中考数学试题及答案江苏省

合集下载

2024年江苏省连云港市中考真题数学试卷(含答案)

2024年江苏省连云港市中考真题数学试卷(含答案)

连云港市2024年初中学业水平考试数学试题一、选择题(本大题共有8小题,每小题3分,共24分在每小题给出的四个选项中,只有一项符1合题目要求,请将正确选项前的字母代号填涂在答题卡相应位置上)1.12-的相反数是()A.2- B.2 C.12- D.12【答案】D【解析】【分析】根据相反数的性质,互为相反数的两个数的和为0即可求解.【详解】解:因为-12+12=0,所以-12的相反数是12.故选:D .【点睛】本题考查求一个数的相反数,掌握相反数的性质是解题关键.2.2024年5月,全国最大的海上光伏项目获批落地连云港,批准用海面积约28000亩,总投资约90亿元.其中数据“28000”用科学记数法可以表示为()A.32810⨯ B.42.810⨯ C.32.810⨯ D.50.2810⨯【答案】B【解析】【分析】本题考查科学记数法,根据科学记数法的表示方法:10,110,n a a n ⨯≤<为整数,进行表示即可.【详解】解:428000 2.810=⨯;故选:B .3.下列运算结果等于6a 的是()A.33a a + B.6a a ⋅ C.28a a ÷ D.()32a -【答案】C【解析】【分析】本题考查整式的运算,根据合并同类项,同底数幂的乘除法则,积的乘方和幂的乘方法则,逐一进行计算判断即可.【详解】解:A 、3332a a a +=,不符合题意;B 、67a a a ⋅=,不符合题意;C 、826a a a ÷=,符合题意;D 、()326a a -=-,不符合题意;故选:C .4.下列网格中各个小正方形的边长均为1,阴影部分图形分别记作甲、乙、丙、丁,其中是相似形的为()A.甲和乙B.乙和丁C.甲和丙D.甲和丁【答案】D【解析】【分析】本题考查相似图形,根据对应角相等,对应边对应成比例的图形是相似图形结合正方形的性质,进行判断即可.【详解】解:由图可知,只有选项甲和丁中的对应角相等,且对应边对应成比例,它们的形状相同,大小不同,是相似形.故选D .5.如图,将一根木棒的一端固定在O 点,另一端绑一重物.将此重物拉到A 点后放开,让此重物由A 点摆动到B 点.则此重物移动路径的形状为()A.倾斜直线B.抛物线C.圆弧D.水平直线【答案】C【解析】【分析】本题考查动点的移动轨迹,根据题意,易得重物移动的路径为一段圆弧.【详解】解:在移动的过程中木棒的长度始终不变,故点A 的运动轨迹是以O 为圆心,OA 为半径的一段圆弧,故选:C.6.下列说法正确的是()A.10张票中有1张奖票,10人去摸,先摸的人摸到奖票的概率较大B.从1,2,3,4,5中随机抽取一个数,取得偶数的可能性较大C.小强一次掷出3颗质地均匀的骰子,3颗全是6点朝上是随机事件D.抛一枚质地均匀的硬币,正面朝上的概率为1,连续抛此硬币2次必有1次正面朝上2【答案】C【解析】【分析】本题考查事件发生的可能性与概率.由题意根据事件的可能性以及事件发生的概率对各选项进行依次判断即可.【详解】解:A、“10张票中有1张奖票,10人去摸,先摸的人摸到奖票的概率一样”,故该选项错误,不符合题意;B、从1,2,3,4,5中随机抽取一个数,奇数有3个,偶数有2个,取得奇数的可能性较大,故该选项错误,不符合题意;C、“小强一次掷出3颗质地均匀的骰子,3颗全是6点朝上是随机事件”,故该选项正确,符合题意;D、抛一枚质地均匀的硬币,正面朝上的概率为1,连续抛此硬币2次有可能有1次正面朝上,故该选项错2误,不符合题意;故选:C.7.如图,正方形中有一个由若干个长方形组成的对称图案,其中正方形边长是80cm,则图中阴影图形的周长是()A.440cmB.320cmC.280cmD.160cm【答案】A【解析】【分析】本题考查平移的性质,利用平移的性质将阴影部分的周长转化为边长是80cm的正方形的周长加上边长是80cm 的正方形的两条边长再减去220cm ⨯,由此解答即可.【详解】解:由图可得:阴影部分的周长为边长是80cm 的正方形的周长加上边长是80cm 的正方形的两条边长再减去220cm ⨯,∴阴影图形的周长是:480280220440cm ⨯+⨯-⨯=,故选:A .8.已知抛物线2y ax bx c =++(a 、b 、c 是常数,a<0)的顶点为(1,2).小烨同学得出以下结论:①0abc <;②当1x >时,y 随x 的增大而减小;③若20ax bx c ++=的一个根为3,则12a =-;④抛物线22y ax =+是由抛物线2y ax bx c =++向左平移1个单位,再向下平移2个单位得到的.其中一定正确的是()A.①②B.②③C.③④D.②④【答案】B【解析】【分析】根据抛物线的顶点公式可得12b a-=,结合a<0,2a b c ++=,由此可判断①;由二次函数的增减性可判断②;用a 表示b 、c 的值,再解方程即可判断③,由平移法则即可判断④.【详解】解:根据题意可得:12b a -=,2b a ∴-=,0a < ,02b ∴-<即0b >, 2a b c ++=,2b a=-22c a b a ∴=--=+,c ∴的值可正也可负,∴不能确定abc 的正负;故①错误;a<0,∴抛物线开口向下,且关于直线1x =对称,当1x >时,y 随x 的增大而减小;故②正确;2,2b a c a =-=+ ,∴抛物线为222y ax x a a -=++,6092a a a =+-+,12a ∴=-,故③正确; 抛物线()2212y ax bx c a x =++=-+,将()212y a x =-+向左平移1个单位得:()221122y a x ax =-++=+,∴抛物线22y ax =+是由抛物线2y ax bx c =++向左平移1个单位得到的,故④错误;∴正确的有②③,故选:B .【点睛】本题考查了二次函数的性质,二次函数的平移,二次函数图象上点的坐标特征,二次函数与一元二次方程,一元二次方程的解的定义,用a 表示b 、c 的值是本题的关键.二、填空题(本大题共8小题,每小题3分,共24分.不需要写出解答过程,请把答案直接填写在答题卡相应位置上)9.如果公元前121年记作121-年,那么公元后2024年应记作__________年.【答案】2024+【解析】【分析】本题考查正负数的意义,根据正负数表示一对相反意义的量,公元前为负,则公元后为正,进行作答即可.【详解】解:公元前121年记作121-年,那么公元后2024年应记作2024+年;故答案为:2024+.10.在实数范围内有意义,则x 的取值范围是_____.【答案】2x ≥【解析】【详解】根据二次根式被开方数必须是非负数的条件,在实数范围内有意义,必须20x -≥,∴2x ≥.故答案为:2x ≥11.如图,直线a b ,直线l a ⊥,1120∠=︒,则2∠=__________︒.【答案】30【解析】【分析】本题考查平行线的性质,三角形的外角,根据两直线平行,同位角相等,求出3∠的度数,外角的性质,得到3902∠=︒+∠,即可求出2∠的度数.【详解】解:∵a b ,∴31120∠=∠=︒,∵l a ⊥,∴3290∠=∠+︒,∴230∠=︒;故答案为:30.12.关于x 的一元二次方程20x x c -+=有两个相等的实数根,则c 的值为__________.【答案】14##0.25【解析】【分析】本题考查了一元二次方程根的个数与根的判别式的关系.根据题意得224c 0∆=-=,进行计算即可得.【详解】解:若关于x 的一元二次方程20x x c -+=有两个相等的实数根,2140c ∆=-=,14c ∴=,故答案为:14.13.杠杆平衡时,“阻力⨯阻力臂=动力⨯动力臂”.已知阻力和阻力臂分别为1600N 和0.5m ,动力为(N)F ,动力臂为(m)l .则动力F 关于动力臂l 的函数表达式为__________.【答案】800F l =【解析】【分析】本题考查了根据实际问题列反比例函数关系式,根据题意可得16000.5l F ⋅=⨯,进而即可求解,掌握杠杆原理是解题的关键.【详解】解:由题意可得,16000.5l F ⋅=⨯,∴800l F =,即800F l=,故答案为:800F l =.14.如图,AB 是圆的直径,1∠、2∠、3∠、4∠的顶点均在AB 上方的圆弧上,1∠、4∠的一边分别经过点A 、B ,则1234∠+∠+∠+∠=__________︒.【答案】90【解析】【分析】本题考查圆周角定理,根据半圆的度数为180︒,同弧所对的圆周角是圆心角的一半,进行求解即可.【详解】∵AB 是圆的直径,∴AB 所对的弧是半圆,所对圆心角的度数为180︒,∵1∠、2∠、3∠、4∠所对的弧的和为半圆,∴11234180902∠+∠+∠+∠=⨯︒=︒,故答案为:90.15.如图,将一张矩形纸片ABCD 上下对折,使之完全重合,打开后,得到折痕EF ,连接BF .再将矩形纸片折叠,使点B 落在BF 上的点H 处,折痕为AG .若点G 恰好为线段BC 最靠近点B 的一个五等分点,4AB =,则BC 的长为__________.【答案】10【解析】【分析】本题考查矩形折叠,勾股定理,解直角三角形,设AG 与BF 交于点M ,BG a =,则:5BC a =,勾股定理求出,AG BF ,等积法求出BM ,根据cos BM BCFBC BG BF ∠==,列出方程进行求解即可.【详解】解:设AG 与BF 交于点M ,∵矩形ABCD ,∴90,4ABC C AB CD ∠=∠=︒==,∵翻折,∴122CF CD ==,AG BH ⊥,设BG a =,则:5BC a =,∴22216AG AB BG a =+=+222254BF BC CF a =+=+,∵1122ABG S AB BG AG BM =⋅=⋅ ,∴216AB BGBM AG a ⋅==+,∵90BMG C ∠=∠=︒,∴cos BM BCFBC BG BF ∠==,∴BM BF BG BC ⋅=⋅,22254516a a a a +=⋅+,解得:2105a =2105a =是原方程的解,∴5210BC a ==故答案为:10.16.如图,在ABC 中,90C ∠=︒,30B ∠=︒,2AC =.点P 在边AC 上,过点P 作PD AB ⊥,垂足为D ,过点D 作DF BC ⊥,垂足为F .连接PF ,取PF 的中点E .在点P 从点A 到点C 的运动过程中,点E 所经过的路径长为__________.【答案】1941194【解析】【分析】本题考查含30度角的直角三角形,一次函数与几何的综合应用,矩形的判定和性质,两点间的距离,以C 为原点,建立如图所示的坐标系,设AP a =,则2CP a =-,利用含30度角的直角三角形的性质,求出点E 的坐标,得到点E 在直线4313y x =-上运动,求出点P 分别与,A C 重合时,点E 的坐标,利用两点间的距离公式进行求解即可.