全等三角形全章各种题型练习
三角形全等测试题及答案

三角形全等测试题及答案一、选择题1. 两个三角形全等的条件是()A. 有两条边和它们的夹角对应相等B. 三条边对应相等C. 有两条边和其中一条边的对角对应相等D. 有两条边和其中一条边的邻角对应相等答案:B2. 如果两个三角形的对应角相等,那么这两个三角形()A. 一定全等B. 可能相似C. 一定相似D. 无法确定答案:B二、填空题3. 已知三角形ABC与三角形DEF全等,且∠A=∠D,AB=DE,那么AC=______。
答案:EF4. 如果两个三角形的两边和夹角对应相等,那么这两个三角形是______。
答案:全等三、判断题5. 如果两个三角形的对应边成比例,那么这两个三角形一定全等。
()答案:错误6. 如果两个三角形的两边和夹角对应相等,那么这两个三角形一定相似。
()答案:正确四、解答题7. 如图所示,已知三角形ABC与三角形DEF全等,且AB=5cm,BC=7cm,∠A=∠D=90°,求DE的长度。
答案:DE=7cm8. 已知三角形ABC与三角形DEF相似,且AB=3cm,BC=4cm,DE=6cm,求AC的长度。
答案:AC=8cm五、证明题9. 已知三角形ABC与三角形DEF全等,且∠A=∠D,AB=DE,证明:AC=EF。
证明:由于三角形ABC与三角形DEF全等,根据全等三角形的性质,对应边相等,所以AC=EF。
10. 已知∠A=∠D,AB=DE,AC=DF,求证:三角形ABC≌三角形DEF。
证明:根据SAS(边角边)判定方法,已知∠A=∠D,AB=DE,AC=DF,所以三角形ABC≌三角形DEF。
第12章《全等三角形》章节复习资料【1】

第12章《全等三角形》章节复习资料【1】一.选择题(共10小题)1.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC2.如图,△ACB≌△A′CB′,∠ACA′=30°,则∠BCB′的度数为()A.20°B.30°C.35°D.40°3.一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是()A.带其中的任意两块去都可以B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了D.带1、4或2、4或3、4去均可【1】【2】【3】4.如图,AD是△ABC的角平分线,则AB:AC等于()A.BD:CD B.AD:CD C.BC:AD D.BC:AC5.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S 是()A.50 B.62 C.65 D.686.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11 B.5.5 C.7 D.3.5【4】【5】【6】7.如图,已知△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,则∠EGF=()A.120°B.135°C.115°D.125°8.如图所示,在△ABC中,P为BC上一点,PR⊥AB,垂足为R,PS⊥AC,垂足为S,AQ=PQ,PR=PS.下面三个结论:①AS=AR;②QP∥AR;③△BRP≌△CSP.正确的是()A.①和②B.②和③C.①和③D.全对9.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个【7】【8】【9】10.如图,AB,CD相交于点E,且AB=CD,试添加一个条件使得△ADE≌△CBE.现给出如下五个条件:①∠A=∠C;②∠B=∠D;③AE=CE;④BE=DE;⑤AD=CB.其中符合要求有()A.2个B.3个C.4个D.5个二.填空题(共10小题)11.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:,使△AEH≌△CEB.12.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有对全等三角形.【10】【11】【12】13.如图,AC=BC,DC=EC,∠ACB=∠ECD=90°,且∠EBD=42°,则∠AEB=.14.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=40°,则∠CAP=.15.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=.16.如图,AB=12,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后△CAP与△PQB全等.【13】【14】【16】17.如图,∠ACB=90°,AC=BC,AD⊥CE于D,BE⊥CD于E,AD=2.4cm,DE=1.7cm,则BE的长度为.18.如图,已知长方形ABCD的边长AB=20cm,BC=16cm,点E在边AB上,AE=6cm,如果点P从点B出发在线段BC上以2cm/s的速度向点C向运动,同时,点Q在线段CD上从点C到点D运动.则当△BPE与△CQP全等时,时间t为s.19.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=°.20.如图,已知△ABE≌△ACF,∠E=∠F=90°,∠CMD=70°,则∠2=度.【17】【18】【19】【20】三.解答题(共8小题)21.如图,四边形ABCD中,E点在AD上,∠BAE=∠BCE=90°,且BC=CE,AB=DE.求证:△ABC≌△DEC.22.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.23.如图,已知BD⊥DE,CE⊥DE,垂足分别是D、E,AB=AC,∠BAC=90°,试探索DE、BD、CE长度之间的关系,并说明你的结论的正确性.24.如图,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,且DB=DC,求证:EB=FC.25.如图,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.26.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.注意:第(2)、(3)小题你选答的是第2小题.27.已知:∠ACB=90°,AC=BC,AD⊥CM,BE⊥CM,垂足分别为D,E,(1)如图1,①线段CD和BE的数量关系是;②请写出线段AD,BE,DE之间的数量关系并证明.(2)如图2,上述结论②还成立吗?如果不成立,请直接写出线段AD,BE,DE之间的数量关系.Q从B点出发沿B﹣C﹣A路径向终点运动,终点为A点.点P和Q分别以1和3的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P和Q作PE⊥l于E,QF⊥l于F.问:点P运动多少时间时,△PEC与QFC全等?请说明理由.第12章《全等三角形》章节复习资料【1】参考答案与试题解析一.选择题(共10小题)1.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC【解答】解:∵AB∥DE,AC∥DF,∴∠A=∠D,(1)AB=DE,则△ABC和△DEF中,,∴△ABC≌△DEF,故A选项错误;(2)∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故B选项错误;(3)EF=BC,无法证明△ABC≌△DEF(ASS);故C选项正确;(4)∵EF∥BC,AB∥DE,∴∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故D选项错误;故选:C.2.