A −,,()10B ,,将()10B ,代入224y ax ax a =++−,解得1a =,∴抛物线解析式为:223y x x =+−, 设(),0(0)E m m >,则()2,0F m −−,∴()21EF m =+,()223EN m m =−+−,根据题意,得:()()22123m m m +=−+−,解得:12m =,22m =(舍去), ∴点)2,0E,(3)∵线段2AB =,抛物线对称轴为直线1x =, ∴()2,0A −,()0,0B ,∴02040a a a ⨯+⨯+−=,解得4a =,∴抛物线解析式为:248y x x =+,当13m <<时,对于抛物线248y x x =+,y 随x 的增大而增大, 对于反比例函数ky x =,y 随x 的增大而减小,∴1x =时,双曲线在抛物线上方, 即:241811k>⨯+⨯,解得:12k >,∴当3x =时,双曲线在抛物线下方, 即:43833k<⨯+⨯,解得:180k <,∴k 的取值范围:12180k <<.【点睛】此题考查了二次函数的图象及其性质、反比例函数的性质,熟练运用二次函数与反比例函数的性质是解题的关键. 24.(本小题满分12分) 问题发现:(1)如图1,在ABC 中,AB BC =,90ABC D ∠=︒.为BC 的中点,以CD 为直角边,在BC 下方作等腰直角CDE ,其中90CDE ∠=︒.以BD 为直角边,在BC 上方作等腰直角BDG ,其中90BDG ∠=︒,AE 与BG 交于点F .求证:AF EF =. 类比探究:(2)如图2,若将CDE 绕点C 顺时针旋转90︒,则()1中的结论是否仍然成立?请说明理由; 拓展延伸:(3)如图3,在()2的条件下,再将等腰直角CDE 沿直线BC 向右平移k 个单位长度,得到'''CDE,若AB a =,试求'AFFE 的值.(用含k ,a 的式子表示)【答案】(1)证明见解析 (2)成立,理由见解析18(3)'AF aFE k a =+【分析】(1)利用AAS 证明ABF △≌EGF △,可得结论;(2)连接EG ,BE ,首先利用SAS 证明DEG △≌DCB △,得GE BC =,DBC DGE ∠∠=,再利用AAS 证明ABF △≌EGF △,得AF EF =;(3)连接'EG ,由()2同理得''BCD ≌''GED ,再说明ABF △∽'EGF ,得''AF AB aFE GE k a ==+.【详解】(1)证明:由题意可得:点E 、D 、G 三点共线,且EG BC AB ==,AB EG ,BAE AEG ∴∠=∠,AFB EFG ∠∠=,ABF ∴≌()EGF AAS , AF EF ∴=.(2)解:(1)中的结论仍然成立,理由如下: 如图2,连接EG ,BE ,由题意得,BD GD =,DE DC =,90BDG CDE ∠∠==︒,点E 为AC 的中点,BDG BDE CDE BDE ∠∠∠∠∴−=−, GDE BDC ∠∠∴=, DEG ∴≌()DCB SAS , GE BC ∴=,DBC DGE ∠∠=,AB BC EG ∴==,又4545ABF DBC DGE EGF ∠∠∠∠=︒−=︒−=,AFB EFG ∠=∠, ABF ∴≅()AAS EGF ,AF EF ∴=.(3)解:由题意得,BC AB a ==,'CC k =, 则'BC k a =+,如图3,连接'EG, 由()2同理得BC D ''≅GE D '',''GE BC ∴=,D BC D GE ∠''=∠'',又45''45'''ABF DBC DGE EGF ∠∠∠∠=︒−=︒−=,'AFB EFG∠∠=, ABF ∴∽'EGF ,''AF AB aFE GE k a ∴==+.【点睛】本题是相似形综合题,主要考查了等腰直角三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质、旋转和平移的性质等知识点,熟练掌握旋转相似的基本模型是解题的关键. 25.(本小题满分12分)问题探究:数学课上老师让同学们解决这样的一个问题:如图①,已知E 是BC 的中点,点A 在DE 上,且BAE CDE ∠=∠.求证:AB CD =.分析:证明两条线段相等,常用的方法是应用全等三角形或者等腰三角形的性质.本题中要证相等的两条线段不在同一个三角形中,所以考虑从全等三角形入手,而AB 与CD 所在的两个三角形不全等.因此,要证AB CD =,必须添加适当的辅助线构造全等三角形.以下是两位同学添加辅助线的方法.第一种辅助线做法:如图②,延长DE 到点F ,使DE EF =,连接BF ;第二种辅助线做法:如图③,作CG DE ⊥于点G ,BF DE ⊥交DE 延长线于点F .20(1)请你任意选择其中一种对原题进行证明:方法总结:以上方法称之为“倍长中线”法,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线构造全等三角形来解决问题.(2)方法运用:如图④,AD 是ABC 的中线,BE 与AD 交于点F 且AE EF =.求证:BF AC =.【答案】(1)证明见解析; (2)证明见解析.【分析】(1)第一种辅助线做法:延长DE 到点F ,使DE EF =,连接BF .只要证明△BEF ≌△CED ,即可解决问题.第二种辅助线做法:作CG DE ⊥于点G ,BF DE ⊥交DE 延长线于点F ,先证明△BEF ≌△CEG ,再证明△ABF ≌△DCG 即可.(2)延长AD 到点Aˊ,使得DAˊ=AD ,连接BAˊ,只要证得△BDAˊ≌△CDA 即可. 【详解】(1)第一种辅助线做法:证明:如图1,延长DE 到点F ,使得DE=EF ,连接BF , ∵E 是BC 的中点 ∴BE=CE在△BEF与△CED中,BE CEBEF CEDDE FE=⎧⎪∠=∠⎨⎪=⎩∴△BEF≌△CED(SAS)∴BF=CD ,∠F=∠CDE又∵∠BAE=∠CDE∴∠BAE=∠F∴BF=AB∴AB=CD第二种辅助线做法:证明:如图2,作CG⊥DE于点G,BF⊥DE交DE延长线于点E;则∠F=∠CGE=∠CGD=90°,∵E是BC的中点,∴BE=CE在△BEF与△CEG中,F CGEBEF CEG BE CE∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BEF≌△CEG (AAS)∴BF=CG,在△ABF与△DCG中,BAE CDEF CGDBF CG∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABF≌△DCG(AAS),∴AB=CD .(2)如图3,延长AD到点Aˊ,使得DAˊ=AD,连接BAˊ,∵AD是△ABC的中线,∴BD=CD.在△BDAˊ与△CDA中,BD CDBDA CDADA DA=⎧⎪∠=∠⎨⎪=⎩ˊˊ,∴△BDAˊ≌△CDA (SAS)∴BAˊ=AC,∠Aˊ=∠CAD,又∵AE=EF,∴∠CAD=∠EFA=∠BFAˊ,∠Aˊ=∠BFAˊ∴BF=BAˊ∴BF=AC.【点睛】本题考查全等三角形的判定和性质、等腰三角形的判定和性质、三角形的中线等知识,解题的关键是学会添加辅助线构造全等三角形解决问题,属于中考常考题型.22。
广东省专版广州市中考数学二模试卷(附答案)

广东省广州市中考数学二模试卷题号 一 二三总分得分一、选择题(本大题共 10 小题,共 分)1.- 的倒数是()A. B. 2C. D.2. 以下所给图形中,既是中心对称图形又是轴对称图形的是()A. B.C. D.3. 如图,点 A . B . C 在 ⊙ D 上, ∠ABC=70 °,则 ∠ADC 的度数为()A. B. C. D.4.已知一组数据: 5, 7, 4, 8, 6,7, 2,则它的众数及中位数分别为( )A. 7 , 8B. , 6C. , 7D. 7 ,47 6 5. 以下图的几何体是由一些小立方块搭成的, 则这个几何体的俯视图是()A.B.C.D.6. 以下图,直线 AB ⊥CD 于点 O ,直线 EF 经过点 O ,若 ∠1=26 °,则 ∠2 的度数是()A. B. C.D. 以上答案都不对7. 某同学参加数学、 物理、化学三科比赛均匀成绩是93 分,此中数学 97 分,化学 89分,那么物理成绩是( )A. 91分B. 92分C. 93分D. 94分8.如图, A 、 B 两点在数轴上表示的数分别为a 、b ,下列式子建立的是()9.以下三个命题中,是真命题的有()①对角线相互均分且垂直的四边形是矩形;②三个角是直角的四边形是矩形;③有一个角是直角的平行四边形是矩形.④对角线相互均分且相等的四边形是矩形A.3个B.2个C.1个D.4个10.如图,点 A, B 为直线 y=x 上的两点,过 A, B 两点分别作 y 轴的平行线交双曲线y=( x> 0)于 C,D 两点.若BD=3AC,则 9?OC2-OD 2的值为()A.16B.27C.32D.48二、填空题(本大题共 6 小题,共18.0 分)11.若 a3?a m=a9,则 m=______.12.因式分解: x3-4x=______.13.在 Rt△ABC 中,∠C=90 °, BC=8 且 cosB= ,则 AB=______ .14.