【详解】解:以C 为原点,建立如图所示的坐标系,设AP a =,则2CP a =-,则:()0,2P a -,∵30B ∠=︒,∴60A ∠=︒,∵PD AB ⊥,∴90PDA ∠=︒,∴30APD ∠=︒,∴122a AD AP ==,过点D 作DG AC ⊥,则:90AGD ∠=︒,∴13,244a AG AD DG ====,∵DF BC ⊥,DG AC ⊥,90ACB ∠=︒,∴四边形DGCF 为矩形,∴DG CF =,∴,04F ⎛⎫ ⎪ ⎪⎝⎭,∵E 为,P F 的中点,∴1,182E a a ⎛⎫- ⎪ ⎪⎝⎭,令31,182x a y a ==-,则:4313y x =-,∴点E 在直线4313y x =-上运动,当点P 与C 重合时,0a =,此时()0,1E ,当点P 与A 重合时,2a =,此时3,04E ⎛⎫ ⎪ ⎪⎝⎭,∴点E 4=;故答案为:4.三、解答题(本大题共11小题,共102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤,作图过程需保留作图痕迹)17.计算0|2|(π1)-+--.【答案】1-【解析】【分析】本题考查实数的混合运算,零指数幂,先进行去绝对值,零指数幂和开方运算,再进行加减运算即可.【详解】解:原式2141=+-=-18.解不等式112x x -<+,并把解集在数轴上表示出来.【答案】3x >-,图见解析【解析】【分析】本题主要考查解一元一次不等式以及在数轴上表示不等式的解集,根据去分母,去括号,移项,合并可得不等式的解集,然后再在数轴上表示出它的解集即可【详解】解:112x x -<+,去分母,得12(1)x x -<+,去括号,得122x x -<+,移项,得122x x --<-,解得3x >-.这个不等式的解集在数轴上表示如下:19.下面是某同学计算21211m m ---的解题过程:解:2121211(1)(1)(1)(1)m m m m m m m +-=---+-+-①(1)2m =+-②1m =-③上述解题过程从第几步开始出现错误?请写出完整的正确解题过程.【答案】从第②步开始出现错误,正确过程见解析【解析】【分析】本题考查异分母分式的加减运算,先通分,然后分母不变,分子相减,最后将结果化为最简分式即可.掌握相应的计算法则,是解题的关键.【详解】解:从第②步开始出现错误.正确的解题过程为:原式121211(1)(1)(1)(1)(1)(1)(1)(1)1m m m m m m m m m m m m ++--=-===+-+-+-+-+.20.如图,AB 与CD 相交于点E ,EC ED =,AC BD ∥.(1)求证:AEC BED △△≌;(2)用无刻度的直尺和圆规作图:求作菱形DMCN ,使得点M 在AC 上,点N 在BD 上.(不写作法,保留作图痕迹,标明字母)【答案】(1)见解析(2)见解析【解析】【分析】(1)根据平行线的性质得到,A B C D ∠=∠∠=∠,结合EC ED =,利用AAS 即可证明AEC BED △△≌;(2)作CD 的垂直平分线,分别交,AC BD 于点,M N ,连接,DM CN 即可.【小问1详解】证明: AC BD ∥,A B ∴∠=∠,C D ∠=∠.在AEC △和BED 中,A B C D EC ED ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)AEC BED ∴ ≌;【小问2详解】解:MN 是CD 的垂直平分线,,MD MC DN CN ∴==,由(1)的结论可知,,A B AE BE ∠=∠=,又∵AEM BEN ∠=∠,则AEM BEN ≅ ,∴,ME NE = CD MN ⊥,CD ∴是MN 的垂直平分线,,DM DN CM CN ∴==,DM DN CN CM ∴===,∴四边形DMCN 是菱形,如图所示,菱形DMCN 为所求.【点睛】本题考查了垂直平分线的作法,平行线的性质,三角形全等的判定,菱形的判定,熟练掌握垂直平分线的作法及三角形全等的判定定理是解题的关键.21.为了解七年级男生体能情况,某校随机抽取了七年级20名男生进行体能测试,并对测试成绩(单位:分)进行了统计分析:【收集数据】10094888852798364838776899168779772839673【整理数据】该校规定:59x ≤为不合格,5975x <≤为合格,7589x <≤为良好,89100x <≤为优秀.(成绩用x 表示)等次频数(人数)频率不合格10.05合格a 0.20良好100.50优秀5b 合计20 1.00【分析数据】此组数据的平均数是82,众数是83,中位数是c;【解决问题】(1)填空:=a__________,b=__________,c=__________;(2)若该校七年级共有300名男生,估计体能测试能达到优秀的男生约有多少人?(3)根据上述统计分析情况,写一条你的看法.【答案】(1)4,0.25,83(2)75人(3)男生体能状况良好【解析】【分析】本题考查频数分布表和用样本估计总体:(1)利用频数=频率×数据总数可求出a的值;利用频率=频数÷数据总数可求出b,最后根据中位数定义可求出c;(2)用样本估计总体可得结论;(3)结合分析,得出看法【小问1详解】解:2020%4a=⨯=;5200.25b=÷=;把20个数据按从小到大的顺序排列为:52,64,68,72,73,76,77,79,83,83,83,87,88,88,89,91,94,96,97,100,最中间的两个数据为83,83,所以,8383832c+==,故答案为:4,0.25,83;【小问2详解】解:53007520⨯=(人)答:估计体能测试能达到优秀的男生约有75人;【小问3详解】解:从样本的平均数、中位数和众数可以看出,男生整体体能状况良好22.数学文化节猜谜游戏中,有四张大小、形状、质地都相同的字谜卡片,分别记作字谜A、字谜B、字谜C、字谜D,其中字谜A、字谜B是猜“数学名词”,字谜C、字谜D是猜“数学家人名”.(1)若小军从中随机抽取一张字谜卡片,则小军抽取的字谜是猜“数学名词”的概率是__________;(2)若小军一次从中随机抽取两张字谜卡片,请用画树状图或列表的方法求小军抽取的字谜均是猜“数学家人名”的概率.【答案】(1)12(2)16【解析】【分析】(1)根据简单地概率公式解答即可.(2)利用画树状图法解答即可.本题考查了简单地概率公式,树状图法求概率,熟练掌握画树状图法求概率是解题的关键.【小问1详解】小军抽取的字谜是猜“数学名词”的概率是2142=,故答案为:12.【小问2详解】根据题意,画树状图如下:由图可知,共有12种等可能的结果,其中小军抽取的字谜均是猜“数学家人名”的有2种,∴小军抽取的字谜均是猜“数学家人名”的概率是21126=.23.我市将5月21日设立为连云港市“人才日”,以最大诚意礼遇人才,让人才与城市“双向奔赴”.活动主办方分两次共邮购了200把绘有西游文化的折扇作为当天一项活动的纪念品.折扇单价为8元,其中邮费和优惠方式如下表所示:邮购数量1~99100以上(含100)邮寄费用总价的10%免费邮寄折扇价格不优惠打九折若两次邮购折扇共花费1504元,求两次邮购的折扇各多少把?【答案】两次邮购的折扇分别是40把和160把【解析】【分析】本题主要考查一元一次方程的应用,首先判断出两次购买数量的范围,再设设一次邮购折扇(100)x x <把,则另一次邮䝧折扇(200)x -把,根据“两次邮购折扇共花费1504元”列出一元一次方程,求解即可【详解】解:若每次购买都是100把,则20080.914401504⨯⨯=≠.∴一次购买少于100把,另一次购买多于100把.∴设一次邮购折扇(100)x x <把,则另一次邮购折扇(200)x -把.由题意得:8(110%)0.98(200)1504x x ++⨯-=,解得40x =.20020040160x ∴-=-=.答:两次邮购的折扇分别是40把和160把.24.如图1,在平面直角坐标系xOy 中,一次函数1(0)y kx k =+≠的图像与反比例函数6y x=的图像交于点A 、B ,与y 轴交于点C ,点A 的横坐标为2.(1)求k 的值;(2)利用图像直接写出61kx x+<时x 的取值范围;(3)如图2,将直线AB 沿y 轴向下平移4个单位,与函数6(0)y x x=>的图像交于点D ,与y 轴交于点E ,再将函数6(0)y x x =>的图像沿AB 平移,使点A 、D 分别平移到点C 、F 处,求图中阴影部分的面积.【答案】(1)1k =(2)3x <-或02x <<(3)8【解析】【分析】本题考查反比例函数与一次函数的综合应用:(1)先求出A 点坐标,再将A 点代入一次函数的解析式中求出k 的值即可;(2)图像法求不等式的解集即可;(3)根据平移的性质,得到阴影部分的面积即为ACFD 的面积,进行求解即可.【小问1详解】点A 在6y x =的图像上,∴当2x =时,632y ==.∴(2,3)A ,将点(2,3)A 代入1y kx =+,得1k =.【小问2详解】由(1)知:1y x =+,联立16y x y x =+⎧⎪⎨=⎪⎩,解得:23x y =⎧⎨=⎩或32x y =-⎧⎨=-⎩,∴()3,2B --;由图像可得:61kx x +<时x 的取值范围为:3x <-或02x <<.【小问3详解】∵1y x =+,∴当0x =时,1y =,∴(0,1)C ,∵将直线AB 沿y 轴向下平移4个单位,∴4CE =,直线DE 的解析式为:3y x =-,设直线DE 与x 轴交于点H∴当0x =时,=3y -,当0y =时,3x =,∴()3,0H ,()0,3E -,∴3OF OE ==,∴45FEC ∠=︒,如图,过点C 作CG DE ⊥,垂足为G ,∴22CG CE ==.又(2,3)A ,(0,1)C ,AC ∴=.连接,AD CF ,∵平移,∴AC DF ∥,AC DF =,∴四边形ACFD 为平行四边形,∴阴影部分面积等于ACFD 的面积,即8=.25.图1是古代数学家杨辉在《详解九章算法》中对“邑的计算”的相关研究.数学兴趣小组也类比进行了如下探究:如图2,正八边形游乐城12345678A A A A A A A A 的边长为2km 2,南门O 设立在67A A 边的正中央,游乐城南侧有一条东西走向的道路BM ,67A A 在BM 上(门宽及门与道路间距离忽略不计),东侧有一条南北走向的道路BC ,C 处有一座雕塑.在1A 处测得雕塑在北偏东45︒方向上,在2A 处测得雕塑在北偏东59︒方向上.(1)12CA A ∠=__________︒,21CA A ∠=__________︒;(2)求点1A 到道路BC 的距离;(3)若该小组成员小李出南门O 后沿道路MB 向东行走,求她离B 处不超过多少千米,才能确保观察雕塑不会受到游乐城的影响?