(完整word版)不等式的基本性质__习题精选(一)
不等式的基本性质

练一练
3、已知 a﹤b,用“<”或“>”号填空: (1) a-4_<___b-4; (2)3a__<__3b;
(3)-a-2__>__-b -2; (4)a-b_<___0;
(5)-—1 a__>__-—1 b;
3
3
(6)ac2_≤____bc2 ( c 为有理数 )
作业: 习题1.2
;安卓应用 /?s=down-show-id-3.html ;
(1)请同学们回顾 等式的基本性质;
(2)如果在不等式的两边都加上或减去同一个 整式,那么结果会怎样?举例试一试。
不等式的基本性质 1 : 不等式的两边都加上(或减去)同一个整 式,不等号的方向不变。
完成下列填空: 2<3
2×5___<___3× 5 ; 2× ½ ___<___3× ½ ; 2×(-1)__>____3× (-1) ; 2×(-5)__>____3× (-5) ; 2×(- ½)__>____3×(- ½) .
x > -1 + 5 , 即 x >4 ;
(2)根据不等式的基本性质3,两边都除以 -2,得 x < - —3 . 2
练一练
1、将下列不等式化成“ x > a” 或“x < a”的形式:
(1)x – 1 > 2 ;
解:
(2) -x ﹤—56
(1)根据不等式的基本性质1,两边都加上1,得 x>2+1 ,
x >1 ;
(4)根据不等式的基本性质3,两边都除以 -2,得 x ﹤ - —1 . 2
练一练
2、已知x﹥y,下列不等式一定能成立吗?
(1)x - 6﹤y - 6
不等式的基本性质--习题精选(一)

不等式的基本性质 习题精选(一)★不等式的基本性质1.不等式的基本性质1:如果a>b ,那么 a+c____b+c , a -c____b -c .不等式的基本性质2:如果a>b ,并且c>0,那么ac_____bc .不等式的基本性质3:如果a>b ,并且c<0,那么ac_____bc .2.设a<b ,用“<”或“>”填空.(1)a -1____b -1;(2)a+1_____b+1;(3)2a____2b ;(4)-2a_____-2b ; 5)-a 2_____-b 2;(6)a 2____b2.3.根据不等式的基本性质,用“<”或“>”填空.(1)若a -1>b -1,则a____b ;(2)若a+3>b+3,则a____b ;(3)若2a>2b ,则a____b ;(4)若-2a>-2b ,则a___b .4.若a>b ,m<0,n>0,用“>”或“<”填空.(1)a+m____b+m ;(2)a+n___b+n ;(3)m -a___m -b ;(4)an____bn ;(5)a m ____b m ;(6)a n _____bn ;5.下列说法不正确的是( )A .若a>b ,则ac 2>bc 2(c 0)B .若a>b ,则b<aC .若a>b ,则-a>-bD .若a>b ,b>c ,则a>c★不等式的简单变形6.根据不等式的基本性质,把下列不等式化为x>a 或x>a 的形式:(1)x -3>1;(2)-32x>-1;(3)3x<1+2x ;(4)2x>4. [学科综合]7.已知实数a 、b 、c 在数轴上对应的点如图13-2-1所示,则下列式子中正确的是( )A.bc>ab B.ac>ab C.bc<ab D.c+b>a+b8.已知关于x的不等式(1-a)x>2变形为x<21-a,则1-a是____数.9.已知△ABC中三边为a、b、c,且a>b,那么其周长p应满足的不等关系是()A.3b<p<3a B.a+2b<p<2a+b C.2b<p<2(a+b)D.2a<p<2(a+b)[创新思维](一)新型题10.若m>n,且am<an,则a的取值应满足条件()A.a>0 B.a<0 C.a=0 D.a≥0(二)课本例题变式题11.(课本p6例题变式题)下列不等式的变形正确的是()A.由4x-1>2,得4x>1 B.由5x>3,得x>35C.由x2>0,得x>2D.由-2x<4,得x<-2(三)易错题12.若a>b,且m为有理数,则am2____bm2.13.同桌甲和同桌乙正在对7a>6a进行争论,甲说:“7a>6a正确”,乙说:“这不可能正确”,你认为谁的观点对?为什么?(四)难题巧解题14.若方程组2x+y=k+1x+2y=-1⎧⎨⎩的解为x,y,且3<k<6,则x+y的取值范围是______.(五)一题多解题15.根据不等式的基本性质,把不等式2x+5<4x_1变为x>a或x<a的形式.[数学在学校、家庭、社会生活中的应用]16.如图13-2-2所示,一个已倾斜的天平两边放有重物,其质量分别为a和b,如果在天平两边的盘内分别加上相等的砝码c,看一看,盘子仍然像原来那样倾斜吗?[数学在生产、经济、科技中的应用]17.小明用的练习本可以到甲商店购买,也可到乙商店购买,已知两商店的标价都是每本1元,但甲商店的优惠条件是:购买10本以上,从第11本开始按标价的70%卖,乙商店的优惠条件是:从第1本开始就按标价的85%卖.(1)小明要买20本时,到哪个商店购买较省钱?