如图,点 D、E 分别是△ABC 的边 AC、BC 上的点,AD=DE ,AB=BE,∠A=80 °,则∠BED=______ °.15.如图,将△ABC 绕点 C 顺时针旋转至△DEC ,使点 D 落在 BC 的延伸线上,已知∠A=27 °,∠B=40 °,则∠ACE=______ .216.抛物线 y=ax +bx+c( a≠0)的对称轴为直线 x=-1,与 x 轴的一个交点 A 在点( -3,0)和( -2,0)之间,其部分图象以下图,则以下 4 个结论:① b2 -4ac<0;② 2a-b=0;③a+b+c< 0;④点 M( x1, y1)、 N( x2, y2)在抛物线上,若 x1< x2,则 y1≤y2,此中正确的选项是 ______.三、解答题(本大题共9 小题,共102.0 分)17.解方程:- =1.18.如图,四边形 ABCD 是菱形,对角线 AC、 BD 订交于点 O, AB=5、AO=3,求菱形的面积.19.跟着交通道路的不停完美,带动了旅行业的发展,某市旅行景区有A、 B、 C、 D 、E 等有名景点,该市旅行部门统计绘制出2018 年“五 ?一”长假时期旅行中 A 景点所对应的圆心角的度数是______,并补全条形统计图.( 2)依据近几年到该市旅行人数增加趋向,估计2019 年“五 ?一”节将有80 万游客选择该市旅行,请估计有多少万人会选择去 E 景点旅行?(3)甲、乙两个旅行团在 A、B、D 三个景点中,同时选择去同一景点的概率是多少?请用画树状图或列表法加以说明,并列举全部等可能的结果.20.已知A=?( x-y).(1)化简 A;(2)若 x2-6xy+9y2=0,求 A 的值.21.如图,△ABC 是等边三角形, D 为 BC 的中点,(1)尺规作图:(保存作图印迹,不写作法);①过点 B 作 AC 的平行线 BH;②过 D 作 BH 的垂线,分别交 AC, BH, AB 的延伸线于 E, F ,G(2)在图中找出一对全等的三角形,并证明你的结论.22.某小区为更好的提升业主垃圾分类的意识,管理处决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购置 3 个温馨提示牌和 4 个垃圾箱共需580 元,且每个温馨提示牌比垃圾箱廉价40 元.( 1)问购置 1 个温馨提示牌和 1 个垃圾箱各需多少元?( 2)假如需要购置温馨提示牌和垃圾箱共100 个,花费不超出8000 元,问最多购23.如图,直线y=2x+2与y轴交于A点,与反比率函数(x>0)的图象交于点M,过 M 作 MH ⊥x 轴于点 H,且 tan∠AHO =2.( 1)求 k 的值;( 2)点 N( a, 1)是反比率函数(x>0)图象上的点,在x 轴上能否存在点P,使得 PM+PN 最小?若存在,求出点P 的坐标;若不存在,请说明原因.24.二次函数y=x2+px+q 的极点 M 是直线 y=-和直线y=x+m的交点.2+px+q 的分析( 1)若直线 y=x+m 过点 D( 0,-3 ),求 M 点的坐标及二次函数y=x式;( 2)试证明不论 m 取任何值,二次函数 y=x2+px+q 的图象与直线y=x+m 总有两个不一样的交点;( 3)在( 1)的条件下,若二次函数y=x2+px+q 的图象与 y 轴交于点 C,与 x 的右交点为 A,试在直线y=-上求异于M的点P,使P在△CMA的外接圆上.(1)求证: BC=CD ;(2)分别延伸 AB, DC 交于点 P,过点 A 作 AF ⊥CD 交 CD 的延伸线于点 F,若PB=OB, CD =,求DF的长.答案和分析1.【答案】D【分析】解:∵-×(-2)=1,∴-的倒数是-2,应选:D.依据乘积为 1 的两个数互为倒数,直接解答即可.本题主要考察倒数的定义,解决此类题目时,只需找到一个数与这个数的积为 1,那么此数就是这个数的倒数,特别要注意:正数的倒数也必定是正数,负数的倒数也必定是负数.2.【答案】D【分析】解:A 、不是中心对称图形,是轴对称图形,故此选项错误;B、不是中心对称图形,不是轴对称图形,故此选项错误;C、是中心对称图形,不是轴对称图形,故此选项错误;D、是中心对称图形,也是轴对称图形,故此选项正确.应选:D.依据轴对称图形与中心对称图形的观点求解.本题考察了中心对称图形与轴对称图形的观点,轴对称图形的重点是找寻对称轴,图形两部分折叠后可重合,中心对称图形是要找寻对称中心,旋转 180 度后两部分重合.3.【答案】B【分析】解:由圆周角定理得,∠ADC=2 ∠ABC=140°,应选:B.依据圆周角定理计算即可.本题考察的是圆周角定理的应用,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的重点.4.【答案】B【分析】解:这组数据依据从小到大的次序摆列为:2、4、5、6、7、7、8,则众数为:7,中位数为:6.应选:B.依据众数和中位数的观点求解.本题考察了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据依据从小到大(或从大到小)的次序摆列,假如数据的个数是奇数,则处于中间地点的数就是这组数据的中位数;假如这组数据的个数是偶数,则中间两个数据的均匀数就是这组数据的中位数.5.【答案】A【分析】解:从几何体上边看,是左边 2 个,右边 1 个正方形.应选:A.依据俯视图的定义,从上往下看到的几何图形是俯视图即可判断.本题考察了三视图的知识,俯视图是从物体上边看所获得的图形,解答时学生易将三种视图混杂而错误的选其余选项.6.【答案】B【分析】解:∵∠1=26°,∠DOF 与∠1 是对顶角,∴∠DOF=∠1=26 °,又∵∠DOF 与∠2 互余,∴∠2=90 °-∠DOF=90°-26 °=64°.应选:B.已知∠1,且∠DOF 与∠1 是对顶角,可求∠DOF,再利用∠DOF 与∠2 互余,求∠2.本题主要考察了垂线的定义和对顶角的性质,难度不大.7.【答案】C【分析】解:物理成绩是:93×3-97-89=93(分).应选:C.直接利用数学、物理、化学三科比赛均匀成绩是 93 分,可得出总分,再减去数学 97 分,化学 89 分,即可得出答案.本题主要考察了算术均匀数,正确得出总分是解题重点.8.【答案】C【分析】解:a、b 两点在数轴上的地点可知:-1<a<0,b> 1,∴ab< 0,a+b> 0,故A 、B 错误;∵-1<a<0,b>1,∴b-1>0,a+1>0,a-1< 0 故 C 正确,D 错误.应选:C.依据 a、b 两点在数轴上的地点判断出其取值范围,再对各选项进行逐个剖析即可.本题考察的是数轴的特色,依据 a、b 两点在数轴上的地点判断出其取值范围是解答此题的重点.9.【答案】A【分析】解:① 对角线相互均分且垂直的四边形是菱形,故① 是假命题;② 三个角是直角的四边形是矩形,正确,故② 是真命题;③ 有一个角是直角的平行四边形是矩形,正确,故③ 是真命题;④ 对角线相互均分且相等的四边形是矩形,正确,故④ 是真命题;应选:A.依据矩形的判断方法一一判断即可;本题考察矩形的判断,解题的重点是记着矩形的判断方法,属于中考常考 题型.10.【答案】 C【分析】解:设点 A 的坐标为(m ,m ),点B 的坐标为(n ,n ),则点 C 的坐标为(m , ),点 D 的坐标为(n , ),∴BD=n- ,AC=-m ,∵BD=3AC ,∴n- =3( -m ).9?OC 2-OD 2=9(m 2+ )-(n 2+ ),=9[(m- 2 (n- 2 ,)+4]-[ )+4] =9(m-22,)+36-9(m- )-4 =32.应选:C .设 点A 的坐 标为 (m ,m ),点B 的坐 标为则 标为 (m , ),点 (n ,n ), 点 C 的坐D 的坐 标为 进 结(n , ), 而可得出 BD=n- 、AC= -m , 合 BD=3AC 可得出 n- =3( -m ),再利用勾股定理及配方法可得出 9?OC 2-OD 2=9[(m- )2+4]-[ (n-2,代入 n- =3( -m )即可求出结论 .)+4]本题考察了反比率函数 图象上点的坐 标特色、一次函数图象上点的坐 标特色以及勾股定理,利用勾股定理及配方找出 22 2) 9?OC -OD =9[ (m- )+4]-[ (n-2+4]是解题的重点.11.【答案】 6【分析】解:由题意可知:3+m=9,∴m=6,故答案为:6依据同底数 幂的运算即可求出答案.本题考察同底数幂的乘除法,解题的重点是正确理解同底数 幂的乘法运算,本题属于基础题型.12.【答案】 x ( x+2)( x-2)【分析】解:x 3-4x=x (x 2-4)=x (x+2)(x-2).故答案为:x (x+2)x (-2 ).第一提取公因式 x ,从而利用平方差公式分解因式得出即可.本题主要考察了提取公因式法以及公式法分解因式,熟 练应用平方差公式是解题重点.13.【答案】 16【分析】解:以下图:∵cosB= ,∴∠B=60 °, ∴∠A=30 °,则 BC= AB=8 ,故 AB=16 .故答案为:16.直接利用特别角的三角函数 值得出 ∠B 的度数,再利用直角三角形的性 质得出答案.本题主要考察了特别角的三角函数 值,正确得出∠B 度数是解 题重点 .14.