江苏省江阴初级中学中考数学一模试题
初中数学 江苏省江阴初级中学中考模拟数学一模考试题考试卷及答案

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:已知,则()A.-8 B.-6 C.6 D.8试题2:估计的值在()A.2到3之间B. 3到4之间C.4到5之间D.5到6之间试题3:下列计算正确的是()A.B.C.3-=3 D.×=7试题4:如图,菱形ABCD的对角线AC、BD的长分别是6cm、8cm,AE⊥BC于点E,AE的长是()A.cm B.cm C.cm D.c m试题5:在一个不透明的口袋中,装有3个红球,2个折球,除颜色不同外其余都相同,则随机从口袋中摸出一个球为红色的概率是()A.B.C.D.试题6:下列图形中,既是中心对称图形又有且只有两条对称轴对称图形是()A.正三角形B.正方形C.圆D.菱形试题7:将二次函数的图象向下平移1个单位,则平移后的二次函数的解析式为()A.B.C.D.试题8:在第六次全国人口普查中,无锡市常住人口约为800万人,其中65岁及以上人口占9.2%.则该市65岁及以上人口用科学记数法表示约为()A.0.736×106人B.7.36×104人C.7.36×105人D.7.36×106 人试题9:如图,在正方形ABCD中,AC、BD相交于点O,把△ABC折叠,使AB落在AC上,点B与AC上的点E重合,展开后,折痕AG交BD于点F,连结EG、EF下列结论:①tan∠AGB=2 ②图中有9对全等三角形③若将△GEF沿EF折叠,则点G不一定落在AC上④BG=BF⑤S四边形GFOE=S△AOF,上述结论中正确的个数是()A.1个B.2个C.3个D.4个试题10:如图,平面直角坐标系中,直线与反比例函数相交于点A,AB⊥x轴,S△ABC=1,则k的值为()A.B.C.D.试题11:使根式有意义的x的取值范围是____________________.试题12:分解因式x3-9x=.试题13:若抛物线y=ax2 +bx+c的顶点是A(2,1),且经过点B(1,0),则抛物线的函数关系式为.试题14:如图,将直角三角板60°角的顶点放在圆心O上,斜边和一直角边分别与⊙O相交于A、B两点,P 是优弧AB上任意一点(与A、B不重合),则∠APB=____________________.试题15:调查市场上某种食品的色素含量是否符合国家标准,这种调查适合用____________________.(填入全国调查或者抽样调查)试题16:如图,AB、CD是⊙O的两条互相垂直的直径,点O1、O2、O3、O4分别OA、OB、OC、OD的中点,若⊙O的半径是2,则阴影部分的面积为____________________.试题17:如图,正方形ABCD的边长为3,点E,F分别在边AB,BC上,AE=BF=1,小球P从点E出发沿直线向点F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P第一次碰到点E时,小球P所经过的路程长为______________.试题18:如图,已知⊙O经过点A(2,0)、C(0,2),直线y=kx(k≠0)与⊙O分别交于点B、D,则四点A、B、C、D组成的四边形面积的最大值为.试题19:计算:试题20:先化简,再求值:,其中x=.试题21:解不等式组试题22:解方程:x2+3x-2=0;试题23:如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:BC∥EF.试题24:某中学食堂为学生提供了四种价格的午餐供其选择,这四种价格分别是:A.3元,B.4元,C.5元,D.6元.为了解学社对四种午餐的购买情况,学校随机抽样调查了甲、乙两班学生某天购买四种午餐的情况,依据统计数据制成如下的统计图表:甲、乙两班学生购买四种午餐情况统计表A B C D甲 6 22 16 6乙?13 25 3(1)求乙班学生人数;(2)求乙班购买午餐费用的中位数;(3)已知甲、乙两班购买午餐费用的平均数均为4.44元,从平均数和众数的角度分析,哪个班购买的餐价格较高;(4)从这次接受调查的学生中,随机抽查一人,恰好是购买C种午餐的学生的概率是多少?试题25:如图所示的方格地面上,标有编号1、2、3的3个小方格地面是空地,另外6个小方格地面是草坪,除此以外小方格地面完全相同.(1)一只自由飞行的小鸟,将随意地落在图中所示的方格地面上,求小鸟落在草坪上的概率;(2)现准备从图中所示的3个小方格空地中任意选取2个种植草坪,则编号为1、2的2个小方格空地种植草坪的概率是多少(用树状图或列表法求解)?试题26:由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?(3)若乙型号手机的售价为1400元,为了促销,公司决定每售出一台乙型号手机,返还顾客现金a元,而甲型号手机仍按今年的售价销售,要使(2)中所有方案获利相同,a应取何值?试题27:如图四边形ABCD中,已知∠A=∠C=30°,∠D=60°,AD=8,CD=10.(1)求AB、BC的长;(2)已知,半径为1的⊙P在四边形ABCD的外面沿各边滚动(无滑动)一周,求⊙P在整个滚动过程中所覆盖部分图形的面积.试题28:如图,已知直线交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.试题29:提出问题:如图,在“儿童节”前夕,小明和小华分别获得一块分布均匀且形状为等腰梯形和直角梯形的蛋糕(AD∥BC),在蛋糕的边缘均匀分布着巧克力,小明和小华决定只切一刀将自己的这块蛋糕平分(要求分得的蛋糕和巧克力质量都一样).背景介绍:这条分割直线既平分了梯形的面积,又平分了梯形的周长,我们称这条线为梯形的“等分积周线”.尝试解决:(1)小明很快就想到了一条分割直线,而且用尺规作图作出.请你帮小明在图1中作出这条“等分积周线”,从而平分蛋糕.(2)小华觉得小明的方法很好,所以模仿着在自己的蛋糕(图2)中画了一条直线EF分别交AD、BC于点E、F.你觉得小华会成功吗?如能成功,说出确定的方法;如不能成功,请说明理由.(3)通过上面的实践,你一定有了更深刻的认识.若图2中AD∥BC,∠A=90°,AD<BC,AB=4 cm,BC =6 cm,CD= 5cm.请你找出梯形ABCD的所有“等分积周线”,并简要的说明确定的方法.试题30:如图,顶点为A的抛物线y=a(x+2)2-4交x轴于点B(1,0),连接AB,过原点O作射线OM∥AB,过点A作AD∥x轴交OM于点D,点C为抛物线与x轴的另一个交点,连接CD.(1)求抛物线的解析式、直线AB的解析式;(2)若动点P从点O出发,以每秒1个单位长度的速度沿着射线OM运动,同时动点Q从点C出发,以每秒2个单位长度的速度沿线段CO向点O运动,当其中一个点停止运动时另一个点也随之停止运动.问题一:当t为何值时△OPQ为等腰三角形;问题二:当t为何值时,四边形CDPQ的面积最小?并求此时PQ的长.试题1答案:B;试题2答案:B;试题3答案:D;试题4答案:D;试题5答案:DD;试题7答案: A;试题8答案: C;试题9答案: C;试题10答案:A试题11答案:x≤3;试题12答案:x(x +3)( x-3);试题13答案: =-x2+4x-3;试题14答案: 30°;试题15答案: 抽样调查;试题16答案: 8;试题17答案:;;三、解答题试题19答案:解:===试题20答案:解:原式==,x=时,原式=.试题21答案:解:由x+2≥1得x≥-1,由2x+6-3x得x<3,∴不等式组的解集为-1≤x<3.试题22答案:解:∴,∴,试题23答案:解:通过证△ABC≌△DEF,得∠ACB=∠DFE,说明BC∥EF试题24答案:解:(1)13÷26%=50(人);(2)乙班购买A种午餐的人数为50×18%=9(人),中位数是5元;(3)甲、乙两班购买午餐费用的平均数相同,甲班购买午餐费用的众数是4元,乙班购买午餐费用的众数是5元,从平均数与众数可以看出乙班购买的午餐的价格较高;(4)=.所以,恰好是购买C种午餐的学生的概率是.试题25答案:解:(1)P(小鸟落在草坪上)==.(2)用树状图或表格列出所有可能的结果:“树状图”开始1 2 32 3 1 3 1 2列表:1 2 31 (1,2) (1,3)2 (2,1) (2,3)3 (3,1) (3,2)所以编号为1,2,的2个小方格空地种植草坪的概率=.试题26答案:解:(1)设今年甲型号手机每台售价为x元,由题意得,=,解得x=1500.经检验x=1500是方程的解.故今年甲型号手机每台售价为1500元.(2)设购进甲型号手机m台,由题意得,17600≤1000m+800(20﹣m)≤18400,8≤m≤12.因为m只能取整数,所以m取8、9、10、11、12,共有5种进货方案.(3)方法一:设总获利W元,则W=(1500﹣1000)m+(1400﹣800﹣a)(20﹣m),W=(a﹣100)m+12000﹣20a.所以当a=100时,(2)中所有的方案获利相同.试题27答案:解:(1)AB=,BC=(2)在⊙P的整个滚动过程中,圆心P的运动路径长为18+;所以⊙P在整个滚动过程中,所覆盖部分图形的面积为36+;试题28答案:.解:(1)证明:连接OC,因为点C在⊙O上,OA=OC,所以因为,所以,有.因为AC平分∠PAE,所以所以又因为点C在⊙O上,OC为⊙O的半径,所以CD为⊙O的切线.(2)解:过O作,垂足为F,所以,所以四边形OCDF为矩形,所以因为DC+DA=6,设,则因为⊙O的直径为10,所以,所以.在中,由勾股定理知即化简得,解得或x=9.由,知,故.从而AD=2,因为,由垂径定理知F为AB的中点,所以试题29答案:解:(1)作线段AD(或BC)的中垂线即可.(2)小华不会成功.直线平分梯形ABCD面积,则(AE+BF)AB=(ED+CF)AB ∴AE+BF =ED+CF,又∵AB<CD,∴此时AE+BF+ AB<ED+CF+ CD∴小华不可能成功(3)可求得:S梯形ABCD=18,C梯形ABCD=18,由(2)可知直线分别交AD、BC于点E、F时不可能,只要分以下几种情况:①当直线分别交AD、AB于E、F时有S△AEF≤S△ABD,又∵S△ABD=6<9,∴不可能同理,当直线分别交AD、CD于E、F时S△AEF≤S△ACD<9,∴不可能②当直线分别交AB、BC于E、F时设BE=x,则BF=9−x由直线平分梯形面积得:x(9−x)=9求得:x1=3,x2=6>4(舍去)∴BE=3③当直线分别交CD、BC于E、F时设CE=x,可得:S△ECF=××(9−x)=92x2-18 x+45=0此方程无解,∴不可能④当直线分别交AB、CD于、E、F时设CF=x,可得:S BFEC=×(3−)(6−)+= 9∴x1=0,与②同x2=5 ,BF=−2,舍去综上所述,符合条件的直线共有一条.试题30答案:解:(1)∴y= (x+2)2-4,或y=x2+x-;y=x—.(2)问题一:、、问题二:将y=0代入y=x2+x-,得x2+x-=0,解得x=1或-5. ∴C(-5,0).∴OC=5.∵OM∥AB, AD∥x轴,∴四边形ABOD是平行四边形.∴AD=OB=1.∴点D的坐标是(-3,-4).∴S△DOC=×5×4=10.过点P作PN⊥BC,垂足为N.易证△OPN∽△BOH.∴,即.∴PN=t.∴四边形CDPQ的面积S=S△DOC-S△OPQ=10-×(5-2t )×t=t2-2 t +10. ∴当t=时,四边形CDPQ的面积S最小.此时,点P的坐标是(-,-1),点Q的坐标是(-,0),∴PQ==.。
2024年江苏省江阴市初级中学九年级数学第一学期开学教学质量检测模拟试题【含答案】

2024年江苏省江阴市初级中学九年级数学第一学期开学教学质量检测模拟试题题号一二三四五总分得分批阅人A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)一个三角形的三边分别是3、4、5,则它的面积是()A .6B .12C .7.5D .102、(4分)在平面直角坐标系中,点P(-2,+1)所在的象限是()A .第一象限B .第二象限C .第三象限D .第四象限3、(4分)设a=,b=,c=,则a ,b ,c 的大小关系是()A .b>c>a B .b>a>c C .c >a >b D .a >c >b 4、(4分)匀速地向如图所示容器内注水,最后将容器注满.在注水过程中,水面高度h 随时间t 变化情况的大致函数图象(图中OABC 为一折线)是()A .(1)B .(2)C .(3)D .无法确定5、(4分)如图,点D 、E 、F 分别是△ABC 的边AB 、BC 、CA 的中点,连接DE 、EF 、FD 得△DEF ,如果△ABC 的周长是24cm ,那么△DEF 的周长是()A .6cmB .12cmC .18cmD .48cm 6、(4分)如图,已知直线l 1∥l 2∥l 3∥l 4,相邻两条平行线间的距离都是1,正方形ABCD 的四个顶点分别在四条直线上,则正方形ABCD 的面积为()A .B.5C .3D.7、(4分)已知反比例函数y =m x ,下列结论中,不正确的是().A .图象必经过点(1,m ).B .y 随x 的增大而减少.C .当m>0时,图象在第一、三象限内.D .若y =2m ,则x =12.8、(4分)如果1≤a +|a ﹣1|的值是()A .1B .﹣1C .2a ﹣3D .3﹣2a 二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如果一次函数y=kx+3(k 是常数,k≠0)的图象经过点(1,0),那么y 的值随x 的增大而_____.(填“增大”或“减小”)10、(4分)如图,在平面直角坐标系中,矩形OABC 的顶点A 在y 轴正半轴上,边AB 、OA(AB>OA)的长分别是方程x −11x+24=0的两个根,D 是AB 上的一动点(不与A .B 重合).AB=8,OA=3.若动点D 满足△BOC 与AOD 相似,则直线OD 的解析式为____.11、(4分)如图中的虚线网格为菱形网格,每一个小菱形的面积均为1,网格中虚线的交点称为格点,顶点都在格点的多边形称为格点多边形,如:格点▱ABCD 的面积是1.(1)格点△PMN 的面积是_____;(2)格点四边形EFGH 的面积是_____.12、(4分)在平行四边形ABCD 中,AB AC ⊥,若4AB =,6AC =,则BD 的长是__________.13、(4分)①_________;②_________;③_________.三、解答题(本大题共5个小题,共48分)14、(12分)已知:如图,在△ABC 中,AB=AC ,点D 是BC 的中点,作∠EAB=∠BAD ,AE 边交CB 的延长线于点E ,延长AD 到点F ,使AF=AE ,连结CF .求证:BE=CF .15、(8分)2017年5月14日——5月15日.“一带一路”国际合作高峰论坛在北京成功举办,高峰论坛期间及前夕,各国政府、地方、企业等达成一系列合作共识、重要举措及务实成果.中方对其中具有代表性的一些成果进行了梳理和汇总,形成高峰论坛成果清单.清单主要涵盖政策沟通、设施联通、贸易畅通、资金融通、民心相通5大类,共76大项、270多项具体成果.我市新能源产业受这一利好因素,某企业的利润逐月提高.据统计,2017年第一季度的利润为2000万元,第三季度的利润为2880万元.(1)求该企业从第一季度到第三季度利润的平均增长率;(2)若第四季度保持前两季度利润的平均增长率不变,该企业2017年的年利润总和能否突破1亿元?16、(8分)如图,在平面直角坐标系xOy 中,直线13y x b =-+与x 轴交于点A ,与双曲线6y x =-在第二象限内交于点B (-3,a ).⑴求a 和b 的值;⑵过点B 作直线l 平行x 轴交y 轴于点C ,连结AC,求△ABC 的面积.17、(10分)如图,每个小正方形的边长都为1,四边形ABCD 的顶点都在小正方形的顶点上.(1)求四边形ABCD 的面积;(2)∠BCD 是直角吗?说明理由.18、(10分)如图,等腰△ABC 中,已知AC =BC =,AB =4,作∠ACB 的外角平分线CF ,点E 从点B 沿着射线BA 以每秒2个单位的速度运动,过点E 作BC 的平行线交CF 于点F .(1)求证:四边形BCFE 是平行四边形;(2)当点E 是边AB 的中点时,连接AF ,试判断四边形AECF 的形状,并说明理由;(3)设运动时间为t 秒,是否存在t 的值,使得以△EFC 的其中两边为邻边所构造的平行四边形恰好是菱形?不存在的,试说明理由;存在的,请直接写出t 的值.答:t =________.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)飞机着陆后滑行的距离s(米)关于滑行的时间t(秒)的函数表达式是s=60t-1.5t2,则飞机着陆后滑行直到停下来滑行了__________米.20、(4分)如图,在R△ABC中,∠ABC=90°,AB=2,BC=1,BD是AC边上的中线,则BD=________。
【3套试卷】江阴市中考第一次模拟考试数学精选含答案