(2)写出甲商店中收款y(元)与购买本数x(本)(x>10)之间的关系式.(3)小明现有24元钱,最多可买多少本?[自主探究]18.命题:a,b是有理数,若a>b,则a2>b2.(1)若结论保持不变,那么怎样改变条件,命题才能正确?;(2)若条件保持不变,那么怎样改变结论,命题才能正确?[潜能开发]19.甲同学与乙同学讨论一个不等式的问题,甲说:每个苹果的大小一样时,5个苹果的重量大于4个苹果的重量,设每个苹果的重量为x则有5x>4x.乙说:这肯定是正确的.甲接着说:设a为一个实数,那么5a一定大于4a,这对吗?乙说:这与5x>4x不是一回事吗?当然也是正确的.请问:乙同学的回答正确吗?试说明理由.[信息处理]20.根据不等式的基本性质,把下列不等变为x>a或x<a的形式:(1)1x2>-3;(2)-2x<6.解:(1)不等式的两边都乘以2,不等式的方向不变,所以1x2>-322⨯⨯,得x>-6.(2)不等式两边都除以-2,不等式方向改变,所以-2x6>-2-2,得x>-3.上面两小题中不等式的变形与方程的什么变形相类似?有什么不同的?[开放实践]21.比较a+b与a-b的大小.[经典名题,提升自我][中考链接]22.(2004·山东淄博)如果m<n<0,那么下列结论中错误的是()A.m-9<n-9 B.-m>-n C.11>n m D.mn>123.(2004·北京海淀)若a-b<0,则下列各题中一定成立的是()A.a>b B.ab>0 C.ab>0 D.-a>-b[奥赛赏析]24.要使不等式…<753246a<a<a<a<a<a<a<…成立,有理数a的取值范围是()A.0<a<1 B.a<-1 C.-1<a<0 D.a>1[趣味数学]25.(1)A、B、C三人去公园玩跷跷板,如图13-2-3①中,试判断这三人的轻重.(2)P、Q、R、S四人去公园玩跷跷板,如图13-2-3②,试判断这四人的轻重.答案1.> > > <2.(1)<(2)<(3)<(4)>(5)>(6)<3.(1)>(2)>(3)>(4)<4.(1)>(2)>(3)<(4)>(5)<(6)>5.C 点拨:a>b,不等式的两边同时乘以-1,根据不等式的基本性质3,得-a<-b,所以C选项不正确.6.解:(1)x-3>1,x-3+3>1+3,(根据不等式的基本性质1)x>4;(2)-23x>-1,-23x·(-32)<-1·(-32),(根据不等式的基本性质3)x<32;(3)3x<1+2x,3x-2x<1+2x-2x,(根据不等式的基本性质1)x<1;(4)2x>4,2x4>22,(根据不等式的基本性质2)x>2.7.A 8.负9.D 10.B 11.B 12.错解:am2>bm2错因分析:m2应为大于或等于0的数,忽略了m等于0的情况正解::am2≥bm213.错解1:甲对,因为7>6,两边同乘以一个数a,由不等式的基本性质2,可得7a>6a.错解2:乙对,因为a为负数或零时,原不等式不成立.错因分析:本题没有加以分析,只片面的认为a为正数或负数,实际a为任意数,有三种情况:a为负数,a为正数,a为0,应全面考察各种.正解:两人的观点都不对,因为a的符号没有确定:①当a>0时,由性质2得7a>6a,②当a<0时,由性质3得7a<6a,③当a=0时,得7a=6a=0.14.1<x+y<2点拨:两方程两边相加得3(x+y)=k.3<k<6,即3<3(x+y)<6,∴1<x+y<2.15.解法1:2x+5<4x-1,2x+5-5<4x-1-5,2x<4x-6,2x-4x<4x-6-4x,-2x<-6,-2x-6>-2-2,x>3.解法2:2x+5<4x-1,2x+5-2x<4x-1-2x,5+1<2x-1+1,6<2x,62x<22,3<x,即x>3.16.解:从图中可看出a>b,存在这样一个不等式,两边都加上c,根据不等式的基本性质1,则a+c>b+c,所以,盘子仍然像原来那样倾斜.17.解:(1)若到甲商店购买,买20本共需10+1⨯70%⨯10=17(元),到乙商店购买20本,共需1⨯0.85⨯220=17元,因为到甲、乙两个商店买20本都需花17元,故到两个商店中的任一个购买都一样.(2)甲商店中,收款y(元)与购买本数x(本)(x>10)之间的关系式为y=10+0.7(x -10),即y=0.7x+3(其中x>10).(3)小明现有24元钱,若到甲商店购买,可以得到方程24=0.7x+3,解得x=30(本).若到乙商店购买,则可买24÷(1 0.85)≈28(本).30>28,故小明最多哥买30本.a>b18.解:(1)a,b是有理数,若a>b>0,则22(2)a,b是有理数,若a>b,则a+1>b+1.19.解:乙同学的回答不正确,5a不一定大于4a.当a>0时,5a>4a>0;当a=0时,5a=4a=0;当a<0时,5a<4a<0.20.解:这里的变形与方程中的“将未知数的系数化为1”相类似,但是也有所不同;不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.21.解:a+b-(a-b)=2b,当b>0时,a+b>a-b;当b=0时,a+b=a-b;当b<0时,a+b<a-b.22.C 23.Da<a<a<0…,则24.B 点拨:a的奇数次方一定小于a的偶数次方,则a是负数,且246这个负数一定小于-1,故应选B.25.解:(1)三人由轻到重排列顺序是B、A、C.(2)四人由轻到重排列顺序是Q、P、S、R.。