【答案】 80【分析】解:在△ABD 与△EBD 中,,∴△ABD ≌△EBD , ∴∠BED= ∠A=80 °.先利用 SSS 证明 △ABD ≌△EBD ,再依据全等三角形 对应角相等即可求出∠BED .本题考察了全等三角形的判断与性 质,证明出 △ABD ≌△EBD 是解题的重点.15.【答案】 46°【分析】解:∵∠A=27°,∠B=40°,∴∠ACD= ∠A+ ∠B=27 °+40 °=67 °,∵△ABC 绕点 C 按顺时针方向旋转至△DEC ,∴△ABC ≌△DEC , ∴∠ACB= ∠DCE , ∴∠BCE=∠ACD , ∴∠BCE=67°,∴∠ACE=180°-∠ACD- ∠BCE=180°-67 °-67 °=46 °.故答案为:46°.先依据三角形外角的性 质求出 ∠ACD=67° ,再由△ABC 绕点 C 按顺时针方向旋转至△DEC ,获得△ABC ≌△DEC ,证明∠BCE=∠ACD ,利用平角为 180°即可解答.本题考察了旋转的性质,三角形外角的性质,解决本题的重点是由旋转获得△ABC ≌△DEC . 16.【答案】 ②③【分析】解:∵抛物线与 x 轴有 2 个交点,∴△=b 2-4ac > 0,因此① 错误;∵抛物 线的对称轴为直线 x=-=-1,∴b=2a ,因此② 正确;∵抛物 线对称轴为直线 x=-1,抛物线与 x 轴的一个交点 A 在点(-3,0)和(-2,0)之间,∴抛物 线与 x 轴的另一个交点在(0,0)和(1,0)之间,∴x=1 时,y < 0,∴a+b+c < 0,因此③ 正确;∵抛物线张口向下,故答案为②③ .利用抛物线与 x 轴的交点个数对①进行判断;利用抛物线的对称轴方程对②进行判断;利用抛物线的对称性获得抛物线与 x 轴的另一个交点在(0,0)和(1,0)之间,因此 x=1 时,y< 0,则可对③进行判断;利用二次函数的性质对④进行判断.本题考察了二次函数图象与系数的关系:对于二次函数 y=ax 2+bx+c(a≠0),二次项系数 a 决定抛物线的张口方向和大小.当 a>0 时,抛物线向上张口;当 a<0 时,抛物线向下张口;一次项系数b 和二次项系数a共同决定对称轴的地点.当 a 与 b 同号时(即ab>0),对称轴在 y 轴左边;当a 与 b 异号时(即ab <0),对称轴在 y 轴右边;常数项 c 决定抛物线与 y 轴交点地点:抛物线与 y轴交于(0,c).抛物线与 x 轴交点个数由△决定:△=b 2-4ac> 0 时,抛物线与 x轴有 2 个交点;△=b 2-4ac=0时,抛物线与 x 轴有 1 个交点;△=b2-4ac<0 时,抛物线与 x 轴没有交点.217.【答案】解:(x+3)-4(x-3)=(x-3)(x+3)2 2x +6x+9-4x+12=x -9,x=-15 ,查验: x=-15 代入( x-3)( x+3)≠0,∴原分式方程的解为:x=-15 ,【分析】依据分式方程的解法即可求出答案.本题考察分式的方程的解法,解题的重点是娴熟运用分式方程的解法,本题属于基础题型.18.【答案】解:∵四边形ABCD是菱形,∴AC ⊥BD ,∴∠AOB=90 °∴,又∵AC=2OA=6 ,BD =2OB=8.∴菱形.【分析】本题考察了勾股定理在直角三角形中的运用,本题中依据勾股定理求BO 的值是解题的重点.19.【答案】解:(1)50;108°;补全条形统计图以下:( 2)∵E 景点招待旅客数所占的百分比为:×100%=12%,∴2019 年“五?一”节选择去 E 景点旅行的人数约为:80 ×(万人);( 3)画树状图可得:∵共有 9 种可能出现的结果,这些结果出现的可能性相等,此中同时选择去同一个景点的结果有 3 种,∴同时选择去同一个景点的概率= = .【分析】【剖析】(1)依据A 景点的人数以及百分比进行计算即可获得该市周边景点共招待旅客数;依据圆心角的度数=部分占整体的百分比×360°进行计算,即可求得A 景点所对应的圆心角的度数;依据B 景点招待旅客数补全条形统计图;(2)依据E 景点招待旅客数所占的百分比,即可估计2019年“五?一”节选择去E景点旅行的人数;(3)依据甲、乙两个旅行团在 A 、B、D 三个景点中各选择一个景点,画出树状图,依据概率公式进行计算,即可获得同时选择去同一景点的概率.本题考察的是条形统计图、扇形统计图、用样本估计整体以及概率的计算的时,可用树形图列举,也能够列表列举.解题时注意:概率=所讨状况数与总状况数之比.【解答】解:(1)15÷30%=50;360°×30%=108°;故答案为 50;108°;补全条形统计图以下:(2)见答案;(3)见答案.20. 【答案】解:( 1) A= ?(x-y)=?(x-y)=;(2)∵x2-6xy+9y2=0,2∴( x-3y) =0,则 x-3y=0,故 x=3 y,则A===.【分析】(1)直接利用分式的基天性质化简得出答案;(2)第一得出 x,y 之间的关系,从而代入求出答案.本题主要考察了分式的乘除运算,正确分解因式是解题重点.21.【答案】解:(1)作图以下:①如图1;②如图 2:(2)△DEC ≌△DFB证明:∵BH ∥AC,∴∠DCE=∠DBF ,又∵D 是 BC中点,∴DC =DB .在△DEC 与△DFB 中,∵,∴△DEC≌△DFB ( ASA).【分析】(1)依据平行线及垂线的作法画图即可;(2)依据ASA 定理得出△DEC≌△DFB 即可.本题考察的是作图-基本作图,熟知等边三角形的性质是解答此题的重点.22.【答案】(1)解:设购置1个温馨提示牌需要x元,购置1个垃圾箱需要y元,依题意得,解得:答:购置 1 个温馨提示牌需要60 元,购置 1 个垃圾箱需要100 元.( 2)解:设购置垃圾箱m 个,则购置温馨提示牌(100-m)个,依题意得60( 100-m) +100m≤ 8000,解得 m≤50,答:最多购置垃圾箱50 个.【分析】(1)依据题意可得方程组,依据解方程组,可得答案;(2)依据花费不超过8000 元,可得不等式,依据解不等式,可得答案.本题考察了一元一次不等式的应用,理解题意得出不等关系是解题重点.23.【答案】解:(1)由 y=2x+2 可知 A( 0, 2),即 OA=2.∵tan∠AHO =2,∴OH=1.∵MH ⊥x 轴,∴点 M 的横坐标为1.∵点 M 在直线 y=2x+2 上,∴点 M 的纵坐标为4.即 M( 1, 4).∵点 M 在 y= 上,∴k=1 ×4=4 .( 2)存在.过点 N 作 N 对于 x 轴的对称点N1,连结 MN 1,交 x轴于 P(以下图).此时PM +PN 最小.∵点 N(a, 1)在反比率函数(x>0)上,∴a=4.即点 N 的坐标为( 4,1).∵N 与 N1对于 x 轴的对称, N 点坐标为( 4, 1),∴N1的坐标为( 4, -1).设直线 MN 1的分析式为y=kx+b.由解得 k=- , b=.∴直线 MN 1的分析式为.令 y=0 ,得 x= .∴P 点坐标为(, 0).【分析】(1)依据直线分析式求 A 点坐标,得 OA 的长度;依据三角函数定义可求 OH 的长度,得点 M 的横坐标;依据点M 在直线上可求点 M 的坐标.从而可求 K 的值;(2)依据反比率函数分析式可求 N 点坐标;作点N 对于 x 轴的对称点 N1,连结MN1 与 x 轴的交点就是知足条件的 P 点地点.本题考察一次函数的综合应用,波及线路最短问题,难度中等.24.【答案】解:(1)把D(0,-3)坐标代入直线y=x+m 中,得 m=-3,从而得直线 y=x-3,由 M 为直线 y=-与直线y=x-3的交点,解得,,∴得 M 点坐标为M( 2, -1),M y=x2+px+q 的极点,∵ 为二次函数∴其对称轴为x=2,由对称轴公式:x=-,得- =2,∴p=-4;由=-1,=-1 ,解得, q=3.∴二次函数y=x2+px+q 的分析式为:y=x2-4x+3;( 2)∵M 是直线 y=-和y=x+m的交点,∴,解得,,∴M 点坐标为 M(- ,),-、= ,∴ =-解得, p= , q= + ,由,得 x2 +(p-1) x+q-m=0,2△=(p-1) -4( q-m)=(-1 2-4(+-m =1 0 ))>,∴二次函数y=x2+px+q 的图象与直线y=x+m 总有两个不一样的交点;(3)由( 1)知,二次函数的分析式为: y=x2-4x+3,当 x=0 时, y=3.∴点 C 的坐标为C( 0, 3),令 y=0 ,即 x2-4x+3=0,解得 x1=1, x2=3,∴点 A 的坐标为A( 3, 0),由勾股定理,得AC=3 .∵M 点的坐标为 M( 2, -1),过 M 点作 x 轴的垂线,垂足的坐标应为(2,0),由勾股定理得, AM= ,过 M 点作 y 轴的垂线,垂足的坐标应为(0,-1),∴△CMA 是直角三角形, CM 为斜边, ∠CAM=90 °.直线 y=-与 △CMA 的外接圆的一个交点为 M ,另一个交点为 P ,则 ∠CPM =90°.即 △CPM 为 Rt △,设 P 点的横坐标为 x ,则 P ( x , - ).过点 P 作 x 轴垂线, 过点 M 作 y 轴垂线,两条垂线交于点E ,则 E ( x ,-1).过 P 作 PF ⊥y 轴于点 F ,则 F ( 0 , - ).