(结果精确到0.1km 1.41≈,sin 760.97︒≈,tan76 4.00︒≈,sin 590.86︒≈,tan 59 1.66︒≈)【答案】(1)1290CA A ︒∠=,2176CA A ︒∠=(2)2.0千米(3)2.4km 【解析】【分析】本题考查正多边形的外角,解直角三角形,相似三角形的判定和性质:(1)求出正八边形的一个外角的度数,再根据角的和差关系进行求解即可;(2)过点1A 作1A D BC ⊥,垂足为D ,解21Rt CA A △,求出1122tan 76 4.002CA A A ∴=⋅≈=︒解1Rt CA D △,求出112cos 45 2.0km 2A D CA ︒=⋅==,即可;(3)连接8CA 并延长交BM 于点E ,延长81A A 交BE 于点G ,过点8A 作8A F BC ⊥,垂足为F ,解78Rt A A G △,求出8A G ,证明8Rt Rt CA F CEB △∽△,列出比例式进行求解即可.【小问1详解】解:∵正八边形的一个外角的度数为:360458︒=︒,∴12454590CA A ∠︒=︒+︒=,21180455976CA A ∠︒=︒-︒-︒=;故答案为:90,76;【小问2详解】过点1A 作1A D BC ⊥,垂足为D .在21Rt CA A △中,2122A A =,2176CA A ︒∠=,1122tan 76 4.002CA A A ∴=⋅≈⨯=︒.在1Rt CA D △中,1904545CA D ∠︒=︒-︒=,112cos 45 2.0km 2A D CA ∴=⋅=︒=.答:点1A 到道路BC 的距离为2.0千米.【小问3详解】连接8CA 并延长交BM 于点E ,延长81A A 交BE 于点G ,过点8A 作8A F BC ⊥,垂足为F . 正八边形的外角均为45︒,∴在78Rt A A G △中,812A G =.812FB A G ∴==.又812A F A D CD === ,1822DF A A ==,522CB CD DF FB +∴=++=.∵88,CFA B FCA BCE ∠=∠∠=∠,∴8Rt Rt CA F CEB △∽△,8CF A F CB EB ∴=,即2222522EB +=,1.41≈,2.4km EB ∴≈.答:小李离点B 不超过2.4km ,才能确保观察雕塑不会受到游乐城的影响.26.在平面直角坐标系xOy 中,已知抛物线21y ax bx =+-(a 、b 为常数,0a >).(1)若抛物线与x 轴交于(1,0)A -、(4,0)B 两点,求抛物线对应的函数表达式;(2)如图,当1b =时,过点(1,)C a -、(1,2)D a +分别作y 轴的平行线,交抛物线于点M 、N ,连接MN MD 、.求证:MD 平分CMN ∠;(3)当1a =,2b ≤-时,过直线1(13)y x x =-≤≤上一点G 作y 轴的平行线,交抛物线于点H .若GH 的最大值为4,求b 的值.【答案】(1)213144y x x =--(2)见解析(3)3-【解析】【分析】(1)利用待定系数法求解即可;(2)连接CN ,根据题意,求得(1,2)M a --,(1,)N a ,进而求出2CN =,(2)2CM a a =--=,利用勾股定理求出22MN =22DN =,从而得到NDM NMD ∠=∠,结合平行线的性质即可证明结论;(3)设(,1)G m m -,则()2,1H m m bm +-,13m ≤≤,求出当1a =时,213x b =-≥,得到点G 在H 的上方,设GH t =,故2(1)t m b m =-+-,其对称轴为12b m -=,分为31322b -≤≤和132b ->两种情况讨论即可.【小问1详解】解:分别将(1,0)A -,(4,0)B 代入21y ax bx =+-,得1016410a b a b --=⎧⎨+-=⎩,解得1434a b ⎧=⎪⎪⎨⎪=-⎪⎩.∴函数表达式为213144y x x =--;【小问2详解】解:连接CN ,1b =Q ,21y ax x ∴=+-.当=1x -时,2y a =-,即点(1,2)M a --,当1x =时,y a =,即点(1,)N a .(1,)C a - ,(1,)N a ,2CN ∴=,(2)2CM a a =--=,CM CN ⊥,∴在Rt CMN 中,MN ==.DN a a =+-=,DN MN ∴=,NDM NMD ∴∠=∠.DN CM ∥ ,NDM CMD ∴∠=∠.NMD CMD ∴∠=∠.MD ∴平分CMN ∠.【小问3详解】解:设(,1)G m m -,则()2,1H m m bm +-,13m ≤≤.当1a =时,21y x bx =+-.令211x bx x +-=-,解得10x =,21x b =-.2b ≤- ,213x b ∴=-≥,∴点G 在H 的上方(如图1).设GH t =,故2(1)t m b m =-+-,其对称轴为12b m -=,且1322b-≥.①当31322b -≤≤时,即52b -≤≤-.由图2可知:当12bm -=时,t 取得最大值2(1)44b -=.解得3b =-或5b =(舍去).②当132b ->时,得5b <-,由图3可知:当3m =时,t 取得最大值9334b -+-=.解得103b =-(舍去).综上所述,b 的值为3-.【点睛】本题考查抛物线与角度的综合问题,抛物线与x 轴的交点,二次函数的解析式及最值等问题,关键是利用二次函数的性质求最值.27.【问题情境】(1)如图1,圆与大正方形的各边都相切,小正方形是圆的内接正方形,那么大正方形面积是小正方形面积的几倍?小昕将小正方形绕圆心旋转45°(如图2),这时候就容易发现大正方形面积是小正方形面积的__________倍.由此可见,图形变化是解决问题的有效策略;【操作实践】(2)如图3,图①是一个对角线互相垂直的四边形,四边a 、b 、c 、d 之间存在某种数量关系.小昕按所示步骤进行操作,并将最终图形抽象成图4.请你结合整个变化过程,直接写出图4中以矩形内一点P 为端点的四条线段之间的数量关系;【探究应用】(3)如图5,在图3中“④”的基础上,小昕将PDC △绕点P 逆时针旋转,他发现旋转过程中DAP ∠存在最大值.若8PE =,5PF =,当DAP ∠最大时,求AD 的长;(4)如图6,在Rt ABC △中,90C ∠=︒,点D 、E 分别在边AC 和BC 上,连接DE 、AE 、BD .若5AC CD +=,8BC CE +=,求AE BD +的最小值.【答案】(1)2(2)2222PA PC PB PD +=+(3)39AD =(489【解析】【分析】(1)利用圆与正多边形的性质分别计算两个正方形的面积可得答案;(2)如图,由EG FH ⊥,证明2222a c b d =++,再结合图形变换可得答案;(3)如图,将PDC △绕点P 逆时针旋转,可得D 在以P 为圆心,PD 为半径的圆上运动,可得当AD 与P 相切时,DAP ∠最大,再进一步解答即可;(4)如图,将BDC 沿BC 对折,D 的对应点为1D ,将AEC △沿AC 对折,E 的对应点为1E ,连接11D E ,再将1ABE 沿AC 方向平移,使A 与1D 重合,如图,得112B D E ,由(2)可得:121AE BD D E BD +=+,当21,,E D B 三点共线时,121AE BD D E BD +=+最短,再进一步解答即可.【详解】解:如图,∵正方形ABCD ,EFGH 及圆为正方形ABCD 的内切圆,为正方形EFGH 的外接正方形,∴设AE DE DH CH CG BG AF BF m ========,90A ∠=︒,∴2AB AD m ==,EF ==,∴24ABCD S m =正方形,)222EFGH S m ==正方形,∴大正方形面积是小正方形面积的2倍.(2)如图,∵EG FH ⊥,∴222a OF OE =+,222c OG OH =+,222d OE OH =+,222b OF OG =+,∴2222a c b d =++,如图,结合图形变换可得:2222PA PC PB PD +=+;(3)如图,∵将PDC △绕点P 逆时针旋转,∴D 在以P 为圆心,PD 为半径的圆上运动,∵A 为圆外一个定点,∴当AD 与P 相切时,DAP ∠最大,∴PD AD ⊥,∴222AD AP PD =-,由(2)可得:AE DF =,∵8PE =,5PF =,∴222AD AP PD =-2222PE AE PF DF =+--2285=-39=,∴AD =;(4)如图,将BDC 沿BC 对折,D 的对应点为1D ,将AEC △沿AC 对折,E 的对应点为1E ,连接11D E ,∴1CD CD =,1CE CE =,再将1ABE 沿AC 方向平移,使A 与1D 重合,如图,得112B D E ,由(2)可得:121AE BD D E BD +=+,∴当21,,E D B 三点共线时,121AE BD D E BD +=+最短,∵5AC CD +=,8BC CE +=,∴125E E =,18BE =,∴2BE ===∴AE BD +;【点睛】本题考查的是勾股定理的应用,轴对称的性质,平移的性质,旋转的性质,圆与正多边形的关系,切线的性质,作出合适的辅助线是解本题的关键.。

江苏省徐州市中考数学真题试题(含解析)

江苏省徐州市中考数学真题试题(含解析)

江苏省徐州市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.(3分)﹣2的倒数是()A.﹣B.C.2 D.﹣22.(3分)下列计算正确的是()A.a2+a2=a4B.(a+b)2=a2+b2C.(a3)3=a9D.a3•a2=a63.(3分)下列长度的三条线段,能组成三角形的是()A.2,2,4 B.5,6,12 C.5,7,2 D.6,8,104.(3分)抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为()A.500 B.800 C.1000 D.12005.(3分)某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40,该组数据的众数、中位数分别为()A.40,37 B.40,39 C.39,40 D.40,386.(3分)下图均由正六边形与两条对角线所组成,其中不是轴对称图形的是()A.B.C.D.7.(3分)若A(x1,y1)、B(x2,y2)都在函数y=的图象上,且x1<0<x2,则()A.y1<y2B.y1=y2C.y1>y2D.y1=﹣y28.(3分)如图,数轴上有O、A、B三点,O为原点,OA、OB分别表示仙女座星系、M87黑洞与地球的距离(单位:光年).下列选项中,与点B表示的数最为接近的是()A.5×106B.107C.5×107D.108二、填空題(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接填写在答题卡相应位置)9.