中考第一次模拟考试数学试卷一.选择题(共6小题)1.已知线段a、b,如果a:b=5:2,那么下列各式中一定正确的是()A.a+b=7B.5a=2b C.=D.=12.关于二次函数y=(x+1)2的图象,下列说法正确的是()A.开口向下B.经过原点C.对称轴右侧的部分是下降的D.顶点坐标是(﹣1,0)3.如图,在直角坐标平面内,射线OA与x轴正半轴的夹角为α,如果OA=,tanα=3,那么点A的坐标是()A.(1,3)B.(3,1)C.(1,)D.(3,)4.对于非零向量、,如果2||=3||,且它们的方向相同,那么用向量表示向量正确的是()A.B.C.D.5.某同学在利用描点法画二次函数y=ax2+bx+c(a=0)的图象时,先取自变量x的一些值,计算出相应的函数值y,如下表所示:x…01234…y…﹣30﹣103…接着,他在描点时发现,表格中有一组数据计算错误,他计算错误的一组数据是()A.B.C.D.6.已知⊙A的半径AB长是5,点C在AB上,且AC=3,如果⊙C与⊙A有公共点,那么⊙C的半径长r的取值范围是()A.r≥2B.r≤8C.2<r<8D.2≤r≤8二.填空题(共12小题)7.计算:=.8.计算:sin30°tan60°=.9.如果函数y=(m﹣1)x2+x(m是常数)是二次函数,那么m的取值范围是.10.如果一个二次函数的图象在其对称轴左侧部分是上升的,那么这个二次函数的解析式可以是.(只需写一个即可)11.如果将抛物线y=﹣2x2向右平移3个单位,那么所得到的新抛物线的对称轴是直线.12.如图,AD与BC相交于点O,如果,那么当的值是时,AB∥CD.13.如图,已知AB是⊙O的弦,C是的中点,联结OA,AC,如果∠OAB=20°,那么∠CAB的度数是.14.联结三角形各边中点,所得的三角形的周长与原三角形周长的比是.15.如果正n边形的内角是它中心角的两倍,那么边数n的值是.16.如图,某水库大坝的横假面是梯形ABCD,坝顶宽DC是10米,坝底宽AB是90米,背水坡AD和迎水坡BC的坡度都为1:2.5,那么这个水库大坝的坝高是米.17.我们把边长是两条对角线长度的比例中项的菱形叫做“钻石菱形”.如果一个“钻石菱形”的面积为6,那么它的边长是.18.如图,在△ABC中,AB=AC=5,sin C=,将△ABC绕点A逆时针旋转得到△ADE,点B、C分别与点D、E对应,AD与边BC交于点F.如果AE∥BC,那么BF的长是.三.解答题(共7小题)19.已知抛物线y=x(x﹣2)+2.(1)用配方法把这个抛物线的表达式化成y=a(x+m)2+k的形式,并写出它的顶点坐标;(2)将抛物线y=x(x﹣2)+2上下平移,使顶点移到x轴上,求新抛物线的表达式.20.如图,已知AD是△ABC的中线,G是重心.(1)设=,=,用向量、表示;(2)如果AB=3,AC=2,∠GAC=∠GCA,求BG的长.21.如图,已知Rt△ABC,∠BAC=90°,BC=5,AC=2,以A为圆心、AB为半径画圆,与边BC交于另一点D.(1)求BD的长;(2)连接AD,求∠DAC的正弦值.22.“滑块铰链”是一种用于连接窗扇和窗框,使窗户能够开启和关闭的连杆式活动链接装置(如图1).图2是“滑块铰链”的平面示意图,滑轨MN安装在窗框上,悬臂DE安装在窗扇上,支点B、C、D始终在一条直线上,已知托臂AC=20厘米,托臂BD=40厘米,支点C,D之间的距离是10厘米,张角∠CAB=60°.(1)求支点D到滑轨MN的距离(精确到1厘米);(2)将滑块A向左侧移动到A′,(在移动过程中,托臂长度不变,即AC=A′C′,BC=BC′)当张角∠C′A'B=45°时,求滑块A向左侧移动的距离(精确到1厘米).(备用数据:≈1.41,≈1.73,≈2.45,≈2.65)23.已知:如图,在△ABC中,点D在边AC上,BD的垂直平分线交CA的延长线于点E,交BD于点F,联结BE,ED2=EA•EC.(1)求证:∠EBA=∠C;(2)如果BD=CD,求证:AB2=AD•AC.24.如图,在平面直角坐标系xOy中,直线AB与抛物线y=ax2+bx交于点A(6,0)和点B(1,﹣5).(1)求这条抛物线的表达式和直线AB的表达式;(2)如果点C在直线AB上,且∠BOC的正切值是,求点C的坐标.25.如图,已知梯形ABCD中,AB∥CD,∠DAB=90°,AD=4,AB=2CD=6,E是边BC上一点,过点D、E分别作BC、CD的平行线交于点F,联结AF并延长,与射线DC 交于点G.(1)当点G与点C重合时,求CE:BE的值;(2)当点G在边CD上时,设CE=m,求△DFG的面积;(用含m的代数式表示)(3)当△AFD∽△ADG时,求∠DAG的余弦值.参考答案与试题解析一.选择题(共6小题)1.已知线段a、b,如果a:b=5:2,那么下列各式中一定正确的是()A.a+b=7B.5a=2b C.=D.=1【分析】根据比例的性质进行判断即可.【解答】解:A、当a=10,b=4时,a:b=5:2,但是a+b=14,故本选项错误;B、由a:b=5:2,得2a=5b,故本选项错误;C、由a:b=5:2,得=,故本选项正确;D、由a:b=5:2,得=,故本选项错误.故选:C.2.关于二次函数y=(x+1)2的图象,下列说法正确的是()A.开口向下B.经过原点C.对称轴右侧的部分是下降的D.顶点坐标是(﹣1,0)【分析】由二次函数y=(x+1)2,可得其对称轴、顶点坐标;由二次项系数,可知图象开口向上;对每个选项分析、判断即可;【解答】解:A、由二次函数二次函数y=(x+1)2中a=>0,则抛物线开口向上;故本项错误;B、当x=0时,y=,则抛物线不过原点;故本项错误;C、由二次函数y=(x+1)2得,开口向上,对称轴为直线x=﹣1,对称轴右侧的图象上升;故本项错误;D、由二次函数y=(x+1)2得,顶点为(﹣1,0);故本项正确;故选:D.3.如图,在直角坐标平面内,射线OA与x轴正半轴的夹角为α,如果OA=,tanα=3,那么点A的坐标是()A.(1,3)B.(3,1)C.(1,)D.(3,)【分析】过点A作AB⊥x轴于点B,由于tanα=3,设AB=3x,OB=x,根据勾股定理列出方程即可求出x的值,从而可求出点A的坐标.【解答】解:过点A作AB⊥x轴于点B,由于tanα=3,∴,设AB=3x,OB=x,∵OA=,∴由勾股定理可知:9x2+x2=10,∴x2=1,∴x=1,∴AB=3,OB=1,∴A的坐标为(1,3),故选:A.4.对于非零向量、,如果2||=3||,且它们的方向相同,那么用向量表示向量正确的是()A.B.C.D.【分析】根据共线向量的定义作答.【解答】解:∵2||=3||,∴||=||.又∵非零向量与的方向相同,∴.故选:B.5.某同学在利用描点法画二次函数y=ax2+bx+c(a=0)的图象时,先取自变量x的一些值,计算出相应的函数值y,如下表所示:x…01234…y…﹣30﹣103…接着,他在描点时发现,表格中有一组数据计算错误,他计算错误的一组数据是()A.B.C.D.【分析】利用表中数据和二次函数的性质得到抛物线的对称轴为直线x=2,则顶点坐标为(2,﹣1),于是可判断抛物线的开口向上,则x=0和x=4的函数值相等且大于0,然后可判断A选项错误.【解答】解:∵x=1和x=3时,y=0;∴抛物线的对称轴为直线x=2,∴顶点坐标为(2,﹣1),∴抛物线的开口向上,∴x=0和x=4的函数值相等且大于0,∴x=0,y=﹣3错误.故选:A.6.已知⊙A的半径AB长是5,点C在AB上,且AC=3,如果⊙C与⊙A有公共点,那么⊙C的半径长r的取值范围是()A.r≥2B.r≤8C.2<r<8D.2≤r≤8【分析】先确定点C到⊙A的最大距离为8,最小距离为2,利用⊙C与⊙A相交或相切确定r的范围.【解答】解:∵⊙A的半径AB长是5,点C在AB上,且AC=3,∴点C到⊙A的最大距离为8,最小距离为2,∵⊙C与⊙A有公共点,∴2≤r≤8.故选:D.二.填空题(共12小题)7.计算:=.【分析】实数的运算法则同样适用于本题的计算.【解答】解:原式=3+2﹣=.故答案是:.8.计算:sin30°tan60°=.【分析】直接利用特殊角的三角函数值计算得出答案.【解答】解:sin30°tan60°=×=.故答案为:.9.如果函数y=(m﹣1)x2+x(m是常数)是二次函数,那么m的取值范围是m≠1.【分析】依据二次函数的二次项系数不为零求解即可.【解答】解:∵函数y=(m﹣1)x2+x(m为常数)是二次函数,∴m﹣1≠0,解得:m≠1,故答案为:m≠1.10.如果一个二次函数的图象在其对称轴左侧部分是上升的,那么这个二次函数的解析式可以是y=﹣x2+2(答案不唯一).(只需写一个即可)【分析】二次函数的图象在其对称轴左侧部分是上升的可知该函数图象的开口向下,得出符合条件的函数解析式即可.【解答】解:∵二次函数的图象在其对称轴左侧部分是上升的,∴a<0,∴符合条件的二次函数解析式可以为:y=﹣x2+2(答案不唯一).故答案为:y=﹣x2+2(答案不唯一).11.如果将抛物线y=﹣2x2向右平移3个单位,那么所得到的新抛物线的对称轴是直线x =3.【分析】直接利用二次函数图象平移规律得出答案.【解答】解:将抛物线y=﹣2x2向右平移3个单位得到的解析式为:y=﹣2(x﹣3)2,故所得到的新抛物线的对称轴是直线:x=3,故答案为:x=3.12.如图,AD与BC相交于点O,如果,那么当的值是时,AB∥CD.【分析】由可得出=,再利用平行线分线段成比例的推论可得出当=时AB∥CD.【解答】解:∵,∴==.若=,则AB∥CD,∴当=时,AB∥CD.故答案为:.13.如图,已知AB是⊙O的弦,C是的中点,联结OA,AC,如果∠OAB=20°,那么∠CAB的度数是35°.【分析】连接OC交AB于E.想办法求出∠OAC即可解决问题.【解答】解:连接OC交AB于E.∵C是的中点,∴OC⊥AB,∴∠AEO=90°,∵∠BAO=20°,∴∠AOE=70°,∵OA=OC,∴∠OAC=∠C=55°,∴∠CAB=∠OAC﹣∠OAB=35°,故答案为35°.14.联结三角形各边中点,所得的三角形的周长与原三角形周长的比是1:2.【分析】根据D、E、F分别是AB、BC、AC的中点,求证△DEF∽△ABC,然后利用相似三角形周长比等于相似比,可得出答案.【解答】解:如图,∵D、E、F分别是AB、BC、AC的中点,∴DE=AC,DF=BC,EF=AB,∴DE+DF+EF=AC+BC+AB,∵△DEF∽△ABC,∴所得到的△DEF与△ABC的周长之比是:1:2.故答案为:1:2.15.如果正n边形的内角是它中心角的两倍,那么边数n的值是6.【分析】根据正n边形的内角是它中心角的两倍,列出方程求解即可.【解答】解:依题意有=×2,解得n=6.故答案为:6.16.如图,某水库大坝的横假面是梯形ABCD,坝顶宽DC是10米,坝底宽AB是90米,背水坡AD和迎水坡BC的坡度都为1:2.5,那么这个水库大坝的坝高是16米.【分析】直接利用坡度的定义表示出AM,BN的长,进而利用已知表示出AB的长,进而得出答案.【解答】解:如图所示:过点D作DM⊥AB于点M,作CN⊥AB于点N,设DM=CN=x,∵背水坡AD和迎水坡BC的坡度都为1:2.5,∴AM=BN=2.5x,故AB=AM+BN+MN=5x+10=90,解得:x=16,即这个水库大坝的坝高是16米.故答案为:16.17.我们把边长是两条对角线长度的比例中项的菱形叫做“钻石菱形”.如果一个“钻石菱形”的面积为6,那么它的边长是2.【分析】由“钻石菱形”的面积可求对角线的乘积,再根据比例中项的定义可求“钻石菱形”的边长.【解答】解:由比例中项的定义可得,“钻石菱形”的边长==2.故答案为:2.18.如图,在△ABC中,AB=AC=5,sin C=,将△ABC绕点A逆时针旋转得到△ADE,点B、C分别与点D、E对应,AD与边BC交于点F.如果AE∥BC,那么BF的长是.【分析】如图,过A作AH⊥BC于H,得到∠AHB=∠AHC=90°,BH=CH,根据三角函数的定义得到AH=3,求得CH=BH==4,根据旋转的性质得到∠BAF =∠CAE,根据平行线的性质得到∠CAE=∠C,设AF=BF=x,得到FH=4﹣x,根据勾股定理即可得到结论.【解答】解:如图,过A作AH⊥BC于H,∴∠AHB=∠AHC=90°,BH=CH,∵AB=AC=5,sin C==,∴AH=3,∴CH=BH==4,∵将△ABC绕点A逆时针旋转得到△ADE,∴∠BAF=∠CAE,∵AE∥BC,∴∠CAE=∠C,∵∠B=∠C,∴∠BAF=∠B,∴AF=BF,设AF=BF=x,∴FH=4﹣x,∵AF2=AH2+FH2,∴x2=32+(4﹣x)2,解得:x=,∴BF=,故答案为:,三.解答题(共7小题)19.已知抛物线y=x(x﹣2)+2.(1)用配方法把这个抛物线的表达式化成y=a(x+m)2+k的形式,并写出它的顶点坐标;(2)将抛物线y=x(x﹣2)+2上下平移,使顶点移到x轴上,求新抛物线的表达式.【分析】(1)直接利用配方法求出二次函数的顶点坐标即可;(2)利用二次函数平移规律得出平移后解析式.【解答】解:(1)y=x(x﹣2)+2=x2﹣2x+2=(x﹣1)2+1,它的顶点坐标为:(1,1);(2)∵将抛物线y=x(x﹣2)+2上下平移,使顶点移到x轴上,∴图象向下平移1个单位得到:y=(x﹣1)2.20.如图,已知AD是△ABC的中线,G是重心.(1)设=,=,用向量、表示;(2)如果AB=3,AC=2,∠GAC=∠GCA,求BG的长.【分析】(1)根据已知条件得到=,由=,得到=+,由于G是重心,得到==(+)=+,于是得到结论;(2)延长BG交AC于H,根据等腰三角形的判定得到GA=GC,求得AH=AC=1,求得BH⊥AC,解直角三角形即可得到结论.【解答】解:(1)∵AD是△ABC的中线,=,∴=,∵=,∴=+,∵G是重心,∴==(+)=+,∴=×(+)═+;(2)延长BG交AC于H,∵∠GAC=∠GCA,∴GA=GC,∵G是重心,AC=2,∴AH=AC=1,∴BH⊥AC,在Rt△ABH中,∠AHB=90°,AB=3,∴BH==2,∴BG=BH=.21.如图,已知Rt△ABC,∠BAC=90°,BC=5,AC=2,以A为圆心、AB为半径画圆,与边BC交于另一点D.(1)求BD的长;(2)连接AD,求∠DAC的正弦值.【分析】(1)如图连接AD,作AH⊥BD于H.利用面积法求出AH,再利用勾股定理求出BH即可解决问题;(2)作DM⊥AC于M.利用面积法求出DM即可解决问题;【解答】解:(1)如图连接AD,作AH⊥BD于H.∵Rt△ABC,∠BAC=90°,BC=5,AC=2,∴AB==,∵•AB•AC=•BC•AH,∴AH==2,∴BH==1,∵AB=AD,AH⊥BD,∴BH=HD=1,∴BD=2.(2)作DM⊥AC于M.∵S△ACB=S△ABD+S△ACD,∴××2=×2×2+×2×DM,∴DM=,∴sin∠DAC===.22.“滑块铰链”是一种用于连接窗扇和窗框,使窗户能够开启和关闭的连杆式活动链接装置(如图1).图2是“滑块铰链”的平面示意图,滑轨MN安装在窗框上,悬臂DE安装在窗扇上,支点B、C、D始终在一条直线上,已知托臂AC=20厘米,托臂BD=40厘米,支点C,D之间的距离是10厘米,张角∠CAB=60°.(1)求支点D到滑轨MN的距离(精确到1厘米);(2)将滑块A向左侧移动到A′,(在移动过程中,托臂长度不变,即AC=A′C′,BC=BC′)当张角∠C′A'B=45°时,求滑块A向左侧移动的距离(精确到1厘米).(备用数据:≈1.41,≈1.73,≈2.45,≈2.65)【分析】(1)过C作CG⊥AB于G,过D作DH⊥AB于H,解直角三角形顶点AG=AC =10,CG=AG=10,根据相似三角形的性质得到DH;(2)过C′作C′S⊥MN于S,解直角三角形得到A′S=C′S=10,求得A′B=10+10,根据线段的和差即可得到结论.【解答】解:(1)过C作CG⊥AB于G,过D作DH⊥AB于H,∵AC=20,∠CAB=60°,∴AG=AC=10,CG=AG=10,∵BC=BD﹣CD=30,∵CG⊥AB,DH⊥AB,∴CG∥DH,∴△BCG∽△BDH,∴=,∴=,∴DH=≈23(厘米);∴支点D到滑轨MN的距离为23厘米;(2)过C′作C′S⊥MN于S,∵A′C′=AC=20,∠C′A′S=45°,∴A′S=C′S=10,∴BS==10,∴A′B=10+10,∵BG==10,∴AB=10+10,∴AA′=A′B﹣AB≈6(厘米),∴滑块A向左侧移动的距离是6厘米.23.已知:如图,在△ABC中,点D在边AC上,BD的垂直平分线交CA的延长线于点E,交BD于点F,联结BE,ED2=EA•EC.(1)求证:∠EBA=∠C;(2)如果BD=CD,求证:AB2=AD•AC.【分析】(1)欲证明∠EBA=∠C,只要证明△BAE∽△CEB即可;(2)欲证明AB2=AD•AC,只要证明△BAD∽△CAB即可;【解答】(1)证明:∵ED2=EA•EC,∴=,∵∠BEA=∠CEB,∴△BAE∽△CEB,∴∠EBA=∠C.(2)证明:∵EF垂直平分线段BD,∴EB=ED,∴∠EDB=∠EBD,∴∠C+∠DBC=∠EBA+∠ABD,∵∠EBA=∠C,∴∠DBC=∠ABD,∵DB=DC,∴∠C=∠DBC,∴∠ABD=∠C,∵∠BAD=∠CAB,∴△BAD∽△CAB,∴=,∴AB2=AD•AC.24.如图,在平面直角坐标系xOy中,直线AB与抛物线y=ax2+bx交于点A(6,0)和点B(1,﹣5).(1)求这条抛物线的表达式和直线AB的表达式;(2)如果点C在直线AB上,且∠BOC的正切值是,求点C的坐标.【分析】(1)利用待定系数法求二次函数和一次函数的解析式;(2)先说明OA=OH=6,则∠OAH=45°,作辅助线,根据正切值证明∠BOC=∠OBE,作OB的垂直平分线交AB于C,交OB于F,解法一:先根据中点坐标公式可得F(,﹣),易得直线OB的解析式为:y=﹣5x,根据两直线垂直的关系可得直线FC的解析式为:y=x﹣,列方程x﹣=x﹣6,解出可得C的坐标;解法二:过C作CD⊥x轴于D,连接OC,设C(m,m﹣6),根据OC=BC,列方程可得结论.【解答】解:(1)把点A(6,0)和点B(1,﹣5)代入抛物线y=ax2+bx得:,解得:,∴这条抛物线的表达式:y=x2﹣6x,设直线AB的解析式为:y=kx+b,把点A(6,0)和点B(1,﹣5)代入得:,解得:,则直线AB的解析式为:y=x﹣6;(2)当x=0时,y=6,当y=0时,x=6,∴OA=OH=6,∵∠AOH=90°,∴∠OAH=45°,过B作BG⊥x轴于G,则△ABG是等腰直角三角形,∴AB=5,过O作OE⊥AB于E,S△AOH=AH•OE=OA•OH,6•OE=6×6,OE=3,∴BE=AB﹣AE=5﹣3=2,Rt△BOE中,tan∠OBE===,∵∠BOC的正切值是,∴∠BOC=∠OBE,作OB的垂直平分线交AB于C,交OB于F,解法一:∵B(1,﹣5),∴F(,﹣),易得直线OB的解析式为:y=﹣5x,设直线FC的解析式为:y=x+b,把F(,﹣)代入得:﹣=+b,b=﹣,∴直线FC的解析式为:y=x﹣,x﹣=x﹣6,x=,当x=时,y=﹣6=﹣,∴C(,﹣);解法二:过C作CD⊥x轴于D,连接OC,设C(m,m﹣6),则AC=(6﹣m),∵OC=BC,∴m2+(m﹣6)2=[5﹣(6﹣m)],m=,∴C(,﹣).25.如图,已知梯形ABCD中,AB∥CD,∠DAB=90°,AD=4,AB=2CD=6,E是边BC上一点,过点D、E分别作BC、CD的平行线交于点F,联结AF并延长,与射线DC 交于点G.(1)当点G与点C重合时,求CE:BE的值;(2)当点G在边CD上时,设CE=m,求△DFG的面积;(用含m的代数式表示)(3)当△AFD∽△ADG时,求∠DAG的余弦值.【分析】(1)由题意可得四边形DCEF是平行四边形,可得CD=EF,通过证明△CFE∽△CAB,可得,可得BE=CE,则可求CE:BE的值;(2)延长AG,BC交为于点M,过点C作CN⊥AB于点N,交EF于点H,由题意可得四边形ADCN是矩形,可得AD=CN=4,CD=AN=3,BN=3,由平行线分线段成比例可求BE,ME,MC,CH,GC的长,即可求GD的长,由三角求形面积公式可△DFG的面积;(3)由△AFD∽△ADG,可得∠AFD=∠ADG=90°,由余角的性质可得∠DAG=∠B,即可求∠DAG的余弦值.【解答】解:(1)如图,∵DC∥EF,DF∥CE∴四边形DCEF是平行四边形∴CD=EF,∵AB=2CD=6,∴AB=2EF,∵EF∥CD,AB∥CD,∴EF∥AB,∴△CFE∽△CAB∴∴BC=2CE,∴BE=CE∴EC:BE=1:1=1(2)如图,延长AG,BC交为于点M,过点C作CN⊥AB于点N,交EF于点H∵AD⊥CD,CN⊥CD∴AD∥CN,且CD∥AB∴四边形ADCN是平行四边形,又∵∠DAB=90°∴四边形ADCN是矩形,∴AD=CN=4,CD=AN=3,∴BN=AB﹣AN=3,在Rt△BCN中,BC==5∴BE=BC﹣CE=5﹣m,∵EF∥AB∴,即∴ME=BE=5﹣m,∴MC=ME﹣CE=5﹣2m,∵EF∥AB∴=∴HC=m,∵CG∥EF∴即∴GC=∴DG=CD﹣GC=3﹣=∴S△DFG=×DG×CH=(3)过点C作CN⊥AB于点N,∵AB∥CD,∠DAB=90°,∴∠DAB=∠ADG=90°,若△AFD∽△ADG,∴∠AFD=∠ADG=90°∴DF⊥AG又∵DF∥BC∴AG⊥BC∴∠B+∠GAB=90°,且∠DAG+∠GAB=90°∴∠B=∠DAG∴cos∠DAG=cos B=中考第一次模拟考试数学试题含答案一.