sd卡引脚定义
SD,DDR,DDR2引脚定义

SD内存插槽及测试点一、实物图上图中,黑色插槽就是SD内存插槽二、测试点SD内存插槽测试点:1个供电、4个时钟、6个信号测试点VCC:供电测试点,正常电压3.3V,由场管或橙色线提供CLK0、CLK1、CLK2、CLK3:时钟测试点,频率66/100/133MHZ,电压1.1V-1.6V,由北桥或时钟芯片提供6个信号测试点:CAS#:列选信号RAS#:行选信号/WE#:允许信号(高电平允许读,低电平允许写)/CS#:片选信号SCL:串行时钟,SDA:串行数据,由南桥提供3.3V电压DDR内存插槽及测试点一、实物图上图就是DDR内存插槽实物图二、测试点DDR内存插槽测试点:2个供电、6个时钟、6个信号测试点VCC=2.5V,1.25V:供电测试点CLK0、CLK1、CLK2、CLK3、CLK4、CLK5:时钟测试点,频率266/333/400MHZ,电压1.1V-1. 6V,如果主板有两块时钟芯片,内存时钟由靠近内存的时钟芯片提供;如果只有一个时钟芯片,内存的时钟由北桥提供6个信号测试点:CAS:列选信号RAS:行选信号WE:允许信号(高电平允许读,低电平允许写)CS:片选信号SCL:串行时钟,SDA:串行数据,由南桥提供3.3V电压D58、D56、D18等:是数据线,对地打阻值正常值300-800DDR2内存插槽测试点2009-10-2 10:37:43文/xiaowang 出处:电脑维修家园DDR2内存插槽实物图如下:1、时钟信号点,共有8个时钟信号点,分别位于52、137、138、171、185、186、220、221针脚,正常进,时钟信号点工作电压为1.1V。
2、电压信号点,DDR2内存插槽有2种电压,其中238针脚为3.3V供电脚,51、53、56、59、62、64、69、72、75、78、170、172、175、1 78、181、187、189、191、194针脚为1.8V供电脚。
存储卡标准.CF.SD.SDHC.MMC.TF卡引脚定义对应关系

3
VSS1
电源地1 电源地1
4 VSS1
3 VSS1
4
VDD
电源
电源
5
6
VDD1 VDD2 4
VDD
4 VDD VDD
电源
电源
5
CLK
时钟 时钟SCK
7 CLK 5 CLK 5 CLK SCLK
时钟 时钟sck
6
VSS2
电源地2 电源地2
8 VSS2
6 VSS2
6 VSS VSS
电源地 电源地
7
DAT0
数据线0 主入从出
9 DAT0
7 DAT 7 DAT0 DO
数据线0 主入从出
8 DAT1
10 DAT1
8 DAT1
X
数据线1 保留
TF卡, 又叫 microS D卡,8 pin,外 形以及 在SD和 SPI工作 模式下 引脚定
数据线2 数据线3 命令线 电ห้องสมุดไป่ตู้ 时钟 电源地 数据线0
保留 片选/从选SS 主出从入 电源 时钟sck 电源地 主入从出
数据线1
保留
三星 MMC Micro卡 (512MB) 基本特征 卡式类型 MMC Micro 闪存卡容 量 512MB 外形尺寸 14*12*1. 1 产品重量 1 电压(V) 2.7V3.6V 其他性能 读:10 MB/s; 写:7 MB/s
SD
概念 SD卡, 数字安 全记忆 卡 (Secur
e Digital
Memory Card) ,是用 于移动 设备的 标准记 忆卡。 SD卡数 据传送 和物理 规范由 MMC发 展而 来,大 小和 MMC差 不多。 长宽和 MMC一 样,比 MMC稍 微外厚形了及 接口定 义SD卡为
tf卡底层引脚定义