(3分)8的立方根是.10.(3分)使有意义的x的取值范围是.11.(3分)方程x2﹣4=0的解是.12.(3分)若a=b+2,则代数式a2﹣2ab+b2的值为.13.(3分)如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点.若MN=4,则AC的长为.14.(3分)如图,A、B、C、D为一个外角为40°的正多边形的顶点.若O为正多边形的中心,则∠OAD=.15.(3分)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为cm.16.(3分)如图,无人机于空中A处测得某建筑顶部B处的仰角为45°,测得该建筑底部C处的俯角为17°.若无人机的飞行高度AD为62m,则该建筑的高度BC为m.(参考数据:sin17°≈0.29,cos17°≈0.96,tan17°≈0.31)17.(3分)已知二次函数的图象经过点P(2,2),顶点为O(0,0)将该图象向右平移,当它再次经过点P时,所得抛物线的函数表达式为.18.(3分)函数y=x+1的图象与x轴、y轴分别交于A、B两点,点C在x轴上.若△ABC 为等腰三角形,则满足条件的点C共有个.三、解答题(本大题共有10小题,共86分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)计算:(1)π0﹣+()﹣2﹣|﹣5|;(2)÷.20.(10分)(1)解方程:+1=(2)解不等式组:21.(7分)如图,甲、乙两个转盘分别被分成了3等份与4等份,每份内均标有数字.分别旋转这两个转盘,将转盘停止后指针所指区域内的两数相乘.(1)请将所有可能出现的结果填入下表:(2)积为9的概率为;积为偶数的概率为;(3)从1~12这12个整数中,随机选取1个整数,该数不是(1)中所填数字的概率为.22.(7分)某户居民2018年的电费支出情况(每2个月缴费1次)如图所示:根据以上信息,解答下列问题:(1)求扇形统计图中“9﹣10月”对应扇形的圆心角度数;(2)补全条形统计图.23.(8分)如图,将平行四边形纸片ABCD沿一条直线折叠,使点A与点C重合,点D落在点G处,折痕为EF.求证:(1)∠ECB=∠FCG;(2)△EBC≌△FGC.24.(8分)如图,AB为⊙O的直径,C为⊙O上一点,D为的中点.过点D作直线AC的垂线,垂足为E,连接OD.(1)求证:∠A=∠DOB;(2)DE与⊙O有怎样的位置关系?请说明理由.25.(8分)如图,有一块矩形硬纸板,长30cm,宽20cm.在其四角各剪去一个同样的正方形,然后将四周突出部分折起,可制成一个无盖长方体盒子.当剪去正方形的边长取何值时,所得长方体盒子的侧面积为200cm2?26.(8分)【阅读理解】用10cm×20cm的矩形瓷砖,可拼得一些长度不同但宽度均为20cm的图案.已知长度为10cm、20cm、30cm的所有图案如下:【尝试操作】如图,将小方格的边长看作10cm,请在方格纸中画出长度为40cm的所有图案.【归纳发现】观察以上结果,探究图案个数与图案长度之间的关系,将下表补充完整.27.(9分)如图①,将南北向的中山路与东西向的北京路看成两条直线,十字路口记作点A.甲从中山路上点B出发,骑车向北匀速直行;与此同时,乙从点A出发,沿北京路步行向东匀速直行.设出发xmin时,甲、乙两人与点A的距离分别为y1m、y2m.已知y1、y2与x之间的函数关系如图②所示.(1)求甲、乙两人的速度;(2)当x取何值时,甲、乙两人之间的距离最短?28.(11分)如图,平面直角坐标系中,O为原点,点A、B分别在y轴、x轴的正半轴上.△AOB的两条外角平分线交于点P,P在反比例函数y=的图象上.PA的延长线交x轴于点C,PB的延长线交y轴于点D,连接CD.(1)求∠P的度数及点P的坐标;(2)求△OCD的面积;(3)△AOB的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.(3分)﹣2的倒数是()A.﹣B.C.2 D.﹣2【分析】根据乘积是1的两个数叫做互为倒数解答.【解答】解:∵(﹣2)×(﹣)=1,∴﹣2的倒数是﹣.故选:A.【点评】本题考查了倒数的定义,是基础题,熟记概念是解题的关键.2.(3分)下列计算正确的是()A.a2+a2=a4B.(a+b)2=a2+b2C.(a3)3=a9D.a3•a2=a6【分析】分别根据合并同类项的法则、完全平方公式、幂的乘方以及同底数幂的乘法化简即可判断.【解答】解:A、a2+a2=2a2,故选项A不合题意;B.(a+b)2=a2+2ab+b2,故选项B不合题意;C.(a3)3=a9,故选项C符合题意;D.a3•a2=a5,故选项D不合题意.故选:C.【点评】本题主要考查了合并同类项的法则、幂的运算法则以及完全平方公式,熟练掌握法则是解答本题的关键.3.(3分)下列长度的三条线段,能组成三角形的是()A.2,2,4 B.5,6,12 C.5,7,2 D.6,8,10【分析】根据三角形两边之和大于第三边可以判断各个选项中的三天线段是否能组成三角形,本题得以解决.【解答】解:∵2+2=4,∴2,2,4不能组成三角形,故选项A错误,∵5+6<12,∴5,6,12不能组成三角形,故选项B错误,∵5+2=7,∴5,7,2不能组成三角形,故选项C错误,∵6+8>10,∴6,8,10能组成三角形,故选项D正确,故选:D.【点评】本题考查三角形三边关系,解答本题的关键是明确三角形两边之和大于第三边.4.(3分)抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为()A.500 B.800 C.1000 D.1200【分析】由抛掷一枚硬币正面向上的可能性为0.5求解可得.【解答】解:抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为1000次,故选:C.【点评】本题主要考查随机事件,关键是理解必然事件为一定会发生的事件;解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.5.(3分)某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40,该组数据的众数、中位数分别为()A.40,37 B.40,39 C.39,40 D.40,38【分析】根据众数和中位数的概念求解可得.【解答】解:将数据重新排列为37,37,38,39,40,40,40,所以这组数据的众数为40,中位数为39,故选:B.【点评】本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.(3分)下图均由正六边形与两条对角线所组成,其中不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解可得.【解答】解:不是轴对称图形,故选:D.【点评】本题主要考查轴对称图形,解题的关键是掌握轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.7.(3分)若A(x1,y1)、B(x2,y2)都在函数y=的图象上,且x1<0<x2,则()A.y1<y2B.y1=y2C.y1>y2D.y1=﹣y2【分析】根据题意和反比例函数的性质可以解答本题.【解答】解:∵函数y=,∴该函数图象在第一、三象限、在每个象限内y随x的增大而减小,∵A(x1,y1)、B(x2,y2)都在函数y=的图象上,且x1<0<x2,∴y1<y2,故选:A.【点评】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.8.(3分)如图,数轴上有O、A、B三点,O为原点,OA、OB分别表示仙女座星系、M87黑洞与地球的距离(单位:光年).下列选项中,与点B表示的数最为接近的是()A.5×106B.107C.5×107D.108【分析】先化简2.5×106=0.25×107,再从选项中分析即可;【解答】解:2.5×106=0.25×107,(10×107)÷(0.25×107)=40,从数轴看比较接近;故选:D.【点评】本题考查数轴,科学记数法;能够将数进行适当的表示,结合数轴解题是关键.二、填空題(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接填写在答题卡相应位置)9.(3分)8的立方根是 2 .【分析】利用立方根的定义计算即可得到结果.【解答】解:8的立方根为2,故答案为:2.【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.10.(3分)使有意义的x的取值范围是x≥﹣1 .【分析】根据二次根式中的被开方数必须是非负数,可得x+1≥0,据此求出x的取值范围即可.【解答】解:∵有意义,∴x+1≥0,∴x的取值范围是:x≥﹣1.故答案为:x≥﹣1.【点评】此题主要考查了二次根式有意义的条件,要熟练掌握,解答此题的关键是要明确:二次根式中的被开方数必须是非负数,否则二次根式无意义.11.(3分)方程x2﹣4=0的解是±2 .【分析】首先把4移项,再利用直接开平方法解方程即可.【解答】解:x2﹣4=0,移项得:x2=4,两边直接开平方得:x=±2,故答案为:±2.【点评】此题主要考查了直接开平方法解一元二次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.12.(3分)若a=b+2,则代数式a2﹣2ab+b2的值为 4 .【分析】由a=b+2,可得a﹣b=2,代入所求代数式即可.【解答】解:∵a=b+2,∴a﹣b=2,∴a2﹣2ab+b2=(a﹣b)2=22=4.故答案为:4【点评】本题主要考查了完全平方公式,熟记公式是解答本题的关键.13.(3分)如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点.若MN=4,则AC的长为16 .【分析】根据中位线的性质求出BO长度,再依据矩形的性质AC=BD=2BO进行求解问题.【解答】解:∵M、N分别为BC、OC的中点,∴BO=2MN=8.∵四边形ABCD是矩形,∴AC=BD=2BO=16.故答案为16.【点评】本题主要考查了矩形的性质以及三角形中位线的定理,解题的关键是找到线段间的倍分关系.14.(3分)如图,A、B、C、D为一个外角为40°的正多边形的顶点.若O为正多边形的中心,则∠OAD=140°.【分析】利用任意凸多边形的外角和均为360°,正多边形的每个外角相等即可求出多边形的边数,再根据多边形的内角和公式计算即可.【解答】解:多边形的每个外角相等,且其和为360°,据此可得多边形的边数为:,∴∠OAD=.故答案为:140°【点评】本题主要考查了正多边形的外角以及内角,熟记公式是解答本题的关键.15.