选择题(共12小题)1.下列四个数中,最大的数是()A.3 B.0 C.﹣D.π2.计算(x3y)2的结果是()A.x3y2B.x6y C.x5y2D.x6y23.根据实时数据,截至2019年12月31日24时,网购总交易额约7.5万亿元,用科学记数法表示为()元.A.7.5×108B.0.75×1012C.7.5×1011D.7.5×10124.反比例函数y=的图象位于平面直角坐标系的()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限5.若关于x的一元二次方程m2x2﹣(2m﹣1)x+1=0有两个实数根,则m的取值范围是()A.m<B.m≤C.m≥D.m≤且m≠0 6.下列每组数分别是三根木棒的长度,能用它们摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cmC.5cm,5cm,11cm D.13cm,12cm,20cm7.若代数式在实数范围内有意义,则实数x的取值范围是()A.x<3 B.x>3 C.x≠3 D.x=38.对于二次函数y=﹣(x﹣1)2﹣3的图象,下列说法正确的是()A.开口向上B.对称轴是x=﹣1C.顶点坐标是(1,﹣3)D.与x轴只有一个交点9.下列说法中正确的是()A.“打开电视机,正在播放《动物世界》”是必然事件B.某种彩票的中奖概率为,说明每买1000张,一定有一张中奖C.抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为D.想了解长沙市所有城镇居民的人均年收入水平,宜采用抽样调查10.以原点O为位似中心,把△ABO缩小为原来的后得到△A'B'O,若B点坐标为(4,﹣6),则B'的坐标为()A.(2,﹣3)B.(﹣2,3)C.(2,﹣3)或(﹣2,3)D.(2,﹣3)或(﹣2,﹣3)11.如图,在▱ABCD中,AB=2,BC=3.以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是()A.B.1 C.D.12.如图,在▱ABCD中,过A、B、C三点的圆交AD于E,且与CD相切.若AB=4,BE=5,则DE的长为()A.3 B.4 C.D.二.填空题(共6小题)13.因式分解:m2﹣my+mx﹣yx=.14.已知方程组,则x y=.15.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为.16.甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好是1.6米,方差分别是S甲2=1.2,S乙2=0.5,则在本次测试中,同学的成绩更稳定(填“甲”或“乙”)17.已知有理数m,n满足(m+)2+|n2﹣4|=0,则m2020•n2020的值为.18.如图,正△ABC的边长为4,过点B的直线l⊥AB,且△ABC与△A′BC′关于直线l对称,D为线段BC′上一动点,则AD+CD的最小值是.三.解答题(共8小题)19.计算(1﹣)0+|4﹣3|+(﹣1)2+.20.如图,已知四边形ABCD是平行四边形,点E,F分别是AB,BC上的点,AE=CF,并且∠AED=∠CFD.求证:(1)△AED≌△CFD;(2)四边形ABCD是菱形.21.为了解今年初四学生的数学学习情况,某校在第一轮模拟测试后,对初四全体同学的数学成绩作了统计分析,绘制如下图表:请结合图表所给出的信息解答系列问题:成绩频数频率优秀45 b良好a0.3合格105 0.35不合格60 c (1)该校初四学生共有多少人?(2)求表中a,b,c的值,并补全条形统计图.(3)初四(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.22.为了弘扬“社会主义核心价值观”,市政府在广场树立公益广告牌,如图所示,为固定广告牌,在两侧加固钢缆,已知钢缆底端D距广告牌立柱距离CD为3米,从D点测得广告牌顶端A点和底端B点的仰角分别是60°和45°.(1)求公益广告牌的高度AB;(2)求加固钢缆AD和BD的长.(注意:本题中的计算过程和结果均保留根号)23.如图,以O为圆心,AB长为直径作圆,在⊙O上取一点,延长AB至点D,连接DC,过点A作⊙O的切线交DC的延长线于点E,且∠DCB=∠DAC.(1)求证:CD是⊙O的切线;(2)若AD=6,tan∠DCB=,求AE的长.24.某商场购进一批新型的电脑用于出售给与之合作的企业,每台电脑的成本为3600元,销售单价定为4500元,在该种电脑的试销期间,为了促销,鼓励企业积极购买该新型电脑,商场经理决定一次购买这种电脑不超过10台时,每台按4500元销售;若一次购买该种电脑超过10台时,每多购买一台,所购买的电脑的销售单价均降低50元,但销售单价均不低于3900元.(1)企业一次购买这种电脑多少台时,销售单价恰好为3900元?(2)设某企业一次购买这种电脑x台,商场所获得的利润为y元,求y(元)与x(台)之间的函数关系式,并写出自变量x的取值范围.若A企业欲购进一批该新型电脑(不超过25台),则A企业一次性购进多少台电脑时,商场获得的利润最大?(3)该商场的销售人员发现:当企业一次购买电脑的台数超过某一数量时,会出现随着一次购买的数量的增多,商场所获得的利润反而减少这一情况,为使企业一次购买的数量越多,商场所获得的利润越大,商场应将最低销售单价调整为多少元?(其它销售条件不变)25.对于一个函数给出如下定义:对于函数y,若当a≤x≤b,函数值y满足m≤y≤n,且满足n﹣m=k(b﹣a),则称此函数为“k属和合函数”.例如:正比例函数y=﹣3x,当1≤x≤3时,﹣9≤y≤﹣3,则﹣3﹣(﹣9)=k(3﹣1),求得:k=3,所以函数y=﹣3x为“3属和合函数”.(1)①若一次函数y=4x﹣1(1≤x≤2)为“k属和合函数”,则k的值为;②若一次函数y=ax﹣1(1≤x≤3)为“2属和合函数”,求a的值.(2)反比例函数y=(k>0,a≤x≤b,且0<a<b)是“k属和合函数”,且a+b=3,请求出a﹣b的值;(3)已知二次函数y=﹣2x2+4ax,当﹣1≤x≤1时,y是“k属和合函数”,求k的取值范围.26.如图,已知抛物线y=ax2+bx+1经过A(﹣1,0),B(1,1)两点.(1)求该抛物线的解析式;(2)阅读理解:在同一平面直角坐标系中,直线l1:y=k1x+b1(k1,b1为常数,且k1≠0),直线l2:y =k2x+b2(k2,b2为常数,且k2≠0),若l1⊥l2,则k1•k2=﹣1.解决问题:①若直线y=3x﹣1与直线y=mx+2互相垂直,求m的值;②抛物线上是否存在点P,使得△PAB是以AB为直角边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)M是抛物线上一动点,且在直线AB的上方(不与A,B重合),求点M到直线AB的距离的最大值.参考答案与试题解析一.选择题(共12小题)1.下列四个数中,最大的数是()A.3 B.0 C.﹣D.π【分析】任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.依此即可求解.【解答】解:∵π>3>0>﹣,∴最大的数是π.故选:D.2.计算(x3y)2的结果是()A.x3y2B.x6y C.x5y2D.x6y2【分析】直接利用积的乘方运算法则计算得出答案.【解答】解:(x3y)2=x6y2.故选:D.3.根据实时数据,截至2019年12月31日24时,网购总交易额约7.5万亿元,用科学记数法表示为()元.A.7.5×108B.0.75×1012C.7.5×1011D.7.5×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:7.5万亿=7500000000000=7.5×1012.故选:D.4.反比例函数y=的图象位于平面直角坐标系的()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限【分析】根据反比例函数的图象性质求解.【解答】解:∵k=2>0,∴反比例函数y=的图象在第一,三象限内,故选:A.5.若关于x的一元二次方程m2x2﹣(2m﹣1)x+1=0有两个实数根,则m的取值范围是()A.m<B.m≤C.m≥D.m≤且m≠0 【分析】由方程由两个实数根以及二次项系数不为0,可得出关于m的一元二次不等式组,解不等式组即可得出结论.【解答】解:由已知得:,解得:m≤且m≠0.故选:D.6.下列每组数分别是三根木棒的长度,能用它们摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cmC.5cm,5cm,11cm D.13cm,12cm,20cm【分析】根据三角形的三边关系,两边之和大于第三边,即两短边的和大于最长的边,即可作出判断.【解答】解:A、3+4<8,故以这三根木棒不可以构成三角形,不符合题意;B、8+7=15,故以这三根木棒不能构成三角形,不符合题意;C、5+5<11,故以这三根木棒不能构成三角形,不符合题意;D、12+13>20,故以这三根木棒能构成三角形,符合题意.故选:D.7.若代数式在实数范围内有意义,则实数x的取值范围是()A.x<3 B.x>3 C.x≠3 D.x=3【分析】分式有意义时,分母x﹣3≠0,据此求得x的取值范围.【解答】解:依题意得:x﹣3≠0,解得x≠3,故选:C.8.对于二次函数y=﹣(x﹣1)2﹣3的图象,下列说法正确的是()A.开口向上B.对称轴是x=﹣1C.顶点坐标是(1,﹣3)D.与x轴只有一个交点【分析】A.a=﹣1,故抛物线开口向下,即可求解;B.函数的对称轴为:x=1,即可求解;C.顶点坐标是(1,﹣3),即可求解;D.△=b2﹣4ac>0,故二次函数与x轴有两个交点,即可求解.【解答】解:A.a=﹣1,故抛物线开口向下,原答案错误,不符合题意;B.函数的对称轴为:x=1,原答案错误,不符合题意;C.顶点坐标是(1,﹣3),正确,符合题意;D.△=b2﹣4ac>0,故二次函数与x轴有两个交点,原答案错误,不符合题意;故选:C.9.下列说法中正确的是()A.“打开电视机,正在播放《动物世界》”是必然事件B.某种彩票的中奖概率为,说明每买1000张,一定有一张中奖C.抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为D.想了解长沙市所有城镇居民的人均年收入水平,宜采用抽样调查【分析】根据随机事件,可判断A;根据概率的意义,可判断B、C;根据调查方式,可判断D.【解答】解:A、“打开电视机,正在播放《动物世界》”是随机事件,故A错误;B、某种彩票的中奖概率为,说明每买1000张,有可能中奖,也有可能不中奖,故B错误;C、抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为,故C错误;D、想了解长沙市所有城镇居民的人均年收入水平,宜采用抽样调查,故D正确;故选:D.10.以原点O为位似中心,把△ABO缩小为原来的后得到△A'B'O,若B点坐标为(4,﹣6),则B'的坐标为()A.(2,﹣3)B.(﹣2,3)C.(2,﹣3)或(﹣2,3)D.(2,﹣3)或(﹣2,﹣3)【分析】根据位似变换的性质计算.【解答】解:以原点O为位似中心,把△ABO缩小为原来的后得到△A'B'O,∵B点坐标为(4,﹣6),∴B'的坐标为(4×,﹣6×)或(﹣4×,6×),即(2,﹣3)或(﹣2,3),故选:C.11.如图,在▱ABCD中,AB=2,BC=3.以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是()A.B.1 C.D.【分析】只要证明BE=BC即可解决问题;【解答】解:∵由题意可知CE是∠BCD的平分线,∴∠BCE=∠DCE.∵四边形ABCD是平行四边形,∴AB∥CD,∴∠DCE=∠E,∴∠BCE=∠AEC,∴BE=BC=3,∵AB=2,∴AE=BE﹣AB=1,故选:B.12.如图,在▱ABCD中,过A、B、C三点的圆交AD于E,且与CD相切.若AB=4,BE=5,则DE的长为()A.3 B.4 C.D.【分析】连接CE,根据圆周角定理易知:∠BAE=∠BEC+∠EBC,而∠DCB=∠DCE+∠BCE,这两个等式中,由弦切角定理知:∠DCE=∠EBC;再由平行四边形的性质知:∠DCB=∠EAB,因此∠BEC=∠BCE,即可得BC=BE=5,即AD=5,进而可由切割线定理求DE的长.【解答】解:连接CE;∵,∴∠BAE=∠EBC+∠BEC;∵∠DCB=∠DCE+∠BCE,由弦切角定理知:∠DCE=∠EBC,由平行四边形的性质知:∠DCB=∠BAE,∴∠BEC=∠BCE,即BC=BE=5,∴AD=5;由切割线定理知:DE=DC2÷DA=,故选:D.二.填空题(共6小题)13.因式分解:m2﹣my+mx﹣yx=(m﹣y)(m+x).【分析】原式两项两项结合提取公因式即可.【解答】解:原式=(m2﹣my)+(mx﹣yx)=m(m﹣y)+x(m﹣y)=(m﹣y)(m+x),故答案为:(m﹣y)(m+x).14.已知方程组,则x y= 1 .【分析】方程组利用加减消元法求出解得到x与y的值,代入原式计算即可求出值.【解答】解:,①+②得:4x=4,。
无锡江阴市中考数学一模试卷及答案(word解析版)

江苏省无锡江阴市中考数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑)1.(3分)(•江阴市一模)函数y=的自变量x的取值范围是()A.x=1 B.x≠1 C.x>1 D.x<1考点:函数自变量的取值范围;分式有意义的条件.专题:计算题.分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不等于0.解答:解:根据题意得:x﹣1≠0,解得:x≠1;故选B.点评:本题主要考查函数自变量的取值范围和分式有意义的条件,分式有意义的条件,则分母不能为0.2.(3分)(•江阴市一模)下列各式中,与x2y是同类项的是()A.x y2B.2xy C.﹣x2y D.3x2y2考点:同类项.分析:本题是同类项的定义的考查,同类项是所含的字母相同,并且相同字母的指数也相同的项.解答:解:x2y中x的指数为2,y的指数为1.A、x的指数为1,y的指数为2;B、x的指数为1,y的指数为1;C、x的指数为2,y的指数为1;D、x的指数为2,y的指数为2.故选C.点评:考查了同类项的定义.同类项一定要记住两个相同:同类项是所含的字母相同,并且相同字母的指数也相同.3.(3分)(•江阴市一模)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.专题:压轴题.分析:根据轴对称图形与中心对称图形的概念求解.在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做中心对称点.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解答:解:A、是轴对称图形,不是中心对称图形,不符合题意;B、既是轴对称图形,也是中心对称图形,符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、不是轴对称图形,也不是中心对称图形,不符合题意.故选B.点评:掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)(•江阴市一模)如图,是由4个相同小正方体组合而成的几何体,它的左视图是()A.B.C.D.考点:简单组合体的三视图.专题:常规题型.分析:左视图是从左边看得出的图形,结合所给图形及选项即可得出答案.解答:解:从左边看得到的是两个叠在一起的正方形.故选D.点评:此题考查了简单几何体的三视图,属于基础题,解答本题的关键是掌握左视图的观察位置.5.(3分)(•江阴市一模)在共有15人参加的“我爱祖国”演讲比赛中,参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的()A.平均数B.众数C.中位数D.方差考点:统计量的选择.专题:应用题.分析:根据题意可得:由中位数的概念,即最中间一个或两个数据的平均数;可知15人成绩的中位数是第8名的成绩.参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.解答:解:由于总共有15个人,第8位选手的成绩是中位数,要判断是否进入前8名,故应知道自己的成绩和中位数.故选C.点评:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.6.(3分)(•江阴市一模)若两圆的半径分别是1cm和5cm,圆心距为6cm,则这两圆的位置关系是()A.内切B.相交C.外切D.外离考点:圆与圆的位置关系.分析:本题直接告诉了两圆的半径及圆心距,根据数量关系与两圆位置关系的对应情况便可直接得出答案.外离,则P>R+r;外切,则P=R+r;相交,则R﹣r<P<R+r;内切,则P=R﹣r;内含,则P<R﹣r.(P表示圆心距,R,r分别表示两圆的半径).解答:解:根据题意,得R+r=5+1=6=圆心距,∴两圆外切.故选C.点评:本题考查了由数量关系来判断两圆位置关系的方法.7.(3分)(•江阴市一模)下列命题中是真命题的是()A.对角线互相垂直且相等的四边形是正方形B.有两边和一角对应相等的两个三角形全等C.两条对角线相等的平行四边形是矩形D.两边相等的平行四边形是菱形考点:命题与定理.分析:分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.解答:解:A、错误,例如对角线互相垂直的等腰梯形;B、错误,不能确定;C、正确,符合矩形的判定定理;D、错误,两边相等的平行四边形是平行四边形.故选C.点评:主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.(3分)(•江阴市一模)如图,现有一圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为()A.4cm B.3cm C.2cm D.1cm考点:弧长的计算.专题:压轴题.分析:本题考查了圆锥的有关计算,圆锥的表面是由一个曲面和一个圆面围成的,圆锥的侧面展开在平面上,是一个扇形,计算圆锥侧面积时,通过求侧面展开图面积求得,侧面积公式是底面周长与母线乘积的一半,先求扇形的弧长,再求圆锥底面圆的半径,弧长:=4π,圆锥底面圆的半径:r==2(cm).