如图,△ACB≌△A′CB′,∠ACA′=30°,则∠BCB′的度数为()A.20°B.30°C.35°D.40°【解答】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,∴∠ACB﹣∠A′CB=∠A′CB′﹣∠A′CB,即∠BCB′=∠ACA′,又∠ACA′=30°,∴∠BCB′=30°,3.一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是()A.带其中的任意两块去都可以B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了D.带1、4或2、4或3、4去均可【解答】解:带③、④可以用“角边角”确定三角形,带①、④可以用“角边角”确定三角形,带②④可以延长还原出原三角形,故选D.4.如图,AD是△ABC的角平分线,则AB:AC等于()A.BD:CD B.AD:CD C.BC:AD D.BC:AC【解答】解:如图过点B作BE∥AC交AD延长线于点E,∵BE∥AC,∴△BDE∽△CDA,∴=,又∵AD是角平分线,∴∠E=∠DAC=∠BAD,∴BE=AB,∴=,∴AB:AC=BD:CD.故选:A.5.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S 是()A.50 B.62 C.65 D.68【解答】解:∵AE⊥AB且AE=AB,EF⊥FH,BG⊥FH⇒∠EAB=∠EFA=∠BGA=90°,∠EAF+∠BAG=90°,∠ABG+∠BAG=90°⇒∠EAF=∠ABG,∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG⇒△EFA≌△ABG∴AF=BG,AG=EF.同理证得△BGC≌△DHC得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16故S=(6+4)×16﹣3×4﹣6×3=50.故选A.6.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11 B.5.5 C.7 D.3.5【解答】解:作DM=DE交AC于M,作DN⊥AC于点N,∵DE=DG,∴DM=DG,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DN,在Rt△DEF和Rt△DMN中,,∴Rt△DEF≌Rt△DMN(HL),∵△ADG和△AED的面积分别为50和39,∴S△MDG=S△ADG﹣S△ADM=50﹣39=11,S△DNM=S△EDF=S△MDG=×11=5.5.故选B.7.如图,已知△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,则∠EGF=()A.120°B.135°C.115°D.125°【解答】解:∵△ABC≌△ADE,∠CAD=10°,∠EAB=120°,∴∠EAD=∠CAB=(∠EAB﹣∠CAD)=55°,∵∠FAB=∠CAD+∠CAB,∴∠FAB=65°,∵∠AFB+∠FAB+∠B=180°,∴∠AFB=180°﹣65°﹣25°=90°,∵∠GFD=∠AFB,∴∠GFD=90°,∵∠EGF=∠D+∠GFD,∴∠EGF=90°+25°=115°.故选C.8.如图所示,在△ABC中,P为BC上一点,PR⊥AB,垂足为R,PS⊥AC,垂足为S,AQ=PQ,PR=PS.下面三个结论:①AS=AR;②QP∥AR;③△BRP≌△CSP.正确的是()A.①和②B.②和③C.①和③D.全对【解答】解:连接AP,∵PR=PS,PR⊥AB,垂足为R,PS⊥AC,垂足为S,∴AP是∠BAC的平分线,∠1=∠2,∴△APR≌△APS,∴AS=AR,又AQ=PQ,∴∠2=∠3,又∠1=∠2,∴∠1=∠3,∴QP∥AR,BC只是过点P,没有办法证明△BRP≌△CSP,③不成立.故选A.9.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个【解答】解:∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故②③正确,在△CDE与△DBF中,,∴△CDE≌△DBF,∴DE=DF,CE=BF,故①正确;∵AE=2BF,∴AC=3BF,故④正确.故选A.10.如图,AB,CD相交于点E,且AB=CD,试添加一个条件使得△ADE≌△CBE.现给出如下五个条件:①∠A=∠C;②∠B=∠D;③AE=CE;④BE=DE;⑤AD=CB.其中符合要求有()A.2个B.3个C.4个D.5个【解答】解:延长DA、BC使它们相交于点F.∵∠DAB=∠BCD,∠AED=∠BEC,∴∠B=∠D,又∵∠F=∠F,AB=CD,∴△FAB≌△FCD∴AF=FC,FD=FB,∴AD=BC∴△ADE≌△CBE①对同理可得②对∵AE=CE,AB=CD∴DE=BE又∵∠AED=∠BEC∴△ADE≌△CBE(SAS)③对同理可得④对连接BD,∵AD=CB,AB=CD,BD=BD,∴△ADB≌△CBD,∴∠A=∠C,∴△ADE≌△CBE,故⑤正确,故选D.二.填空题(共10小题)11.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:AH=CB 等(只要符合要求即可),使△AEH≌△CEB.【解答】解:∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°﹣∠AHE,又∵∠EAH=∠BAD,∴∠BAD=90°﹣∠AHE,在Rt△AEH和Rt△CDH中,∠CHD=∠AHE,∴∠EAH=∠DCH,∴∠EAH=90°﹣∠CHD=∠BCE,所以根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE.可证△AEH≌△CEB.故填空答案:AH=CB或EH=EB或AE=CE.12.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有3对全等三角形.【解答】解:OP平分∠MON,PE⊥OM于E,PF⊥ON于F,∴PE=PF,∠1=∠2,在△AOP与△BOP中,,∴△AOP≌△BOP,∴AP=BP,在△EOP与△FOP中,,∴△EOP≌△FOP,在R t△AEP与R t△BFP中,,∴R t△AEP≌R t△BFP,∴图中有3对全等三角形,故答案为:3.13.如图,AC=BC,DC=EC,∠ACB=∠ECD=90°,且∠EBD=42°,则∠AEB=132°.【解答】解:∵∠ACB=∠ECD=90°,∴∠BCD=∠ACE,在△BDC和△AEC中,,∴△BDC≌△AEC(SAS),∴∠DBC=∠EAC,∵∠EBD=∠DBC+∠EBC=42°,∴∠EAC+∠EBC=42°,∴∠ABE+∠EAB=90°﹣42°=48°,∴∠AEB=180°﹣(∠ABE+∠EAB)=180°﹣48°=132°.14.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=40°,则∠CAP=50°.