不等式的基本性质经典练习题

不等式的基本性质经典练习题9.1.2 不等式的基本性质练题要点感知不等式的性质有:不等式的性质1:不等式的两边加(或减)同一个数(或式子),不等号的方向不变,即如果 $a>b$,那么 $a\pmc>b\pm c$。
不等式的性质2:不等式的两边乘(或除以)同一个正数,不等号的方向不变,即如果 $a>b。
c>0$,那么 $ac>bc$(或$\frac{a}{c}>\frac{b}{c}$)。
不等式的性质3:不等式的两边乘(或除以)同一个负数,不等号的方向改变,即如果 $a>b。
c<0$,那么 $ac<bc$(或$\frac{a}{c}<\frac{b}{c}$)。
预练1-1:若 $a>b$,则 $a-b>0$,其依据是(A)不等式性质1.1-2:若$a”“<”或“=”)。
1-3:设 $a>b$,用“”填空,并说出是根据哪条不等式性质。
1) $3a>3b$,根据不等式性质2.2) $a-8<b-8$,根据不等式性质1.3) $-2a<-2b$,根据不等式性质3.4) $2a-5<2b-5$,根据不等式性质1.5) $-3.5a-1<-3.5b-1$,根据不等式性质2.知识点1:认识不等式的性质1.如果 $b>0$,那么 $a+b$ 与 $a$ 的大小关系是(C)$a+b\geq a$。
2.下列变形不正确的是(D)$-5x>-a$ 得 $x>$。
3.若 $a>b。
am<bm$,则一定有(B)$m<0$。
4.在下列不等式的变形后面填上依据:1) 如果 $a-3>-3$,那么 $a>0$;依据不等式性质1.2) 如果 $3a<6$,那么 $a<2$;依据不等式性质2.3) 如果 $-a>4$,那么 $a<-4$;依据不等式性质3.5.利用不等式的性质填“>”或“<”。
不等式的基本性质-习题精选(一)

不等式的基本性质 习题精选(一)★不等式的基本性质1.不等式的基本性质1:如果a>b ,那么 a+c____b+c , a -c____b -c .不等式的基本性质2:如果a>b ,并且c>0,那么ac_____bc .不等式的基本性质3:如果a>b ,并且c<0,那么ac_____bc .2.设a<b ,用“<”或“>”填空.(1)a -1____b -1;(2)a+1_____b+1;(3)2a____2b ;(4)-2a_____-2b ;5)-a 2_____-b 2;(6)a 2____b2.3.根据不等式的基本性质,用“<”或“>”填空.(1)若a -1>b -1,则a____b ;(2)若a+3>b+3,则a____b ;(3)若2a>2b ,则a____b ;(4)若-2a>-2b ,则a___b .4.若a>b ,m<0,n>0,用“>”或“<”填空.(1)a+m____b+m ;(2)a+n___b+n ;(3)m -a___m -b ;(4)an____bn ;(5)a m ____b m ;(6)a n _____bn ;5.下列说法不正确的是( )A .若a>b ,则ac 2>bc 2(c 0)B .若a>b ,则b<aC .若a>b ,则-a>-bD .若a>b ,b>c ,则a>c★不等式的简单变形6.根据不等式的基本性质,把下列不等式化为x>a 或x>a 的形式:(1)x -3>1;(2)-32x>-1;(3)3x<1+2x ;(4)2x>4. [学科综合]7.已知实数a 、b 、c 在数轴上对应的点如图13-2-1所示,则下列式子中正确的是( )A.bc>ab B.ac>ab C.bc<ab D.c+b>a+b8.已知关于x的不等式(1-a)x>2变形为x<21-a,则1-a是____数.9.已知△ABC中三边为a、b、c,且a>b,那么其周长p应满足的不等关系是()A.3b<p<3a B.a+2b<p<2a+b C.2b<p<2(a+b) D.2a<p<2(a+b)[创新思维](一)新型题10.若m>n,且am<an,则a的取值应满足条件()A.a>0 B.a<0 C.a=0 D.a≥0(二)课本例题变式题11.(课本p6例题变式题)下列不等式的变形正确的是()A.由4x-1>2,得4x>1 B.由5x>3,得x>35 C.由x2>0,得x>2D.由-2x<4,得x<-2(三)易错题12.若a>b,且m为有理数,则am2____bm2.13.同桌甲和同桌乙正在对7a>6a进行争论,甲说:“7a>6a正确”,乙说:“这不可能正确”,你认为谁的观点对?为什么?(四)难题巧解题14.若方程组2x+y=k+1x+2y=-1⎧⎨⎩的解为x,y,且3<k<6,则x+y的取值范围是______.(五)一题多解题15.根据不等式的基本性质,把不等式2x+5<4x_1变为x>a或x<a的形式.