tf卡底层引脚定义TF卡底层引脚定义TF卡是一种常用的存储设备,也被称为Micro SD卡。
TF卡的底层引脚定义是指在卡片上的引脚接口,用于与其他设备进行通信和数据传输。
在TF卡上,有多个引脚分布在不同的位置,每个引脚都有不同的功能和用途。
1. VCC引脚:VCC引脚是TF卡的电源引脚,用于提供电源给TF卡。
一般情况下,VCC引脚的电压为3.3V。
2. GND引脚:GND引脚是TF卡的地线引脚,用于提供电路的接地。
3. CLK引脚:CLK引脚是TF卡的时钟引脚,用于同步数据传输的时钟信号。
TF卡的时钟频率一般为25MHz。
4. CMD引脚:CMD引脚是TF卡的命令引脚,用于发送和接收命令。
CMD引脚是一个双向引脚,可以作为输入或输出使用。
5. DAT0-DAT3引脚:DAT0-DAT3引脚是TF卡的数据引脚,用于传输数据。
TF卡支持4位数据总线和8位数据总线两种模式,DAT0-DAT3引脚分别用于传输数据位0-3。
通过TF卡的底层引脚定义,可以实现与其他设备的连接和通信。
在实际应用中,TF卡通常被用于存储设备、嵌入式系统和移动设备中,用于存储和传输数据。
TF卡底层引脚定义的功能和用途如下:1. 电源供应:VCC引脚和GND引脚提供电源给TF卡,保证其正常工作。
2. 时钟同步:CLK引脚提供时钟信号,用于同步数据传输,确保数据的准确性和完整性。
3. 数据传输:CMD引脚用于发送和接收命令,DAT0-DAT3引脚用于传输数据。
通过这些引脚,TF卡可以与其他设备进行数据的读取和写入。
TF卡的底层引脚定义是TF卡与其他设备进行通信和数据传输的关键。
通过准确地连接和配置这些引脚,可以实现TF卡与其他设备的稳定和可靠的数据交互。
总结一下,TF卡底层引脚定义包括VCC引脚、GND引脚、CLK引脚、CMD引脚和DAT0-DAT3引脚。
这些引脚在TF卡与其他设备的通信和数据传输中起到了重要的作用。
了解和掌握TF卡底层引脚定义,可以帮助我们更好地使用和应用TF卡,实现数据的存储和传输。
SD卡引脚及spi模式基本操作过程

SD卡引脚及spi模式基本操作过程(摘自网络)对于SD卡的硬件结构,在官方的文档上有很详细的介绍,如SD卡内的存储器结构、存储单元组织方式等内容。
要实现对它的读写,最核心的是它的时序,笔者在经过了实际的测试后,使用51单片机成功实现了对SD卡的扇区读写,并对其读写速度进行了评估。
下面先来讲解SD卡的读写时序。
SD卡的引脚定义SD卡引脚功能详述:引脚编号SD模式SPI模式名称类型描述名称类型描述1 CD/DAT3 IO或PP 卡检测/数据线3#CS I 片选2 CMD PP 命令/回应DI I 数据输入3 VSS1 S 电源地VSS S 电源地4 VDD S 电源VDD S 电源5 CLK I 时钟SCLK I 时钟6 VSS2 S 电源地VSS2 S 电源地7 DAT0 IO或PP 数据线0 DO O或PP 数据输出8 DAT1 IO或PP 数据线1 RSV9 DAT2 IO或PP 数据线2 RSV注:S:电源供给I:输入O:采用推拉驱动的输出PP:采用推拉驱动的输入输出SD卡SPI模式下与单片机的连接图:SD卡支持两种总线方式:SD方式与SPI方式。
其中SD方式采用6线制,使用CLK、CMD、DAT0~DAT3进行数据通信。
而SPI方式采用4线制,使用CS、CLK、DataIn、DataOut进行数据通信。
SD方式时的数据传输速度与SPI方式要快,采用单片机对SD卡进行读写时一般都采用SPI模式。
采用不同的初始化方式可以使SD卡工作于SD方式或SPI 方式。
这里只对其SPI方式进行介绍。
SPI方式驱动SD卡的方法SD卡的SPI通信接口使其可以通过SPI通道进行数据读写。
从应用的角度来看,采用SPI接口的好处在于,很多单片机内部自带SPI控制器,不光给开发上带来方便,同时也见降低了开发成本。
然而,它也有不好的地方,如失去了SD卡的性能优势,要解决这一问题,就要用SD方式,因为它提供更大的总线数据带宽。
sdio引脚定义