【解答】解:延长BA,作PN⊥BD,PF⊥BA,PM⊥AC,设∠PCD=x°,∵CP平分∠ACD,∴∠ACP=∠PCD=x°,PM=PN,∵BP平分∠ABC,∴∠ABP=∠PBC,PF=PN,∴PF=PM,∵∠BPC=40°,∴∠ABP=∠PBC=∠PCD﹣∠BPC=(x﹣40)°,∴∠BAC=∠ACD﹣∠ABC=2x°﹣(x°﹣40°)﹣(x°﹣40°)=80°,∴∠CAF=100°,在Rt△PFA和Rt△PMA中,∵,∴Rt△PFA≌Rt△PMA(HL),∴∠FAP=∠PAC=50°.故答案为:50°.15.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=11.【解答】解:∵这两个三角形全等,两个三角形中都有2∴长度为2的是对应边,x应是另一个三角形中的边6.同理可得y=5∴x+y=11.故填11.16.如图,AB=12,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动4分钟后△CAP与△PQB全等.【解答】解:∵CA⊥AB于A,DB⊥AB于B,∴∠A=∠B=90°,设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12﹣x)m,分两种情况:①若BP=AC,则x=4,AP=12﹣4=8,BQ=8,AP=BQ,∴△CAP≌△PBQ;②若BP=AP,则12﹣x=x,解得:x=6,BQ=12≠AC,此时△CAP与△PQB不全等;综上所述:运动4分钟后△CAP与△PQB全等;故答案为:4.17.如图,∠ACB=90°,AC=BC,AD⊥CE于D,BE⊥CD于E,AD=2.4cm,DE=1.7cm,则BE的长度为0.7cm.【解答】解:∵AD⊥CE于D,BE⊥CD于E,∴∠E=∠ADC=90°∵AC=CB,∠ACB=90,∴∠BCE+∠ACD=90°,∠ACD+∠DAC=90°,∴∠BCE=∠ACD,∴△BCE≌△CAD,∴AD=CE=2.4,BE=CD,∴CD=CE﹣DE=2.4﹣1.7=0.7,∴BE=CD=0.7cm.故答案为0.7cm.18.如图,已知长方形ABCD的边长AB=20cm,BC=16cm,点E在边AB上,AE=6cm,如果点P从点B出发在线段BC上以2cm/s的速度向点C向运动,同时,点Q在线段CD上从点C到点D运动.则当△BPE与△CQP全等时,时间t为1或4s.【解答】解:∵AB=20cm,AE=6cm,BC=16cm,∴BE=14cm,BP=2tcm,PC=(16﹣2t)cm,当△BPE≌△CQP时,则有BE=PC,即14=16﹣2t,解得t=1,当△BPE≌△CPQ时,则有BP=PC,即2t=16﹣2t,解得t=4,故答案为:1或4.19.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=135°.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故填135.20.如图,已知△ABE≌△ACF,∠E=∠F=90°,∠CMD=70°,则∠2=20度.【解答】解:∵∠AME=∠CMD=70°∴在△AEM中∠1=180﹣90﹣70=20°∵△ABE≌△ACF,∴∠EAB=∠FAC,即∠1+∠CAB=∠2+∠CAB,∴∠2=∠1=20°.故填20.三.解答题(共8小题)21.如图,四边形ABCD中,E点在AD上,∠BAE=∠BCE=90°,且BC=CE,AB=DE.求证:△ABC≌△DEC.【解答】证明:∵∠BAE=∠BCE=90°,∴∠B+∠AEC=180°,而∠DEC+∠AEC=180°,∴∠B=∠DEC,在△ABC和△DEC中,,∴△ABC≌△DEC(SAS).22.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.【解答】解:(1)证明:∵AE和BD相交于点O,∴∠AOD=∠BOE.在△AOD和△BOE中,∠A=∠B,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO,∴∠AEC=∠BED.在△AEC和△BED中,,∴△AEC≌△BED(ASA).(2)∵△AEC≌△BED,∴EC=ED,∠C=∠BDE.在△EDC中,∵EC=ED,∠1=42°,∴∠C=∠EDC=69°,∴∠BDE=∠C=69°.23.如图,已知BD⊥DE,CE⊥DE,垂足分别是D、E,AB=AC,∠BAC=90°,试探索DE、BD、CE长度之间的关系,并说明你的结论的正确性.【解答】结论:DE=BD+CE.证明:如右图,∵∠BAC=90°,∴∠EAC+∠DAB=90°,∵BD⊥DE,CE⊥DE,∴∠DAB+∠DBA=90°,∠D=∠E=90°,∴∠EAC=∠DBA,在△ABD和△CAE中,∵,∴△ABD≌△CAE,∴AD=CE,BD=AE,∴DE=AD+AE=CE+BD.24.如图,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,且DB=DC,求证:EB=FC.【解答】证明:∵AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,∴DE=DF;∵DE⊥AB于E,DF⊥AC于F.∴在Rt△DBE和Rt△DCF中∴Rt△DBE≌Rt△DCF(HL);∴EB=FC.25.如图,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.【解答】猜想:DE+BF=EF.证明:延长CF,作∠4=∠1,如图:∵将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=∠DAB,∴∠1+∠2=∠3+∠5,∠2+∠3=∠1+∠5,∵∠4=∠1,∴∠2+∠3=∠4+∠5,∴∠GAF=∠FAE,在△AGB和△AED中,,∴△AGB≌△AED(ASA),∴AG=AE,BG=DE,在△AGF和△AEF中,,∴△AGF≌△AEF(SAS),∴GF=EF,∴DE+BF=EF.证毕.26.(本题有3小题,第(1)小题为必答题,满分5分;第(2)、(3)小题为选答题,其中,第(2)小题满分3分,第(3)小题满分6分,请从中任选1小题作答,如两题都答,以第(2)小题评分.)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.注意:第(2)、(3)小题你选答的是第2小题.【解答】证明:(1)①∵∠ADC=∠ACB=∠BEC=90°,∴∠CAD+∠ACD=90°,∠BCE+∠CBE=90°,∠ACD+∠BCE=90°.∴∠CAD=∠BCE.∵AC=BC,∴△ADC≌△CEB.②∵△ADC≌△CEB,∴CE=AD,CD=BE.∴DE=CE+CD=AD+BE.解:(2)∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE.又∵AC=BC,∴△ACD≌△CBE.∴CE=AD,CD=BE.∴DE=CE﹣CD=AD﹣BE.(3)当MN旋转到图3的位置时,AD、DE、BE所满足的等量关系是DE=BE﹣AD(或AD=BE﹣DE,BE=AD+DE等).∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE,又∵AC=BC,∴△ACD≌△CBE,∴AD=CE,CD=BE,∴DE=CD﹣CE=BE﹣AD.27.已知:∠ACB=90°,AC=BC,AD⊥CM,BE⊥CM,垂足分别为D,E,(1)如图1,①线段CD和BE的数量关系是CD=BE;②请写出线段AD,BE,DE之间的数量关系并证明.(2)如图2,上述结论②还成立吗?如果不成立,请直接写出线段AD,BE,DE之间的数量关系.【解答】解:(1)①结论:CD=BE.