在 Rt △PEM 222中, PM =PE +EM=( - +1) 2+( 2-x )2=-5x+5 .22222在 Rt △PCF 中, PC =PF +CF =x +( 3+ )=+3x+9.222, 在 Rt △PCM 中, PC +PM =CM得 +3x+9+ -5x+5=20,化简整理得 5x 2-4x-12=0 ,解得 x 1=2, x 2=- .当 x=2 时, y=-1,即为 M 点的横、纵坐标. ∴P 点的横坐标为 - ,纵坐标为 ,∴P (- , ).【分析】(1)依据题意求出 m ,解方程组 求出 M 点坐 标,依据二次函数的性 质求出 p 、q ,获得二次函数的分析式;(2)依据一元二次方程根的判 别式进行判断;(3)依据二次函数的性质求出点 C 的坐标、点 A 的坐标,依据勾股定理求出 CM ,依据勾股定理的逆定理判断 △CMA 是直角三角形,依据三角形的外接圆的性质计算.本题考察 的是二次函数知 识的综 合运用,掌握二次函数的性 质、一元二次方程根的判 别式是解题的重点.25.【答案】 ( 1)证明: ∵DC 2=CE ?CA ,∴∠CDB=∠DAC ,∵四边形 ABCD 内接于⊙ O,∴BC=CD ;( 2)解:方法一:如图,连结OC,∵BC=CD ,∴∠DAC=∠CAB ,又∵AO=CO,∴∠CAB=∠ACO,∴∠DAC=∠ACO ,∴AD ∥OC,∴= ,∵PB=OB,CD=,∴=∴PC=4又∵PC?PD =PB?PA∴4 ?( 4 +2)=OB?3OB∴OB=4,即 AB=2OB=8, PA=3OB=12 ,在 Rt△ACB 中,AC===2,∵AB 是直径,∴∠ADB=∠ACB=90 °∴∠FDA +∠BDC =90 °∠CBA+∠CAB=90 °∵∠BDC=∠CAB ,∴∠FDA =∠CBA,又∵∠AFD =∠ACB=90°,∴△AFD ∽△ACB∴在 Rt△AFP 中,设 FD =x,则 AF=,∴在 Rt△APF 中有,,求得 DF=.广东省专版广州市中考数学二模试卷(附答案)易证△PCO ∽△PDA ,可得=,△PGO ∽△PFA ,可得=,可得,=,由方法一中PC=4代入,即可得出DF =.【分析】(1)求出△CDE∽△CAD ,∠CDB=∠DAC 得出结论.(2)连结 OC,先证 AD ∥OC,由平行线分线段成比率性质定理求得 PC= ,再由割线定理 PC?PD=PB?PA求得半径为 4,依据勾股定理求得 AC= ,再证明△AFD ∽△ACB,得则设FD=x,AF= ,,可在 Rt△AFP 中,利用勾股定理列出对于x 的方程,求解得 DF.本题主要考察相像三角形的判断及性质,勾股定理及圆周角的相关知识的综合运用能力,重点是找准对应的角和边求解.第21 页,共 21页。
广东中考第二次模拟考试《数学试卷》含答案解析

广东中考数学仿真模拟测试题一、选择题:1.下列四个数中,最大的负数是( ) A. -1B. -2020C. 0D. 20202.如图的五个甲骨文中,既不是轴对称图形,也不是中心对称图形的有( )A. 1个B. 2个C. 3个D. 4个3.自教育部开展“停课不停学”工作以来,截至2020年4月3日,参加在线课程学习的学生达11.8亿人次,将11.8亿用科学记数法表示为( ) A. 81.1810⨯B. 711810⨯C. 91.1810⨯D. 811.810⨯4.图中所示的几何体的左视图为( )A. B. C. D.5.数据1,3,6,5,3,6,8,6的中位数、众数分别为( ) A. 5.5,6B. 6,5.5C. 6,3D. 5,66.如图,//AB CE ,40A ∠=︒,CE DE =,则C ∠=( )A. 40︒B. 30C. 20︒D. 15︒7.下列运算正确的是( )A. 23(1)(1)2-+-=-B. ()53252xx x -=-C.9333+=D. 222a ab b b a b a-+=--8.疫情期间居民为了减少外出时间,更愿意使用APP 在线上买菜,某买菜APP 今年一月份新进册用户为200万,三月份新注册用户为338万,则二、三两个月新注册用户每月平均增长率是( ) A. 0010B. 0015C. 0023D. 00309.如图,在ABCD 中,BD DC ⊥,E 是BC 的中点,以点E 为圆心,大于点E 到BD 的距离为半径画弧,两弧相交于点F ,射线EF 分别与BD ,AD 交于点G ,H ,若3DG =,4AB =,则BC 的长为( )A.13B. 5C. 213D. 1010.如图,两个三角形纸板ABC ∆,MNP ∆能完全重合,50A M ∠=∠=︒,60ABC N ∠=∠=︒,4BC =,将MNP ∆绕点()C P 从重合位置开始,按逆时针方向旋转,边MN ,MP 分别与BC ,AB 交于点H ,Q (点Q 不与点A ,B 重合),点O 是BCQ ∆的内心,若130BOC ∠=︒,点N 运动的路径为NB ,则图中阴影部分的面积为( )A.223π- B. 24π-C.1233π- D.4233π- 11.二次函数2(0)y ax bx c a =++≠的图象如图所示,下列结论:①0bc >;②30a c +>;③2a b c ax bx c ++≤++;④()()()()22222211111122a k b k a k b k +++>+++.其中正确结论的个数是( )A. 1B. 2C. 3D. 412.如图,在正方形ABCD 中,AEF ∆的顶点E ,F 分别在BC ,CD 边上,高AG 与正方形的边长相等,连接BD 分别交AE ,AF 于点M ,N ,下列说法:①45EAF ∠=︒;②连接MG ,NG ,则MGN ∆为直角三角形;③Δ~ΔAMN AFE ;④若2BE =,3FD =,则MN 的长为522,其中正确结论的个数是( )A .4B. 3C. 2D. 1二、填空题13.分解因式:3269x x x -+=______;14.在一个不透明的袋子里装有独立包装的口罩,其中粉色口罩有3个、蓝色口罩有2个,这些口罩除了颜色外全部相同,从中随机依次不放回拿出两个口罩,则两个口罩都是粉色的概率是__________. 15.已知tan tan tan()1tan tan αβαβαβ++=-⋅,22tan tan21tan ααα=-(其中α和β都表示角度),比如求tan105︒,可利用公式得()31tan105tan 60453213+︒=︒+︒==---,又如求tan120︒,可利用公式得()()223tan120tan 260313⨯︒=⨯︒==--,请你结合材料,若()3tan 1203λ︒+=-(λ为锐角),则λ的度数是__________.16.如图,把一块含30°角的三角板的直角顶点放在反比例函数y=-3x(x <0)的图象上的点C 处,另两个顶点分别落在原点O 和x 轴的负半轴上的点A 处,且∠CAO=30°,则AC 边与该函数图象的另一交点D 的坐标为__________.三、解答题:17.计算:11|32|2sin 60(2020)3π-⎛⎫-+︒--- ⎪⎝⎭18.先化简2111x x x x x -+⎛⎫⎛⎫+÷- ⎪ ⎪-⎝⎭⎝⎭,再从12x -≤≤的整数中选取一个合适的...x 的值代入求值. 19.复课返校后,为了让同学们进一步了解“新型冠状病毒”的防控知识,某学校组织了一次关于“新型冠状病毒”的防控知识比赛,从问卷中随机抽查了一部分,对调查结果进行了分组统计,并制作了如下表格与条形统计图: 分组结果 频数 频率 A.完全掌握 30 0.3B.比较清楚 50mC.不怎么清楚 n0.15 D.不清楚 50.05请根据上图完成下面题目:(1)总人数为 人,m = ,n = ; (2)请你补全条形统计图;(3)若全校有2700人,请你估算一下全校对“新型冠状病毒”的防控知识“完全掌握”的人数有多少. 20.随着疫情逐步得到控制,在疫情防控初期驰援武汉的医护人员已陆续返回,深圳市为返深医护人员在中心区亮灯致敬.某大厦的立面截图如图所示,图中的所有点都在同一平面内,已知高度为1m 的测量架AF 在A 点处测得130∠=︒,将测量架沿AB 方向前进220m 到达G 点,在B 点处测得245∠=︒,电子显示屏的底端E 与地面的距离15EH m =,请你计算电子显示屏DE 的高度.(结果精确到1m ,其中:2 1.41≈,3 1.73≈)21.复课返校后,为了拉大学生锻炼的间距,学校决定增购适合独立训练的两种体育器材:跳绳和毽子.如果购进5根跳绳和6个毽子共需196元;购进2根跳绳和5个键子共需120元.(1)求一根跳绳和一个毽子的售价分别是多少元;(2)学校计划购买跳绳和键子两种器材共400个,由于受疫情影响,商场决定对这两种器材打折销售,其中跳绳以八折出售,毽子以七五折出售,学校要求跳绳的数量不少于毽子数量的3倍,跳绳的数量不多于310根,请你求出学校花钱最少的购买方案.22.如图,已知二次函数2(1)(0)y a x k a=-+>的图象交x轴于A,B两点,交y轴于点C,其中()1,0A-.(1)求点B的坐标,并用含a的式子表示k;(2)连接CA,CB,当ACB∠为锐角时,求a的取值范围;(3)若()0,P b为y轴上一个动点,连接PA,当点C的坐标为()0,33-时,直接写出....12PC PA+的最小值.23.