(3分)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为 6 cm.【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【解答】解:圆锥的底面周长=2π×2=4πcm,设圆锥的母线长为R,则:=4π,解得R=6.故答案为:6.【点评】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为:.16.(3分)如图,无人机于空中A处测得某建筑顶部B处的仰角为45°,测得该建筑底部C处的俯角为17°.若无人机的飞行高度AD为62m,则该建筑的高度BC为262 m.(参考数据:sin17°≈0.29,cos17°≈0.96,tan17°≈0.31)【分析】作AE⊥BC于E,根据正切的定义求出AE,根据等腰直角三角形的性质求出BE,结合图形计算即可.【解答】解:作AE⊥BC于E,则四边形ADCE为矩形,∴EC=AD=62,在Rt△AEC中,tan∠EAC=,则AE=≈=200,在Rt△AEB中,∠BAE=45°,∴BE=AE=200,∴BC=200+62=262(m),则该建筑的高度BC为262m,故答案为:262.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.17.(3分)已知二次函数的图象经过点P(2,2),顶点为O(0,0)将该图象向右平移,当它再次经过点P时,所得抛物线的函数表达式为y=(x﹣4)2.【分析】设原来的抛物线解析式为:y=ax2.利用待定系数法确定函数关系式;然后利用平移规律得到平移后的解析式,将点P的坐标代入即可.【解答】解:设原来的抛物线解析式为:y=ax2(a≠0).把P(2,2)代入,得2=4a,解得a=.故原来的抛物线解析式是:y=x2.设平移后的抛物线解析式为:y=(x﹣b)2.把P(2,2)代入,得2=(2﹣b)2.解得b=0(舍去)或b=4.所以平移后抛物线的解析式是:y=(x﹣4)2.故答案是:y=(x﹣4)2.【点评】考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征.利用待定系数法确定原来函数关系式是解题的关键.18.(3分)函数y=x+1的图象与x轴、y轴分别交于A、B两点,点C在x轴上.若△ABC 为等腰三角形,则满足条件的点C共有 3 个.【分析】三角形ABC的找法如下:①以点A为圆心,AB为半径作圆,与x轴交点即为C;②以点B为圆心,AB为半径作圆,与x轴交点即为C;③作AB的中垂线与x轴的交点即为C;【解答】解:以点A为圆心,AB为半径作圆,与x轴交点即为C;以点B为圆心,AB为半径作圆,与x轴交点即为C;作AB的中垂线与x轴的交点即为C;故答案为3;【点评】本题考查一次函数的图象上点的特征,等腰三角形的性质;掌握利用两圆一线找等腰三角形的方法是解题的关键.三、解答题(本大题共有10小题,共86分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)计算:(1)π0﹣+()﹣2﹣|﹣5|;(2)÷.【分析】(1)先计算零指数幂、算术平方根、负整数指数幂和绝对值,再计算加减可得;(2)先化简各分式,再将除法转化为乘法,继而约分即可得.【解答】解:(1)原式=1﹣3+9﹣5=2;(2)原式=÷=(x﹣4)•=2x.【点评】本题主要考查分式的乘除法,解题的关键是掌握分式的乘除运算顺序和运算法则.20.(10分)(1)解方程:+1=(2)解不等式组:【分析】(1)两边同时乘以x﹣3,整理后可得x =;(2)不等式组的每个不等式解集为;【解答】解:(1)+1=,两边同时乘以x﹣3,得x﹣2+x﹣3=﹣2,∴x =;经检验x =是原方程的根;(2)由可得,∴不等式的解为﹣2<x≤2;【点评】本题考查分式方程,不等式组的解;掌握分式方程和不等式组的解法是关键.21.(7分)如图,甲、乙两个转盘分别被分成了3等份与4等份,每份内均标有数字.分别旋转这两个转盘,将转盘停止后指针所指区域内的两数相乘.(1)请将所有可能出现的结果填入下表:(2)积为9的概率为;积为偶数的概率为;(3)从1~12这12个整数中,随机选取1个整数,该数不是(1)中所填数字的概率为.【分析】(1)计算所取两数的乘积即可得;(2)找到符合条件的结果数,再根据概率公式计算可得;(3)利用概率公式计算可得.【解答】解:(1)补全表格如下:(2)由表知,共有12种等可能结果,其中积为9的有1种,积为偶数的有8种结果,所以积为9的概率为;积为偶数的概率为=,故答案为:,.(3)从1~12这12个整数中,随机选取1个整数,该数不是(1)中所填数字的有5和7这2种,∴此事件的概率为=,故答案为:.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.(7分)某户居民2018年的电费支出情况(每2个月缴费1次)如图所示:根据以上信息,解答下列问题:(1)求扇形统计图中“9﹣10月”对应扇形的圆心角度数;(2)补全条形统计图.【分析】(1)从条形统计图中可得3﹣4月份电费240元,从扇形统计图中可知3﹣4月份电费占全年的10%,可求全年的电费,进而求出9﹣10月份电费所占的百分比,然后就能求出9﹣10月份对应扇形的圆心角的度数;(2)全年的总电费减去其它月份的电费可求出7﹣8月份的电费金额,确定直条画多高,再进行补全统计图.【解答】解:(1)全年的总电费为:240÷10%=2400元9﹣10月份所占比:280÷2400=,∴扇形统计图中“9﹣10月”对应扇形的圆心角度数为:360°×=42°答:扇形统计图中“9﹣10月”对应扇形的圆心角度数是42°(2)7﹣8月份的电费为:2400﹣300﹣240﹣350﹣280﹣330=900元,补全的统计图如图:【点评】考查条形统计图、扇形统计图的特点及反应数据的变化特征,两个统计图联系在一起,可以发现数据之间关系,求出在某个统计图中缺少的数据.23.(8分)如图,将平行四边形纸片ABCD沿一条直线折叠,使点A与点C重合,点D落在点G处,折痕为EF.求证:(1)∠ECB=∠FCG;(2)△EBC≌△FGC.【分析】(1)依据平行四边形的性质,即可得到∠A=∠BCD,由折叠可得,∠A=∠ECG,即可得到∠ECB=∠FCG;(2)依据平行四边形的性质,即可得出∠D=∠B,AD=BC,由折叠可得,∠D=∠G,AD =CG,即可得到∠B=∠G,BC=CG,进而得出△EBC≌△FGC.【解答】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠BCD,由折叠可得,∠A=∠ECG,∴∠BCD=∠ECG,∴∠BCD﹣∠ECF=∠ECG﹣∠ECF,∴∠ECB=∠FCG;(2)∵四边形ABCD是平行四边形,∴∠D=∠B,AD=BC,由折叠可得,∠D=∠G,AD=CG,∴∠B=∠G,BC=CG,又∵∠ECB=∠FCG,∴△EBC≌△FGC(ASA).【点评】本题主要考查了平行四边形的性质,平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.24.(8分)如图,AB为⊙O的直径,C为⊙O上一点,D为的中点.过点D作直线AC的垂线,垂足为E,连接OD.(1)求证:∠A=∠DOB;(2)DE与⊙O有怎样的位置关系?请说明理由.【分析】(1)连接OC,由D为的中点,得到=,根据圆周角定理即可得到结论;(2)根据平行线的判定定理得到AE∥OD,根据平行线的性质得到OD⊥DE,于是得到结论.【解答】(1)证明:连接OC,∵D为的中点,∴=,∴∠BCD=BOC,∵∠BAC=BOC,∴∠A=∠DOB;(2)解:DE与⊙O相切,理由:∵∠A=∠DOB,∴AE∥OD,∵DE⊥AE,∴OD⊥DE,∴DE与⊙O相切.【点评】本题考查了直线与圆的位置关系,圆心角、弧、弦的关系,圆周角定理,熟练掌握切线的判定定理是解题的关键.25.(8分)如图,有一块矩形硬纸板,长30cm,宽20cm.在其四角各剪去一个同样的正方形,然后将四周突出部分折起,可制成一个无盖长方体盒子.当剪去正方形的边长取何值时,所得长方体盒子的侧面积为200cm2?【分析】设剪去正方形的边长为xcm,则做成无盖长方体盒子的底面长为(30﹣2x)cm,宽为(20﹣2x)cm,高为xcm,根据长方体盒子的侧面积为200cm2,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:设剪去正方形的边长为xcm,则做成无盖长方体盒子的底面长为(30﹣2x)cm,宽为(20﹣2x)cm,高为xcm,依题意,得:2×[(30﹣2x)+(20﹣2x)]x=200,整理,得:2x2﹣25x+50=0,解得:x1=,x2=10.当x=10时,20﹣2x=0,不合题意,舍去.答:当剪去正方形的边长为cm时,所得长方体盒子的侧面积为200cm2.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.26.(8分)【阅读理解】用10cm×20cm的矩形瓷砖,可拼得一些长度不同但宽度均为20cm的图案.已知长度为10cm、20cm、30cm的所有图案如下:【尝试操作】如图,将小方格的边长看作10cm,请在方格纸中画出长度为40cm的所有图案.【归纳发现】观察以上结果,探究图案个数与图案长度之间的关系,将下表补充完整.【分析】根据已知条件作图可知40cm时,所有图案个数4个;猜想得到结论;【解答】解:如图:根据作图可知40cm时,所有图案个数4个;50cm时,所有图案个数5个;60cm时,所有图案个数6个;故答案为4,5,6;【点评】本题考查应用与设计作图,规律探究;能够根据条件作图图形,探索规律是解题的关键.27.(9分)如图①,将南北向的中山路与东西向的北京路看成两条直线,十字路口记作点A.甲从中山路上点B出发,骑车向北匀速直行;与此同时,乙从点A出发,沿北京路步行向东匀速直行.设出发xmin时,甲、乙两人与点A的距离分别为y1m、y2m.已知y1、y2与x之间的函数关系如图②所示.(1)求甲、乙两人的速度;(2)当x取何值时,甲、乙两人之间的距离最短?【分析】(1)设甲、乙两人的速度,并依题意写出函数关系式,再根据图②中函数图象交点列方程组求解;(2)设甲、乙之间距离为d,由勾股定理可得d2=(1200﹣240x)2+(80x)2 =64000(x﹣)2+144000,根据二次函数最值即可得出结论.【解答】解:(1)设甲、乙两人的速度分别为am/min,bm/min,则:y1=y2=bx由图②知:x=3.75或7.5时,y1=y2,∴,解得:答:甲的速度为240m/min,乙的速度为80m/min.