[数学在学校、家庭、社会生活中的应用]16.如图13-2-2所示,一个已倾斜的天平两边放有重物,其质量分别为a和b,如果在天平两边的盘内分别加上相等的砝码c,看一看,盘子仍然像原来那样倾斜吗?[数学在生产、经济、科技中的应用]17.小明用的练习本可以到甲商店购买,也可到乙商店购买,已知两商店的标价都是每本1元,但甲商店的优惠条件是:购买10本以上,从第11本开始按标价的70%卖,乙商店的优惠条件是:从第1本开始就按标价的85%卖.(1)小明要买20本时,到哪个商店购买较省钱?(2)写出甲商店中收款y(元)与购买本数x(本)(x>10)之间的关系式.(3)小明现有24元钱,最多可买多少本?[自主探究]18.命题:a,b是有理数,若a>b,则a2>b2.(1)若结论保持不变,那么怎样改变条件,命题才能正确?;(2)若条件保持不变,那么怎样改变结论,命题才能正确?[潜能开发]19.甲同学与乙同学讨论一个不等式的问题,甲说:每个苹果的大小一样时,5个苹果的重量大于4个苹果的重量,设每个苹果的重量为x则有5x>4x.乙说:这肯定是正确的.甲接着说:设a为一个实数,那么5a一定大于4a,这对吗?乙说:这与5x>4x不是一回事吗?当然也是正确的.请问:乙同学的回答正确吗?试说明理由.[信息处理]20.根据不等式的基本性质,把下列不等变为x>a或x<a的形式:(1)1x2>-3;(2)-2x<6.解:(1)不等式的两边都乘以2,不等式的方向不变,所以1x2>-322⨯⨯,得x>-6.(2)不等式两边都除以-2,不等式方向改变,所以-2x6>-2-2,得x>-3.上面两小题中不等式的变形与方程的什么变形相类似?有什么不同的?[开放实践]21.比较a+b与a-b的大小.[经典名题,提升自我][中考链接]22.(2004·山东淄博)如果m<n<0,那么下列结论中错误的是()A.m-9<n-9 B.-m>-n C.11>n m D.mn>123.(2004·北京海淀)若a-b<0,则下列各题中一定成立的是()A.a>b B.ab>0 C.ab>0 D.-a>-b[奥赛赏析]24.要使不等式…<753246a<a<a<a<a<a<a<…成立,有理数a的取值范围是()A.0<a<1 B.a<-1 C.-1<a<0 D.a>1[趣味数学]25.(1)A、B、C三人去公园玩跷跷板,如图13-2-3①中,试判断这三人的轻重.(2)P、Q、R、S四人去公园玩跷跷板,如图13-2-3②,试判断这四人的轻重.答案1.> > > <2.(1)<(2)<(3)<(4)>(5)>(6)<3.(1)>(2)>(3)>(4)<4.(1)>(2)>(3)<(4)>(5)<(6)>5.C 点拨:a>b,不等式的两边同时乘以-1,根据不等式的基本性质3,得-a<-b,所以C选项不正确.6.解:(1)x-3>1,x-3+3>1+3,(根据不等式的基本性质1)x>4;(2)-23x>-1,-23x·(-32)<-1·(-32),(根据不等式的基本性质3)x<32;(3)3x<1+2x,3x-2x<1+2x-2x,(根据不等式的基本性质1)x<1;(4)2x>4,2x4>22,(根据不等式的基本性质2)x>2.7.A 8.负 9.D 10.B 11.B 12.错解:am2>bm2错因分析:m2应为大于或等于0的数,忽略了m等于0的情况正解::am2≥bm213.错解1:甲对,因为7>6,两边同乘以一个数a,由不等式的基本性质2,可得7a>6a.错解2:乙对,因为a为负数或零时,原不等式不成立.错因分析:本题没有加以分析,只片面的认为a为正数或负数,实际a为任意数,有三种情况:a为负数,a为正数,a为0,应全面考察各种.正解:两人的观点都不对,因为a的符号没有确定:①当a>0时,由性质2得7a>6a,②当a<0时,由性质3得7a<6a,③当a=0时,得7a=6a=0.14.1<x+y<2点拨:两方程两边相加得3(x+y)=k.3<k<6,即3<3(x+y)<6,∴1<x+y<2.15.解法1:2x+5<4x-1,2x+5-5<4x-1-5,2x<4x-6,2x-4x<4x-6-4x,-2x<-6,-2x-6>-2-2,x>3.解法2:2x+5<4x-1,2x+5-2x<4x-1-2x,5+1<2x-1+1,6<2x,62x<22,3<x,即x>3.16.解:从图中可看出a>b,存在这样一个不等式,两边都加上c,根据不等式的基本性质1,则a+c>b+c,所以,盘子仍然像原来那样倾斜.17.解:(1)若到甲商店购买,买20本共需10+1⨯70%⨯10=17(元),到乙商店购买20本,共需1⨯0.85⨯220=17元,因为到甲、乙两个商店买20本都需花17元,故到两个商店中的任一个购买都一样.(2)甲商店中,收款y(元)与购买本数x(本)(x>10)之间的关系式为y=10+0.7(x-10),即y=0.7x+3(其中x>10).(3)小明现有24元钱,若到甲商店购买,可以得到方程24=0.7x+3,解得x=30(本).若到乙商店购买,则可买24÷(1 0.85)≈28(本).30>28,故小明最多哥买30本.a>b18.