在图1至图3中,O的直径30BC=,AC切O于点C,40AC=,连接AB交O于点D,连接CD,P是线段CD上一点,连接PB.(1)如图1,当点P ,O 的距离最小时,求PD 的长; (2)如图2,若射线AP 过圆心O ,交O 于点E ,F ,求tan F 的值;(3)如图3,作DH PB 于点H ,连接CH ,直接写出....CH 的最小值.答案与解析一、选择题:1.下列四个数中,最大的负数是()A. -1B. -2020C. 0D. 2020【答案】A【解析】【分析】先找到四个数中的负数,然后根据两个负数比大小,绝对值大的反而小,据此判断即可.【详解】解:根据题意:-2020和-1是负数->-∵20201∴-1>-2020故选:A.【点睛】本题考查负数的概念及负数的大小比较,掌握两个负数比大小,绝对值大的数反而小是本题的解题关键.2.如图的五个甲骨文中,既不是轴对称图形,也不是中心对称图形的有()A. 1个B. 2个C. 3个D. 4个【答案】A【解析】【分析】根据轴对称图形与中心对称图形的概念求解.详解】解:如图:第一个图形是轴对称图形,不是中心对称图形;第二个图形不是轴对称图形,是中心对称图形;第三个图形既不是轴对称图形,也不是中心对称图形;第四个图形是轴对称图形,不是中心对称图形;第五个图形不是轴对称图形,是中心对称图形 ∴既不是轴对称图形,也不是中心对称图形的共1个 故选:A .【点睛】掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.自教育部开展“停课不停学”工作以来,截至2020年4月3日,参加在线课程学习的学生达11.8亿人次,将11.8亿用科学记数法表示为( ) A. 81.1810⨯ B. 711810⨯C. 91.1810⨯D. 811.810⨯【答案】C 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:11.8亿=1180000000=91.1810⨯ 故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 4.图中所示的几何体的左视图为( )A. B. C. D.【答案】B 【解析】 【分析】找到从左面看所得到的图形即可.【详解】解:如图,几何体的左视图是:.故选:B .【点睛】本题考查了几何体的三视图,掌握定义是关键.主视图、左视图、俯视图分别是从物体正面、左面和上面看,所得到的图形.5.数据1,3,6,5,3,6,8,6的中位数、众数分别为( ) A. 5.5,6 B. 6,5.5C. 6,3D. 5,6【答案】A 【解析】 【分析】根据中位数、众数的定义,分别进行计算,即可得到答案. 【详解】解:根据题意,按从小到大排列为:1,3,3,5,6,6,6,8; ∴中位数为:565.52+=; 众数为:6; 故选:A .【点睛】本题考查了中位数和众数的定义,解题的关键是熟练掌握定义进行解题. 6.如图,//AB CE ,40A ∠=︒,CE DE =,则C ∠=( )A. 40︒B. 30C. 20︒D. 15︒【答案】C 【解析】 【分析】由平行线的性质可得∠A=∠AEC=40°;已知CE DE =,再根据等腰三角形的性质可得∠C=∠D ,由三角形外角的性质可得∠AEC=∠C+∠D=40°,即可求得∠C =20°. 【详解】∵AB ∥CE ,40A ∠=︒,∴∠A=∠AEC=40°, ∵CE DE =, ∴∠C=∠D ,∵∠AEC=∠C+∠D=40°, ∴∠C=12∠AEC=20°, 故选C .【点睛】本题考查了平行线的性质、等腰三角形的性质及三角形外角的性质,熟练运用相关性质是解决问题的关键.7.下列运算正确的是( )A. 23(1)(1)2-+-=- B. ()53252xx x -=-= D. 222a ab b b a b a-+=--【答案】D 【解析】 【分析】根据有理数的运算法则、幂的乘方的性质、二次根数的性质及分式的约分依次计算各项后即可解答. 【详解】选项A ,()23(1)(1)1+1=0-+-=-,选项A 错误;选项B ,()5326522x x x x -=-,选项B 错误;选项C 3=,选项C 错误;选项D ,()2222b a a ab b b a b a b a--+==---,选项D 正确. 故选D .【点睛】本题考查了有理数的运算法则、幂的乘方的性质、二次根数的性质及分式的约分,熟练运用相关知识是解决问题的关键.8.疫情期间居民为了减少外出时间,更愿意使用APP 在线上买菜,某买菜APP 今年一月份新进册用户为200万,三月份新注册用户为338万,则二、三两个月新注册用户每月平均增长率是( ) A. 0010 B. 0015C. 0023D. 0030【答案】D 【解析】 分析】设每月的平均增长率为x ,根据题意列出方程200 (1+x)2=338求解即可. 【详解】解:设二、三两个月新注册用户每月平均增长率是x ,由题意,得 200 (1+x)2=338, 1+x=+1.3,x=0.3或x=-2.3 (舍去) .所以二、三两个月新注册用户每月平均增长率是0.3即30%, 故答案选:D .【点睛】本题考查的是列一元二次方程解增长率的数学实际问题,关键清楚增长前为200元,两个月后为338元,从而求出解.9.如图,在ABCD 中,BD DC ⊥,E 是BC 的中点,以点E 为圆心,大于点E 到BD 的距离为半径画弧,两弧相交于点F ,射线EF 分别与BD ,AD 交于点G ,H ,若3DG =,4AB =,则BC 的长为( )A. 13B. 5C. 13D. 10【答案】C 【解析】 【分析】由基本作图可得HE 是MN 的垂直平分线,可得HE ∥CD ,可得△BGE ∽△BDC ,由E 是BC 的中点可得12BE BC =,根据相似三角形对应边成比例即可得解. 【详解】解:由基本作图可得HE 是MN 的垂直平分线, ∴BD ⊥HE , ∵BD DC ⊥, ∴HE ∥CD , ∴△BGE ∽△BDC , ∴BG BE BD BC, ∵E 是BC 的中点 ∴12BE BC = ∴BG=3,BD=BG+DG=6, 在Rt △BDC 中,由勾股定理得,2252213BCBD CD ,故答案选:C.【点睛】本题考查相似三角形的性质和判定,由基本作图得HE 是MN 的垂直平分线并证出△BGE ∽△BDC 是解题的关键.10.如图,两个三角形纸板ABC ∆,MNP ∆能完全重合,50A M ∠=∠=︒,60ABC N ∠=∠=︒,4BC =,将MNP ∆绕点()C P 从重合位置开始,按逆时针方向旋转,边MN ,MP 分别与BC ,AB 交于点H ,Q (点Q 不与点A ,B 重合),点O 是BCQ ∆的内心,若130BOC ∠=︒,点N 运动的路径为NB ,则图中阴影部分的面积为( )A.223π- B. 24π-C.1233π- D.4233π-【答案】D 【解析】 【分析】先通过点O 是BCQ ∆的内心和题中的角度关系求出∠BCN=30°,然后即可得到△NHC 为直角三角形,阴影部分的面积为扇形BCN 的面积减去△NHC 的面积. 【详解】解:∵130BOC ∠=︒, ∴∠OBC+∠OCB=180°-130°=50°, ∵点O 是BCQ ∆的内心,∴BO 、CO 分别为∠ABC 、∠BCM 的角平分线, ∴∠ABC+∠BCM=2∠OBC+2∠OCB=100°, ∵60ABC N ∠=∠=︒, ∴∠BCM=40°, 又∵50M ∠=︒,∴∠MCN=180°-50°-60°=70°, ∴∠BCN=70°-40°=30°,∴∠NHC=180°-30°-60°=90°,即△MHC 为直角三角形,由题可知4NC BC ==, ∴122NH NC ==,22224223HC CH NH =-=-=, ∴23042234223603NHC BCN S S S ππ⨯⨯=-=-=-△阴影扇形,故选:D .【点睛】本题考查了三角形的内心,扇形的面积公式,熟练掌握三角形的内心是三个内角角平分线的交点是解题的关键.11.二次函数2(0)y ax bx c a =++≠的图象如图所示,下列结论:①0bc >;②30a c +>;③2a b c ax bx c ++≤++;④()()()()22222211111122a k b k a k b k +++>+++.其中正确结论的个数是( )A. 1B. 2C. 3D. 4【答案】B 【解析】 【分析】根据图像得出a ,b ,c 的符号,以及12ba-=,可判断①,令x=-1,结合b=-2a 可得3a+c 的符号,可判断②,令x=1,根据函数的增减性可得2a b c ax bx c ++≥++,可判断③,根据211k +,212k +的非负性和大小,结合函数增减性,可判断④. 【详解】解:由图像可知:a <0,c >0,12ba-=,b >0, ∴bc >0,故①正确;当x=-1时,y=a-b+c=a+2a+c=3a+c <0,故②错误; 当x=1时,y=a+b+c ,y 取最大值, ∴2a b c ax bx c ++≥++,故③错误; 由图像可知当x >1时,y 随x 增大而减小,211k +≥1,212k +≥2,∴211k +对应的函数值大于212k +对应的函数值,∴()()()()22222211111122a k b k c a k b k c ++++>++++,即()()()()22222211111122a k b k a k b k +++>+++,故④正确.