解答:解:弧长:=4π,圆锥底面圆的半径:r==2(cm).故选C.点评:本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.9.(3分)(•江阴市一模)如图,将△ABC绕点C(0,﹣1)旋转180°得到△A'B'C,设点A的坐标为(a,b),则点A′的坐标为()A.(﹣a,﹣b)B.(﹣a.﹣b﹣1)C.(﹣a,﹣b+1)D.(﹣a,﹣b﹣2)考点:坐标与图形变化-旋转.专题:压轴题.分析:我们已知关于原点对称的点的坐标规律:横坐标和纵坐标都互为相反数;还知道平移规律:上加下减;左加右减.在此基础上转化求解.把AA′向上平移1个单位得A的对应点A1坐标和A′对应点A2坐标后求解.解答:解:把AA′向上平移1个单位得A的对应点A1坐标为(a,b+1).因A1、A2关于原点对称,所以A′对应点A2(﹣a,﹣b﹣1).∴A′(﹣a,﹣b﹣2).故选D.点评:此题通过平移把问题转化为学过的知识,从而解决问题,体现了数学的化归思想.10.(3分)(•江阴市一模)如图所示,在矩形ABCD中,垂直于对角线BD的直线l,从点B开始沿着线段BD匀速平移到D.设直线l被矩形所截线段EF的长度为y,运动时间为t,则y关于t的函数的大致图象是()A.B.C.D.考点:动点问题的函数图象.专题:动点型.分析:根据直线的运动路径找到长度变化的几个关键点,在B点时,EF的长为0,然后逐渐增大,到A点长度最大,一直保持到C点长度不变,然后逐渐减小,直到D点长为0,据此可以得到函数的图象.解答:解:∵直线l从点B开始沿着线段BD匀速平移到D,∴在B点时,EF的长为0,在A点长度最大,到D点长为0,∴图象A符合题意,故选A.点评:本题考查了动点问题的函数图象,注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.二、填空题(本大题共8小题,每小题2分,共16分.不需要写出解答过程,只需把答案直接填写在答题卡上相应的位置)11.(2分)(•江阴市一模)﹣5的倒数是.考点:倒数.分析:根据倒数的定义可直接解答.解答:解:因为﹣5×()=1,所以﹣5的倒数是.点评:本题比较简单,考查了倒数的定义,即若两个数的乘积是1,我们就称这两个数互为倒数.12.(2分)(•昭通)地球与太阳之间的距离约为149 600 000千米,用科学记数法表示(保留2个有效数字)约为 1.5×108千米.考点:科学记数法与有效数字.专题:计算题.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1 048 576有7位,所以可以确定n=7﹣1=6.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.解答:解:149 600 000=1.496×108≈1.5×108.故答案为1.5×108.点评:此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.13.(2分)(•江阴市一模)点A(2,﹣1)关于x轴对称的点的坐标是(2,1).考点:关于x轴、y轴对称的点的坐标.分析:根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可直接得到答案.解答:解:点A(2,﹣1)关于x轴对称的点的坐标是(2,1),故答案为:(2,1).点评:此题主要考查了关于x轴对称点的坐标特点,关键是掌握点的坐标的变化规律.14.(2分)(•江阴市一模)已知梯形的中位线长是4cm,下底长是5cm,则它的上底长是3cm.考点:梯形中位线定理.分析:根据“梯形中位线的长等于上底与下底和的一半”可知一底边长和中位线长求另一底边长.解答:解:设梯形的上底长为x,梯形的中位线=(x+5)=4cm.解得x=3故梯形的上底长为3cm,故答案为:3.点评:主要考查了梯形中位线定理的数量关系:梯形中位线的长等于上底与下底和的一半.15.(2分)(•江阴市一模)分解因式:2x2﹣4xy+2y2=2(x﹣y)2.考点:提公因式法与公式法的综合运用.分析:先提取公因式2,再对余下的多项式利用完全平方公式继续分解.解答:解:2x2﹣4xy+2y2,=2(x2﹣2xy+y2),=2(x﹣y)2.点评:本题考查了提公因式法,公式法分解因式,提取公因式后再利用完全平方公式进行二次因式分解,分解因式要彻底.16.(2分)(•江阴市一模)若关于x的一元二次方程x2+x﹣3=0的两根为x1,x2,则2x1+2x2+x1x2=﹣5.考点:根与系数的关系.分析:根据根与系数的关系列式计算即可求出x1+x2与x1•x2的值,再整体代入即可求解.解答:解:根据根与系数的关系可得,x1•x2=﹣1,x1+x2=﹣23.则2x1+2x2+x1x2=2(x1+x2)+x1x2=﹣2﹣3=﹣5.故答案为:﹣5.点评:本题主要考查了一元二次方程的解和根与系数的关系等知识,在利用根与系数的关系x1+x2=﹣、x1•x2=时,要注意等式中的a、b、c所表示的含义.17.(2分)(•江阴市一模)如图,△ABC是⊙O的内接三角形,∠C=50°,则∠OAB= 40°.考点:圆周角定理.分析:由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠AOB的度数,又由OA=OB,根据等边对等角的知识,即可求得答案.解答:解:连接OB,∵△ABC是⊙O的内接三角形,∠C=50°,∴∠AOB=2∠C=100°,∵OA=OB,∴∠OAB=∠OBA==40°.故答案为:40.点评:此题考查了圆周角定理与等腰三角形的性质.此题比较简单,注意准确作出辅助线,注意数形结合思想的应用.18.(2分)(•江阴市一模)如图,△ABC是一张直角三角形彩色纸,AC=30cm,BC=40cm.若将斜边上的高CD n等分,然后裁出(n﹣1)张宽度相等的长方形纸条.则这(n﹣1)张纸条的面积和是cm2.考点:相似三角形的判定与性质;勾股定理.专题:压轴题.分析:由△ABC是一张直角三角形彩色纸,AC=30cm,BC=40cm由勾股定理即可求得AB 的长,然后利用三角形的面积,求得高CD的长,继而可求得纸条宽度,然后利用相似三角形的对应边成比例,即可求得EF,GH以及KL的长,继而求得这(n﹣1)张纸条的面积和.解答:解:∵△ABC是直角三角形,AC=30cm,BC=40cm.∴AB==50(cm),∵S△ABC=AC•BC=AB•CD,∴AC•BC=AB•CD,∴30×40=50•CD,∴CD=24cm.可知纸条宽度为:cm,∵EF∥AB,∴△CEF∽△CAB,∴=,∴EF=AB,同理:GH=AB,KL=AB,∴(n﹣1)张纸条的面积和为:(EF+GH+…+KL)•=(++…+)×50×=[1+2+…+(n﹣1)]×50×=(cm2).故答案为:.点评:此题考查了相似三角形的判定与性质与勾股定理的应用.此题难度适中,注意掌握数形结合思想的应用.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(8分)(•江阴市一模)(1)计算:(2)先将化简,然后请在﹣1、0、1、2中选一个你喜欢的x 值,再求原式的值.考点:分式的化简求值;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:(1)分别根据特殊角的三角函数值、负整数指数幂及0指数幂的计算法则计算出各数,再根据实数混合运算的法则进行计算即可;(2)先根据分式混合运算的法则把原式进行化简,再选取合适的值代入进行计算即可.解答:解:(1)原式=2×﹣2×4+2+1=1﹣8+2+1=﹣4;(2)原式==x+1∵x≠1,﹣1,2,∴当x=0时,值为1.点评:本题考查的是分式的化简求值,在解答(2)时要注意x的取值要保证分式有意义.20.(8分)(•江阴市一模)(1)化简:(a+2)(a﹣2)﹣a(a+1);(2)解不等式≤1,并把它的解集在数轴上表示出来.考点:整式的混合运算;解二元一次方程组;在数轴上表示不等式的解集.分析:(1)此题首先利用平方差公式去掉前面括号,然后利用整式的乘法法则去掉后面的括号,再合并同类项即可求出结果;(2)此题首先去掉不等式中的分母,然后移项,合并同类项,最后化系数为1即可求出不等式的解.解答:(1)解:(a+2)(a﹣2)﹣a(a+1)=a2﹣4﹣a2﹣a=﹣a﹣4;(2)解:2(2x﹣1)﹣3(5x+1)≤6,4x﹣2﹣15x﹣3≤6,4x﹣15x≤6+2+3,﹣11x≤11,∴x≥﹣1这个不等式的解集在数轴上表示如图:点评:第一小题考查了整式的计算,利用了平方差公式、单项式乘多项式的法则、合并同类项等知识;第二小题考查了不等式的解法,尤其是解不等式的一般步骤要熟练.21.(6分)(•江阴市一模)如图,在▱ABCD中,E、F为对角线BD上的两点,且∠BAE=∠DCF.求证:BE=DF.考点:平行四边形的性质;全等三角形的判定与性质.专题:证明题.分析:先由平行四边形的性质得出AB=CD,∠ABE=∠CDF,再加上已知∠BAE=∠DCF 可推出△ABE≌△DCF,得证.解答:证明:∵四边形ABCD是平行四边形,∴AB=CD,∠ABE=∠CDF,又已知∠BAE=∠DCF,∴△ABE≌△DCF,∴BE=DF.点评:此题考查的知识点是平行四边形的性质与全等三角形的判定和性质,关键是证明BE 和DF所在的三角形全等.22.(8分)(•江阴市一模)某校初三年级(1)班要举行一场毕业联欢会.规定每个同学分别转动下图中两个可以自由转动的均匀转盘A、B(转盘A被均匀分成三等份.每份分別标上1.2,3三个数宇.转盘B被均匀分成二等份.每份分别标上4,5两个数字).若两个转盘停止后指针所指区域的数字都为偶数(如果指针恰好指在分格线上.那么重转直到指针指向某一数字所在区域为止).则这个同学要表演唱歌节目.请求出这个同学表演唱歌节目的概率(要求用画树状图或列表方法求解)考点:列表法与树状图法.分析:首先根据题意画出树状图,由树状图求得所有等可能的结果与两个转盘停止后指针所指区域的数字都为偶数情况,然后利用概率公式求解即可求得答案.解答:解:画树状图得:∵共有6种等可能的结果,两个转盘停止后指针所指区域的数字都为偶数的有1种情况,∴这个同学表演唱歌节目的概率为:.点评:此题考查了列表法与树状图法求概率的知识.注意列表法或树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件,注意概率=所求情况数与总情况数之比.23.(7分)(•江阴市一模)“知识改变命运,科技繁荣祖国”.我区中小学每年都要举办一届科技比赛.如图为我区某校参加科技比赛(包括电子百拼、航模、机器人、建模四个类别)的参赛人数统计图(1)该校参加机器人、建模比赛的人数分别是4人和6人;(2)该校参加科技比赛的总人数是24人,电子百拼所在扇形的圆心角的度数是120°,并把条形统计图补充完整;(3)从全区中小学参加科技比赛选手中随机抽取80人,其中有32人获奖.今年我区中小学参加科技比赛人数共有2485人,请你估算今年参加科技比赛的获奖人数约是多少人?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)由图知参加机器人、建模比赛的人数;(2)参加建模的有6人,占总人数的25%,根据总人数=参加航模比赛的人数÷25%,算出电子百拼比赛的人数,再算出所占的百分比×360°;(3)先求出随机抽取80人中获奖的百分比,再乘以我市中小学参加科技比赛比赛的总人数.解答:解:(1)由条形统计图可得:该校参加机器人、建模比赛的人数分别是4人,6人;故答案为:4,6.(2)该校参加科技比赛的总人数是:6÷25%=24,电子百拼所在扇形的圆心角的度数是:(24﹣6﹣6﹣4)÷24×360°=120°,故答案为:24,120.(3)32÷80=0.4,0.4×2485=994,答:今年参加科技比赛比赛的获奖人数约是994人.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(8分)(•江阴市一模)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1米,参考数据:=1.73,=1.41);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.考点:解直角三角形的应用.分析:(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,继而求得AB的长;(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.解答:解:(1)由題意得,在Rt△ADC中,AD==36.33(米),…2分在Rt△BDC中,BD==12.11(米),…4分则AB=AD﹣BD=36.33﹣12.11=24.22≈24.2(米)…6分(2)超速.理由:∵汽车从A到B用时2秒,∴速度为24.2÷2=12.1(米/秒),∵12.1×3600=43560(米/时),∴该车速度为43.56千米/小时,…9分∵大于40千米/小时,∴此校车在AB路段超速.…10分点评:此题考查了解直角三角形的应用问题.此题难度适中,解题的关键是把实际问题转化为数学问题求解,注意数形结合思想的应用.25.(10分)(•江阴市一模)知识背景:恩施来凤有一处野生古杨梅群落,其野生杨梅是一种具特殊价值的绿色食品.在当地市场出售时,基地要求“杨梅”用双层上盖的长方体纸箱封装(上盖纸板面积刚好等于底面面积的2倍,如图)(1)实际运用:如果要求纸箱的高为0.5米,底面是黄金矩形(宽与长的比是黄金比,取黄金比为0.6),体积为0.3立方米.①按方案1(如图)做一个纸箱,需要矩形硬纸板A1B1C1D1的面积是多少平方米?②小明认为,如果从节省材料的角度考虑,采用方案2(如图)的菱形硬纸板A2B2C2D2做一个纸箱比方案1更优,你认为呢?请说明理由.(2)拓展思维:北方一家水果商打算在基地购进一批“野生杨梅”,但他感觉(1)中的纸箱体积太大,搬运吃力,要求将纸箱的底面周长、底面面积和高都设计为原来的一半,你认为水果商的要求能办到吗?请利用函数图象验证.考点:正方形的性质;一元二次方程的应用;一次函数的图象;二次函数的图象;菱形的性质.专题:压轴题.分(1)①利用宽与长的比是黄金比,取黄金比为0.6,假设底面长为x,宽就为析:0.6x,再利用图形得出QM=+0.5+1+0.5+=3,FH=0.3+0.5+0.6+0.5+0.3=2.2,进而求出即可;②根据菱形的性质得出,对角线乘积的一半绝对小于矩形边长乘积即可得出答案;(2)根据相似三角形的性质面积比等于相似比的平方得出即可.解答:解:(1)①∵纸箱的高为0.5米,底面是黄金矩形(宽与长的比是黄金比,取黄金比为0.6),体积为0.3立方米,∴假设底面长为x,宽就为0.6x,∴体积为:0.6x•x•0.5=0.3,解得:x=1,∴AD=1,CD=0.6,DW=KA=DT=JC=0.5,FT=JH=CD=0.3,WQ=MK=AD=,∴QM=+0.5+1+0.5+=3,FH=0.3+0.5+0.6+0.5+0.3=2.2,∴矩形硬纸板A1B1C1D1的面积是3×2.2=6.6(平方米);②如图,连接A2C2,B2D2相交于O2,设△D2EF中EF边上的高为h1,△A2NM中NM边上的高为h2,由△D2EF∽△D2MQ得,=,解得:h1=0.4,同理可得出:h 2=,∴A2C2=,B2D2=3,又四边形A2B2C2D2是菱形,故S菱形A2B2C2D2=5.625(平方米),∴从节省材料的角度考虑,采用方案2(如图)的菱形硬纸板A2B2C2D2做一个纸箱比方案1更优.(2)水果商的要求不能办到.设底面的长与宽分别为 x、y,则 x+y=0.8,xy=0.3,即 y=0.8﹣x 和 y=,在 y=0.8﹣x 中,当x=0.8,y=0,x=0,y=0.8,在y=中,当x=1,y=0.3,x=0.3,y=1,画出其图象如图所示.因为两个函数图象无交点,故水果商的要求无法办到.点评:此题主要考查了一元二次方程的应用以及正方形性质与菱形性质等知识,根据题意得出DW=KA=DT=JC=0.5,FT=JH=CD=0.3,WQ=MK=AD=是解决问题的关键.26.(9分)(•江阴市一模)某84消毒液工厂,去年五月份以前,每天的产量与销售量均为500箱,进入五月份后,每天的产量保持不变,市场需求量不断增加.如图是五月前后一段时期库存量y(箱)与生产时间t(月份)之间的函数图象.(五月份以30天计算)(1)该厂6月份开始出现供不应求的现象.五月份的平均日销售量为830箱;(2)为满足市场需求,该厂打算在不超过220万元的情况下,购买8台新设备,使扩大生产规模后的日产量不低于五月份的平均日销售量.现有A、B两种型号的设备可供选择,其价格与两种设备的日产量如下表:型号 A B价格(万元/台)28 25日产量(箱/台)50 40请设计一种购买设备的方案,使得日产量最大;(3)在(2)的条件下(市场日平均需求量与5月相同),若安装设备需5天(6月6日新设备开始生产),指出何时开始该厂有库存?考点:一次函数的应用.专题:应用题.分析:(1)根据函数图象可判断6月份开始出现供不应求的现象,也可计算出五月份的平均日销售量.(2)设A型x台,则B型为(8﹣x)台,根据资金投入不超过220万元,扩大生产规模后的日产量不低于五月份的平均日销售量,可得出不等式组,解出即可;(3)设6月6日开始的x天后该厂开始有库存,根据生产量>销售量时开始有库存,可得出不等式,解出即可.解答:解:(1)该厂 6月份开始出现供不应求的现象;五月份的平均日销售量==830箱;(2)设A型x台,则B型为(8﹣x)台,由题意得:,解得,∵x为整数,∴x=1,2,3,4,5,6,日产量w=500+50x+40(8﹣x)=10x+820,∵10>0,∴w随x的增大而增大,当x=6时,w最大为880箱,(3)设6月6日开始的x天后该厂开始有库存,由题意得:880x﹣830x﹣5×330>0,解得x>33,故7月9日开始该厂有库存.点评:本题考查了一次函数的应用及一元一次不等式组的应用,解答本题的关键是仔细审题,建立数学模型,将实际问题转化为数学问题解答,难度一般.27.(10分)(•江阴市一模)如图,已知抛物线经过A(4,0),B(1,0),C(0,﹣2)三点.(1)求该抛物线的解析式;(2)在直线AC上方的该抛物线上是否存在一点D,使得△DCA的面积最大?若存在,求出点D的坐标及△DCA面积的最大值;若不存在,请说明理由.(3)P是直线x=1右侧的该抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P 点,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.考点:二次函数综合题.专题:压轴题.分析:(1)由抛物线经过A(4,0),B(1,0),C(0,﹣2)三点,利用待定系数法即可求得该抛物线的解析式;(2)设D点的横坐标为t(0<t<4),则D点的纵坐标为﹣t2+t﹣2,过D作y 轴的平行线交AC于E.即可求得DE的长,继而可求得S△DCA=﹣(t﹣2)2+4,然后由二次函数的性质,即可求得点D的坐标及△DCA面积的最大值;(3)首先设P(m,﹣m2+m﹣2),则m>1;然后分别从①当时,△APM∽△ACO与②当时,△APM∽△CAO去分析求解即可求得答案.解答:解:(1)∵该抛物线过点C(0,﹣2),∴可设该抛物线的解析式为y=ax2+bx﹣2.将A(4,0),B(1,0)代入y=ax2+bx﹣2,得,解得:.∴该抛物线的解析式为y=﹣x2+x﹣2.(2)存在.如图1,设D点的横坐标为t(0<t<4),则D点的纵坐标为﹣t2+t﹣2.过D作y轴的平行线交AC于E.设直线AC的解析式为:y=mx+n,则,解得:,由题意可求得直线AC的解析式为y=x﹣2.∴E点的坐标为(t,t﹣2).∴DE=﹣t2+t﹣2﹣(t﹣2)=﹣t2+2t.∴S△DCA=S△CDE+S△ADE=×DE×OA=×(﹣t2+2t)×4=﹣t2+4t=﹣(t﹣2)2+4.∴当t=2时,S最大=4.∴当D(2,1),△DAC面积的最大值为4.(3)存在.如图2,设P(m,﹣m2+m﹣2),则m>1.Ⅰ.当1<m<4时,则AM=4﹣m,PM=﹣m2+m﹣2.又∵∠COA=∠PMA=90°,∴①当时,△APM∽△ACO.∴4﹣m=2(﹣m2+m﹣2),解得m1=2,m2=4(舍去).∴P1(2,1).②当时,△APM∽△CAO.∴2(4﹣m)=﹣m2+m﹣2,解得m3=4,m4=5(均不合题意,舍去).∴当1<m<4时,P1(2,1).Ⅱ.当m>4时,同理可求P2(5,﹣2).综上所述,符合条件的点P为P1(2,1)和P2(5,﹣2).点评:此题考查了待定系数法求函数的解析式、相似三角形的判定与性质以及二次函数的最值问题.此题难度较大,注意掌握方程思想、分类讨论思想与数形结合思想的应用.28.(10分)(•江阴市一模)已知直线与x轴y轴分别交于点A和点B,点B的坐标为(0,6)(1)求的m值和点A的坐标;。