解:(1)a,b是有理数,若a>b>0,则22(2)a,b是有理数,若a>b,则a+1>b+1.19.解:乙同学的回答不正确,5a不一定大于4a.当a>0时,5a>4a>0;当a=0时,5a=4a=0;当a<0时,5a<4a<0.20.解:这里的变形与方程中的“将未知数的系数化为1”相类似,但是也有所不同;不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.21.解:a+b-(a-b)=2b,当b>0时,a+b>a-b;当b=0时,a+b=a-b;当b<0时,a+b<a -b.22.C 23.Da<a<a<0…,则24.B 点拨:a的奇数次方一定小于a的偶数次方,则a是负数,且246这个负数一定小于-1,故应选B.25.解:(1)三人由轻到重排列顺序是B、A、C.(2)四人由轻到重排列顺序是Q、P、S、R.(注:文档可能无法思考全面,请浏览后下载,供参考。
不等式概念及性质知识点详解与练习[1]
![不等式概念及性质知识点详解与练习[1]](https://img.taocdn.com/s3/m/1b4d1226aef8941ea66e052e.png)
(完整word版)不等式概念及性质知识点详解与练习(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word版)不等式概念及性质知识点详解与练习(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word版)不等式概念及性质知识点详解与练习(word版可编辑修改)的全部内容。
不等式的概念及性质知识点详解及练习一、不等式的概念及列不等式不等式⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧→→≤≥≠→→表示出不等关系列出代数式设未知数步骤列不等式””、“”、“”、“”、““不等号概念 1、不等式的概念及其分类(1)定义:用“>”、“﹤”、“≠”、“≥"及“≤"等不等号把代数式连接起来,表示不等关系的式子。
a —b 〉0a>b, a —b=0a=b, a-b 〈0a<b 。
(2)分类:①矛盾不等式:不等式只是表示了某种不等关系,它表示的关系可能在任何条件下都不成立,这样的不等式叫矛盾不等式;如2>3,x 2﹤0②绝对不等式:它表示的关系可能在任何条件下都成立,这样的不等式叫绝对不等式; ③条件不等式:在一定条件下才能成立的不等式叫条件不等式。
(3)不等号的类型:①“≠”读作“不等于”,它说明两个量之间关系是不等的,但不能明确两个量谁大谁小; ②“>"读作“大于",它表示左边的数比右边的数大;③“﹤”读作“小于”, 它表示左边的数比右边的数小;④“≥”读作“大于或等于”, 它表示左边的数不小于右边的数;⑤“≤”读作“小于或等于”, 它表示左边的数不大于右边的数;注意:要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语的含义。
(完整版)《不等式的基本性质》练习题

2.2 《不等式的基本性质》练习题一、选择题(每题4分,共32分)1、如果m <n <0,那么下列结论中错误的是( )A 、m -9<n -9B 、-m >-nC 、11n m > D 、1mn >2、若a -b <0,则下列各式中一定正确的是( )A 、a >bB 、ab >0C 、0ab < D 、-a >-b3、由不等式ax >b 可以推出x <ba ,那么a 的取值范围是( )A 、a≤0B 、a <0C 、a≥0D 、a >04、如果t >0,那么a +t 与a 的大小关系是( )A 、a +t >aB 、a +t <aC 、a +t≥aD 、不能确定5、如果34a a<--,则a 必须满足( )A 、a≠0B 、a <0C 、a >0D 、a 为任意数6、已知有理数a 、b 、c 在数轴上的位置如图所示,则下列式子正确的是() a 0b cA 、cb >abB 、ac >abC 、cb <abD 、c +b >a +b7、有下列说法:(1)若a <b ,则-a >-b ; (2)若xy <0,则x <0,y <0;(3)若x <0,y <0,则xy <0; (4)若a <b ,则2a <a +b ;(5)若a <b ,则11a b >; (6)若1122x y--<, 则x >y 。
其中正确的说法有( )A 、2个B 、3个C 、4个D 、5个8、2a 与3a 的大小关系( )A 、2a <3aB 、2a >3aC 、2a =3aD 、不能确定二、填空题(每题4分,共32分)9、若m <n ,比较下列各式的大小:(1)m -3______n -3(2)-5m______-5n(3)3m -______3n - (4)3-m______2-n(5)0_____m -n(6)324m --_____324n -- 10、用“>”或“<”填空:(1)如果x -2<3,那么x______5; (2)如果23-x <-1,那么x______32; (3)如果15x >-2,那么x______-10;(4)如果-x >1,那么x______-1; (5)若ax b >,20ac <,则x______b a. 11、x <y 得到ax >ay 的条件应是____________。