故选B.【点睛】本题考查了二次函数2(0)y ax bx c a =++≠的图像和性质,结合图像得出函数表达式中系数的符号,利用函数增减性得出结论是解题的关键.12.如图,在正方形ABCD 中,AEF ∆的顶点E ,F 分别在BC ,CD 边上,高AG 与正方形的边长相等,连接BD 分别交AE ,AF 于点M ,N ,下列说法:①45EAF ∠=︒;②连接MG ,NG ,则MGN ∆为直角三角形;③Δ~ΔAMN AFE ;④若2BE =,3FD =,则MN 的长为522,其中正确结论的个数是( )A. 4B. 3C. 2D. 1【答案】A 【解析】 【分析】根据正方形的性质及HL 定理求得Rt △AEB ≌Rt △AEG ,Rt △AFD ≌Rt △AFG ,从而求得∠EAB=∠EAG ,∠FAD=∠FAG ,然后求得2∠EAG+2∠FAG=90°,从而得到45EAF ∠=︒,由此判断①;将△ADN 绕点A 顺时针旋转90°至△ABH 位置,连接MH ,MG ,NG ,由旋转的性质根据结合SAS 定理求得△AHM ≌△ANM ,得到MN=MH ,结合正方形和旋转的性质求得∠HBM=∠ABH+∠ABD=90°,从而可得MH 2=HB 2+BM 2,然后根据SAS 定理求得△ABM ≌△AGM ,△AND ≌△AANG ,从而得到BM=GM ,DN=GN ,从而求得MN 2=MG 2+NG 2,由此判断②;由垂直可得∠AEG =90°-∠EAG ,然后结合①中已证∠EAG+∠FAG=∠EAG+∠FAD=45°,可得∠ANM=90°-∠EAG ,由此得到∠AEG =∠ANM ,然后根据AA 定理求得三角形形式,由此判断③; 旋转△ABE 到△ADH ,由旋转性质和SAS 定理可得得△ABE ≌△ADH ,△AEF ≌△AHF ,设CF=a ,在Rt △CEF 中,根据勾股定理列方程求a ,从而求得正方形边长,设MN=x ,结合②中的结论列方程求x 的值,从而判断④. 【详解】解:如图中,∵四边形ABCD是正方形,∴AB=AD,∠ABC=∠ADC=90°,∵AG⊥EF,∴∠AGE=∠ABC=90°,在Rt△AEB和Rt△AEG中,AE AE AB AG=⎧⎨=⎩,∴Rt△AEB≌Rt△AEG,∴∠EAB=∠EAG,同理可证Rt△AFD≌Rt△AFG,∴∠FAD=∠FAG,∴2∠EAG+2∠FAG=90°,∴∠EAG+∠FAG=45°,∴∠EAF=45°,故①正确;如图②,将△ADN绕点A顺时针旋转90°至△ABH位置,连接MH,MG,NG 由旋转知:∠BAH=∠DAN,AH=AN,∵四边形ABCD是正方形,∴∠BAD=90°,∵∠EAF=45°,∴∠BAM+∠DAN=45°,∴∠HAM=∠BAM+∠BAH=45°,∴∠HAM=∠NAM,又AM=AM,∴△AHM≌△ANM,∴MN=MH∵四边形ABCD是正方形,∴∠ADB=∠ABD=45°.由旋转知:∠ABH=∠ADB=45°,HB=ND,∴∠HBM=∠ABH+∠ABD=90°, ∴MH 2=HB 2+BM 2, ∴MN 2=MB 2+ND 2.又∵AB=AG ,∠EAB=∠EAG ,AM=AM ∴△ABM ≌△AGM ∴BM=GM同理可证:△AND ≌△AANG ∴DN=GN ∴MN 2=MG 2+NG 2即MGN ∆为直角三角形,故②正确;∵AG ⊥EF∴∠AEG =90°-∠EAG又∵∠ANM=∠BDA+∠DAF=45°+∠DAF 由①可知:∠EAG+∠FAG=∠EAG+∠FAD=45° ∴∠ANM=90°-∠EAG ∴∠AEG =∠ANM 又∵=AMN AFE ∠∠∴Δ~ΔAMN AFE ,故③正确; 如图3中,旋转△ABE到△ADH,△ABE≌△ADH∴DH=BE=2,同理②中可证:△AEF≌△AHF,∴FH=EF,设CF=a∴CD=CF+DF=a+3,EF=FH=DF+DH=5,∵四边形ABCD是正方形,∴BC=CD=a+3∴CE=BC-BE=a+3-2=a+1,在Rt△CEF中,根据勾股定理得,(a+1)2+32=25 ∴a=3或a=-5(舍),∴CF=3,∴CD=6,∴正方形的边长为6;由正方形ABCD的边长为6,∴BD=2CD=62,由①可知△MAN=45°,∵AB=AD,∠BAD=90°,由②得BM2+DN2=MN2,设MN=x,∵2,BM=322,∴DN=39262222DN x x ==-∴222(()22x x +-=解得∴ 故选:A .【点睛】此题是四边形综合题,主要考查正方形的性质、等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识,解题关键是学会用旋转法添加辅助线,构造全等三角形解决问题,学会利用探究的结论解决新的问题,属于中考压轴题.二、填空题13.分解因式:3269x x x -+=______; 【答案】2(3)x x -. 【解析】 【分析】先提取公因式x ,再对余下的多项式利用完全平方公式继续分解: 【详解】322269=(69)(3)x x x x x x x x -+-+=-.14.在一个不透明的袋子里装有独立包装的口罩,其中粉色口罩有3个、蓝色口罩有2个,这些口罩除了颜色外全部相同,从中随机依次不放回拿出两个口罩,则两个口罩都是粉色的概率是__________. 【答案】310【解析】 【分析】列表得出所有等可能的情况数,找出两次摸到粉色的情况数,即可求出所求的概率. 【详解】解:设粉色分别为H 1、H 2,H 3蓝色分别为B 1、B 2,列表得:总共有20种结果,每种结果的可能性相同,两次都拿出粉色的结果有6种, 所以两次都摸到黑球的概率=63=2010, 故答案为:310.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求事件A 或B 的概率. 15.已知tan tan tan()1tan tan αβαβαβ++=-⋅,22tan tan21tan ααα=-(其中α和β都表示角度),比如求tan105︒,可利用公式得()tan105tan 60452︒=︒+︒==,又如求tan120︒,可利用公式得()()22tan120tan 2601︒=⨯︒==-请你结合材料,若()tan 1203λ︒+=-(λ为锐角),则λ的度数是__________. 【答案】30 【解析】 【分析】设tan λx=,先根据公式可得到一个关于x 的分式方程,解方程可求出x 的值,再根据特殊角的正切函数值即可得出答案. 【详解】设tan λx = 由题意得:()tan120tan tan 1201tan120tan λλλ︒+︒+=-︒⋅()tan120tan ,tan 120λx λ︒==︒+= 3=- 解得3x =经检验,3x =是分式方程的根即3 tan3λ=λ为锐角30λ∴=︒故答案:30.【点睛】本题考查了分式方程的解法、特殊角的正切函数值,熟记特殊角的正切函数值是解题关键.16.如图,把一块含30°角的三角板的直角顶点放在反比例函数y=-3x(x<0)的图象上的点C处,另两个顶点分别落在原点O和x轴的负半轴上的点A处,且∠CAO=30°,则AC边与该函数图象的另一交点D的坐标为__________.【答案】(-3,3)【解析】【分析】过点C作CE⊥AO于点E,由题意可得:AE=3CE,CE=3OE,设点C坐标为(a,-3a),代入解析式可求a=-1,可求点A坐标,点C坐标,即可求直线AC解析式,直线AC解析式与反比例函数解析式组成方程组,可求点D坐标.【详解】如图:过点C作CE⊥AO于点E∵∠CAO=30°,CE⊥AO∴∠COE=60°,AC=2CE,3CE∴3设点C坐标为(a,)∵点C在反比例函数x<0)的图象上∴a×()解得:a=-1,a=1(舍去)∴点C坐标(-1∴EO=1∴∴AO=4∴点A(-4,0)∵点A(-4,0),点C(-1)∴直线AC解析式∵直线AC与反比例函数y=-x相交于点C,点D∴解得:x1=-1,x2=-3∴点D坐标为(-3,3)故答案为:(-3,3).【点睛】本题考查了反比例函数图象上点的坐标特征,熟练运用反比例函数的性质是解决问题的关键.三、解答题:17.计算:112|2sin60(2020)3π-⎛⎫+︒--- ⎪⎝⎭【答案】-2 【解析】【分析】由绝对值的意义、特殊角的三角函数、零指数幂、负整数指数幂进行化简,然后合并同类项,即可得到答案.【详解】解:原式(22132=+⨯--24=2=-.【点睛】本题考查了特殊角的三角函数值,绝对值的意义,零指数幂,负整数指数幂,解题的关键是熟练掌握运算法则进行解题.18.先化简2111x x x x x -+⎛⎫⎛⎫+÷- ⎪ ⎪-⎝⎭⎝⎭,再从12x -≤≤的整数中选取一个合适的...x 的值代入求值. 【答案】11x +;13【解析】【分析】 先对分式进行化简,得到最简分式,然后把合适的x 的值代入计算,即可得到答案. 