【3套试卷】江阴市中考第一次模拟考试数学精选含答案

中考模拟考试数学试题姓名:得分:日期:一、选择题(本大题共10 小题,共30 分)1、(3分) 在下列4个数中,最小的数是()A.-30B.C.-(-3)D.-|-3|2、(3分) 下列各式的变形中,正确的是()A.(-x-y)(-x+y)=x2-y2B.-x=C.x2-4x+3=(x-2)2+1D.x÷(x2+x)=+13、(3分) 下列调查中,适合用普查方式的是()A.检测100只灯泡的质量情况B.了解在南充务工人员月收入的大致情况C.了解全市学生观看“开学第一课”的情况D.了解某班学生对“南充丝绸文化”的知晓率4、(3分) 不等式组的整数解之和是()A.3B.4C.5D.65、(3分) 如图,把一副三角板放在桌面上,若两直角顶点重合,两条斜边平行,则∠1与∠2的差是()A.45°B.30°C.25°D.20°6、(3分) 某商店剩有两个进价不同的计算器,处理时都卖了70元,其中一个赢利40%,另一个亏本30%,针对这两个计算器,这家商店()A.赚了10%B.赚了10元C.亏了10%D.亏了10元7、(3分) 如图,▱ABCD的对角线AC,BD交于点O,若顺次联接ABCD各边中点,可得到的一个新的四边形.添加下列条件不能肯定新的四边形成为矩形的是()A.AC⊥BDB.AB=BCC.∠ABD=∠ADBD.∠ABO=∠BAO8、(3分) 如图,在正六边形ABCDEF外作正方形DEGH,连接AH,则tan∠HAB 等于()A.3B.C.2D.9、(3分) 如图,△ABC的内切圆与三边分别切于点D,E,F,下列结论正确的是()A.∠EDF=∠BB.2∠EDF=∠A+∠CC.2∠A=∠FED+∠EDFD.∠AED+∠BFE+∠CDF>180°10、(3分) 已知抛物线y=ax2+bx+c(a≠0)经过点(-1,0),(0,3),对称轴在y轴右侧,则下列结论:①a<0;②抛物线经过(1,0);③方程ax2+bx+c=1有两个不相等的实数根;④-3<a+b<3.正确的有()A.①③B.①②③C.①③④D.③④二、填空题(本大题共 6 小题,共18 分)11、(3分) 计算:(2-sin45°)0-=______.12、(3分) 若关于x的一元二次方程x2+mx+2n=0有一个根是-2,则m-n=______.13、(3分) 如图,把大正方形平均分成9个小正方形,其中有2个已涂黑,剩余的7个小正方形分别用1,2,3,…,7表示,并写在卡片上,任抽一张,将番号对应的小正方形涂黑,使3个涂黑的小正方形组成轴对称图形,这个事件的概率是______.14、(3分) 如图,AB是⊙O的直径,弦CD⊥AB于E.若CD=6cm,∠CAB=22.5°,则⊙O的半径为______.15、(3分) 如图,若抛物线y=x2与双曲线y=(x<0)上有三个不同的点A(x1,m),B(x2,m),C(x3,m),则当n=x1+x2+x3时,m与n的关系为______ .16、(3分) 如图,菱形ABCD的边长为4,∠B=120°.点P是对角线AC上一点(不与端点A重合),则线段AP+PD的最小值为______.三、计算题(本大题共 1 小题,共 6 分)17、(6分) 解方程:-=1.四、解答题(本大题共8 小题,共66 分)18、(6分) 如图,AB∥CD,延长BD到E,∠1+∠E=∠2,∠1+∠2=∠3.求证:BE=CD.19、(6分) 近年“微信”“支付宝”“网购”和“共享单车”给我们的生活带来了很多便利,某数学小组在校内对“你最认可的新事物”进行调查(抽到的同学从这4种中选1种).随机调査了m人,并将调査结果绘制成如下统计图(尚未完善).(1)根据图中信息,可知m=______,n=______;(2)已知A,B两同学都最认可“微信”,C最认可“支付宝”,D最认可“网购”.从这4名同学中再抽取两名,请通过列表或画树状图,求抽到的两名同学最认可的新事物不一样的概率.20、(8分) 已知关于x的方程x2-(2k-1)x+k2=0有两个不相等的实数根x1和x2.(1)求实数k的取值范围;(2)当|x1-x2|=k时,求实数k的值.21、(8分) 如图,直线y=与双曲线数y=交于A,B两点,点A的纵坐标是2.(1)求反比例函数的解析式.(2)根据图象直接写出不等式>的解集.(3)将直线y=向上平移后,与y轴交于点C,与x轴交于点D.当四边形ABDC是平行四边形时求直线CD的解析式.22、(8分) 如图,AB是半⊙O的直径,点C,D在半圆上,CD=BD,过点D作EF⊥AC于E,交AB的延长线于F.(1)求证:EF是⊙O的切线.(2)当BF=4,sinF=时,求AE的长.23、(10分) 某商店试销一款进价为60元/件的新童装,并与供货商约定,试销期间售价不低于进价,也不得高于进价的45%,同一周内售价不变.从试销记录看到,单价定为65元这周,销售了55件;单价定为75元这周,销售了45件.每周销量y(件)与销售单价x(元)符合一次函数关系.(1)求每周销量y(件)与销售单价x(元)之间的关系式.(2)商店将童装售价定为多少时,这周内销售童装获得毛利最大,最大毛利W 是多少元?(3)若商店规划一周内这项销售获得毛利不低于500元,试确定售价x的范围.24、(10分) 如图,正方形ABCD的边长为2,O是BC边的中点,P是正方形内一动点,且OP=2,连接DP,将线段DP绕点D逆时针旋转90°到DQ,连接AP,CQ.(1)直接写出线段AP和CQ的关系.(2)当A,O,P三点共线时,求线段DP的长.(3)连接PQ,求线段PQ的最小值.25、(10分) 如图,抛物线y=ax2+bx+4与x轴交于点A(-2,0)和点B(4,0).点C是抛物线第一象限上一点,CH⊥x轴于H.点D是BC的中点,DH与y轴交于点E.(1)求抛物线的解析式.(2)当C恰好是抛物线的顶点时,求点E的坐标.(3)当△CHB的面积是△EHB面积的时,求tan∠DHB的值.2019年四川省南充市中考数学模拟试卷(5月份)【答案】D【解析】解:-30=-1,,-(-3)=3,-|-3|=-3,根据实数比较大小的方法,可得-3<-1<0<3,故最小的数是-|-3|.故选:D.实数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.【第 2 题】【答案】A【解析】解:A.(-x-y)(-x+y)=x2-y2,正确;B.,错误;C.x2-4x+3=(x-2)2-1,错误;D.x÷(x2+x)=,错误;故选:A.根据平方差公式和分式的加减以及整式的除法计算即可.此题考查平方差公式和分式的加减以及整式的除法,关键是根据法则计算.【第 3 题】D【解析】解:A、检测100只灯泡的质量情况,调查具有破坏性适合抽样调查,故A不符合题意;B、了解在南充务工人员月收入的大致情况,调查范围广适合抽样调查,故B符合题意;C、了解全市学生观看“开学第一课”的情况,调查范围广适合抽样调查,故C不符合题意;D、了解某班学生对“南充丝绸文化”的知晓率,适合用普查方式,符合题意;故选:D.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【第 4 题】【答案】C【解析】解:,由①得:x≥-1,由②得:x<4,∴不等式的解集为:-1≤x<4,∴整数解是:-1,0,1,2.3,所有整数解之和:-1+0+1+2+3=5.故选:C.首先求出不等式组的解集,再找出符合条件的整数,求其和即可得到答案.此题主要考查了一元一次不等式组的解法,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.【第 5 题】【答案】B【解析】解:如图,∵AB∥CD,∴可以证明∠1=∠A+∠C=45°+60°=105°,∠2=∠B+∠D=75°,∴∠1-∠2=30°,故选:B.利用基本结论:∠1=∠A+∠C,∠2=∠B+∠D,求出∠1,∠2即可解决问题.本题考查平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.【第 6 题】【答案】D【解析】解:设盈利的计算器的进价为x元,亏本的计算器的进价为y元,依题意,得:70-x=40%x,70-y=-30%y,解得:x=50,y=100,∴70×2-50-100=-10(元).故选:D.设盈利的计算器的进价为x元,亏本的计算器的进价为y元,根据利润=售价-进价,即可得出关于x(或y)的一元一次方程,解之即可得出x(或y)的值,再利用总利润=两个计算器的售价-进价即可得出结论.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.【第7 题】【答案】D【解析】解:顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.A、∵AC⊥BD,∴新的四边形成为矩形,符合条件;∴原四边形ABCD是菱形,∵顺次连接菱形各边的中点得到的是矩形,.∴符合条件;B、∵AB=BC,∴原四边形ABCD是菱形,∵顺次连接菱形各边的中点得到的是矩形,.∴符合条件;C、∵∠ABD=∠ADB,∴邻边相等,∴原四边形ABCD是菱形,∵顺次连接菱形各边的中点得到的是矩形,.∴符合条件;D、∵∠ABO=∠BAO,∴原四边形是矩形,∴新四边形是菱形.不符合条件.故选:D.根据顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.逐一对四个条件进行判断.本题主要考查矩形的判定、平行四边形的性质、三角形中位线的性质.【第8 题】【答案】B【解析】解:连接BD,如图所示:由正六边形和正方形的性质得:B、D、H三点共线,设正六边形的边长为a,则AB=BC=CD=DE=a,∵在△BCD中,BC=CD=a,∠BCD=120°,∴BD=a.∴BH=DB+DH=(+1)a.在Rt△ABH中,tan∠HAB==+1.故选:B.设正六边形的边长为a,求出BH长,根据正切值算出BH与AB的比即可.本题主要考查正六边形的性质、正方形的性质以及解直角三角形,解题的关键是在正六边形中求出BD的长度.【第9 题】【答案】B【解析】解:不妨设∠B=80°,∠A=40°,∠C=60°.∵△ABC的内切圆与三边分别相切于点D、E、F,∴BE=BF,AE=AD,CF=CD,∴∠BEF=∠BFE=∠EDF=50°,∠CFD=∠CDF=∠FED=60°,∠AED=∠ADE=∠EFD=70°,∴∠EDF≠∠B,2∠A≠∠FED+∠EDF,故A、C不正确,∵∠B+∠BEF+∠EFB=180°,∠B+∠A+∠C=180°,∴∠BEF+∠BFE=∠A+∠C,∴2∠EDF=∠A+∠C,故B正确,∵∠AED=∠EFD,∠BFE=∠EDF,∠CDF=∠FED,∴∠AED+∠BFE+∠CDF=∠EFD+∠EDF+∠F ED=180°,故D不正确.故选:B.不妨设∠B=80°,∠A=40°,∠C=60°.求出各个角,首先判定出①③错误,再证明②④正确.本题考查三角形的内接圆与内心,解题的关键是灵活运用所学知识解决问题,学会利用特殊值法解决问题,属于中考常考题型.【第10 题】【答案】C【解析】解:①∵抛物线y=ax2+bx+c(a≠0)经过点(-1,0),(0,3),对称轴在y 轴右侧,∴抛物线开口向下,∴a<0,结论①正确;②∵抛物线过点(-1,0),对称轴在y轴右侧,∴当x=1时y>0,结论②错误;③∵顶点的纵坐标大于3,∴过点(0,1)作x轴的平行线与抛物线有两个交点,∴方程ax2+bx+c=1有两个不相等的实数根,结论③正确;④∵当x=1时y=a+b+c>0,∴a+b>-c.∵抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(0,3),∴c=3,∴a+b>-3.∵当x=-1时,y=0,即a-b+c=0,∴b=a+c,∴a+b=2a+c.∵抛物线开口向下,∴a<0,∴a+b<c=3,∴-3<a+b<3,结论④正确.故选:C.①由抛物线y=ax2+bx+c(a≠0)经过点(-1,0),(0,3),对称轴在y轴右侧,即可判断开口向下,结论①正确;②由抛物线过点(-1,0),对称轴在y轴右侧,即可得出当x=1时y>0,结论②错误;②过点(0,1)作x轴的平行线,由该直线与抛物线有两个交点,可得出方程ax2+bx+c=1有两个不相等的实数根,结论③正确;④由当x=1时y>0,可得出a+b>-c,由抛物线与y轴交于点(0,3)可得出c=3,进而即可得出a+b>-3,由抛物线过点(-1,0)可得出a+b=2a+c,结合a<0、c=3可得出a+b<3,综上可得出-3<a+b<3,结论④正确.此题得解.本题考查了抛物线与x轴的交点、二次函数的性质以及二次函数图象上点的坐标特征,逐一分析三条结论的正误是解题的关键.【第11 题】【答案】-1【解析】解:原式=1-2=-1.故答案为:-1.直接利用零指数幂的性质和立方根的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.【第12 题】【答案】2【解析】解:把x=-2代入方程x2+mx+2n=0得:4-2m+2n=0,即-2m+2n=-4,m-n=2,故答案为:2.把x=-2代入方程x2+mx+2n=0得出4-2m+2n=0,再求出即可.本题考查了一元二次方程的解,能理解一元二次方程的解的定义是解此题的关键.【第13 题】【答案】【解析】解:如图所示:涂黑1,2,3,5,7一共5个小正方形可以得到轴对称图形,故使3个涂黑的小正方形组成轴对称图形的概率是:.故答案为:.直接利用概率公式进而求出答案.此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.【第14 题】【答案】3cm【解析】解:连接OC,如图所示:∵AB是⊙O的直径,弦CD⊥AB,∴CE=DE=CD=3cm,∵OA=OC,∴∠A=∠OCA=22.5°,∵∠COE为△AOC的外角,∴∠COE=45°,∴△COE为等腰直角三角形,∴OC=CE=3cm,故答案为:3cm.连接OC,如图所示,由直径AB垂直于CD,利用垂径定理得到E为CD的中点,即CE=DE,由OA=OC,利用等边对等角得到一对角相等,确定出三角形COE 为等腰直角三角形,求出OC的长,即为圆的半径.此题考查了垂径定理,等腰直角三角形的性质,以及圆周角定理,熟练掌握垂径定理是解本题的关键.【第15 题】【答案】m=-【解析】解:如图,在抛物线上的两点A和B,关于y轴对称,横坐标为相反数,则C点在反比例函数y=-图象上,∴x1+x2=0,∵n=x1+x2+x3,∴n=x3,∴mn=-2,∴m=-故答案为m=-.根据题意设在抛物线上的两点A和B,纵坐标相同,则关于y轴对称,横坐标为相反数,即可求得n=x3,根据反比例系数k的几何意义,即可求得mn=-2.本题考查了反比例函数图象上点的坐标特征,图象上的点的坐标适合解析式.【第16 题】【答案】2【解析】解:如图,作PE⊥AB于点E,DF⊥AB于点F,∵四边形ABCD是菱形∴∠DAC=∠CAB,AB=BC,且∠B=120°∴∠CAB=30°∴PE=AP,∠DAF=60°∴∠FDA=30°,且DF⊥AB∴AF=AD=2,DF=AF=2∵AP+PD=PE+DP∴当点D,点P,点E三点共线且垂直AB时,PE+DP的值最小,最小值为DF,∴线段AP+PD的最小值为2故答案为:2作PE⊥AB于点E,DF⊥AB于点F,由菱形的性质可得∠DAC=∠CAB,AB=BC,由等腰三角形的性质和直角三角形的性质可得PE=AP,AF=AD=2,DF=AF=2,可得AP+PD=PE+DP,则点D,点P,点E三点共线且垂直AB时,PE+DP的值最小,即可求线段AP+PD的最小值.本题考查了菱形的性质,等腰三角形的性质,直角三角形的性质,最短路径问题,熟练运用菱形的性质是本题的关键.【第17 题】【答案】解:方程两边同乘(x+1)(x-1),得(x+1)2-4=(x+1)(x-1),整理得2x-2=0,解得x=1.检验:当x=1时,(x+1)(x-1)=0,所以x=1是增根,应舍去.∴原方程无解.【解析】观察可得方程最简公分母为:(x+1)(x-1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解分式方程的关键是两边同乘最简公分母,将分式方程转化为整式方程,易错点是忽视检验.【第18 题】【答案】证明:∵AB∥CD,∴∠ABD=∠BDC,∵∠1+∠E=∠2,∠1+∠E=∠ADB,∴∠2=∠ADB,∴AB=BD,∵∠1+∠2=∠3,∴∠BAE=∠3,∴△ABE≌△BDC(ASA),∴BE=DC.【解析】根据平行线的性质和全等三角形的判定和性质解答即可.此题考查全等三角形的判定和性质,关键是根据平行线的性质和全等三角形的判定和性质解答.【第19 题】【答案】(1)60 35(2)根据题意画树状图如下:共有12种等情况数,其中不一样的有10种,所以抽到的两名同学最认可的新事物不一样的概率是:=.