注气提高采收率机理

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1注烟道气、二氧化碳驱油机理

1.1注烟道气提高采收率

由于烟道气驱的成本较氮气驱高,因此发展缓慢。近年来随着人们对环境治理力度的加大以及原油价格的上涨,烟道气驱油技术又有了发展的空间。因为如果考虑环境效益,烟道气驱要比氮气驱经济划算。所以烟道气近年来也得到了较好的发展。

1.1.1烟道气驱提高采收率机理

烟道气通常含有80%~85%的氮气和15%~20%的二氧化碳以及少量杂质,也称排出气体,处理过的烟道气,可用作驱油剂。烟道气的化学成分不固定,其性质主要取决于氮气和二氧化碳在烟道气中所占的比例。烟道气具有可压缩性、溶解性、可混相性及腐蚀性。根据烟道气中所含气体的组成,提高采收率机理主要是二氧化碳驱和氮气驱机理。

1.1.1.1二氧化碳机理

由于烟道气中二氧化碳的浓度不高,所以不容易达到混相驱的要求,主要是利用二氧化碳的非混相驱机理。即降低原油黏度、使原油膨胀、降低界面张力、溶解气驱、乳化作用及降压开采。由于二氧化碳在油中的溶解度大,在一定的温度及压力下,当原油与CO2接触时,原油体积增加,黏度降低。CO2在原油中的溶解还可以降低界面张力及形成酸性乳化液。CO2在油中的溶解度随压力的增加而增加,当压力降低时,饱和了CO2的原油中的CO2就会溢出,形成溶解气驱。与CO2驱相关的另一个开采机理是由CO2形成的自由气饱和度可以部分代替油藏中的残余油[18]。

1.2.1.2氮气驱机理

注氮气提高采收率机理主要有:(1)氮气具有比较好的膨胀性,使其具有良好的驱替、气举和助排等作用;可以保持油气藏流体的压力;(2)氮气可以进入

水不能进入的低渗透层段,可降低渗透带处于束缚状态的原油驱替成为可流动的原油;(3)氮气被注入油层后,可在油层中形成束缚气饱和度,从而使含水饱和度及水相渗透率降低,在一定程度上提高后续水驱的波及体积;(4)氮气不溶于水,微溶于油,能够形成微气泡,与油水形成乳状液,降低原油黏度,提高采收率。

氮气与地层油接触产生的溶解及抽提效应,一方面溶解效应使原油黏度、密度下降,改善原油性质,使处于驱替前缘被富化的气体黏度、密度等性质接近于地层原油,气—油两相间的界面张力则不断降低,在合适的油层压力下甚至降到零而产生混相状态,在这种状态下,注氮气驱油效率将明显提高;另一方面,抽提效应使原油性质变差,这种抽提作用在油井近井地带表现更明显、更强烈。

烟道气驱更适用于稠油油藏、低深透油藏、凝析气藏和陡构造油藏。

1.2注CO2提高采收率

在各种注气方式中,注二氧化碳提高原油采收率的研究已经进行了几十年,特别是近年来,随着技术进步和环境要求的需要,二氧化碳驱显得越来越重要,包括我国在内的很多国家都开展了注二氧化碳驱的现场实验。

1.2.1 CO2驱油机理

将CO2作为油藏提高采收率的驱油剂已研究多年,在油田开发后期,注入CO2,能使原油膨胀,降低原油粘度,减少残余油饱和度,从而提高原油采收率,增加原油产量。CO2能够提高原油采收率的原因有:

(1)CO2溶于原油能使原油体积膨胀,从而促使充满油的空隙体积也增大,这为油在空隙介质中提供了条件。若随后底层注水,还可使油藏中的残余油量减少。

(2)CO2溶于原油可使原油粘度降低,促使原油流动性提高,其结果是用少量的驱油剂就可达到一定的驱油效率。

(3)CO2溶于原油能使毛细管的吸渗作用得到改善,从而使油层扫油范围扩大,使水、油的流动性保持平衡。

(4)CO2溶于水使水的粘度有所增加,当注入粘度较高的水时,由于水的流动性降低,从而使水油粘度比例随着油的流动性增大而减少。

(5)CO2水溶液能与岩石的碳酸岩成分发生反应,并使其溶解,从而提高

储集层的渗透率性能,使注入井的吸收能力增强。

(6)CO2溶于水可降低油水界面的表面张力,从而提高驱油效率。

(7)CO2可促使原油中的轻质烃类(C2~C3)被抽提出来,从而使残余油饱和度明显降低。在不同原油的成分、温度和压力条件下,二氧化碳具有无限制地与原油混相的能力,实际上可以达到很好的驱油目的。

(8)CO2在油水中的扩散系数较高,其扩散作用可使二氧化碳本身重新分配并使相系统平衡状态稳定。

(9)注入碳酸水,可大大降低残余油饱和度,因为在含水带内的碳酸水前缘,能形成和保持二氧化碳气游离带。

CO2技术的作用机理可分为CO2混相驱和CO2非混相驱。CO2提高采收率的作用主要有促使原油膨胀、改善油水流度比、溶解气驱等。一般稀油油藏主要采用CO2混相驱,而稠油油藏主要采用CO2非混相驱。

在稀油油藏条件下CO2易与原油发生混相,在混相压力下,处于超临界状态下的CO2可以降低所波及的油水界面张力。CO2注入浓度越大,油水相界面张力越小,原油越容易被驱替。通过调整注入气体的段塞使CO2形成混相,可以提高原油采收率增加幅度。

非混相CO2驱开采稠油的机理主要是:降低原油粘度,改善油水流度比,使原油膨胀,乳化作用及降压开采。CO2在油中的溶解度随压力增加而增加。当压力降低时,CO2从饱和CO2原油中溢出并驱动原油,形成溶解气驱。气态CO2渗入地层与地层水反应产生的碳酸,能有效改善井筒周围地层的渗透率。提高驱油机理。与CO2驱相关的另一个开采机理是由CO2形成的自由气可以部分代替油藏中的残余油。

CO2驱油机理主要有以下几点:

(1)降低原油粘度

CO2溶于原油后,降低了原油粘度,原油粘度越高,粘度降低程度越大。原油粘度降低时,原油流动能力增加,从而提高了原油产量。并且原油初始粘度越高,CO2降粘效果越明显,如下表1-1所示。

(2)改善原油与水的流度比

大量的CO2溶于原油和水,将使原油和水碳酸化。原油碳酸化后,其粘度随之降低,大庆勘探开发研究院在45℃和12.7MPa的条件下进行了有关试验,试验表明,CO2在油田注入水中的溶解度为5%(质量),而在原油中的溶解度为

相关文档
最新文档