【详解】解:2111x x x x x -+⎛⎫⎛⎫+÷- ⎪ ⎪-⎝⎭⎝⎭ 22211x x x x x x -+⎛⎫=÷- ⎪-⎝⎭ 22(1)1(1)x x x x x--=÷- 1(1)(1)x x x x x -=⋅+- 11x =+; ∵20x x -≠,(1)(1)0x x +-≠,∴1,0,1x ≠-,∴当2x =时,原式11213==+; 【点睛】本题考查了分式的混合运算,分式的化简求值,以及分式有意义的条件,解题的关键是正确的进行化简,从而进行解题.19.复课返校后,为了让同学们进一步了解“新型冠状病毒”的防控知识,某学校组织了一次关于“新型冠状病毒”的防控知识比赛,从问卷中随机抽查了一部分,对调查结果进行了分组统计,并制作了如下表格与条形统计图:分组结果频数频率A.完全掌握30 0.3B.比较清楚50 mC.不怎么清楚n0.15D.不清楚 5 0.05 请根据上图完成下面题目:(1)总人数为人,m=,n=;(2)请你补全条形统计图;(3)若全校有2700人,请你估算一下全校对“新型冠状病毒”的防控知识“完全掌握”的人数有多少.【答案】(1)100,0.5,15;(2)画图见解析;(3)810人【解析】【分析】(1)直接利用“不清楚”的频数除以频率,即可得到总人数,然后求出m、n的值即可;(2)由(1)可知n的值,然后补全条形图即可;(3)利用2700乘以频率,即可得到答案.÷=(人);【详解】解:(1)调查的总人数为:50.0510050m==;0.51001000.1515n =⨯=;故答案为:100,0.5,15;(2)补全条形统计图如图所示:(3)∵“完全掌握”的频率为0.3,∴估计全校对“新型冠状病毒”的防控知识“完全掌握”人数有:27000.3810⨯=(人).【点睛】此题考查了频率分布直方图,要能根据频率分布表中已知的数据求出未知的数据,在解题时必须认真观察、分析、研究统计图.20.随着疫情逐步得到控制,在疫情防控初期驰援武汉的医护人员已陆续返回,深圳市为返深医护人员在中心区亮灯致敬.某大厦的立面截图如图所示,图中的所有点都在同一平面内,已知高度为1m 的测量架AF 在A 点处测得130∠=︒,将测量架沿AB 方向前进220m 到达G 点,在B 点处测得245∠=︒,电子显示屏的底端E 与地面的距离15EH m =,请你计算电子显示屏DE 的高度.(结果精确到1m ,其中:2 1.41≈,3 1.73≈)【答案】286m【解析】【分析】先根据Rt BCD ∆中,245∠=︒判断出BCD ∆是等腰直角三角形,根据等腰三角形的性质假设设BC DC x ==,利用DE DC CH EH =+-,再根据三角函数值代入计算即可得到答案;【详解】解:在Rt BCD ∆中,245∠=︒,所以BCD ∆是等腰直角三角形,设BC DC x ==,在Rt ACD ∆中,130∠=︒,由tan 13DC AC ∠==,所以AC =,因为220AC BC -=220x -=,解得110x =,因为DE DC CH EH =+-,又∵测量架的高度为1m ,∴CH=1m ,并且15EH m =,代入数据得96286.3286DE =+≈≈,所以电子显示屏DE 的高度为286m .【点睛】本题主要考查了三角函数的实际应用,其中涉及到了等腰直角三角形的性质,熟练掌握三角函数的相关知识是解题的关键;21.复课返校后,为了拉大学生锻炼的间距,学校决定增购适合独立训练的两种体育器材:跳绳和毽子.如果购进5根跳绳和6个毽子共需196元;购进2根跳绳和5个键子共需120元.(1)求一根跳绳和一个毽子的售价分别是多少元;(2)学校计划购买跳绳和键子两种器材共400个,由于受疫情影响,商场决定对这两种器材打折销售,其中跳绳以八折出售,毽子以七五折出售,学校要求跳绳的数量不少于毽子数量的3倍,跳绳的数量不多于310根,请你求出学校花钱最少的购买方案.【答案】(1)一根跳绳的售价为20元,一个毽子的售价是16元;(2)学校花钱最少的购买方案为:购进跳绳300根,购进毽子100个.【解析】【分析】(1)设一根跳绳的售价为x 元,一个毽子的售价为y 元,根据题意列出相应的方程组,从而可以得出结果;(2)设学校计划购进跳绳m 根,则购进毽子(400-m )个,根据题意列出不等式求出m 的取值范围.设学校购进跳绳和毽子一共需要花w 元,用含m 的式子表示出w ,结合一次函数的性质可得出结论.【详解】解:(1)设一根跳绳的售价为x 元,一个毽子的售价为y 元,则根据题意得,5619625120x y x y +=⎧⎨+=⎩,解得2016x y =⎧⎨=⎩. 答:一根跳绳的售价为20元,一个毽子的售价是16元;(2)设学校计划购进跳绳m 根,则购进毽子(400-m )个,根据题意得,()3400m m ≥-,解得300m ≥,又因为310m ≤,所以300310m ≤≤.设学校购进跳绳和毽子一共需要花w 元,则()200.8160.7540044800w m m m =⨯+⨯-=+,40>,∴w 随m 的增大而增大,∴当m=300时,w 取得最小值.此时400-m=100.答:学校花钱最少的购买方案为:购进跳绳300根,购进毽子100个.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的实际应用,解答本题的关键是明确题意,找出相应的等量关系和不等关系,并列出方程组,不等式以及函数关系式.22.如图,已知二次函数2(1)(0)y a x k a =-+>的图象交x 轴于A ,B 两点,交y 轴于点C ,其中()1,0A -.(1)求点B 的坐标,并用含a 的式子表示k ;(2)连接CA ,CB ,当ACB ∠为锐角时,求a 的取值范围;(3)若()0,P b 为y 轴上一个动点,连接PA ,当点C 的坐标为()0,33-时,直接写出....12PC PA +的最小值.【答案】(1)B 的坐标为()3,0;4k a =-;(2)33a >;(3)3【解析】【分析】 (1)由函数解析式可知对称轴为直线1x =,又因为A 、B 两点是抛物线与x 轴的交点,两点关于对称轴对称,可得点B 的坐标为()3,0,将A 点坐标代入函数解析式可得k 的表达式.(2)当90ACB ∠=︒时,Δ~Rt ΔRt AOC COB ,利用相似三角形的性质求得3OC =,由(1)得43a a -=-,即3a =,所以当ACB ∠为锐角时3a >. (3)在Rt BOC ∆中,3tan 35BO OCB CO ∠===,可得30OCB ∠=︒,作PH BC ⊥,垂足为点H ,则12PH PC =,12PC PA PH PB AH +=+,即12PC PA +的最小值为点A 到BC 的距离,求得AH 的值即可.【详解】解:(1)()21y a x k =-+的图象的对称轴为直线1x =, 又该函数图象过点()1,0A -.∴由对称性可知点B 的坐标为()3,0.把1x =-,0y =代入,得()2011a k =--+,故4k a =-.(2)当90ACB ∠=︒时,Δ~Rt ΔRt AOC COB ,于是23OC OA OB =⋅=, 3OC ∴=,即()2013a k -+=-,如图1,∴由(1)得43a a -=-,即33a =. a ∴的取值范围为33a >.(3)23解:在Rt BOC ∆中,3tan 335BO OCB CO ∠===, 30OCB =∴∠︒.作PH BC ⊥,垂足为点H ,则12PH PC =, 12PC PA PH PB AH ∴+=+, 即12PC PA +的最小值为点A 到BC 的距离AH ,如图2, sin 6023AH AB ∴=︒=.【点睛】本题考查二次函数的图像和性质,解直角三角形和相似三角形的判定和性质,综合性较强.23.在图1至图3中,O 的直径30BC =,AC 切O 于点C ,40AC =,连接AB 交O 于点D ,连接CD ,P 是线段CD 上一点,连接PB .(1)如图1,当点P ,O 的距离最小时,求PD 的长;(2)如图2,若射线AP 过圆心O ,交O 于点E ,F ,求tan F 的值;(3)如图3,作DH PB ⊥于点H ,连接CH ,直接写出....CH 的最小值.【答案】(1)12;(27338-;(3)CH 的最小值为3739【解析】【分析】(1)连接OP ,根据切线的性质和圆周角定理的推论可得AC BC ⊥,∠BDC=90°,利用勾股定理求出AB ,然后根据三角形的面积公式即可求出CD ,根据垂线段最短可得当OP CD ⊥时,点P ,O 的距离最小,从而求出PD 的长;(2)连接CE ,则90ECF ∠=︒,利用勾股定理即可求出AE ,然后根据相似三角形的判定定理证出Δ~ΔACE AFC ,列出比例式,根据正切的定义即可求出结论;(3)以BD 为直径作G ,则G 为BD 的中点,利用勾股定理和圆的基本性质求出半径DG ,根据直径所对的圆周角是直角可得点H 一定在G 上,当点C ,H ,G 在一条直线上时,CH 最小,利用勾股定理求出CG ,即可求出结论.【详解】解:(1)如图1,连接OP , AC 切O 于点C ,BC 为直径AC BC ∴⊥,∠BDC=90°30BC =,40AC =,50AB ∴=. 由Δ1122ADC S AB CD AC BC =⋅=⋅, 即1150403022CD ⨯⨯=⨯⨯, 解得24CD =,当OP CD ⊥时,点P ,O 的距离最小,此时1122PD CD ==.(2)如图2,连接CE ,则90ECF ∠=︒.由(1)知,90ACB ∠=︒,由222AO AC OC =+,得()222154015AE +=+, 解得57315AE =-. 90ACB ECF ∠=∠=︒,ACE BCF AFC ∴∠=∠=∠. 又CAE FAC ∠=∠,Δ~ΔACE AFC ∴, CE AE FC AC∴=. 57315733tan 408CE AE F CF AC ∴===-=-.(3)CH 的最小值为3739. 如图3,以BD 为直径作G ,则G 为BD 的中点, 2218-=BC CD∴192==DG BD , DH PB ⊥,∴点H 总在G 上,9GH =, ∴当点C ,H ,G 在一条直线上时,CH 最小, 此时,2222249373CG CD DG ++= 3739CH =,即CH 的最小值为3739.【点睛】此题考查的是圆的综合大题、相似三角形的判定及性质、锐角三角函数和勾股定理,掌握切线的性质、圆周角定理及推论、相似三角形的判定及性质、锐角三角函数和勾股定理是解决此题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省广州市越秀区华侨中学中考数学二模试卷