【解析】解:(1)m==60(人),∵n%=×100%=35%,∴n=35;故答案为:60,35;2)根据题意画树状图如下:共有12种等情况数,其中不一样的有10种,所以抽到的两名同学最认可的新事物不一样的概率是:=.(1)由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得其百分比n的值;(2)根据题意画出树状图得出所有等可能结果,从中找到这两位同学最认可的新生事物不一样的结果数,再根据概率公式计算可得.本题考查的是用列表法或画树状图法求概率以及扇形统计图与条形统计图的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.【答案】解:(1)∵关于x的方程x2-(2k-1)x+k2=0有两个不相等的实数根,∴△=[-(2k-1)]2-4×1×k2=-4k+1>0,解得:k<.(2)∵关于x的方程x2-(2k-1)x+k2=0有两个实数根x1和x2,∴x1+x2=2k-1,x1x2=k2.∵|x1-x2|=k,∴(x1-x2)2=5k2,∴(x1+x2)2-4x1x2=5k2,∴(2k-1)2-4k2=5k2,解得:k1=-1,k2=.当k=-1时,|x1-x2|=-,舍去.∴实数k的值为.【解析】(1)根据方程的系数结合根的判别式△>0,可得出关于k的一元一次不等式,解之即可得出实数k的取值范围;(2)根据根与系数的关系结合|x1-x2|=k,可得出关于k的一元二元次方程,解之取其正值即可得出结论.本题考查了根的判别式以及根与系数的关系,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)根据根与系数的关系结合|x1-x2|=k,找出关于k的一元二元次方程.【答案】解:(1)∵直线y=与双曲线数y=交于A,B两点,点A的纵坐标是2.∴2=-,解得x=-4,∴A(-4,2),∴k=-4×2=-8,∴反比例函数的解析式为y=-,(2)∵A(-4,2),∴B(4,-2),∴不等式>的解集是x<-4或0<x<4;(3)作AH⊥x轴于H,则AH=2,当四边形ABCD是平行四边形时,CD=AB=2OA,直线CD的斜率与直线AB的斜率相同,∵AB∥CD,∴∠AOH=∠CDO,∵∠AHO=∠COD=90°,∴△AOH∽△CDO,∴==2,∴OC=2AH=4,∴直线CD的解析式为y=-x+4.【解析】(1)通过这些解析式求得A的坐标,然后根据待定系数法即可求得反比例函数的解析式;(2)根据中心对称求得B点的坐标,根据图象即可求得不等式>的解集;(3)作AH⊥x轴于H,则AH=2,由平行线对称直线CD的斜率为-,由三角形相似对称OC=2AH=4,即可求得解析式.本题考查了一次函数和反比例函数的交点问题,平行四边形的性质,三角形相似的判定和性质,作出辅助线构建相似三角形是解题的关键.【第22 题】【答案】(1)证明:连接AD,OD,∵CD=BD,∴=,∴∠1=∠2,∵OA=OD,∴∠2=∠3,∴∠1=∠3,∴AE∥OD,∵EF⊥AC,∴EF⊥OD,∴EF是⊙O的切线;(2)解:设⊙O的半径为r,在Rt△ODF中,sinF=,∴=,∴r=6,∵AE∥OD,∴,∴=,∴AE=.【解析】(1)连接AD,OD,由CD=BD,得到=,求得∠1=∠2,根据等腰三角形的性质得到∠2=∠3,等量代换得到∠1=∠3,推出AE∥OD,于是得到结论;(2)设⊙O的半径为r,根据三角函数的定义得到r=6,根据平行线分线段成比例定理即可得到结论.本题考查了切线的判定和性质,圆周角定理,解直角三角形,正确的作出辅助线是解题的关键.【第23 题】【答案】解:(1)设y(件)与销售单价x(元)之间的关系式为y=kx+b,则,解得:,∴y(件)与销售单价x(元)之间的关系式为:y=-x+120;(2)设商店将童装售价定为x元时,获得毛利为W,∴W=(x-60)(-x+120)=-x2+180x-7200,∴W=-(x-90)2+900,∵a=-1<0,∴当x<90时,W随x的增大而增大,而增大售价为60×(1+45%)=87(元),∴当x=87时,周内销售童装获得毛利最大,最大毛利W=-(87-90)2+900=891元;(3)由W=-(x-90)2+900=500,得(x-90)2=400,∴x1=70,x2=100,由(2)知,x≤87,∴70≤x≤87,∴商店规划一周内这项销售获得毛利不低于500元,售价x的范围为70≤x≤87.【解析】(1)设y(件)与销售单价x(元)之间的关系式为y=kx+b,列方程组即可得到结论;(2)设商店将童装售价定为x元时,获得毛利为W,根据题意得到W=(x-60)(-x+120)=-x2+180x-7200,化成顶点式为W=-(x-90)2+900,求得当x<90时,W随x的增大而增大,根据二次函数的性质即可得到结论;(3)根据W=-(x-90)2+900=500,得到(x-90)2=400,解方程即可得到结论.本题主要考查二次函数和一次函数函数的应用,理解题意依据相等关系列出函数解析式,并熟练掌握二次函数和一次函数的性质是解题的关键.【第24 题】【答案】解:(1)AP=CQ,AP⊥CQ;理由如下:延长QC、AP交于点E,AP的延长线交BC于F,如图1所示:∵四边形ABCD是正方形,∴AD=CD,∠ADC=∠BCD=90°,AD∥BC,由旋转的性质得:∠PDQ=90°,DP=DQ,∴∠ADP=∠CDQ,在△ADP和△CDQ中,,∴△ADP≌△CDQ(SAS),∴AP=CQ,∠DAP=∠DCQ,∵∠BCD=90°,∴∠DCQ+∠ECF=90°,∵AD∥BC,∴∠DAP=∠CFE,∴∠CFE+∠E CF=90°,∴∠CEF=90°,∴AE⊥QE,∴AP⊥CQ;(2)作DH⊥AP于H,如图2所示:∵O是BC边的中点,∴OB=BC=,当A,O,P三点共线时,由勾股定理得:AO===5,∵四边形ABCD是正方形,∴∠B=90°,AD∥BC,∴∠DAH=∠BOA,∴sin∠DAH=sin∠BOA==,cos∠DAH=cos∠BOA==,∴DH=AD×sin∠DAH=2×=4,AH=AD×cos∠DAH=2×=2,∴PH=AO-AH-OP=5-2-2=1,∴DP==;(3)连接OD,如图3所示:∵DQ=DP,∠PDQ=90°,∴PQ=DP,OD===5,∵OP+DP≥OD,∴DP≥OD-OP=5-2=3,∴PQ≥3,∴线段PQ的最小值为3.【解析】(1)延长QC、AP交于点E,AP的延长线交BC于F,由正方形的性质得出AD=CD,∠ADC=∠BCD=90°,AD∥BC,由旋转的性质得:∠PDQ=90°,DP=DQ,证明△ADP≌△CDQ,得出AP=CQ,∠DAP=∠DCQ,证出∠CEF=90°,即可得出AP⊥CQ;(2)作DH⊥AP于H,当A,O,P三点共线时,由勾股定理得:AO==5,由正方形的性质得出∠B=90°,AD∥BC,得出∠DAH=∠BOA,由三角函数求出DH=AD×sin∠DAH=4,AH=AD×cos∠DAH=2,得出PH=AO-AH-OP=1,再由勾股定理即可得出结果;(3)连接OD,由等腰直角三角形的性质得出PQ=DP,由勾股定理求出OD==5,由OP+DP≥OD,得出DP≥OD-OP=3,即可得出结果.本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、勾股定理、旋转的性质、等腰直角三角形的性质、三角函数的应用等知识;本题综合性强,熟练掌握正方形的性质,证明三角形全等是解题的关键.【第25 题】【答案】解:(1)将点A、B的坐标代入函数表达式得:,解得:,故函数的表达式为:y=-x2+x+4;(2)由(1)得:顶点C的坐标为(1,),∵CH⊥x轴,∴H(1,0),则HB=4-1=3,∵D是BC的中点,则点D(,),将D、H的坐标代入一次函数y=kx+n的表达式并解得:直线DH的表达式为:y=x-,∴点E(0,-);(3)∵△CHB和△EHB有公共边BC,∴,∴,设点H(m,0),则点C(m,n),n=-m2+m+4,则点D(,n),则直线DH的表达式为:y=-m(m+2),m(m+2)=OE,CH=n=-(m+2)(m-4),由,解得:m=,OH=,HB=4-=,CH=,则tan∠CBH==,点D是BC的中点,∴∠DHB=∠CBH,∴则tan∠DHB=.【解析】(1)将点A、B的坐标代入函数表达式得:,即可求解;(2)由(1)得:顶点C的坐标为(1,),CH⊥x轴,则H(1,0),则HB=4-1=3,则点D(,),即可求解;(3)△CHB和△EHB由公共边BC,则,∠DHB=∠CBH,则tan∠DHB=,即可求解.本题考查的是二次函数综合运用,涉及到三角形面积的计算、一次函数等,其中(3),利用求出点H的坐标,是本题解题的关键.中考一模数学试题及答案一、选择题(本大题共10小题,共30.0分)1.-6的倒数是()A. 6B.C.D.2.下列运算正确的是()A. B. C. D.3.在下列四个新能源汽车车标的设计图中,属于中心对称图形的是()A. B.C. D.4.如图所示的几何体的主视图是()A.B.C.D.5.反比例函数y=的图象经过点(3,-2),下列各点在此图象上的是()A. B. C. D.6.不等式组的整数解的个数是()A. 6B. 5C. 4D. 37.分式方程=1的解是()A. B. C. D.8.如图,电线杆CD的高度为h,两根拉线AC与BC相互垂直,∠CAB=α,则拉线BC的长度为(A、D、B在同一条直线上)()A. B. C. D.9.如图,点E是▱ABCD的边BC延长线上一点,连接AE交CD于点F,则下列结论中一定正确的是()A. B. C. D.10.甲、乙两人在笔直的公路上问起点、同终点、同方向匀速步行2400米,先到终点的人原地体息已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时向t(分)之间的函数关系如图所示,下列说法中正确的是()A. 甲步行的速度为8米分B. 乙走完全程用了34分钟C. 乙用16分钟追上甲D. 乙到达终点时,甲离终点还有360米二、填空题(本大题共10小题,共30.0分)11.在国家“一带一路”战略下,我国与欧洲开通了互利互惠的中欧班列,行程最长,途经城市和国家最多的一趟专列全程长1300km,将13000用科学记数法表示应为______ 12.函数中,自变量x的取值范国是______.13.把多项式3x3-6x2+3x分解因式的结果是______.14.计算的结果是______.15.笔简中有10支型号、颜色完全相同的铅笔,将它们逐一标上1-10的号码,若从笔筒中任意抽出一支铅笔,则抽到编号是3的倍数的概率是______.16.将抛物线y=(x+1)2-2向右平移1单位,得到的抛物线与y轴的交点的坐标是______.17.一个扇形的面积为4πcm2,弧长为2πcm,则此扇形的圆心角为______度.18.如图,直线AB与半径为4的⊙O相切于点C,点D在⊙O上,连接CD,DE,且∠EDC=30°,弦EF∥AB,则EF的长为______.19.已知:在矩形ABCD中,AD=2AB,点E在直线AD上,连接BE,CE,若BE=AD,则∠BEC的大小为______度.20.如图,在Rt△ABC中,∠ABC=90°,.将△ABC绕点A逆时针旋转60°,得到△AB'C'(点B,C的对应点分别为点B′,C′),延长C′B′分别交AC,BC于点D,E,若DE=2,则AD的长为______.三、计算题(本大题共1小题,共7.0分)21.先化简,再求代数式÷的值,其中a=2cos30°.四、解答题(本大题共6小题,共53.0分)22.在6×4的方格纸中,△ABC的三个顶点都在格点上(1)在图中画出线段BD,使BD∥AC,其中D是格点;(2)在图中画出线段BE,使BE⊥AC,其中E是格点,连接DE,并直接写出∠BED的度数.23.为了增强学生的环保意识,某校团委组织了一次“环保知识”考试,考题共10题考试结束后,学校团委随机抽查部分考生的考卷,对考生答题情况进行分析统计,发现所抽查的考卷中答对题量最少为6题,并且绘制了如下两幅不完整的统计图.请根据统计图提供的信息解答以下问题:(1)“答对10题”所对应扇形的心角为______;(2)通过计算补全条形统计图;(3)若该校共有2000名学生参加这次“环保知识”考试,请你估计该校答对不少于8题的学生人数.24.如图,在△ABC中,AD是BC边上的中线,点E是AD的中点,连接BE,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)在不添加任何辅助线的情况下,请直接写出图中四个三角形,使写出的每个三角形的面积等于△AEF面积的2倍.25.在运动会前夕,光明中学都会购买篮球、足球作为奖品.若购买6个篮球和8个足球共花费1700元,且购买一个篮球比购买一个足球多花50元.(1)求购买一个篮球,一个足球各需多少元;(2)今年学校计划购买这种篮球和足球共10个,恰逢商场在促销活动,篮球打九折,足球打八五折,若此次购买两种球的总费用不超过1150元,则最多可购买多少个?26.已知:四边形ABCD内接于⊙O,∠ADC=90°,DE⊥AB,垂足为点E,DE的锯长线交⊙O于点F,DC的延长线与FB的延长线交于点G.(1)如图1,求证:GD=GF;(2)如图2,过点B作BH⊥AD,垂足为点M,B交DF于点P,连接OG,若点P在线段OG上,且PB=PH,求∠ADF的大小;(3)如图3,在(2)的条件下,点M是PH的中点,点K在上,连接DK,PC,D 交PC点N,连接MN,若AB=12,HM+CN=MN,求DK的长.27.已知:在平面直角坐标系中,点O为坐标原点,直线y=-x+b与x轴交于点A,与y轴交于点C.经过点A,C的抛物线y=ax2+3ax-3与x轴的另一个交点为点B.(1)如图1,求a的值;(2)如图2,点D,E分别在线段AC,AB上,且BE=2AD,连接DE,将线段DE绕点D顺时针旋转得到线段DF,且旋转角∠EDF=∠OAC,连接CF,求tan∠ACF的值;(3)如图3,在(2)的条件下,当∠DFC=135°时,在线段AC的延长线上取点M,过点M作MN∥DE交抛物线于点N,连接DN,EM,若MN=DF,求点N的横坐标.答案和解析1.【答案】D【解析】解:-6的倒数是-.故选:D.根据倒数的定义求解.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.【答案】B【解析】解:A、(-a2)3=-a6,故此选项错误;B、a2•a6=a8,正确;C、4a2-2a2=2a2,故此选项错误;D、a6÷a2=a4,故此选项错误;故选:B.直接利用同底数幂的乘除运算法则以及积的乘方运算法则、合并同类项法则分别化简得出答案.此题主要考查了同底数幂的乘除运算以及积的乘方运算、合并同类项,正确掌握相关运算法则是解题关键.3.【答案】D【解析】解:A、不是中心对称图形,本选项错误;B、不是中心对称图形,本选项错误;C、不是中心对称图形,本选项错误;D、是中心对称图形,本选项正确.故选:D.。
2024届江苏无锡江阴市重点达标名校中考一模数学试题含解析

2024届江苏无锡江阴市重点达标名校中考一模数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)1.如图,等腰△ABC中,AB=AC=10,BC=6,直线MN垂直平分AB交AC于D,连接BD,则△BCD的周长等于()A.13 B.14 C.15 D.162.如图,△ABC中,AB=4,AC=3,BC=2,将△ABC绕点A顺时针旋转60°得到△AED,则BE的长为()A.5 B.4 C.3 D.23.(2011•黑河)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①b2﹣4ac>0 ②a>0 ③b>0 ④c >0 ⑤9a+3b+c<0,则其中结论正确的个数是()A、2个B、3个C、4个D、5个x 的解集在数轴上表示正确的是()4.不等式23A.B.C.D.5.若分式11x有意义,则x的取值范围是A.x>1 B.x<1 C.x≠1D.x≠06.将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是()A.B.C.D.7.下列关于x的方程中,属于一元二次方程的是()A.x﹣1=0 B.x2+3x﹣5=0 C.x3+x=3 D.ax2+bx+c=0 8.某种微生物半径约为0.00000637米,该数字用科学记数法可表示为()A.0.637×10﹣5B.6.37×10﹣6C.63.7×10﹣7D.6.37×10﹣79.随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为()A.12B.13C.23D.3410.如图,⊙O中,弦AB、CD相交于点P,若∠A=30°,∠APD=70°,则∠B等于()A.30°B.35°C.40°D.50°二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,Rt△ABC的直角边BC在x轴负半轴上,斜边AC上的中线BD的反向延长线交y轴正半轴于点E,双曲线y=kx(x<0)的图象经过点A,S△BEC=8,则k=_____.12.已知扇形的弧长为π,圆心角为45°,则扇形半径为_____.13.函数y=2+1-1x x 中自变量x 的取值范围是___________. 14.若一元二次方程220x x k -+=有两个不相等的实数根,则k 的取值范围是 .15.在平面直角坐标系中,点A 的坐标为(a ,3),点B 的坐标是(4,b ),若点A 与点B 关于原点O 对称,则ab=_____.16.1-12的倒数是 _____________.三、解答题(共8题,共72分)17.(8分)某校为美化校园,计划对面积为1800m 2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m 2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m 2?(2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?18.(8分)二次函数y=x 2﹣2mx+5m 的图象经过点(1,﹣2).(1)求二次函数图象的对称轴;(2)当﹣4≤x≤1时,求y 的取值范围.19.(8分)已知甲、乙两地相距90km ,A ,B 两人沿同一公路从甲地出发到乙地,A 骑摩托车,B 骑电动车,图中DE ,OC 分别表示A ,B 离开甲地的路程s (km )与时间t (h )的函数关系的图象,根据图象解答下列问题: (1)请用t 分别表示A 、B 的路程s A 、s B ;(2)在A 出发后几小时,两人相距15km ?20.(8分)在一个不透明的布袋中装两个红球和一个白球,这些球除颜色外均相同(1)搅匀后从袋中任意摸出1个球,摸出红球的概率是 .