理由:∵AD⊥CM,BE⊥CM,∴∠ACB=∠BEC=∠ADC=90°,∴∠ACD+∠BCE=90°,∠BCE+∠CBE=90°,∴∠ACD=∠B,在△ACD和△CBE中,,∴△ACD≌△CBE,∴CD=BE.②结论:AD=BE+DE.理由:∵△ACD≌△CBE,∴AD=CE,CD=BE,∵CE=CD+DE=BE+DE,∴AD=BE+DE.(2)②中的结论不成立.结论:DE=AD+BE.理由:∵AD⊥CM,BE⊥CM,∴∠ACB=∠BEC=∠ADC=90°,∴∠ACD+∠BCE=90°,∠BCE+∠CBE=90°,∴∠ACD=∠B,在△ACD和△CBE中,,∴△ACD≌△CBE,∴AD=CE,CD=BE,∵DE=CD+CE=BE+AD,∴DE=AD+BE.28.如图,△ABC中,∠ACB=90°,AC=6,BC=8.点P从A点出发沿A﹣C﹣B路径向终点运动,终点为B点;点Q从B点出发沿B﹣C﹣A路径向终点运动,终点为A点.点P和Q分别以1和3的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P和Q作PE⊥l于E,QF⊥l于F.问:点P运动多少时间时,△PEC与QFC全等?请说明理由.【解答】解:设运动时间为t秒时,△PEC≌△QFC,∵△PEC≌△QFC,∴斜边CP=CQ,有四种情况:①P在AC上,Q在BC上,CP=6﹣t,CQ=8﹣3t,∴6﹣t=8﹣3t,∴t=1;②P、Q都在AC上,此时P、Q重合,∴CP=6﹣t=3t﹣8,∴t=3.5;③P在BC上,Q在AC时,此时不存在;理由是:8÷3×1<6,Q到AC上时,P应也在AC上;④当Q到A点(和A重合),P在BC上时,∵CQ=CP,CQ=AC=6,CP=t﹣6,∴t﹣6=6∴t=12∵t<14∴t=12符合题意答:点P运动1或3.5或12秒时,△PEC与△QFC全等.。
三角形全等的判定专题训练题

三角形全等的判定专题训练题(1)1、如图(1):AD ⊥BC ,垂足为D ,BD=CD 。
求证:△ABD ≌△ACD 。
2、如图(2):AC ∥EF ,AC=EF ,AE=BD 。
求证:△ABC ≌△EDF 。
3、 如图(3):DF=CE ,AD=BC ,∠D=∠C 。
求证:△AED ≌△BFC 。
4、 如图(4):AB=AC ,AD=AE ,AB ⊥AC ,AD ⊥AE 。
求证:(1)∠B=∠C ,(2)BD=CE5、如图(5):AB ⊥BD ,ED ⊥BD ,AB=CD ,BC=DE 。
求证:AC ⊥CE 。
6、如图(6):CG=CF ,BC=DC ,AB=ED ,点A 、B 、C 、D 、E 在同一直线上。
求证:(1)AF=EG ,(2)BF ∥DG 。
7、如图(7):AC ⊥BC ,BM 平分∠ABC 且交AC 于点M 、N 是AB 的中点且BN=BC 。
求证:(1)MN 平分∠AMB ,(2)∠A=∠CBM 。
8、如图(8):A 、B 、C 、D 四点在同一直线上,AC=DB ,BE ∥CF ,AE ∥DF 。
求证:△ABE ≌△DCF 。
9、如图(9)AE 、BC 交于点M ,F 点在AM 上,BE ∥CF ,BE=CF 。
求证:AM 是△ABC 的中线。
10、如图(10)∠BAC=∠DAE ,∠ABD=∠ACE ,BD=CE 。
求证:AB=AC 。
11、如图(11)在△ABC 和△DBC 中,∠1=∠2,∠3=∠4,P 是BC上任一点。
求证:PA=PD 。
12、如图(12)AB ∥CD ,OA=OD ,点F 、D 、O 、A 、E 在同一直线上,AE=DF 。
求证:EB ∥CF 。
13、如图(13)△ABC ≌△EDC 。
求证:BE=AD 。
14、如图(14)在△ABC 中,∠ACB=90°,AC=BC ,AE 是BC 的中线,过点C 作CF ⊥AE 于F ,过B 作BD ⊥CB 交CF 的延长线于点D 。
全等三角形单元测试题(含答案)

全等三角形单元测试题一、填空题(每小题4分,共32分).1.已知:///≌,/ABC A B C∆∆∠=∠,70B B∠=∠,/A A=,则AB cmC∠=︒,15 /∠=_________,//CA B=__________.∆中,AB=AC,AD⊥BC于D点,E、F分别为DB、DC的中点,则图中共有全等三角2.如图1,在ABC形_______对.图1 图2 图33.已知△AB C≌△A′B′C′,若△ABC的面积为10 cm2,则△A′B′C′的面积为______ cm2,若△A′B′C′的周长为16 cm,则△AB C的周长为________cm.4.如图2所示,∠1=∠2,要使△ABD≌△ACD,需添加的一个条件是________________(只添一个条件即可).5.如图3所示,点F、C在线段BE上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还需补充一个条件________,依据是________________.6.三角形两外角平分线和第三个角的内角平分线_____一点,且该点在三角形______部.7.如图4,两平面镜α、β的夹角θ,入射光线AO平行于β,入射到α上,经两次反射后的出射光线CB平行于α,则角θ等于________.图4 图5 图68.如图5,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则ACE △ 的面积为______.二、选择题(每小题4分,共24分)9.如图6,AE =AF ,AB =AC ,EC 与B F 交于点O ,∠A =600,∠B =250,则∠EOB 的度数为( )A 、600B 、700C 、750D 、85010.△ABC ≌△DEF ,且△ABC 的周长为100 cm ,A 、B 分别与D 、E 对应,且AB =35 cm ,DF =30 cm ,则EF 的长为( )A .35 cmB .30 cmC .45 cmD .55 cm11.图7是一个由四根木条钉成的框架,拉动其中两根木条后,它的形状将会改变,若固定其形状,下列有四种加固木条的方法,不能固定形状的是钉在________两点上的木条.( )A .A 、FB .C 、E C .C 、AD .E 、F12.要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D ,使CD =•BC ,再定出BF的垂线DE ,使A 、C 、E 在一条直线上,可以证明△EDC ≌△ABC ,•得到ED =AB ,因此测得ED 的长就是AB 的长(如图8),判定△EDC ≌△ABC 的理由是( )A .边角边公理B .角边角公理;C .边边边公理D .斜边直角边公理13.如图9,在△ABC 中,∠A :∠B :∠C =3:5:10,又△MNC ≌△ABC ,则∠BCM :∠BCN 等于( )A .1:2B .1:3C .2:3D .1:414.如图10,P 是∠AOB 平分线上一点,CD ⊥OP 于F ,并分别交OA 、OB 于CD ,则CD _____P 点到∠AOB N A M C B 图7 图8 图9 图10两边距离之和.( )A.小于B.大于C.等于D.不能确定三、解答题(共46分)中,∠ACB=90°,延长BC至B',使15.已知如图11,ABCC B'=BC,连结A B'.求证:△AB B'是等腰三角形.参考答案。
华东师大初中数学八年级上册《全等三角形》全章复习与巩固(提高)巩固练习