sdio引脚定义SDIO引脚定义是指SDIO(Secure DigitalInput/Output)接口的引脚定义,主要用于SD存储卡和其他SDIO设备的通信。
SDIO接口通过引脚对数据进行传输和交换,因此SDIO引脚定义对于SDIO接口的正常工作非常重要。
本文将对SDIO引脚定义进行具体介绍,包括引脚的功能、命名规则和电气特性等方面。
一、SDIO引脚定义SDIO引脚定义一般分为两部分:主机端(Host)和设备端(Device)。
其中,主机端一般指SD存储卡读卡器或主机设备,设备端一般指SDIO设备,如无线网卡、数码相机、移动电话等。
下面是SDIO引脚定义的详细内容:1.主机端引脚定义主机端引脚定义包括以下几个方面:(1)SD_CLK(时钟):传输速率的时钟,用于同步数据传输。
(2)SD_CMD(命令):主机对SDIO设备发送的命令。
(3)SD_D0~D3(数据线):SDIO设备和主机之间传输的数据线,其中SD_D0为主要数据线。
(4)SDIO_Voltage_Select(电压选择):电源电压选择引脚,用于选择SDIO设备的工作电压,通常为3.3V 或1.8V。
2.设备端引脚定义设备端引脚定义包括以下几个方面:(1)SD_CLK(时钟):传输速率的时钟,用于同步数据传输。
(2)SD_CMD(命令):主机对SDIO设备发送的命令。
(3)SD_D0~D3(数据线):SDIO设备和主机之间传输的数据线,其中SD_D0为主要数据线。
(4)SDIO_Voltage_Select(电压选择):电源电压选择引脚,用于选择SDIO设备的工作电压,通常为3.3V 或1.8V。
(5)SDIO_IRQ(中断请求):SDIO设备向主机发送中断请求的引脚,用于通知主机设备状态的变化等。
(6)SDIO_CD(卡检测):SDIO设备的卡检测引脚,用于检测SDIO设备是否插入主机。
以上是SDIO引脚定义的具体内容,下面将对SDIO引脚定义的一些特性进行介绍。
SD卡原理及内部结构

SD卡原理及内部结构1、简介:SD卡(Secure Digital Memory Card)是一种为满足安全性、容量、性能和使用环境等各方面的需求而设计的一种新型存储器件,SD卡允许在两种模式下工作,即SD模式和SPI模式,本系统采用SPI模式。
本小节仅简要介绍在SPI 模式下,STM32处理器如何读写SD卡,如果读者如希望详细了解SD卡,可以参考相关资料。
SD 卡内部结构及引脚如下图所示:SD卡内部图.JPG2、SD卡管脚图:SD卡图.JPG3、SPI模式下SD各管脚名称为:sd 卡:SPI模式下SD各管脚名称为.JPG注:一般SD有两种模式:SD模式和SPI模式,管脚定义如下:(A)、SD MODE 1、CD/DATA3 2、CMD 3、VSS1 4、VDD 5、CLK 6、VSS2 7、DATA0 8、DATA1 9、DATA2(B)、SPI MODE 1、CS 2、DI 3、VSS 4、VDD 5、SCLK 6、VSS2 7、DO 8、RSV 9、RSVSD 卡主要引脚和功能为:CLK:时钟信号,每个时钟周期传输一个命令或数据位,频率可在0~25MHz之间变化,SD卡的总线管理器可以不受任何限制的自由产生0~25MHz 的频率;CMD:双向命令和回复线,命令是一次主机到从卡操作的开始,命令可以是从主机到单卡寻址,也可以是到所有卡;回复是对之前命令的回答,回复可以来自单卡或所有卡;DAT0~3:数据线,数据可以从卡传向主机也可以从主机传向卡。
SD卡以命令形式来控制SD卡的读写等操作。
可根据命令对多块或单块进行读写操作。
在SPI模式下其命令由6个字节构成,其中高位在前。
SD卡命令的格式如表1所示,其中相关参数可以查阅SD卡规范。
4、MicroSD卡管脚图:MicroSD卡管脚图.JPG5、MicroSD卡管脚名称:MicroSD卡管脚名称.JPGSD 卡与MicroSD卡仅仅是封装上的不同,MicroSD卡更小,大小上和一个SIM卡差不多,但是协议与SD卡相同。
SD卡引脚及spi模式基本操作过程精编版