(2)设甲、乙之间距离为d,则d2=(1200﹣240x)2+(80x)2=64000(x﹣)2+144000,∴当x=时,d2的最小值为144000,即d的最小值为120;答:当x=时,甲、乙两人之间的距离最短.【点评】本题考查了函数图象的读图识图能力,正确理解图象交点的含义,从图象中发现和获取有用信息,提高分析问题、解决问题的能力.28.(11分)如图,平面直角坐标系中,O为原点,点A、B分别在y轴、x轴的正半轴上.△AOB的两条外角平分线交于点P,P在反比例函数y=的图象上.PA的延长线交x轴于点C,PB的延长线交y轴于点D,连接CD.(1)求∠P的度数及点P的坐标;(2)求△OCD的面积;(3)△AOB的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明理由.【分析】(1)如图,作PM⊥OAYM,PN⊥OB于N,PH⊥AB于H.利用全等三角形的性质解决问题即可.(2)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,利用勾股定理求出a,b之间的关系,求出OC,OD即可解决问题.(3)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,可得AB=6﹣a﹣b,推出OA+OB+AB =6,可得a+b+=6,利用基本不等式即可解决问题.【解答】解:(1)如图,作PM⊥OAYM,PN⊥OB于N,PH⊥AB于H.∴∠PMA=∠PHA=90°,∵∠PAM=∠PAH,PA=PA,∴△PAM≌△PAH(AAS),∴PM=PH,∠APM=∠APH,同理可证:△BPN≌△BPH,∴PH=PN,∠BPN=∠BPH,∴PM=PN,∵∠PMO=∠MON=∠PNO=90°,∴四边形PMON是矩形,∴∠MPN=90°,∴∠APB=∠APH+∠BPH=(∠MPH+∠NPH)=45°,∵PM=PN,∴可以假设P(m,m),∵P(m,m)在y=上,∴m2=9,∵m>0,∴m=3,∴P(3,3).(2)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,∴AB=6﹣a﹣b,∵AB2=OA2+OB2,∴a2+b2=(6﹣a﹣b)2,可得ab=18﹣6a﹣6b,∴9﹣3a﹣3b=ab,∵PM∥OC,∴=,∴=,∴OC=,同法可得OD=,∴S△COD=•OC•DO====6.(3)设OA=a,OB=b,则AM=AH=3﹣a,BN=BH=3﹣b,∴AB=6﹣a﹣b,∴OA+OB+AB=6,∴a+b+=6,∴2+≤6,∴(2+)≤6,∴≤3(2﹣),∴ab≤54﹣36,∴S△AOB=ab≤27﹣18,∴△AOB的面积的最大值为27﹣18.【点评】本题属于反比例函数综合题,考查了反比例函数的应用,全等三角形的判定和性质,勾股定理,平行线分线段成比例定理,基本不等式等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.。

2024年江苏省苏州市中考数学真题卷及答案解析

2024年江苏省苏州市中考数学真题卷及答案解析

2024年苏州市初中学业水平考试试卷数学注意事项:1.本试卷共27小题,满分130分,考试时间120分钟;2.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;3.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;4.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相....对应的位置上.......1.用数轴上的点表示下列各数,其中与原点距离最近的是()A.3- B.1C.2D.32.下列图案中,是轴对称图形的是()A.B. C. D.3.苏州市统计局公布,2023年苏州市全年实现地区生产总值约为2.47万亿元,被誉为“最强地级市”.数据“2470000000000”用科学记数法可表示为()A.102.4710⨯ B.1024710⨯ C.122.4710⨯ D.1224710⨯4.若1a b >-,则下列结论一定正确的是()A.1a b+< B.1a b-< C.a b> D.1a b+>5.如图,AB CD ,若165∠=︒,2120∠=︒,则3∠的度数为()A.45︒B.55︒C.60︒D.65︒6.某公司拟推出由7个盲盒组成的套装产品,现有10个盲盒可供选择,统计这10个盲盒的质量如图所示.序号为1到5号的盲盒已选定,这5个盲盒质量的中位数恰好为100,6号盲盒从甲、乙、丙中选择1个,7号盲盒从丁、戊中选择1个,使选定7个盲盒质量的中位数仍为100,可以选择()A.甲、丁B.乙、戊C.丙、丁D.丙、戊7.如图,点A 为反比例函数()10y x x=-<图象上的一点,连接AO ,过点O 作OA 的垂线与反比例()40y x x =>的图象交于点B ,则AOBO的值为()A.12B.14C.3D.138.如图,矩形ABCD 中,AB =,1BC =,动点E ,F 分别从点A ,C 同时出发,以每秒1个单位长度的速度沿AB ,CD 向终点B ,D 运动,过点E ,F 作直线l ,过点A 作直线l 的垂线,垂足为G ,则AG 的最大值为()A.3B.32C.2D.1二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡...相对应的位置上........9.计算:32x x ⋅=___________.10.若2a b =+,则()2b a -=______.11.如图,正八边形转盘被分成八个面积相等的三角形,任意转动这个转盘一次,当转盘停止转动时,指针落在阴影部分的概率是______.12.如图,ABC 是O 的内接三角形,若28OBC ∠=︒,则A ∠=______.13.直线1:1l y x =-与x 轴交于点A ,将直线1l 绕点A 逆时针旋转15︒,得到直线2l ,则直线2l 对应的函数表达式是______.14.铁艺花窗是园林设计中常见的装饰元素.如图是一个花瓣造型的花窗示意图,由六条等弧连接而成,六条弧所对应的弦构成一个正六边形,中心为点O , AB 所在圆的圆心C 恰好是ABO 的内心,若3AB =,则花窗的周长(图中实线部分的长度)=______.(结果保留π)15.二次函数()20y ax bx c a =++≠的图象过点()0,A m ,()1,B m -,()2,C n ,()3,D m -,其中m ,n 为常数,则mn的值为______.16.如图,ABC ,90ACB ∠=︒,5CB =,10CA =,点D ,E 分别在AC AB ,边上,5AE AD =,连接DE ,将ADE V 沿DE 翻折,得到FDE V ,连接CE ,CF .若CEF △的面积是BEC 面积的2倍,则AD =______.三、解答题:本大题共11小题,共82分.把解答过程写在答题卡相对应的位置.........上.,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.17.计算:()0429-+-.18.解方程组:27233x y x y +=⎧⎨-=⎩.19.先化简,再求值:2212124x x xx x +-⎛⎫+÷ ⎪--⎝⎭.其中3x =-.20.如图,ABC 中,AB AC =,分别以B ,C 为圆心,大于12BC 长为半径画弧,两弧交于点D ,连接BD ,CD ,AD ,AD 与BC 交于点E .(1)求证:ABD ACD △≌△;(2)若2BD =,120BDC ∠=︒,求BC 的长.21.一个不透明的盒子里装有4张书签,分别描绘“春”,“夏”,“秋”,“冬”四个季节,书签除图案外都相同,并将4张书签充分搅匀.(1)若从盒子中任意抽取1张书签,恰好抽到“夏”的概率为______;(2)若从盒子中任意抽取2张书签(先抽取1张书签,且这张书签不放回,再抽取1张书签),求抽取的书签恰好1张为“春”,1张为“秋”的概率.(请用画树状图或列表等方法说明理由)22.某校计划在七年级开展阳光体育锻炼活动,开设以下五个球类项目:A (羽毛球),B (乒乓球),C (篮球),D (排球),E (足球),要求每位学生必须参加,且只能选择其中一个项目.为了了解学生对这五个项目的选择情况,学校从七年级全体学生中随机抽取部分学生进行问卷调查,对调查所得到的数据进行整理、描述和分析,部分信息如下:根据以上信息,解决下列问题:(1)将图①中的条形统计图补充完整(画图并标注相应数据);(2)图②中项目E 对应的圆心角的度数为______°;(3)根据抽样调查结果,请估计本校七年级800名学生中选择项目B (乒乓球)的人数.23.图①是某种可调节支撑架,BC 为水平固定杆,竖直固定杆AB BC ⊥,活动杆AD 可绕点A 旋转,CD 为液压可伸缩...支撑杆,已知10cm AB =,20cm BC =,50cm AD =.(1)如图②,当活动杆AD 处于水平状态时,求可伸缩支撑杆CD 的长度(结果保留根号);(2)如图③,当活动杆AD 绕点A 由水平状态按逆时针方向旋转角度α,且3tan 4α=(α为锐角),求此时可伸缩支撑杆CD 的长度(结果保留根号).24.如图,ABC 中,AC BC =,90ACB ∠=︒,()2,0A -,()6,0C ,反比例函数()0,0ky k x x=≠>的图象与AB 交于点(),1D m ,与BC 交于点E .(1)求m ,k 的值;(2)点P 为反比例函数()0,0ky k x x=≠>图象上一动点(点P 在D ,E 之间运动,不与D ,E 重合),过点P 作PM AB ∥,交y 轴于点M ,过点P 作PN x ∥轴,交BC 于点N ,连接MN ,求PMN 面积的最大值,并求出此时点P 的坐标.25.如图,ABC 中,AB =,D 为AB 中点,BAC BCD ∠=∠,2cos 4ADC ∠=,O 是ACD 的外接圆.(1)求BC 的长;(2)求O 的半径.26.某条城际铁路线共有A ,B ,C 三个车站,每日上午均有两班次列车从A 站驶往C 站,其中D 1001次列车从A 站始发,经停B 站后到达C 站,G 1002次列车从A 站始发,直达C 站,两个车次的列车在行驶过程中保持各自的行驶速度不变.某校数学学习小组对列车运行情况进行研究,收集到列车运行信息如下表所示.列车运行时刻表车次A 站B 站C 站发车时刻到站时刻发车时刻到站时刻D 10018:009:309:5010:50G 10028:25途经B 站,不停车10:30请根据表格中的信息,解答下列问题:(1)D 1001次列车从A 站到B 站行驶了______分钟,从B 站到C 站行驶了______分钟;(2)记D 1001次列车的行驶速度为1v ,离A 站的路程为1d ;G 1002次列车的行驶速度为2v ,离A 站的路程为2d .