一、选择题(本大题共有10小题,每小题3分,共30分,每小题有且只有一
个正确答案.)
1.(3分)﹣2的相反数是()
A.2B.﹣2C.D.﹣
2.(3分)把不等式﹣3x>9的解集表示在数轴上,正确的是()A.B.
C.D.
3.(3分)下列计算中,正确的是()
A.a•a2=a2B.(a+1)2=a2+1
C.(ab)2=ab2D.(﹣a)3=﹣a3
4.(3分)下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.
C.D.
5.(3分)下列命题中,假命题是()
A.矩形的对角线相等
B.有两个角相等的梯形是等腰梯形
C.对角线互相垂直的矩形是正方形
D.菱形的面积等于两条对角线乘积的一半
6.(3分)如图所示几何体的左视图是()
A.B.C.D.
7.(3分)如图,AC∥DE,AB平分∠DBC,∠A=70°,则∠CBE的度数为()
A.30°B.40°C.55°D.70°
8.(3分)抛物线y=ax2+bx﹣3经过点(2,4),则代数式8a+4b+1的值为()A.3B.9C.15D.﹣15
9.(3分)如图,从热气球C处测得地面A、B两点的俯角分别是30°、45°,如果此时热气球C处的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是()
A.200米B.200米C.220米D.100()米
10.(3分)如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B 点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P 点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是()
A.B.
C.D.
二、填空题(本大题共6小题,每小题3分,共18分.)
11.(3分)分解因式:2x2﹣4x+2=.
12.(3分)已知扇形的圆心角为120°,弧长等于一个半径为5cm的圆的周长,则扇形的面积为.
13.(3分)如图,位似图形由三角尺与其灯光照射下的中心投影组成,相似比为2:5,且三角尺的一边长为8cm,则投影三角形的对应边长为cm.
14.(3分)关于x的一元二次方程x2+4x+k=0有两个相等实数解,则方程的解为.
15.(3分)如图,在矩形ABCD中,AB=3,BC=9,把矩形ABCD沿对角线BD折叠,使点C与点F重合,BF交AD于点M,过点C作CE⊥BF于点E,交AD于点G,则MG的长=.
16.(3分)对于每个非零自然数n,抛物线y=x2﹣x+与x轴交于
A n、
B n两点,以A n B n表示这两点间的距离,则A1B1+A2B2+…+A2017B2017的值
是.
三、解答题(本大题共9小题,共102分.解答应写出文字说明、证明过程或
演算步骤).
17.(9分)先化简、再求值:,其中.
18.(9分)如图,在Rt△ABC中,∠ABC=90°,点D在BC的延长线上,且BD=AB,过点B作BE⊥AC,与BD的垂线DE交于点E.
(1)求证:△ABC≌△BDE;
(2)△BDE可由△ABC旋转得到,利用尺规作出旋转中心O(保留作图痕迹,不写作法).
19.(10分)为方便市民低碳生活绿色出行,市政府计划改造如图所示的人行天桥:天桥的高是10米,原坡面倾斜角∠CAB=45°.
(1)若新坡面倾斜角∠CDB=28°,则新坡面的长CD长是多少?(精确到0.1米)
(2)若新坡角顶点D前留3米的人行道,要使离原坡角顶点A处10米的建筑物不拆除,新坡面的倾斜角∠CDB度数的最小值是多少?(精确到1°)
20.(10分)某学校“体育课外活动兴趣小组”,开设了以下体育课外活动项目:A.足球B.乒乓球C.羽毛球D.篮球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的
统计图,请回答下列问题:
(1)这次被调查的学生共有人,在扇形统计图中“D”对应的圆心角的度数为;
(2)请你将条形统计图补充完整;
(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加市里组织的乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).
21.(12分)如图在平面直角坐标系xOy中,函数y=(x>0)的图象与一次函数y=kx﹣k的图象的交点为A(m,2).
(1)求一次函数的解析式;
(2)设一次函数y=kx﹣k的图象与y轴交于点B,若点P是x轴上一点,且满足△P AB的面积是4,直接写出P点的坐标.
22.(12分)某工厂设门市部专卖某产品,该每件成本每件成本30元,从开业一段时间的每天销售统计中,随机抽取一部分情况如下表所示:
销售单位(元)506070758085…
日销售量30024018015012090…
假设每天定的销价是不变的,且每天销售情况均服从这种规律.
(1)秋日销售量与销售价格之间满足的函数关系式;
(2)门市部原设定两名销售员,担当销售量较大时,在每天售出量超过198件时,则必须增派一名营业员才能保证营业有序进行.设营业员每人每天工资为40元,求每件产品应定价多少元,才能使每天门市部纯利润最大?(纯利润=总销售﹣成本﹣营业员工资)
23.(12分)如图,AB为⊙O的直径,AB=4,P为AB上一点,过点P作⊙O 的弦CD,设∠BCD=m∠ACD.
(1)已知,求m的值,及∠BCD、∠ACD的度数各是多少?
(2)在(1)的条件下,且,求弦CD的长;
(3)当时,是否存在正实数m,使弦CD最短?如果存在,求出m的值,如果不存在,说明理由.
24.(14分)如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答下列问题:(1)如果AB=AC,∠BAC=90°
①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD之间的位置
关系为,数量关系为.
②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,为什
么?
(2)如图4,如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.且AC=4,BC=3,∠BCA=45°,正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值.
25.(14分)综合与探究:
如图,抛物线y=x2﹣x﹣4与x轴交与A,B两点(点B在点A的右侧),与y轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P 是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.
(1)求点A,B,C的坐标.
(2)当点P在线段OB上运动时,直线l分别交BD,BC于点M,N.试探究m 为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由.
(3)当点P在线段EB上运动时,是否存在点Q,使△BDQ为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.
广东省广州市越秀区华侨中学中考数学二模试卷
参考答案
一、选择题(本大题共有10小题,每小题3分,共30分,每小题有且只有一
个正确答案.)
1.A;2.C;3.D;4.C;5.B;6.C;7.B;8.C;9.D;10.C;
二、填空题(本大题共6小题,每小题3分,共18分.)
11.2(x﹣1)2;12.75πcm2;13.20;14.x1=x2=﹣2;15.;16.;
三、解答题(本大题共9小题,共102分.解答应写出文字说明、证明过程或
演算步骤).
17.;18.;19.;20.200;72°;21.;22.;
23.;24.CF⊥BD;CF=BD;25.;。