SD卡引脚及spi模式基本操作过程(摘自网络)对于SD卡的硬件结构,在官方的文档上有很详细的介绍,如SD卡内的存储器结构、存储单元组织方式等内容。
要实现对它的读写,最核心的是它的时序,笔者在经过了实际的测试后,使用51单片机成功实现了对SD卡的扇区读写,并对其读写速度进行了评估。
下面先来讲解SD卡的读写时序。
SD卡的引脚定义SD卡引脚功能详述:引脚编号SD模式SPI模式名称类型描述名称类型描述1 CD/DAT3 IO或PP 卡检测/数据线3#CS I 片选2 CMD PP 命令/回应DI I 数据输入3 VSS1 S 电源地VSS S 电源地4 VDD S 电源VDD S 电源5 CLK I 时钟SCLK I 时钟6 VSS2 S 电源地VSS2 S 电源地7 DAT0 IO或PP 数据线0 DO O或PP 数据输出8 DAT1 IO或PP 数据线1 RSV9 DAT2 IO或PP 数据线2 RSV注:S:电源供给I:输入O:采用推拉驱动的输出PP:采用推拉驱动的输入输出SD卡SPI模式下与单片机的连接图:SD卡支持两种总线方式:SD方式与SPI方式。
其中SD方式采用6线制,使用CLK、CMD、DAT0~DAT3进行数据通信。
而SPI方式采用4线制,使用CS、CLK、DataIn、DataOut进行数据通信。
SD方式时的数据传输速度与SPI方式要快,采用单片机对SD卡进行读写时一般都采用SPI模式。
采用不同的初始化方式可以使SD卡工作于SD方式或SPI 方式。
这里只对其SPI方式进行介绍。
SPI方式驱动SD卡的方法SD卡的SPI通信接口使其可以通过SPI通道进行数据读写。
从应用的角度来看,采用SPI接口的好处在于,很多单片机内部自带SPI控制器,不光给开发上带来方便,同时也见降低了开发成本。
然而,它也有不好的地方,如失去了SD卡的性能优势,要解决这一问题,就要用SD方式,因为它提供更大的总线数据带宽。
tf卡底层引脚定义

tf卡底层引脚定义TF卡底层引脚定义:TF卡,又称为Micro SD卡,是一种常见的存储设备,广泛应用于移动设备、数码相机等领域。
TF卡底层引脚定义了TF卡与外部设备之间的连接方式和通信规则。
本文将从TF卡底层引脚定义的角度,探讨TF卡的工作原理和应用场景。
一、TF卡底层引脚定义TF卡底层引脚一般包括以下几个引脚:1. VCC:供电引脚,用于提供电源给TF卡,一般连接到3.3V或5V 电源。
2. GND:地引脚,用于连接地线,与外部设备共享地。
3. CLK:时钟引脚,用于传输时钟信号,控制数据的读写。
4. CMD:命令引脚,用于发送读写命令给TF卡。
5. DAT0-DAT3:数据引脚,用于传输数据。
二、TF卡工作原理TF卡是一种闪存存储设备,采用了SPI(Serial Peripheral Interface)或SD(Secure Digital)接口协议。
TF卡通过底层引脚与外部设备进行通信,实现数据的读写和存储。
在TF卡的工作过程中,外部设备首先通过时钟引脚(CLK)发送时钟信号给TF卡,TF卡根据时钟信号进行同步。
然后,外部设备通过命令引脚(CMD)发送读写命令给TF卡,TF卡根据命令进行相应的操作。
同时,外部设备通过数据引脚(DAT0-DAT3)与TF卡进行数据的传输。
TF卡根据命令和数据进行存储或读取操作,并将结果返回给外部设备。
三、TF卡的应用场景TF卡由于其小巧、便携的特点,在各种移动设备和数码产品中得到了广泛应用。
以下是TF卡的几个主要应用场景:1. 手机存储扩展:由于手机内置存储容量有限,用户可以通过插入TF卡来扩展手机的存储空间,方便存储大量的照片、音乐和视频等文件。
2. 数码相机存储:数码相机通常使用TF卡作为存储介质,用户可以将拍摄的照片和视频保存在TF卡中,并通过TF卡读卡器将数据传输到电脑进行编辑和存储。
3. 智能穿戴设备:智能手表、智能眼镜等智能穿戴设备中,也常常使用TF卡作为存储介质,用于存储用户的健康数据、运动轨迹等信息。