高中数学--不等式的基本性质-习题(含答案)

高中数学 不等式的基本性质 习题1.已知a >b >c ,a +b +c =0,则必有( ).A .a ≤0 B.a >0 C .b =0 D .c >02.若a <1,b >1,那么下列命题中正确的是( ).A .11a b >B .1b a> C .a 2<b 2 D .ab <a +b -13.设a >1>b >-1,则下列不等式中恒成立的是( ).A .11a b <B .11a b> C .a >b 2 D .a 2>2b 4.已知1≤a +b ≤5,-1≤a -b ≤3,则3a -2b 的取值范围是( ).A .B .C .D .5.已知a <0,b <-1,则下列不等式成立的是( ).A .2a a a b b >> B .2a a a b b >> C . 2a a a b b >> D .2a a a b b>> 6.已知-3<b <a <-1,-2<c <-1,则(a -b )c 2的取值范围是__________. 7.若a ,b ∈R ,且a 2b 2+a 2+5>2ab +4a ,则a ,b 应满足的条件是__________.8.设a >b >c >0,x =y =,z =x ,y ,z 之间的大小关系是__________.9.某次数学测验,共有16道题,答对一题得6分,答错一题倒扣2分,不答则不扣分,某同学有一道题未答,那么这个学生至少答对多少题,成绩才能在60分以上?列出其中的不等关系.10.已知等比数列{a n }中,a 1>0,q >0,前n 项和为S n ,试比较33S a 与55S a 的大小.参考答案1. 答案:B 解析:由a >b >c ,a +b +c =0知3a >0,故a >0.2. 答案:D 解析:由a <1,b >1得a -1<0,b -1>0,所以(a -1)(b -1)<0,展开整理即得ab <a +b -1.3. 答案:C 解析:取a =2,b =12-,满足a >1>b >-1,但11a b>,故A 错;取a =2,13b =,满足a >1>b >-1,但11a b <,故B 错;取54a =,56b =,满足a >1>b >-1,但a 2<2b ,故D 错,只有C 正确.4. 答案:D 解析:令3a -2b =m (a +b )+n (a -b ),则32m n m n +=⎧⎨-=-⎩,,所以125.2m n ⎧=⎪⎪⎨⎪=⎪⎩, 又因为1≤a +b ≤5,-1≤a -b ≤3, 所以115()222a b ≤+≤,5515()222a b -≤-≤, 故-2≤3a -2b ≤10. 5. 答案:C 解析:∵a <0,b <-1,则0a b >,b <-1,则b 2>1,∴211b <. 又∵a <0,∴0>2a b>a .∴2a a a b b >>.故选C. 6. 答案:(0,8) 解析:依题意0<a -b <2,1<c 2<4,所以0<(a -b )c 2<8. 7. 答案:a ≠2或b ≠12 解析:原不等式可化为(ab -1)2+(a -2)2>0.故a ≠2或b ≠12. 8. 答案:x <y <z 解析:x 2-y 2=a 2+(b +c )2-b 2-(c +a )2=2c (b -a )<0,所以x <y ,同理可得y <z ,故x ,y ,z 之间的大小关系是x <y <z .9. 答案:解:设至少答对x 题,则6x -2(15-x )≥60.10. 答案:解:当q =1时,333S a =,555S a =,所以3535S S a a <; 当q >0且q ≠1时,353511243511(1)(1)(1)(1)S S a q a q a a a q q a q q ---=---=23544(1)(1)10(1)q q q q q q q -----=<-, 所以有3535S S a a <.综上可知有3535S S a a <.。
不等式的基本性质-习题精选

不等式的基本性质 同步练习一、判断下列各题是否正确?正确的打“√”,错误的打“×”。
1. 如果a 是有理数,那么-8a >-5a 。
( )2. 如果a 为有理数,则a >-a 。
( )3. 如果a >b ,那么ac 2>bc 2。
( )4. 如果-x >8,那么x >-8。
( )5. 若a <b ,则a +c <b +c 。
( )6. 如果a >b ,那么3-2a >3-2b 。