【巩固练习】一.选择题1.如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=().A.150° B.210° C.105° D.75°2.(2016•济南校级一模)如图,在△ABC与△DEF中,已有条件AB=DE,还需添加两个条件才能使△ABC≌△DEF,不能添加的一组条件是()A.∠B=∠E,BC=EF B.BC=EF,AC=DFC.∠A=∠D,∠B=∠E D.∠A=∠D,BC=EF3. 下列四个命题中,属于真命题的是().A.互补的两角必有一条公共边B.同旁内角互补C.同位角不相等,两直线不平行D.一个角的补角大于这个角4.已知如图,AD∥BC,AB⊥BC,CD⊥DE,CD=ED,AD=2,BC=3,则△ADE的面积为(). A. 1 B. 2 C. 5 D. 无法确定5. 如图,在△ABC中,分别以点A和点B为圆心,大于的12AB的长为半径画孤,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为().A.7B.14C.17D.206. 如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=5,BC=3,则BD的长为().A.1 B.1.5 C.2 D.2.57.如图,在△ABC中,∠B=36°,∠C=72°,AD平分∠BAC交BC于点D.下列结论中错误的是()A.图中共有三个等腰三角形 B.点D在AB的垂直平分线上C.AC+CD=AB D.BD=2CD8. 用尺规作图“已知底边和底边上的高线,作等腰三角形”,有下列作法:①作线段BC=a;②作线段BC的垂直平分线m,交BC于点D;③在直线m上截取DA=h,连接AB、AC.这样作法的根据是().A.等腰三角形三线合一 B.等腰三角形两底角相等C.等腰三角形两腰相等 D.等腰三角形的轴对称性二.填空题9. 如图,△ABC中,AM平分∠CAB,CM=20cm,那么M到AB的距离是_________cm.10. 如图,△ABC中,H是高AD、BE的交点,且BH=AC,则∠ABC=________.11.如图,已知△ABC是等边三角形,点O是BC上任意一点,OE、OF分别与两边垂直,等边三角形的高为1,则OE+OF的值为.12.如图所示,在△ABC中,AB=AC,点O在△ABC内,•且∠OBC=∠OCA,∠BOC=110°,则∠A的度数为________.13.如图,Rt△ABC中,∠B=90°,若点O到三角形三边的距离相等,则∠AOC=_________.14.一个等腰三角形的一条高等于腰长的一半,则这个等腰三角形的底角的度数是 .15.如图,六边形ABCDEF的六个内角都相等.若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于_________.16. (2016•抚顺)如图,点B的坐标为(4,4),作BA⊥x轴,BC⊥y轴,垂足分别为A,C,点D为线段OA的中点,点P从点A出发,在线段AB、BC上沿A→B→C运动,当OP=CD 时,点P的坐标为.三.解答题17.如图所示,已知在△ABC中,∠B=60°,△ABC的角平分线AD、CE相交于点O,求证:AE+CD=AC.18.已知:如图,在△ABC中,AB=AC,∠BAC=30°.点D为△ABC内一点,且DB=DC,∠DCB=30°.点E为BD延长线上一点,且AE=AB.(1)求∠ADE的度数;(2)若点M在DE上,且DM=DA,求证:ME=DC.19.阅读下面材料:学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,小聪继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.小聪将命题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E.小聪想:要想解决问题,应该对∠B进行分类研究.∠B可分为“直角、钝角、锐角”三种情况进行探究.第一种情况:当∠B是直角时,如图1,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据“HL”定理,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是锐角时,如图2,BC=EF,∠B=∠E<90°,在射线EM上有点D,使DF=AC,画出符合条件的点D,则△ABC和△DEF的关系是;A.全等 B.不全等 C.不一定全等第三种情况:当∠B是钝角时,如图3,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E>90°,求证:△ABC≌△DEF.20.已知:△ABC中,AD平分∠BAC交BC于点D,且∠ADC=60°.问题1:如图1,若∠ACB=90°,AC=m AB,BD=n DC,则m的值为_________,n的值为__________.问题2:如图2,若∠ACB为钝角,且AB>AC,BD>DC.(1)求证:BD-DC<AB-AC;(2)若点E在AD上,且DE=DB,延长CE交AB于点F,求∠BFC的度数.【答案与解析】一.选择题1. 【答案】A;【解析】∵△A′DE是△ABC翻折变换而成,∴∠AED=∠A′ED,∠ADE=∠A′DE,∠A=∠A′=75°,∴∠AED+∠ADE=∠A′ED+∠A′DE=180°-75°=105°,∴∠1+∠2=360°-2×105°=150°.2. 【答案】D;【解析】(1)△ABC≌△DEF(SAS);故A正确;(2)△ABC≌△DEF(SSS);故B正确;(3)△ABC≌△DEF(ASA);故C正确;(4)无法证明△ABC≌△DEF,故D错误.3. 【答案】C;【解析】答案A是假命题,因为互补的两角不一定有一条公共边;答案B是假命题,同旁内角不一定互补,在两直线平行的前提下,同旁内角互补;答案C是真命题;答案B是假命题,一个角的补角不一定大于这个角,也可能小于或等于这个角.4. 【答案】A;【解析】因为知道AD的长,所以只要求出AD边上的高,就可以求出△ADE的面积.过D作BC的垂线交BC于G,过E作AD的垂线交AD的延长线于F,构造出Rt△EDF≌Rt△CDG,求出GC的长,即为EF的长,然后利用三角形的面积公式解答即可.5. 【答案】C;【解析】首先根据题意可得MN是AB的垂直平分线,即可得AD=BD,又由△ADC的周长为10,求得AC+BC的长,则可求得△ABC的周长.6. 【答案】A;【解析】延长BD交AC于E,由题意,BC=CE=3,AE=BE=5-3=2,且BD=DE=12BE=1.7. 【答案】D;【解析】解:A、在△ABC中,∠B=36°,∠C=72°,∴∠BAC=180°﹣36°﹣72°=72°,∵AD平分∠BAC,∴∠DAC=∠DAB=36°,即∠DAB=∠B,∠BAC=∠C,∠ADC=36°+36°=72°=∠C,∴△ADB、△ADC、△ABC都是等腰三角形,故本选项错误;B、∵∠DAB=∠B,∴AD=BD,∴D在AB的垂直平分线上,故本选项错误;C、在AB上截取AE=AC,连接DE,在△EAD和△CAD中∴△EAD≌△CAD,∴DE=DC,∠C=∠AED=72°,∵∠B=36°,∴∠EDB=72°﹣36°=36°=∠B,∴DE=BE,即AB=AE+BE=AC+CD,故本选项错误;D、∵CD=DE=BE,DE+BE>BD,∴BD<2DC,故本选项正确;故选D.8. 【答案】A;解析】易证∴△EFA≌△ABG得AF=BG,AG=EF.同理证得△BGC≌△DHC得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16,故S=12(6+4)×16-3×4-6×3=50.二.填空题9. 