①12v v =______;②从上午8:00开始计时,时长记为t 分钟(如:上午9:15,则75t =),已知1240v =千米/小时(可换算为4千米/分钟),在G 1002次列车的行驶过程中()25150t ≤≤,若1260d d -=,求t 的值.27.如图①,二次函数2y x bx c =++的图象1C 与开口向下....的二次函数图象2C 均过点()1,0A -,()3,0B .(1)求图象1C 对应的函数表达式;(2)若图象2C 过点()0,6C ,点P 位于第一象限,且在图象2C 上,直线l 过点P 且与x 轴平行,与图象2C 的另一个交点为Q (Q 在P 左侧),直线l 与图象1C 的交点为M ,N (N 在M 左侧).当PQ MP QN =+时,求点P 的坐标;(3)如图②,D ,E 分别为二次函数图象1C ,2C 的顶点,连接AD ,过点A 作AF AD ⊥.交图象2C 于点F ,连接EF ,当EF AD ∥时,求图象2C 对应的函数表达式.2024年苏州市初中学业水平考试试卷数学注意事项:1.本试卷共27小题,满分130分,考试时间120分钟;2.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;3.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;4.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相....对应的位置上.......1.用数轴上的点表示下列各数,其中与原点距离最近的是()A.3-B.1C.2D.3【答案】B 【解析】【分析】本题考查了绝对值的定义,一个数的绝对值就是表示这个数的点到原点的距离.到原点距离最远的点,即绝对值最大的点,首先求出各个数的绝对值,即可作出判断.【详解】解:∵33-=,11=,22=,33=,123<<,∴与原点距离最近的是1,故选:B .2.下列图案中,是轴对称图形的是()A. B. C. D.【答案】A 【解析】【分析】此题主要考查轴对称图形的概念,掌握轴对称图形的概念是解题的关键.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A 、是轴对称图形,故此选项正确;B 、不是轴对称图形,故此选项错误;C 、不是轴对称图形,故此选项错误;D 、不是轴对称图形,故此选项错误.故选:A .3.苏州市统计局公布,2023年苏州市全年实现地区生产总值约为2.47万亿元,被誉为“最强地级市”.数据“2470000000000”用科学记数法可表示为()A.102.4710⨯ B.1024710⨯ C.122.4710⨯ D.1224710⨯【答案】C 【解析】【分析】本题考查的是科学记数法-表示较大的数,把一个大于10的数记成10n a ⨯的形式,其中a 是整数数位只有一位的数,n 是正整数,这种记数法叫做科学记数法.根据科学记数法-表示较大的数的方法解答.【详解】解:122470000000000 2.4710=⨯,故选:C .4.若1a b >-,则下列结论一定正确的是()A.1a b+< B.1a b-< C.a b> D.1a b+>【答案】D 【解析】【分析】本题主要考查不等式的性质,掌握不等式的性质是解题的关键.不等式的性质:不等式的两边同时加上或减去同一个数或字母,不等号方向不变;不等式的两边同时乘以或除以同一个正数,不等号方向不变;不等式的两边同时乘以或除以同一个负数,不等号方向改变.直接利用不等式的性质逐一判断即可.【详解】解:1a b >-,A 、1a b +>,故错误,该选项不合题意;B 、12a b ->-,故错误,该选项不合题意;C 、无法得出a b >,故错误,该选项不合题意;D 、1a b +>,故正确,该选项符合题意;故选:D .5.如图,AB CD ,若165∠=︒,2120∠=︒,则3∠的度数为()A.45︒B.55︒C.60︒D.65︒【答案】B【解析】【分析】题目主要考查平行线的性质求角度,根据题意得出60BAD ∠=︒,再由平角即可得出结果,熟练掌握平行线的性质是解题关键【详解】解:∵AB CD ,2120∠=︒,∴2180BAD ∠+∠=︒,∴60BAD ∠=︒,∵165∠=︒,∴3180155BAD ∠=︒-∠-∠=︒,故选:B 6.某公司拟推出由7个盲盒组成的套装产品,现有10个盲盒可供选择,统计这10个盲盒的质量如图所示.序号为1到5号的盲盒已选定,这5个盲盒质量的中位数恰好为100,6号盲盒从甲、乙、丙中选择1个,7号盲盒从丁、戊中选择1个,使选定7个盲盒质量的中位数仍为100,可以选择()A.甲、丁B.乙、戊C.丙、丁D.丙、戊【答案】C【解析】【分析】本题主要考查了用中位数做决策,由图像可知,要使选定7个盲盒质量的中位数仍为100,则需要选择100克以上的一个盲盒和100克以下的盲盒一个,根据选项即可得出正确的答案.【详解】解:由图像可知,要使选定7个盲盒质量的中位数仍为100,则需要从第6号盲盒和第7号盲盒里选择100克以上的一个盲盒和100克以下的盲盒一个,因此可排除甲、丁,乙、戊,丙、戊故选:C .7.如图,点A 为反比例函数()10y x x =-<图象上的一点,连接AO ,过点O 作OA 的垂线与反比例()40y x x =>的图象交于点B ,则AO BO 的值为()A.12 B.14 C.33 D.13【答案】A【解析】【分析】本题考查了反比例函数图象上点的坐标特征,反比例函数系数k 的几何意义,三角形相似的判定和性质,数形结合是解题的关键.过A 作AC x ⊥轴于C ,过B 作BD x ⊥轴于D ,证明AOC OBD △∽△,利用相似三角形的面积比等于相似比的平方求解即可.【详解】解:过A 作AC x ⊥轴于C ,过B 作BD x ⊥轴于D ,∴11122ACO S =⨯-= ,1422BDO S =⨯= ,90ACO ODB ∠=∠=︒,∵OA OB ⊥,∴90AOC OBD BOD ∠=∠=︒-∠,∴AOC OBD △∽△,∴2ACO BDO S OA S OB ⎛⎫= ⎪⎝⎭ ,即2122OA OB ⎛⎫= ⎪⎝⎭,∴12OA OB =(负值舍去),故选:A .8.如图,矩形ABCD 中,3AB =,1BC =,动点E ,F 分别从点A ,C 同时出发,以每秒1个单位长度的速度沿AB ,CD 向终点B ,D 运动,过点E ,F 作直线l ,过点A 作直线l 的垂线,垂足为G ,则AG 的最大值为()A.3 B.32 C.2 D.1【答案】D【解析】【分析】连接AC ,BD 交于点O ,取OA 中点H ,连接GH ,根据直角三角形斜边中线的性质,可以得出G 的轨迹,从而求出AG 的最大值.【详解】解:连接AC ,BD 交于点O ,取OA 中点H ,连接GH ,如图所示:∵四边形ABCD 是矩形,∴90ABC ∠=︒,OA OC =,AB CD ,∴在Rt ABC △中,()2222312AC AB BC =+=+,∴112OA OC AC ===,∵AB CD ,EAO FCO ∴∠=∠,在AOE △与COF 中,AE CF EAO FCO OA OC =⎧⎪∠=∠⎨⎪=⎩(SAS)AOE COF ∴△≌△,AOE COF ∴∠=∠,E ∴,O ,F 共线,AG EF ⊥ ,H 是OB 中点,∴在Rt AGO △中,1122GH AO ==,G ∴的轨迹为以H 为圆心,12为半径即AO 为直径的圆弧.∴AG 的最大值为AO 的长,即max 1AG AO ==.故选:D .【点睛】本题主要考查了矩形的性质、动点轨迹、与圆有关的位置关系等知识,根据矩形的性质以及直角三角形斜边中线的性质确定G 的轨迹是本题解题的关键.二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡...相对应的位置上........9.计算:32x x ⋅=___________.【答案】5x 【解析】【分析】利用同底数幂的乘法解题即可.【详解】解:32325x x x x +⋅==,故答案为:5x .【点睛】本题考查了同底数幂的乘法,掌握相应的运算法则是解题的关键.10.若2a b =+,则()2b a -=______.【答案】4【解析】【分析】本题考查了求代数式的值,把2a b =+整体代入化简计算即可.【详解】解:∵2a b =+,∴()2b a -()22b b ⎡⎤=-+⎣⎦()22b b =--()22=-4=,故答案为:4.11.如图,正八边形转盘被分成八个面积相等的三角形,任意转动这个转盘一次,当转盘停止转动时,指针落在阴影部分的概率是______.【答案】38【解析】【分析】首先确定在图中阴影区域的面积在整个面积中占的比例,根据这个比例即可求出指针指向阴影区域的概率.本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A ),然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A )发生的概率.【详解】解:∵转盘被分成八个面积相等的三角形,其中阴影部分占3份,∴指针落在阴影区域的概率为38,故答案为:38.12.如图,ABC 是O 的内接三角形,若28OBC ∠=︒,则A ∠=______.【答案】62︒##62度【解析】【分析】本题考查了圆周角定理,等腰三角形的性质,三角形内角和定理,连接OC ,利用等腰三角形的性质,三角形内角和定理求出BOC ∠的度数,然后利用圆周角定理求解即可.【详解】解:连接OC ,∵OB OC =,28OBC ∠=︒,∴28OCB OBC ∠=∠=︒,∴281041OC OC O B B BC ∠=∠=︒∠=︒-,∴1622A BOC =∠=︒∠,故答案为:62︒.13.直线1:1l y x =-与x 轴交于点A ,将直线1l 绕点A 逆时针旋转15︒,得到直线2l ,则直线2l 对应的函数表达式是______.【答案】y =【解析】【分析】根据题意可求得1l 与坐标轴的交点A 和点B ,可得45OAB OBA ∠=∠=︒,结合旋转得到60OAC ∠=︒,则30OCA ∠=︒,求得tan OC OC OCA =⨯∠,即有点C ,利用待定系数法即可求得直线2l 的解析式.【详解】解:依题意画出旋转前的函数图象1l 和旋转后的函数图象2l,如图所示∶设1l 与y 轴的交点为点B ,令0x =,得1y =-;令0y =,即1x =,∴()1,0A ,()0,1B -,∴1OA =,1OB =,即45OAB OBA ∠=∠=︒∵直线1l 绕点A 逆时针旋转15︒,得到直线2l ,∴60OAC ∠=︒,30OCA ∠=︒,∴tan OC OC OCA =⨯∠==,则点(0,C ,设直线2l 的解析式为y kx b =+,则0k b b =+⎧⎪⎨=⎪⎩,解得k b ⎧=⎪⎨=⎪⎩那么,直线2l的解析式为y =故答案为:y =【点睛】本题主要考查一次函数与坐标轴的交点、直线的旋转、解直角三角形以及待定系数法求一次函数解析式,解题的关键是找到旋转后对应的直角边长,即可利用待定系数法求得解析式.14.