( ) 二、 填空题1、 若a <0,则-2b a +____-2b 2、 设a <b ,用“>”或“<”填空: a -1____b -1, a +3____b +3, -2a____-2b ,3a ____3b 3、若m <n ,比较下列各式的大小:(1)m -3______n -3 (2)-5m______-5n (3)3m -______3n - (4)3-m______2-n (5)0_____m -n (6)324m --_____324n -- 4、实数a ,b 在数轴上的位置如图所示,用“>”或“<”填空:a -b____0, a +b____0,ab____0,a 2____b 2,a 1____b 1,︱a ︱____︱b ︱ 5、若a <b <0,则21(b -a )____0 三、选择题1、 若x >y,则ax >ay ,那么a 一定为( )。
A.a >0 B .a<0 C .a≥0 D .a ≤02、若m <n,则下列各式中正确的是( )。
A .m -3>n-3 B.3m >3n C.-3m >-3n D.m /3-1>n /3-13、若a <0,则下列不等关系错误的是( )。
A .a +5<a +7 B.5a >7a C.5-a <7-a D.a /5>a /74、下列各题中,结论正确的是( )。
A.若a>0,b<0,则b/a>0B.若a>b,则a-b>0C.若a<0,b<0,则ab<0D.若a>b,a<0,则b/a<05、下列变形不正确的是()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式的基本性质 习题精选(一)★不等式的基本性质1.不等式的基本性质1:如果a>b ,那么 a+c____b+c , a -c____b -c .不等式的基本性质2:如果a>b ,并且c>0,那么ac_____bc .不等式的基本性质3:如果a>b ,并且c<0,那么ac_____bc .2.设a<b ,用“<”或“>”填空.(1)a -1____b -1;(2)a+1_____b+1;(3)2a____2b ;(4)-2a_____-2b ;5)-a 2_____-b 2;(6)a 2____b2.3.根据不等式的基本性质,用“<”或“>”填空.(1)若a -1>b -1,则a____b ;(2)若a+3>b+3,则a____b ;(3)若2a>2b ,则a____b ;(4)若-2a>-2b ,则a___b .4.若a>b ,m<0,n>0,用“>”或“<”填空.(1)a+m____b+m ;(2)a+n___b+n ;(3)m -a___m -b ;(4)an____bn ;(5)a m ____b m ;(6)a n _____bn ;5.下列说法不正确的是( )A .若a>b ,则ac 2>bc 2(c 0)B .若a>b ,则b<aC .若a>b ,则-a>-bD .若a>b ,b>c ,则a>c★不等式的简单变形6.根据不等式的基本性质,把下列不等式化为x>a 或x>a 的形式:(1)x -3>1;(2)-32x>-1;(3)3x<1+2x ;(4)2x>4. [学科综合]7.已知实数a 、b 、c 在数轴上对应的点如图13-2-1所示,则下列式子中正确的是( )A.bc>ab B.ac>ab C.bc<ab D.c+b>a+b8.已知关于x的不等式(1-a)x>2变形为x<21-a,则1-a是____数.9.已知△ABC中三边为a、b、c,且a>b,那么其周长p应满足的不等关系是()A.3b<p<3a B.a+2b<p<2a+b C.2b<p<2(a+b)D.2a<p<2(a+b)[创新思维](一)新型题10.若m>n,且am<an,则a的取值应满足条件()A.a>0 B.a<0 C.a=0 D.a≥0(二)课本例题变式题11.(课本p6例题变式题)下列不等式的变形正确的是()A.由4x-1>2,得4x>1 B.由5x>3,得x>35C.由x2>0,得x>2D.由-2x<4,得x<-2(三)易错题12.若a>b,且m为有理数,则am2____bm2.13.同桌甲和同桌乙正在对7a>6a进行争论,甲说:“7a>6a正确”,乙说:“这不可能正确”,你认为谁的观点对?为什么?(四)难题巧解题14.若方程组2x+y=k+1x+2y=-1⎧⎨⎩的解为x,y,且3<k<6,则x+y的取值范围是______.(五)一题多解题15.根据不等式的基本性质,把不等式2x+5<4x_1变为x>a或x<a的形式.[数学在学校、家庭、社会生活中的应用]16.如图13-2-2所示,一个已倾斜的天平两边放有重物,其质量分别为a和b,如果在天平两边的盘内分别加上相等的砝码c,看一看,盘子仍然像原来那样倾斜吗?[数学在生产、经济、科技中的应用]17.小明用的练习本可以到甲商店购买,也可到乙商店购买,已知两商店的标价都是每本1元,但甲商店的优惠条件是:购买10本以上,从第11本开始按标价的70%卖,乙商店的优惠条件是:从第1本开始就按标价的85%卖.(1)小明要买20本时,到哪个商店购买较省钱?(2)写出甲商店中收款y(元)与购买本数x(本)(x>10)之间的关系式.(3)小明现有24元钱,最多可买多少本?[自主探究]18.命题:a,b是有理数,若a>b,则a2>b2.(1)若结论保持不变,那么怎样改变条件,命题才能正确?;(2)若条件保持不变,那么怎样改变结论,命题才能正确?[潜能开发]19.