【答案】20;【解析】过M作MD⊥AB于D,可证△ACM≌△ADM,所以DM=CM=20cm.10.【答案】45°;【解析】Rt△BDH≌Rt△ADC,BD=AD.11.【答案】1;【解析】连接AO,△ABO的面积+△ACO的面积=△ABC的面积,所以OE+OF=等边三角形的高.12.【答案】40°;【解析】∵AB=AC,所以∠ABC=∠ACB,又∵∠OBC=∠OCA,∴∠ABC+∠ACB=2(∠OBC+∠OCB),∵∠BOC=110°,∴∠OBC+∠OCB=70°,∴∠ABC+∠ACB=140°,∴∠A=180°-(∠ABC+∠ACB)=40°.13.【答案】135°;【解析】点O 为角平分线的交点,∠AOC =180°-12(∠BAC +∠BCA )=135°. 14. 【答案】30°或75°或15°;【解析】根据不同边的高分类讨论.15.【答案】15;【解析】因为六边形ABCDEF 的六个内角都相等为120°,每个外角都为60°,向外作三个三角形,进而得到四个等边三角形,如图,设AF =x ,EF =y ,则有x +1+3=x +y +2=3+3+2=8所以x =4,y =2,六边形ABCDEF 的周长=1+3+3+2+2+4=15.16.【答案】(2,4)或(4,2);【解析】①当点P 在正方形的边AB 上时,Rt △OCD ≌Rt △OAP ,∴OD=AP ,∵点D 是OA 中点,∴OD=AD=OA ,∴AP=AB=2,∴P (4,2),②当点P 在正方形的边BC 上时,同①的方法,得出CP=BC=2,∴P (2,4).三.解答题17.【解析】证明:如图所示,在AC 上取点F ,使AF =AE ,连接OF ,在△AEO 和△AFO 中,,12,AE AF AO AO =⎧⎪∠=∠⎨⎪=⎩∴ △AEO ≌△AFO (SAS ).∴ ∠EOA =∠FOA .∵ ∠B =60°,∴ ∠AOC =180°-(∠OAC +∠OCA)=180°-12(∠BAC +∠BCA) =180°-12(180°-60°) =120°.∴ ∠AOE =∠AOF =∠COF =∠DOC =60°.在△COD 和△COF 中,,,,COD COF OC OC OCD OCF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ △COD ≌△COF (ASA ).∴ CD =CF .∴ AE +CD =AF +CF =AC .18.【解析】解:(1)如图.∵△ABC 中,AB =AC ,∠BAC =30°,∴∠ABC =∠ACB =(18030)2-÷=75°.∵DB =DC ,∠DCB =30°,∴∠DBC =∠DCB =30°.∴∠1=∠ABC -∠DBC =75°-30°=45°.∵AB =AC ,DB =DC ,∴AD 所在直线垂直平分BC .∴AD 平分∠BAC .∴∠2=21∠BAC = 3021⨯=15°. ∴∠ADE =∠1+∠2 =45°+15°=60°.(2)证明:连接AM ,取BE 的中点N ,连接AN .∵△ADM 中,DM =DA ,∠ADE =60°,∴△ADM 为等边三角形.∵△ABE 中,AB =AE ,N 为BE 的中点,∴BN =NE ,且AN ⊥BE .∴DN =NM .∴BN -DN =NE -NM ,即 BD =ME .∵DB =DC ,∴ME =DC .19.【解析】解:第二种情况:如图1所示:以F 为圆心,AC 长为半径画弧,交射线EM 于D 、D′;则DF=D′F=AC,△DEF≌△ABC,△D′EF 和△ABC 不全等; 故选:C ;第三种情况:证明:如图2所示:过点C 作CG⊥AB 交AB 的延长线于点G ,过点F 作DH⊥DE 交DE 的延长线于点H ,∵∠B=∠E,∴180°﹣∠B=180°﹣∠E,即∠CBG=∠FEH,在△CBG 和△FEH 中,,∴△CBG≌△FEH(AAS ),∴CG=FH,在Rt△ACG 和Rt△DFH 中,,∴Rt△ACG≌Rt△DFH(HL ),∴∠A=∠D,在△ABC 和△DEF 中,,∴△ABC≌△DEF(AAS ).20.【解析】证明:问题1:21,2 ; 问题2:(1)在AB 上截取AG ,使AG =AC ,连接GD .(如图) ∵AD 平分∠BAC ,∴∠1=∠2.在△AGD 和△ACD 中,AG AC 12 A D AD⎧⎪∠∠⎨⎪⎩===∴△AGD ≌△ACD .∴DG =DC .∵△BGD 中,BD -DG <BG ,∴BD -DC <BG .∵BG = AB -AG = AB -AC ,∴BD -DC <AB -AC .(2)∵由(1)知△AGD ≌△ACD ,∴GD =CD ,∠4 =∠3=60°.∴∠5 =180°-∠3-∠4=180°-60°-60°=60°. ∴∠5 =∠3.在△BGD 和△ECD 中,53DB DE DG DC =⎧⎪∠∠⎨⎪=⎩=,∴△BGD ≌△ECD .∴∠B =∠6.∵△BFC 中,∠BFC =180°-∠B -∠7 =180°-∠6-∠7 =∠3, ∴∠BFC =60°.。
全等三角形全章练习

全等三角形全章练习1.如图所示,△ AB3A ADE BC 的延长线过点 E,/ ACBN AED=105,/ CAD=10 ,/ B=50°,求/ DEF的度数 ____________________ 。
B2.如图,△ AOB中,/ B=30°,将厶AOB绕点0顺时针旋转 52°得到△ A OB边A B'与边0B交于点C( A'不在0B上),则/ A CO的度数为 _____________________________________________ 。
3.如图所示,在△ABC中,/ A=90°, D,E 分别是 AC,BC上的点,若△ ADE^A EDE^A EDC,则/C的度数是 __________________________4. _______________________________ 如图所示,把△ ABC绕点C顺时针旋转35°,得到△ A B' C,A' B'交AC于点D, 若/ A DC=90,则/ A= ______ 。
5 .如图,在梯形 ABCD 中,AD// BC, AB=DC,AC=DB 已知/ ABC=60,求/ ADC 的度数。
6.已知,如图所示, AB=AC,ADL BC 于 D,且 AB+AC+BC=50cn 而 AB+BD+AD=40cm, 贝y AD = .7.如图,Rt △ ABC 中,/ BAC=90 , AB=AC 分别过点 B, C,作过点 A 的直线的垂线 BD,CE, 垂足为 D,E ,若 BD=3, CE=2,则 DE= .& 如图,AD 是厶ABC 的角平分线,DEL AB,DF 丄AC,垂足分别是 E,F ,连接EF,交AD 于G,AD 与EF 垂直吗?证明你的结论。
CDCE1•如图,已知△ ABC中,延长 AC边上的中线 BE到G,使EG=BE,延长 AB边上的中线CD 到 F,使 DF=CD,连接 AF,AG.(1)补全图形⑵ AF于AG的大小关系如何?证明你的结论。
(完整版)全等三角形练习题及答案

全等三角形练习题及答案1、下列判定直角三角形全等的方法,不正确的是()A、两条直角边对应相等。
B、斜边和一锐角对应相等。
C、斜边和一条直角边对应相等。
D、两锐角相等。