(2)甲、乙、丙三人依次从袋中摸出一个球,记录颜色后不放回,试求出乙摸到白球的概率21.(8分)如图,直线y=x+2与抛物线y=ax 2+bx+6(a≠0)相交于A (15,)和B (4,m ),点P 是线段AB 上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)B点坐标为,并求抛物线的解析式;(2)求线段PC长的最大值;(3)若△PAC为直角三角形,直接写出此时点P的坐标.22.(10分)随着社会经济的发展,汽车逐渐走入平常百姓家.某数学兴趣小组随机抽取了我市某单位部分职工进行调查,对职工购车情况分4类(A:车价40万元以上;B:车价在20—40万元;C:车价在20万元以下;D:暂时未购车)进行了统计,并将统计结果绘制成以下条形统计图和扇形统计图.请结合图中信息解答下列问题:(1)调查样本人数为__________,样本中B类人数百分比是_______,其所在扇形统计图中的圆心角度数是________;(2)把条形统计图补充完整;(3)该单位甲、乙两个科室中未购车人数分别为2人和3人,现从中选2人去参观车展,用列表或画树状图的方法,求选出的2人来自不同科室的概率.23.(12分)如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.24.为了保护视力,学校开展了全校性的视力保健活动,活动前,随机抽取部分学生,检查他们的视力,结果如图所示(数据包括左端点不包括右端点,精确到0.1);活动后,再次检查这部分学生的视力,结果如表所示分组频数4.0≤x<4.2 24.2≤x<4.4 34.4≤x<4.6 54.6≤x<4.8 84.8≤x<5.0 175.0≤x<5.2 5(1)求活动所抽取的学生人数;(2)若视力达到4.8及以上为达标,计算活动前该校学生的视力达标率;(3)请选择适当的统计量,从两个不同的角度评价视力保健活动的效果.参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解题分析】由AB的垂直平分MN交AC于D,根据线段垂直平分线的性质,即可求得AD=BD,又由△CDB的周长为:BC+CD+BD=BC+CD+AD=BC+AC,即可求得答案.【题目详解】解:∵MN是线段AB的垂直平分线,∴AD=BD,∵AB=AC=10,∴BD+CD=AD+CD=AC=10,∴△BCD的周长=AC+BC=10+6=16,故选D.【题目点拨】此题考查了线段垂直平分线的性质,比较简单,注意数形结合思想与转化思想的应用.2、B【解题分析】根据旋转的性质可得AB=AE,∠BAE=60°,然后判断出△AEB是等边三角形,再根据等边三角形的三条边都相等可得BE=AB.解:∵△ABC绕点A顺时针旋转 60°得到△AED,∴AB=AE,∠BAE=60°,∴△AEB是等边三角形,∴BE=AB,∵AB=1,∴BE=1.故选B.【题目点拨】本题考查了旋转的性质,等边三角形的判定与性质,主要利用了旋转前后对应边相等以及旋转角的定义.3、B【解题分析】分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=1时二次函数的值的情况进行推理,进而对所得结论进行判断.解答:解:①根据图示知,二次函数与x轴有两个交点,所以△=b2-4ac>0;故①正确;②根据图示知,该函数图象的开口向上,∴a>0;故②正确;③又对称轴x=-b=1,2a∴b<0,2a∴b<0;故本选项错误;④该函数图象交于y轴的负半轴,∴c<0;故本选项错误;⑤根据抛物线的对称轴方程可知:(-1,0)关于对称轴的对称点是(3,0);当x=-1时,y<0,所以当x=3时,也有y<0,即9a+3b+c<0;故⑤正确.所以①②⑤三项正确.故选B.4、B根据不等式的性质:先移项,再合并即可解得不等式的解集,最后将解集表示在数轴上即可.【题目详解】解:解:移项得,x≤3-2,合并得,x≤1;在数轴上表示应包括1和它左边的部分,如下:;故选:B .【题目点拨】本题考查了一元一次不等式的解集的求法及在数轴上表示不等式的解集,注意数轴上包括的端点实心点表示. 5、C【解题分析】分式分母不为0,所以10x -≠,解得1x ≠.故选:C.6、A【解题分析】分析:面动成体.由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.详解:A 、上面小下面大,侧面是曲面,故本选项正确;B 、上面大下面小,侧面是曲面,故本选项错误;C 、是一个圆台,故本选项错误;D 、下面小上面大侧面是曲面,故本选项错误;故选A .点睛:本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转.7、B【解题分析】根据一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2进行分析即可.A. 未知数的最高次数不是2 ,不是一元二次方程,故此选项错误;B. 是一元二次方程,故此选项正确;C. 未知数的最高次数是3,不是一元二次方程,故此选项错误;D. a=0时,不是一元二次方程,故此选项错误;故选B.【题目点拨】本题考查一元二次方程的定义,解题的关键是明白:一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2.8、B【解题分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】0.00000637的小数点向右移动6位得到6.37所以0.00000637用科学记数法表示为6.37×10﹣6,故选B.【题目点拨】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9、D【解题分析】先求出两次掷一枚硬币落地后朝上的面的所有情况,再根据概率公式求解.【题目详解】随机掷一枚均匀的硬币两次,落地后情况如下:至少有一次正面朝上的概率是34,故选:D.【题目点拨】本题考查了随机事件的概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率()mP An=.10、C【解题分析】分析:欲求∠B的度数,需求出同弧所对的圆周角∠C的度数;△APC中,已知了∠A及外角∠APD的度数,即可由三角形的外角性质求出∠C的度数,由此得解.解答:解:∵∠APD是△APC的外角,∴∠APD=∠C+∠A;∵∠A=30°,∠APD=70°,∴∠C=∠APD-∠A=40°;∴∠B=∠C=40°;故选C.二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解题分析】∵BD是Rt△ABC斜边上的中线,∴BD=CD=AD,∴∠DBC=∠ACB,又∠DBC=∠OBE,∠BOE=∠ABC=90°,∴△ABC∽△EOB,∴AB BC OE OB=∴AB•OB=BC•OE,∵S△BEC=12×BC•OE=8,∴AB•OB=1,12、1【解题分析】根据弧长公式l=n πr 180代入求解即可. 【题目详解】 解:∵n πr l 180=, ∴180l r 4n π==. 故答案为1.【题目点拨】本题考查了弧长的计算,解答本题的关键是掌握弧长公式:l=n πr 180. 13、x≥﹣12且x≠1 【解题分析】试题解析:根据题意得:2+10{-10x x ≥≠ 解得:x≥﹣12且x≠1. 故答案为:x≥﹣12且x≠1. 14、:k <1.【解题分析】∵一元二次方程220x x k -+=有两个不相等的实数根,∴△=24b ac -=4﹣4k >0,解得:k <1,则k 的取值范围是:k <1.故答案为k <1.15、1【解题分析】【分析】直接利用关于原点对称点的性质得出a ,b 的值,进而得出答案.【题目详解】∵点A 的坐标为(a ,3),点B 的坐标是(4,b ),点A 与点B 关于原点O 对称,∴a=﹣4,b=﹣3,则ab=1,故答案为1.【题目点拨】本题考查了关于原点对称的点的坐标,熟知关于原点对称的两点的横、纵坐标互为相反数是解题的关键.16、2 3 -【解题分析】先把带分数化成假分数可得:13122-=-,然后根据倒数的概念可得:32-的倒数是23-,故答案为:23-.三、解答题(共8题,共72分)17、(1)111,51;(2)11.【解题分析】(1)设乙工程队每天能完成绿化的面积是x(m2),根据在独立完成面积为411m2区域的绿化时,甲队比乙队少用4天,列出方程,求解即可;(2)设应安排甲队工作y天,根据这次的绿化总费用不超过8万元,列出不等式,求解即可.【题目详解】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:40040042x x-=解得:x=51,经检验x=51是原方程的解,则甲工程队每天能完成绿化的面积是51×2=111(m2),答:甲、乙两工程队每天能完成绿化的面积分别是111m2、51m2;(2)设应安排甲队工作y天,根据题意得:1.4y+180010050y-×1.25≤8,解得:y≥11,答:至少应安排甲队工作11天.18、(1)x=-1;(2)﹣6≤y≤1;【解题分析】(1)根据抛物线的对称性和待定系数法求解即可;(2)根据二次函数的性质可得.【题目详解】(1)把点(1,﹣2)代入y=x2﹣2mx+5m中,可得:1﹣2m+5m=﹣2,解得:m=﹣1,所以二次函数y=x 2﹣2mx+5m 的对称轴是x=212-=-, (2)∵y=x 2+2x ﹣5=(x+1)2﹣6,∴当x=﹣1时,y 取得最小值﹣6,由表可知当x=﹣4时y=1,当x=﹣1时y=﹣6,∴当﹣4≤x≤1时,﹣6≤y≤1.【题目点拨】本题考查了二次函数图象与性质及待定系数法求函数解析式,熟练掌握二次函数的图象与性质是解题的关键.19、(1)s A =45t ﹣45,s B =20t ;(2)在A 出发后15小时或75小时,两人相距15km . 【解题分析】(1)根据函数图象中的数据可以分别求得s 与t 的函数关系式;(2)根据(1)中的函数解析式可以解答本题.【题目详解】解:(1)设s A 与t 的函数关系式为s A =kt +b , +0390k b k b =⎧⎨+=⎩,得4545k b =⎧⎨=⎩-, 即s A 与t 的函数关系式为s A =45t ﹣45,设s B 与t 的函数关系式为s B =at ,60=3a ,得a =20,即s B 与t 的函数关系式为s B =20t ;(2)|45t ﹣45﹣20t |=15,解得,t 1=65,t 2=125, 6515=-1,12575=-1, 即在A 出发后15小时或75小时,两人相距15km . 【题目点拨】本题主要考查一次函数的应用,涉及到直线上点的坐标与方程,利用待定系数法求一次函数的解析式是解题的关键.20、 (1)23;(2)13. 【解题分析】(1)直接利用概率公式求解;(2)画树状图展示所有6种等可能的结果数,再找出乙摸到白球的结果数,然后根据概率公式求解.【题目详解】解:(1)搅匀后从袋中任意摸出1个球,摸出红球的概率是23;故答案为:23;(2)画树状图为:共有6种等可能的结果数,其中乙摸到白球的结果数为2,所以乙摸到白球的概率=26=13.【题目点拨】本题考查列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.21、(1)(4,6);y=1x1﹣8x+6(1)498;(3)点P的坐标为(3,5)或(711,22).【解题分析】(1)已知B(4,m)在直线y=x+1上,可求得m的值,抛物线图象上的A、B两点坐标,可将其代入抛物线的解析式中,通过联立方程组即可求得待定系数的值.(1)要弄清PC的长,实际是直线AB与抛物线函数值的差.可设出P点横坐标,根据直线AB和抛物线的解析式表示出P、C的纵坐标,进而得到关于PC与P点横坐标的函数关系式,根据函数的性质即可求出PC的最大值.(3)根据顶点问题分情况讨论,若点P为直角顶点,此图形不存在,若点A为直角顶点,根据已知解析式与点坐标,可求出未知解析式,再联立抛物线的解析式,可求得C点的坐标;若点C为直角顶点,可根据点的对称性求出结论. 【题目详解】解:(1)∵B(4,m)在直线y=x+1上,∴m=4+1=6,∴B(4,6),故答案为(4,6);∵A(,),B(4,6)在抛物线y=ax1+bx+6上,∴,解得,∴抛物线的解析式为y=1x1﹣8x+6;(1)设动点P的坐标为(n,n+1),则C点的坐标为(n,1n1﹣8n+6),∴PC=(n+1)﹣(1n1﹣8n+6),=﹣1n1+9n﹣4,=﹣1(n﹣)1+,∵PC>0,∴当n=时,线段PC最大且为.(3)∵△PAC为直角三角形,i)若点P为直角顶点,则∠APC=90°.由题意易知,PC∥y轴,∠APC=45°,因此这种情形不存在;ii)若点A为直角顶点,则∠PAC=90°.如图1,过点A(,)作AN⊥x轴于点N,则ON=,AN=.过点A作AM⊥直线AB,交x轴于点M,则由题意易知,△AMN为等腰直角三角形,∴MN=AN=,∴OM=ON+MN=+=3,∴M(3,0).设直线AM的解析式为:y=kx+b,则:,解得,∴直线AM的解析式为:y=﹣x+3 ①又抛物线的解析式为:y=1x1﹣8x+6 ②联立①②式,解得:或(与点A重合,舍去),∴C(3,0),即点C、M点重合.当x=3时,y=x+1=5,∴P1(3,5);iii)若点C为直角顶点,则∠ACP=90°.∵y=1x1﹣8x+6=1(x﹣1)1﹣1,∴抛物线的对称轴为直线x=1.如图1,作点A(,)关于对称轴x=1的对称点C,则点C在抛物线上,且C(,).当x=时,y=x+1=.∴P1(,).∵点P1(3,5)、P1(,)均在线段AB上,∴综上所述,△PAC为直角三角形时,点P的坐标为(3,5)或(,).【题目点拨】本题考查了二次函数的综合题,解题的关键是熟练的掌握二次函数的应用.22、(1)50,20%,72°.(2)图形见解析;(3)选出的2人来自不同科室的概率=.【解题分析】试题分析:(1)根据调查样本人数=A类的人数除以对应的百分比.样本中B类人数百分比=B类人数除以总人数,B 类人数所在扇形统计图中的圆心角度数=B类人数的百分比×360°.(2)先求出样本中B类人数,再画图.(3)画树状图并求出选出的2人来自不同科室的概率.试题解析:(1)调查样本人数为4÷8%=50(人),样本中B类人数百分比(50﹣4﹣28﹣8)÷50=20%,B类人数所在扇形统计图中的圆心角度数是20%×360°=72°;(2)如图,样本中B类人数=50﹣4﹣28﹣8=10(人);(3)画树状图为:共有20种可能的结果数,其中选出选出的2人来自不同科室占12种,所以选出的2人来自不同科室的概率=.考点:1.条形统计图2.扇形统计图3.列表法与树状图法.23、(1)y=﹣x2+2x+1.(2)当t=2时,点M的坐标为(1,6);当t≠2时,不存在,理由见解析;(1)y=﹣x+1;P点到直线BC的距离的最大值为28,此时点P的坐标为(32,154).【解题分析】【分析】(1)由点A、B的坐标,利用待定系数法即可求出抛物线的表达式;(2)连接PC,交抛物线对称轴l于点E,由点A、B的坐标可得出对称轴l为直线x=1,分t=2和t≠2两种情况考虑:当t=2时,由抛物线的对称性可得出此时存在点M,使得四边形CDPM是平行四边形,再根据点C的坐标利用平行四边形的性质可求出点P、M的坐标;当t≠2时,不存在,利用平行四边形对角线互相平分结合CE≠PE可得出此时不存在符合题意的点M;(1)①过点P作PF∥y轴,交BC于点F,由点B、C的坐标利用待定系数法可求出直线BC的解析式,根据点P的坐标可得出点F的坐标,进而可得出PF的长度,再由三角形的面积公式即可求出S关于t的函数表达式;②利用二次函数的性质找出S的最大值,利用勾股定理可求出线段BC的长度,利用面积法可求出P点到直线BC的距离的最大值,再找出此时点P的坐标即可得出结论.【题目详解】(1)将A(﹣1,0)、B(1,0)代入y=﹣x2+bx+c,得10930b cb c-++=⎧⎨-++=⎩,解得:23bc=⎧⎨=⎩,∴抛物线的表达式为y=﹣x2+2x+1;(2)在图1中,连接PC,交抛物线对称轴l于点E,∵抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(1,0)两点,∴抛物线的对称轴为直线x=1,当t=2时,点C、P关于直线l对称,此时存在点M,使得四边形CDPM是平行四边形,∵抛物线的表达式为y=﹣x2+2x+1,∴点C的坐标为(0,1),点P的坐标为(2,1),∴点M的坐标为(1,6);当t≠2时,不存在,理由如下:若四边形CDPM是平行四边形,则CE=PE,∵点C的横坐标为0,点E的横坐标为0,∴点P的横坐标t=1×2﹣0=2,又∵t≠2,∴不存在;(1)①在图2中,过点P作PF∥y轴,交BC于点F.设直线BC的解析式为y=mx+n(m≠0),将B(1,0)、C(0,1)代入y=mx+n,得303m nn+=⎧⎨=⎩,解得:13mn=-⎧⎨=⎩,∴直线BC的解析式为y=﹣x+1,∵点P的坐标为(t,﹣t2+2t+1),∴点F的坐标为(t,﹣t+1),∴PF=﹣t2+2t+1﹣(﹣t+1)=﹣t2+1t,∴S=12PF•OB=﹣32t2+92t=﹣32(t﹣32)2+278;②∵﹣32<0,∴当t=32时,S取最大值,最大值为278.∵点B的坐标为(1,0),点C的坐标为(0,1),∴线段BC=2232OB OC+=,∴P点到直线BC的距离的最大值为272928832⨯=,此时点P的坐标为(32,154).【题目点拨】本题考查了待定系数法求一次(二次)函数解析式、平行四边形的判定与性质、三角形的面积、一次(二次)函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线表达式;(2)分t=2和t≠2两种情况考虑;(1)①利用三角形的面积公式找出S关于t的函数表达式;②利用二次函数的性质结合面积法求出P点到直线BC的距离的最大值.24、(1)所抽取的学生人数为40人(2)37.5%(3)①视力x<4.4之间活动前有9人,活动后只有5人,人数明显减少.②活动前合格率37.5%,活动后合格率55%,说明视力保健活动的效果比较好【解题分析】【分析】(1)求出频数之和即可;(2)根据合格率=合格人数÷总人数×100%即可得解;(3)从两个不同的角度分析即可,答案不唯一.【题目详解】(1)∵频数之和=3+6+7+9+10+5=40,∴所抽取的学生人数为40人;(2)活动前该校学生的视力达标率=1540×100%=37.5%;(3)①视力x<4.4之间活动前有9人,活动后只有5人,人数明显减少;②活动前合格率37.5%,活动后合格率55%,说明视力保健活动的效果比较好.【题目点拨】本题考查了频数分布直方图、用样本估计总体等知识,熟知频数、合格率等相关概念是解题的关键.。
江阴初三中考一模数学试卷