甲同学与乙同学讨论一个不等式的问题,甲说:每个苹果的大小一样时,5个苹果的重量大于4个苹果的重量,设每个苹果的重量为x则有5x>4x.乙说:这肯定是正确的.甲接着说:设a为一个实数,那么5a一定大于4a,这对吗?乙说:这与5x>4x不是一回事吗?当然也是正确的.请问:乙同学的回答正确吗?试说明理由.[信息处理]20.根据不等式的基本性质,把下列不等变为x>a或x<a的形式:(1)1x2>-3;(2)-2x<6.解:(1)不等式的两边都乘以2,不等式的方向不变,所以1x2>-322⨯⨯,得x>-6.(2)不等式两边都除以-2,不等式方向改变,所以-2x6>-2-2,得x>-3.上面两小题中不等式的变形与方程的什么变形相类似?有什么不同的?[开放实践]21.比较a+b与a-b的大小.[经典名题,提升自我][中考链接]22.(2004·山东淄博)如果m<n<0,那么下列结论中错误的是()A.m-9<n-9 B.-m>-n C.11>n m D.mn>123.(2004·北京海淀)若a-b<0,则下列各题中一定成立的是()A.a>b B.ab>0 C.ab>0 D.-a>-b[奥赛赏析]24.要使不等式…<753246a<a<a<a<a<a<a<…成立,有理数a的取值范围是()A.0<a<1 B.a<-1 C.-1<a<0 D.a>1[趣味数学]25.(1)A、B、C三人去公园玩跷跷板,如图13-2-3①中,试判断这三人的轻重.(2)P、Q、R、S四人去公园玩跷跷板,如图13-2-3②,试判断这四人的轻重.答案1.> > > <2.(1)<(2)<(3)<(4)>(5)>(6)<3.(1)>(2)>(3)>(4)<4.(1)>(2)>(3)<(4)>(5)<(6)>5.C 点拨:a>b,不等式的两边同时乘以-1,根据不等式的基本性质3,得-a<-b,所以C选项不正确.6.解:(1)x-3>1,x-3+3>1+3,(根据不等式的基本性质1)x>4;(2)-23x>-1,-23x·(-32)<-1·(-32),(根据不等式的基本性质3)x<32;(3)3x<1+2x,3x-2x<1+2x-2x,(根据不等式的基本性质1)x<1;(4)2x>4,2x4>22,(根据不等式的基本性质2)x>2.7.A 8.负9.D 10.B 11.B 12.错解:am2>bm2错因分析:m2应为大于或等于0的数,忽略了m等于0的情况正解::am2≥bm213.错解1:甲对,因为7>6,两边同乘以一个数a,由不等式的基本性质2,可得7a>6a.错解2:乙对,因为a为负数或零时,原不等式不成立.错因分析:本题没有加以分析,只片面的认为a为正数或负数,实际a为任意数,有三种情况:a为负数,a为正数,a为0,应全面考察各种.正解:两人的观点都不对,因为a的符号没有确定:①当a>0时,由性质2得7a>6a,②当a<0时,由性质3得7a<6a,③当a=0时,得7a=6a=0.14.1<x+y<2点拨:两方程两边相加得3(x+y)=k.3<k<6,即3<3(x+y)<6,∴1<x+y<2.15.解法1:2x+5<4x-1,2x+5-5<4x-1-5,2x<4x-6,2x-4x<4x-6-4x,-2x<-6,-2x-6>-2-2,x>3.解法2:2x+5<4x-1,2x+5-2x<4x-1-2x,5+1<2x-1+1,6<2x,62x<22,3<x,即x>3.16.解:从图中可看出a>b,存在这样一个不等式,两边都加上c,根据不等式的基本性质1,则a+c>b+c,所以,盘子仍然像原来那样倾斜.17.解:(1)若到甲商店购买,买20本共需10+1⨯70%⨯10=17(元),到乙商店购买20本,共需1⨯0.85⨯220=17元,因为到甲、乙两个商店买20本都需花17元,故到两个商店中的任一个购买都一样.(2)甲商店中,收款y(元)与购买本数x(本)(x>10)之间的关系式为y=10+0.7(x -10),即y=0.7x+3(其中x>10).(3)小明现有24元钱,若到甲商店购买,可以得到方程24=0.7x+3,解得x=30(本).若到乙商店购买,则可买24÷(1 0.85)≈28(本).30>28,故小明最多哥买30本.a>b18.解:(1)a,b是有理数,若a>b>0,则22(2)a,b是有理数,若a>b,则a+1>b+1.19.解:乙同学的回答不正确,5a不一定大于4a.当a>0时,5a>4a>0;当a=0时,5a=4a=0;当a<0时,5a<4a<0.20.解:这里的变形与方程中的“将未知数的系数化为1”相类似,但是也有所不同;不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.21.解:a+b-(a-b)=2b,当b>0时,a+b>a-b;当b=0时,a+b=a-b;当b<0时,a+b<a-b.22.C 23.Da<a<a<0…,则24.B 点拨:a的奇数次方一定小于a的偶数次方,则a是负数,且246这个负数一定小于-1,故应选B.25.解:(1)三人由轻到重排列顺序是B、A、C.(2)四人由轻到重排列顺序是Q、P、S、R.。