2、在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A.∠AB.∠BC.∠CD.∠B或∠C3、下列各条件中,不能作出唯一三角形的是()A.已知两边和夹角B.已知两角和夹边C.已知两边和其中一边的对角 D.已知三边4、在△ABC与△DEF中,已知AB=DE;∠A=∠D;再加一个条件,却不能判断△ABC与△DEF全等的是().A. BC=EF B.AC=DFC.∠B=∠E D.∠C=∠F5、使两个直角三角形全等的条件是()A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条直角边对应相等6、在△ABC和△A'B'C'中有①AB=A'B',②BC=B'C',③AC=A'C',④∠A=∠A',⑤∠B=∠B',⑥∠C=∠C',则下列各组条件中不能保证△ABC≌△A'B'C'的是()A、①②③B、①②⑤C、①②④D、②⑤⑥7、如图,已知∠1=∠2,欲得到△ABD≌△ACD,还须从下列条件中补选一个,错误的选法是()A、∠ADB=∠ADCB、∠B=∠CC、DB=DCD、AB=AC8、如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠BAC的度数为A. 40°B. 80°C.120°D. 不能确定9、如图,AE=AF,AB=AC,EC与BF交于点O,∠A=600,∠B=250,则∠EOB的度数为()A.600 B.700C.750D.85010、如图,已知AB=DC,AD=BC,E.F在DB上两点且BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF= ( )A. 150°B.40°C.80°D. 90°11、①两角及一边对应相等②两边及其夹角对应相等③两边及一边所对的角对应相等④两角及其夹边对应相等,以上条件能判断两个三角形全等的是( )A.①③ B.②④ C.②③④ D.①②④12、下列条件中,不能判定两个三角形全等的是()A.三条边对应相等 B.两边和一角对应相等C.两角及其一角的对边对应相等 D.两角和它们的夹边对应相等13、如图,已知,,下列条件中不能判定⊿≌⊿的是()(A)(B)(C)(D)∥14、如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠D的度数为().A.50° B.30° C.80° D.100°15、如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC的度数是.16、在△ABC和△中,∠A=44°,∠B=67°,∠=69°,∠=44°,且AC=则这两个三角形全等(填“一定”或“不一定”)17、如图,,,,在同一直线上,,,若要使,则还需要补充一个条件:或.18、(只需填写一个你认为适合的条件)如图,已知∠CAB=∠DBA,要使△ABC≌△BAD,需增加的一个条件是。
全等三角形测试题及答案

全等三角形测试题及答案一、选择题1. 下列选项中,哪两个三角形是全等的?A. ∠A=∠B,AB=BCB. ∠A=∠B,AC=BDC. ∠A=∠C,AB=ACD. ∠A=∠B,AB=BC,AC=BD2. 如果两个三角形的对应边成比例,且夹角相等,这两个三角形是:A. 相似但不全等B. 必然全等C. 不一定全等D. 无法判断二、填空题3. 根据全等三角形的性质,如果两个三角形的对应角相等,且对应边成比例,那么这两个三角形是_________。
4. SAS全等条件指的是_________。
三、判断题5. 如果两个三角形的三边对应相等,那么这两个三角形一定全等。
()6. 根据HL全等条件,直角三角形中,如果斜边和一条直角边对应相等,那么这两个直角三角形全等。
()四、解答题7. 已知三角形ABC和三角形DEF,其中∠A=∠D=90°,AB=DE,AC=DF,求证:三角形ABC全等于三角形DEF。
8. 如图所示,三角形ABC和三角形DEF在平面直角坐标系中,点A(2,3),B(4,5),C(1,1),点D(-1,-2),E(1,-1),F(-2,-4)。
若AB=DE,AC=DF,∠BAC=∠EDF,请证明三角形ABC全等于三角形DEF。
五、综合题9. 在三角形ABC中,点D在BC上,若AD平分∠BAC,且BD=DC,求证:AB=AC。
10. 已知三角形ABC和三角形DEF,其中AB=DE,∠B=∠D,∠C=∠E,求证:三角形ABC全等于三角形DEF。
答案:一、选择题1. 答案:D2. 答案:A二、填空题3. 答案:相似4. 答案:边角边三、判断题5. 答案:正确6. 答案:正确四、解答题7. 解:由于∠A=∠D=90°,AB=DE,AC=DF,根据直角三角形的HL全等条件,我们可以得出三角形ABC全等于三角形DEF。
8. 解:由于AB=DE,AC=DF,∠BAC=∠EDF,根据SAS全等条件,我们可以得出三角形ABC全等于三角形DEF。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
′ O全等三角形全章练习1.如图所示,△AB C ≌△ADE ,BC 的延长线过点E ,∠ACB=∠AED=105°,∠CAD=10°, ∠B=50°,求∠DEF 的度数 。
2.如图,△AOB 中,∠B=30°,将△AOB 绕点O 顺时针旋转52°得到△A ′OB ′边A ′B ′与边OB 交于点C (A ′不在OB上),则∠A ′CO 的度数为 。
3.如图所示,在△ABC 中,∠A=90°,D,E 分别是AC,BC 上的点,若△ADB ≌△EDB ≌△EDC,则∠C 的度数是 。
4.如图所示,把△ABC 绕点C 顺时针旋转35°,得到△A ′B ′C,A ′B ′交AC 于点D , 若∠A ′DC=90°,则∠A= 。
5.如图,在梯形ABCD 中,AD ∥BC ,AB=DC,AC=DB ,已知∠ABC=60°,求∠ADC 的度数。
6.已知,如图所示,AB=AC,AD ⊥BC 于D,且AB+AC+BC=50cm,而AB+BD+AD=40cm,则AD= .7.如图,Rt △ABC 中,∠BAC=90°,AB=AC,分别过点B ,C,作过点A 的直线的垂线BD,CE,垂足为D,E ,若BD=3,CE=2,则DE= .8.如图,AD 是△ABC 的角平分线,DE ⊥AB,DF ⊥AC,垂足分别是E,F ,连接EF,交AD 于G,AD 与EF 垂直吗?证明你的结论。
C BD CFAE GABDCD A ECB1.如图,已知△ABC 中,延长AC 边上的中线BE 到G ,使EG=BE ,延长AB 边上的中线CD 到F ,使DF=CD,连接AF,AG . (1) 补全图形(2) AF 于AG 的大小关系如何?证明你的结论。
(3) F,A,G 三点的位置关系如何?证明你的结论。
2.如图,在△ABC 中,AD ⊥BC ,CE ⊥AB,垂直分别为D,E,AD,CE 交于点H ,已知EH=EB=3,AE=4,求CH 的长。
3.已知,如图,AB=AE, ∠B=∠E, ∠BAC=∠EAD, ∠CAF=∠DAF. 求证:AF ⊥CD4.如图,AD=BD,AD ⊥BC 于D,BE ⊥AC 于E,AD 于BE 相交于点H ,则BH 与AC 相等吗?为什么?B AEHDC5.△DAC, △EBC 均是等边三角形,AE,BD 分别与CD,CE 交于点M,N, 求证:(1)AE=BD (2)CM=CN (3) △CMN 为等边三角形(4)MN ∥BC6.如图,在△ABC 中,∠B=60°,AD,CE 是△ABC 的角平分线,且交于点O. 求证:AC=AE+CD7.如图,在△ABC 中,M 是BC 中点,AN 平分∠BAC,AN 垂直BN 于N ,已知AB=10,AC=16, 求MN 的长。
(中位线:连接三角形两边中点的线段,平行且等于第三边的一半)8.在△ABC 中,∠A=90°,AB=AC,M 是AC 边上的中点,AD ⊥BM 交BC 于D,交BM 于E. 求证:∠AMB=∠DMCCB ABNC MA EBD C1.已知如图所示,∠ADC=∠ABC=90°,AD=CD,DP ⊥AB 于P,DP=3,求四边形ABCD 的面积。