一、选择题(每题4分,共40分)1. 下列各数中,有理数是()A. √-1B. √4C. √-16D. √02. 若m,n是方程x^2 - 3x + 2 = 0的两根,则m + n的值为()A. 2B. 3C. 4D. 53. 在等腰三角形ABC中,AB = AC,∠BAC = 40°,则∠ABC的度数为()A. 40°B. 50°C. 60°D. 70°4. 若函数f(x) = x^2 - 4x + 3的图像开口向上,则a的取值范围是()A. a > 0B. a < 0C. a ≥ 0D. a ≤ 05. 下列命题中,正确的是()A. 如果a > b,则a^2 > b^2B. 如果a > b,则a + c > b + cC. 如果a > b,则ac > bcD. 如果a > b,则ac < bc6. 在平面直角坐标系中,点P(2,3)关于y轴的对称点为()A. (-2,3)B. (2,-3)C. (-2,-3)D. (2,3)7. 若一个等差数列的首项为a1,公差为d,则第n项an的表达式为()A. an = a1 + (n-1)dB. an = a1 - (n-1)dC. an = a1 + ndD. an = a1 - nd8. 下列函数中,是奇函数的是()A. f(x) = x^3B. f(x) = |x|C. f(x) = x^2D. f(x) = 1/x9. 若直角三角形的两条直角边分别为3和4,则斜边的长度为()A. 5B. 7C. 8D. 910. 下列不等式中,正确的是()A. 2x > 3x - 1B. 2x ≤ 3x - 1C. 2x ≥ 3x - 1D. 2x < 3x - 1二、填空题(每题5分,共30分)11. 已知函数f(x) = 2x - 3,若f(x) > 0,则x的取值范围是________。
2019-2020学年江苏省江阴XX中学数学中考一模试卷((有标准答案))

江苏省江阴XX中学数学中考一模试卷一、选择题1.的值等于()A. 3B. -3C. ±3D.【答案】A【考点】算术平方根【解析】【解答】解:【分析】根据算术平方根的性质即可求解。
2.下列实数中,是有理数的为()A. B.C. sin45°D. π【答案】B【考点】实数及其分类【解析】【解答】解:∵是分数,∴是有理数;∵、sin45°=、π都是无限不循环小数,∴、sin45°、π都是无理数;∴是有理数.故选:B.【分析】首先求出sin45°的大小;然后根据有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数,据此判断出有理数有哪些即可.3.下列运算中,正确的是()A. B.C. D.【答案】B【考点】幂的乘方与积的乘方,同底数幂的除法,合并同类项法则及应用【解析】【解答】解:A、只有同类项才能合并,x2+x4不能计算,因此A不符合题意;B、( −x3 ) 2=x6,因此B符合题意;C、只有同类项才能合并,2a+3b不能计算,因此C不符合题意;D、x6÷x3=x3( x ≠ 0 ),因此D不符合题意。
故答案为:B.【分析】根据同类项的定义,只有同类项才能合并,可对A、C作出判断;根据幂的乘方,底数不变,指数相乘,可对B作出判断;根据同底数幂相除,底数不变,指数相减,可对D作出判断,即可得出答案。
4.方程的解为()A. B.C.D.【答案】D【考点】解分式方程【解析】【解答】解:方程两边同时乘以x(x-2)得4(x-2)=3x4x-8=3xx=8当x=8时,x(x-2)≠0∴x=8是原方程的解。
【分析】先将方程两边同时乘以x(x-2),将分式方程转化为整式方程,求解检验即可。
5.体育老师对甲、乙两名同学分别进行了8次摸高测试,这两名同学成绩的平均数不相等,甲同学的方差是S =6.4,乙同学的方差是S =8.2,那么这两名同学摸高成绩比较稳定的是()A. 甲B. 乙C. 甲乙一样 D. 无法确定【答案】A【考点】方差,分析数据的波动程度【解析】【解答】解:∵6.4<8.2,即S甲2 <S乙2∴甲的摸高成绩比较稳定【分析】根据方差越大数据的波动越大,即可得出答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省江阴初级中学2015届中考数学一模试题一、选择题(每题3分,共30分) 1.已知170a b -++=,则a b +=( )A .-8B .-6C .6D .82.估计61+的值在( )A .2到3之间B . 3到4之间C .4到5之间D .5到6之间3.下列计算正确的是( )A .255=±B .283=-C .32-2=3D .14×7=724.如图,菱形ABCD 的对角线AC 、BD 的长分别是6cm 、8cm ,AE ⊥BC 于点E ,AE 的长是( )A .53cmB .25cmC .485cm D .245c m 5.在一个不透明的口袋中,装有3个红球,2个折球,除颜色不同外其余都相同,则随机从口袋中摸出一个球为红色的概率是( )A .31B .52C .51D .536.下列图形中,既是中心对称图形又有且只有两条对称轴对称图形是( ) A .正三角形B .正方形C .圆D .菱形 7.将二次函数2y x =的图象向下平移1个单位,则平移后的二次函数的解析式为( )A .21y x =-B .21y x =+C .2(1)y x =-D .2(1)y x =+8.在第六次全国人口普查中,无锡市常住人口约为800万人,其中65岁及以上人口占9.2%.则该市65 岁及以上人口用科学记数法表示约为 ( ) A .0.736×106人 B .7.36×104人 C .7.36×105人 D .7.36×106 人 9.如图,在正方形ABCD 中,AC 、BD 相交于点O ,把△ABC 折叠,使AB 落在AC 上,点B 与AC 上的点E 重合,展开后,折痕AG 交BD 于点F ,连结EG 、EF 下列结论:①tan ∠AGB =2 ②图中有9对全等三角形 ③若将△GEF 沿EF 折叠,则点G 不一定落在AC 上④BG =BF ⑤S 四边形GFOE =S △AOF ,上述结论中正确的个数是 ( )A .1个B .2个C .3个D .4个10.如图,平面直角坐标系中,直线1-=kx y 与反比例函数xy 6-=相交于点A ,AB ⊥x 轴,S △ABC =1,则k 的值为( )A .1-B .1C .1-D .1-第9题图GF EO DCBACDAO第4题图第10题图A B CO Dxy二、填空题(每题2分,共16分)11.使根式3x -有意义的x 的取值范围是____________________. 12.分解因式x 3-9x = .13.若抛物线y =ax 2 +bx +c 的顶点是A (2,1),且经过点B (1,0),则抛物线的函数关系式为 . 14.如图,将直角三角板60°角的顶点放在圆心O 上,斜边和一直角边分别与⊙O 相交于A 、B 两点,P 是优弧AB 上任意一点(与A 、B 不重合),则∠APB =____________________.15.调查市场上某种食品的色素含量是否符合国家标准,这种调查适合用____________________.(填入全国调查或者抽样调查)16.如图,AB 、CD 是⊙O 的两条互相垂直的直径,点O 1、O 2、O 3、O 4分别OA 、OB 、OC 、OD 的中点,若⊙O的半径是2,则阴影部分的面积为____________________.17.如图,正方形ABCD 的边长为3,点E ,F 分别在边AB ,BC 上,AE =BF =1,小球P 从点E 出发沿直线向点F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P 第一次碰到点E 时,小球P 所经过的路程长为______________.18.如图,已知⊙O 经过点A (2,0)、C (0,2),直线y =kx (k ≠0)与⊙O 分别交于点B 、D ,则四点A 、B 、C 、D 组成的四边形面积的最大值为 .三、解答题 19.(本题满分8分) (1)计算: 2330tan 627)32(2--+--ο(2)先化简,再求值:21211x x x x -+⎛⎫-÷ ⎪⎝⎭, 其中x =2.第16题图第14题图第17题图FEDCBAA B CDOx y第18题图 D20.(本题满分8分)(1)解不等式组212(3)33x x x +≥⎧⎨+->⎩,,(2)解方程:x 2+3x -2=0;21.(本题满分6分)如图,点A 、F 、C 、D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且AB =DE ,∠A =∠D ,AF =DC .求证:BC ∥EF .22.(本题满分8分)某中学食堂为学生提供了四种价格的午餐供其选择,这四种价格分别是:A .3元,B .4元,C .5元,D .6元.为了解学社对四种午餐的购买情况,学校随机抽样调查了甲、乙两班学生某天购买四种午餐的情况,依据统计数据制成如下的统计图表: AB C D甲 6 22 16 6 乙 ? 13 25 3 (1(2)求乙班购买午餐费用的中位数;(3)已知甲、乙两班购买午餐费用的平均数均为4.44元,从平均数和众数的角度分析,哪个班购买的 餐价格较高;(4)从这次接受调查的学生中,随机抽查一人,恰好是购买C 种午餐的学生的概率是多少?班别品种人数 乙班购买午餐情况扇形统计图A18% B 26%C50% D 6% BA F C D E23.(本题满分8分)如图所示的方格地面上,标有编号1、2、3的3个小方格地面是空地,另外6个小方格地面是草坪,除此以外小方格地面完全相同.(1)一只自由飞行的小鸟,将随意地落在图中所示的方格地面上,求小鸟落在草坪上的概率;(2)现准备从图中所示的3个小方格空地中任意选取2个种植草坪,则编号为1、2的2个小方格空地种植草坪的概率是多少(用树状图或列表法求解)?(本题满分10分)由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如24.果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?(3)若乙型号手机的售价为1400元,为了促销,公司决定每售出一台乙型号手机,返还顾客现金a元,而甲型号手机仍按今年的售价销售,要使(2)中所有方案获利相同,a应取何值?25.(本题满分8分)如图四边形ABCD 中,已知∠A =∠C =30°,∠D =60°,AD =8,CD =10. (1)求AB 、BC 的长;(2)已知,半径为1的⊙P 在四边形ABCD 的外面沿各边滚动(无滑动)一周,求⊙P 在整个滚动过程中所覆盖部分图形的面积.26.(本题满分10分)如图,已知直线PA 交⊙O 于A 、B 两点,AE 是⊙O 的直径,点C 为⊙O 上一点,且AC 平分∠PAE ,过C 作CD PA ,垂足为D . (1)求证:CD 为⊙O 的切线;(2)若DC +DA =6,⊙O 的直径为10,求AB 的长度. A BC DA B CD P27.(本题满分8分)提出问题:如图,在“儿童节”前夕,小明和小华分别获得一块分布均匀且形状为等腰梯形和直角梯形的蛋糕 (AD ∥BC ),在蛋糕的边缘均匀分布着巧克力,小明和小华决定只切一刀将自己的这块蛋糕平分(要求分得的蛋糕和巧克力质量都一样). 背景介绍: 这条分割直线..既平分了梯形的面积,又平分了梯形的周长,我们称这条线为梯形的“等分积周线”. 尝试解决:(1)小明很快就想到了一条分割直线,而且用尺规作图作出.请你帮小明在图1中作出这条“等分积周线”,从而平分蛋糕.(2) 小华觉得小明的方法很好,所以模仿着在自己的蛋糕(图2)中画了一条直线EF 分别交AD 、BC 于点E 、F .你觉得小华会成功吗?如能成功,说出确定的方法;如不能成功,请说明理由.(3)通过上面的实践,你一定有了更深刻的认识.若图2中AD ∥BC ,∠A =90°,AD <BC ,AB=4 cm ,BC =6 cm ,CD = 5cm .请你找出梯形ABCD 的所有“等分积周线”,并简要的说明确定的方法. 图2 A B C D 图1A B C D28.(本题满分10分)如图,顶点为A的抛物线y=a(x+2)2-4交x轴于点B(1,0),连接AB,过原点O 作射线OM∥AB,过点A作AD∥x轴交OM于点D,点C为抛物线与x轴的另一个交点,连接CD.(1)求抛物线的解析式、直线AB的解析式;(2)若动点P从点O出发,以每秒1个单位长度的速度沿着射线OM运动,同时动点Q从点C出发,以每秒2个单位长度的速度沿线段CO向点O运动,当其中一个点停止运动时另一个点也随之停止运动.问题一:当t为何值时△OPQ为等腰三角形;问题二:当t为何值时,四边形CDPQ初三数学阶段性考试答案参考答案 一、选择题1.B ;2.B ;3.D ;4.D ;5.D ;6.D ;7.A ;8.C ;9.C ;10.A 二、填空题11.x ≤3;12.x (x +3)( x -3);13.y =-x 2+4x -3;14.30°; 15.抽样调查;16.8;17.65;18.42; 三、解答题 19.(1)解:2330tan 627)32(2--+--ο=)32(3363349--⨯+- =32323349+-+- =14 (2)解:原式=2121x xx x x -⨯-+ =()21111x x x x x -⨯=--, x =2时,原式=()()12121212121+==+--+.20.(1)解:由x +2≥1得x ≥-1, 由2x +6-3x 得x <3,∴不等式组的解集为-1≤x <3. (2)解:2341(2)17∆=-⨯⨯-= ∴3172x -±=,∴13172x -+=,23172x --= 21.解:通过证△ABC ≌△DEF ,得∠ACB =∠DFE ,说明BC ∥EF22.解:(1)13÷26%=50(人);(2)乙班购买A 种午餐的人数为50×18%=9(人),中位数是5元;(3)甲、乙两班购买午餐费用的平均数相同,甲班购买午餐费用的众数是4元,乙班购买午餐费用的众数是5元,从平均数与众数可以看出乙班购买的午餐的价格较高; (4)16+2550+50=41100. 所以,恰好是购买C 种午餐的学生的概率是41100. 23.解:(1)P (小鸟落在草坪上)=69=23. (2)用树状图或表格列出所有可能的结果: “树状图”开始1 2 32 3 1 3 1 2 列表: 1 2 3 1 (1,2) (1,3)2 (2,1)(2,3) 3(3,1) (3,2)所以编号为1,2,的2个小方格空地种植草坪的概率=2163=. 24.解:(1)设今年甲型号手机每台售价为x 元,由题意得,80000x +500=60000x ,解得x =1500.经检验x =1500是方程的解.故今年甲型号手机每台售价为1500元.(2)设购进甲型号手机m 台,由题意得,17600≤1000m +800(20﹣m )≤18400,8≤m ≤12. 因为m 只能取整数,所以m 取8、9、10、11、12,共有5种进货方案. (3)方法一:设总获利W 元,则W =(1500﹣1000)m +(1400﹣800﹣a )(20﹣m ), W =(a ﹣100)m +12000﹣20a . 所以当a =100时,(2)中所有的方案获利相同. 25.解:(1)AB =23,BC =43(2)在⊙P 的整个滚动过程中,圆心P 的运动路径长为18+167333π+; 所以⊙P 在整个滚动过程中,所覆盖部分图形的面积为36+3214333π+;26.解:(1)证明:连接OC ,因为点C 在⊙O 上,OA =OC ,所以.OCA OAC ∠=∠因为CD PA ⊥,所以90CDA ∠=o,有90CAD DCA ∠+∠=o.因为AC 平分 ∠PAE ,所以.DAC CAO ∠=∠所以90.DCO DCA ACO DCA CAO DCA DAC ∠=∠+∠=∠+∠=∠+∠=o又因为点C 在⊙O 上,OC 为⊙O 的半径,所以CD 为⊙O 的切线.(2)解:过O 作OF AB ⊥,垂足为F ,所以90OCD CDA OFD ∠=∠=∠=o, 所以四边形OCDF 为矩形,所以,.OC FD OF CD == 因为DC +DA =6,设AD x =,则6.OF CD x ==-因为⊙O 的直径为10,所以5DF OC ==,所以5AF x =-. 在Rt AOF △中,由勾股定理知222.AF OF OA += 即()()225625.x x -+-=化简得211180x x -+=,解得2x =或x=9.由AD DF <,知05x <<,故2x =.因为OF AB ⊥,由垂径定理知F 为AB 的中点,所以2 6.AB AF == 27.解:(1)作线段AD (或BC )的中垂线即可. (2)小华不会成功.直线平分梯形ABCD 面积,则21(AE +BF )AB=21(ED +CF )AB ∴AE +BF = ED +CF ,又∵AB <CD ,∴此时AE +BF + AB <ED +CF + CD∴小华不可能成功(3)可求得:S 梯形ABCD =18,C 梯形ABCD =18,由(2)可知直线分别交AD 、BC 于点E 、F 时不可能,只要分以下几种情况: ①当直线分别交AD 、AB 于E 、F 时有 S △AEF ≤S △ABD ,又∵S △ABD =6<9,∴不可能同理,当直线分别交AD 、CD 于E 、F 时S △AEF ≤S △ACD <9, ∴不可能②当直线分别交AB 、BC 于E 、F 时 设BE =x ,则BF =9−x 由直线平分梯形面积得:12 x (9−x )=9求得:x 1=3,x 2=6>4(舍去) ∴BE =3③当直线分别交CD 、BC 于E 、F 时 设CE =x ,可得:S △ECF =12 ×4x5 ×(9−x )=92x 2-18 x +45=0此方程无解,∴不可能④当直线分别交AB 、CD 于、 E 、F 时设CF =x ,可得:S BFEC =12 ×(3−x 5 )(6−3x 5 )+6x225 = 9∴ x 1=0, 与②同x 2=5 ,BF =−2,舍去综上所述,符合条件的直线共有一条.28.解:(1)∴y =94 (x +2)2-4,或y =94 x 2+916x -920;y =34x —34. (2)问题一: 35=t 、 1625=t 、1730=t yxO Q P BCAD MGHMN11问题二:将y =0代入y =94x 2+916x -920,得94x 2+916x -920=0,解得x =1或-5.∴C (-5,0).∴OC =5.∵OM ∥AB , AD ∥x 轴,∴四边形ABOD 是平行四边形. ∴AD =OB =1.∴点D 的坐标是(-3,-4).∴S △DOC =21×5×4=10. 过点P 作PN ⊥BC ,垂足为N .易证△OPN ∽△BOH . ∴OB OP OH PN =,即154tPN=.∴PN =54t .∴四边形CDPQ 的面积S =S △DOC -S △OPQ =10-21×(5-2t )×54t =54t 2-2 t +10.∴当t =45时,四边形CDPQ 的面积S 最小.此时,点P 的坐标是(-53,-1),点Q 的坐标是(-25,0),∴PQ =22)10()5325(+++-=10362.。