2.△ABC 内,∠BAC=60°,∠ACB=40°,P ,Q 分别在边BC,CA 上,并且AP,BQ 分别是∠BAC , ∠ABC 的角平分线。
求证:BQ+AQ=AB+BP3.已知D 是△ABC 的边BC 上一点,且CD=AB, ∠BDA=∠BAD,AE 是△ABD 的中线。
求证:AC=2AE4.已知:BD ,CE 是△ABC 的高,点F 在BD 上,BF=AC,点G 在CE 的延长线上,CG=AB. 求证:AG ⊥AFA P BCDBAEMCDABPCQB E D CA5.如图所示,在△ABC 中,∠ABC=110°,∠ACB=40°,CE 是∠ACB 的角平分线,D 是AC 上一点,若∠CBD=40°,求∠CED 的度数。
6.如图,已知E 是正方形ABCD 的边CD 的中点,点F 在BC 上,且∠DAE=∠FAE. 求证:AF=AD+CF7.已知:在△ABC 中,∠BAC=90°,AB=AC,AE 是过点A 的一条直线,且BD ⊥AE 于D ,CE ⊥AE 于E,(1)当直线AE 处于如图①的位置时,有BD=DE+CE,请说明理由;(2)当直线AE 处于如图②的位置时,则BD,DE,CE 的关系如何?请说明理由;(3)归纳(1)(2),请用简洁的语言表达BD,DE,CE 之间的关系。
①A D CBEABCEDCC②1.如图所示,已知△ABC 中,AB=AC,D 是CB 延长线上一点,∠ADB=60°,E 是AD 上一点,且DE=DB,求证:AE=BE+BC2.如图所示,∠BAC=90°,AB=AC,AE 是过A 的一条直线,B,C 在AE 的异侧,BD ⊥AE 于D,C, CE ⊥AE 于E,求证:BD=DE+CE3.如图所示,已知,AD 为△ABC 的高,E 为AC 上一点,BE 交AD 于F ,且有BF=AC,FD=CD. 求证:BE ⊥ACADE BCBCEA D ABDECDC4.如图所示,在△ABC 中,AD 为∠BAC 的角平分线,DE ⊥AB 于E,DF ⊥AC 于F, △ABC 的面积是28cm 2,AB=20cm,AC=8cm,求DE 的长。
5.如图所示,已知在△AEC 中,∠E=90°,AD 平分∠EAC,DF ⊥AC,垂足为F,DB=DC. 求证:BE=CF.6如图所示,在△ABC 中,AB=AC, ∠A=100°,BD 平分∠ABC. 求证:AD+BD=BC7.如图所示,△ABE 和△ADC 是△ABC 分别沿边AB 和AC 翻折180°形成的, 若∠1:∠2:∠3=28:5:3,则∠4的度数 。
8.如图所示,△ABC 中,∠ACB=110°,∠ABC=40°,BE 平分∠ABC 交AC 于点E ,D 是AB 边上一点,∠DCB=40°,求∠DEC 的度数。
AEFBDCAFCBC1. 如图所示,BD=DC,DE ⊥BC,交∠BAC 的平分线于E ,EM ⊥AB,EN ⊥AC,求证:BM=CN2. 如图所示,∠B=∠C=90°,M 是BC 上一点,且∠AMD=90°,DM 平分∠ADC 。
求证:AM 平分∠DAB2.已知:如图3-49,AD ∥BC ,∠1=∠2,∠3=∠4,直线DC 过E 点交AD 于D ,交BC 于C .求证:AD +BC=AB .3.如图:已知ABC △中,AB AC =,90BAC =∠,P 是BC 中点,F 是AC边上的一个动点,连接PF ,把PC △F 绕P 顺时针旋转90度时与PA △E 重合,回答下列问题:(1)判CB DEAAC NEM BDA BMDC断EPF △的形状,并说明理由(2)在ABC △中,若AB=2cm ,求四边形AEPF 的面积4.已知:如图3-50,AB=DE ,直线AE ,BD 相交于C ,∠B +∠D=180°,AF ∥DE ,交BD 于F .求证:CF=CD .5.如图所示,已知△ABC 中,AB=AC,D 是CB 延长线上一点,∠ADB=60°,E 是AD 上一点,且DE=DB,求证:AE=BE+BC23.如图, ∠AOB 是一个任意角,在边OA,OB 上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N 重合,过角尺顶点C 的射线OC 便是∠AOB 的平分线,为什么?ADE BCB AFE5、如图△ABC中,边AB、BC的垂直平分线交于点P,(1)求证:PA=PB=PC(2)点P是否也在AC的垂直平分线上呢?(12分)2、如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于D,PE⊥OB于E,F是OC上一点,连接DF和EF,求证:DF=EF。
(10分)3、如图,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别为E、F,连接EF,EF与AD交于G,AD与EG垂直吗?证明你的结论。
24.已知:如图,B F⊥AC于点F,CE⊥AB于点E,且BD=CD求证:⑴△BDE≌△CDF⑵点D在∠A的平分线上BADC EF27.在ΔABC中,∠A=90°,AB=AC,BD平分∠ABC交AC于点D,CE⊥BD于E,若BD=m,CE=n,试探究m,n之间的关系式。
25.如图所示,BD是∠ABC的平分线,DE⊥AB于点E,AB=36 cm,BC=24 cm,SΔABC=144 cm,求DE的长( 8分)26.已知:如图1,点C为线段AB上一点,△ACM,△CBN都是等边三角形,AN交MC于点E,BM交CN 于点F.(1)求证:AN=BM;(2)求证:△CEF为等边三角形;(3)将△ACM绕点C按逆时针方向旋转90O,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立(不要求证明).( 8分)19、如图,已知AB∥CD,O是∠ACD与∠BAC的平分线的交点,OE⊥AC于E,且OE=2,则AB 与CD之间的距离为A BEOG FHADCEBABDC图1 图2D CE AB10. 如图,△ABC 的三边AB 、BC 、CA 长分别是20、30、40,其三条 角平分线将△ABC 分为三个三角形,则S △ABO ︰S △BCO ︰S △CAO 等于( )A .1︰1︰1B .1︰2︰3C .2︰3︰4D .3︰4︰5 15.正方形ABCD 中,AC 、BD 交于O,∠EOF =90o,已知AE =3,CF =4, 则S △BEF 为___.12.如图所示,已知△ABC 和△BDE 都是等边三角形。
下列结论:①AE=CD ;②BF=BG ;③BH 平分∠AHD ;④∠AHC=600,⑤△BFG 是等边三角形;⑥ FG ∥AD 。
其中正确的有( )A 3个 B 4个 C 5个 D 6个16.如图所示,AD 是△ABC 中BC 边上的中线,若AB=2, AC=4,则AD 的取值范围是20.(2008年泰安市)两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B ,C ,E 在同一条直线上,连结DC .(8分)(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母); (2)证明:DC22.如图,在R t △ABC 中,∠ACB=450,∠BAC=900,AB=AC ,点D 是AB 的中点,AF ⊥CD 于H 交BC 于F ,BE ∥AC 交AF 的延长线于E ,求证:BC 垂直且平分DE. (8分)23、如图:在△ABC 中,BE 、CF 分别是AC 、AB 两边上的高,在BE 上截取BD=AC ,在CF 的延长线上截取CG=AB ,连结AD 、AG 。