铁艺花窗是园林设计中常见的装饰元素.如图是一个花瓣造型的花窗示意图,由六条等弧连接而成,六条弧所对应的弦构成一个正六边形,中心为点O , AB 所在圆的圆心C 恰好是ABO 的内心,若AB =,则花窗的周长(图中实线部分的长度)=______.(结果保留π)【答案】8π【解析】【分析】题目主要考查正多边形与圆,解三角形,求弧长,过点C 作CE AB ⊥,根据正多边形的性质得出AOB 为等边三角形,再由内心的性质确定30CAO CAE CBE ∠∠∠===︒,得出120ACB ∠=︒,利用余弦得出2cos30AE AC ==︒,再求弧长即可求解,熟练掌握这些基础知识点是解题关键.【详解】解:如图所示:过点C 作CE AB ⊥,∵六条弧所对应的弦构成一个正六边形,∴60,AOB OA OB ∠=︒=,∴AOB 为等边三角形,∵圆心C 恰好是ABO 的内心,∴30CAO CAE CBE ∠∠∠===︒,∴120ACB ∠=︒,∵AB =∴AE BE ==,∴2cos30AE AC ==︒,∴ AB 的长为:1202π4π1803⨯⨯=,∴花窗的周长为:4π68π3⨯=,故答案为:8π.15.二次函数()20y ax bx c a =++≠的图象过点()0,A m ,()1,B m -,()2,C n ,()3,D m -,其中m ,n 为常数,则m n的值为______.【答案】35-##0.6-【解析】【分析】本题考查了待定系数法求二次函数解析式,把A 、B 、D 的坐标代入()20y ax bx c a =++≠,求出a 、b 、c ,然后把C 的坐标代入可得出m 、n 的关系,即可求解.【详解】解:把()0,A m ,()1,B m -,()3,D m -代入()20y ax bx c a =++≠,得93c m a b c m a b c m =⎧⎪++=-⎨⎪++=-⎩,解得2383a m b m c m ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩,∴22833y mx x m =-+,把()2,C n 代入22833y mx mx m =-+,得2282233n m m m =⨯-⨯+,∴53n m =-,∴5533m m m n ==--,故答案为:35-.16.如图,ABC ,90ACB ∠=︒,5CB =,10CA =,点D ,E 分别在AC AB ,边上,AE =,连接DE ,将ADE V 沿DE 翻折,得到FDE V ,连接CE ,CF .若CEF △的面积是BEC 面积的2倍,则AD =______.【答案】103##133【解析】【分析】本题考查了相似三角形的判定与性质、折叠性质、等腰直角三角形的判定与性质、全等三角形的判定与性质、三角形的面积公式等知识,是综合性强的填空压轴题,熟练掌握相关知识的联系与运用是解答的关键.设AD x =,AE =,根据折叠性质得DF AD x ==,ADE FDE ∠=∠,过E 作EH AC ⊥于H ,设EF 与AC 相交于M ,证明AHE ACB ∽得到EH AH AE BC AC AB==,进而得到EH x =,2AH x =,证明Rt EHD 是等腰直角三角形得到45HDE HED ∠=∠=︒,可得90FDM ∠=︒,证明()AAS FDM EHM ≌得到12DM MH x ==,则3102CM AC AD DM x =--=-,根据三角形的面积公式结合已知可得()31022552x x x ⎛⎫-⋅=- ⎪⎝⎭,然后解一元二次方程求解x 值即可.【详解】解:∵AE =,∴设AD x =,AE =,∵ADE V 沿DE 翻折,得到FDE V ,∴DF AD x ==,ADE FDE ∠=∠,过E 作EH AC ⊥于H ,设EF 与AC 相交于M,则90AHE ACB ︒∠=∠=,又A A ∠=∠,∴AHE ACB ∽,∴EH AH AE BC AC AB==,∵5CB =,10CA =,AB ===∴510EH AH ==∴EH x =,2AH x ==,则DH AH AD x EH =-==,∴Rt EHD 是等腰直角三角形,∴45HDE HED ∠=∠=︒,则135ADE EDF ∠=∠=︒,∴1354590FDM ∠=︒-︒=︒,在FDM 和EHM 中,90FDM EHM DMF HME DF EH ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴()AAS FDM EHM ≌,∴12DM MH x ==,3102CM AC AD DM x =--=-,∴111331*********CEF CME CMF S S S CM EH CM DF x x x x ⎛⎫⎛⎫=+=⋅+⋅=-⋅⨯=-⋅ ⎪ ⎪⎝⎭⎝⎭ ,111051025522BEC ABC AEC S S S x x =-=⨯⨯-⨯⋅=- ,∵CEF △的面积是BEC 面积的2倍,∴()31022552x x x ⎛⎫-⋅=- ⎪⎝⎭,则23401000x x -+=,解得1103x =,210x =(舍去),即103AD =,故答案为:103.三、解答题:本大题共11小题,共82分.把解答过程写在答题卡相对应的位置.........上.,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.17.计算:()042-+-.【答案】2【解析】【分析】本题考查了实数的运算,利用绝对值的意义,零指数幂的意义,算术平方根的定义化简计算即可.【详解】解:原式413=+-2=.18.解方程组:27233x y x y +=⎧⎨-=⎩.【答案】31x y =⎧⎨=⎩【解析】【分析】本题考查的是解二元一次方程组,解题的关键是掌握加减消元法求解.根据加减消元法解二元一次方程组即可.【详解】解:27233x y x y +=⎧⎨-=⎩①②-①②得,44y =,解得,1y =.将1y =代入①得3x =.∴方程组的解是31x y =⎧⎨=⎩19.先化简,再求值:2212124x x x x x +-⎛⎫+÷ ⎪--⎝⎭.其中3x =-.【答案】2x x +,13【解析】【分析】本题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.原式括号中两项通分并利用同分母分式的加法法则计算,同时利用因式分解和除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】解:原式()()()21122222x x x x x x x x -+-⎛⎫=+÷ ⎪--+-⎝⎭()()()2221·221x x x x x x +--=--x 2x+=.当3x =-时,原式32133-+==-.20.如图,ABC 中,AB AC =,分别以B ,C 为圆心,大于12BC 长为半径画弧,两弧交于点D ,连接BD ,CD ,AD ,AD 与BC 交于点E .(1)求证:ABD ACD △≌△;(2)若2BD =,120BDC ∠=︒,求BC 的长.【答案】(1)见解析(2)BC =【解析】【分析】本题考查了全等三角形的判定与性质,等腰三角形的性质,解直角三角形等知识,解题的关键是:(1)直接利用SSS 证明ABD ACD △≌△即可;(2)利用全等三角形的性质可求出60BDA CDA ∠=∠=︒,利用三线合一性质得出DA BC ⊥,BE CE =,在Rt BDE △中,利用正弦定义求出BE ,即可求解.【小问1详解】证明:由作图知:BD CD =.在ABD △和ACD 中,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩,,.ABD ACD ∴≌△△.【小问2详解】解:ABD ACD ≌,120BDC ∠=︒,60BDA CDA ∴∠=∠=︒.又BD CD = ,DA BC ∴⊥,BE CE =.2BD =,sin 22BE BD BDA ∴=⋅∠=⨯=,2BC BE ∴==21.一个不透明的盒子里装有4张书签,分别描绘“春”,“夏”,“秋”,“冬”四个季节,书签除图案外都相同,并将4张书签充分搅匀.(1)若从盒子中任意抽取1张书签,恰好抽到“夏”的概率为______;(2)若从盒子中任意抽取2张书签(先抽取1张书签,且这张书签不放回,再抽取1张书签),求抽取的书签恰好1张为“春”,1张为“秋”的概率.(请用画树状图或列表等方法说明理由)【答案】(1)14(2)16【解析】【分析】本题考查了利用画树状图或列表的方法求两次事件的概率,解题的关键是:(1)用标有“夏”书签的张数除以书签的总张数即得结果;(2)利用树状图画出所有出现的结果数,再找出1张为“春”,1张为“秋”的结果数,然后利用概率公式计算即可.【小问1详解】解:∵有4张书签,分别描绘“春”,“夏”,“秋”,“冬”四个季节,∴恰好抽到“夏”的概率为14,故答案为:14;【小问2详解】解:用树状图列出所有等可的结果:等可能的结果:(春,夏),(春,秋),(春,冬),(夏,春),(夏,秋),(夏,冬),(秋,春),(秋,夏),(秋,冬),(冬,春),(冬,夏),(冬,秋).在12个等可能的结果中,抽取的书签1张为“春”,1张为“秋”出现了2次,∴P (抽取的书签价好1张为“春”,张为“秋”)16=.22.某校计划在七年级开展阳光体育锻炼活动,开设以下五个球类项目:A (羽毛球),B (乒乓球),C (篮球),D (排球),E (足球),要求每位学生必须参加,且只能选择其中一个项目.为了了解学生对这五个项目的选择情况,学校从七年级全体学生中随机抽取部分学生进行问卷调查,对调查所得到的数据进行整理、描述和分析,部分信息如下:根据以上信息,解决下列问题:(1)将图①中的条形统计图补充完整(画图并标注相应数据);(2)图②中项目E对应的圆心角的度数为______°;(3)根据抽样调查结果,请估计本校七年级800名学生中选择项目B(乒乓球)的人数.【答案】(1)见解析(2)72(3)本校七年级800名学生中选择项目B(乒乓球)的人数约为240人【解析】【分析】本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.(1)利用C组的人数除以所占百分比求出总人数,然后用总人数减去A、B、C、E组的人数,最后补图即可;(2)用360︒乘以E组所占百分比即可;(3)用800乘以B组所占百分比即可.【小问1详解】÷=,解:总人数为915%60----=,D组人数为6061891215补图如下:【小问2详解】解:123607260︒⨯=︒,故答案为:72;【小问3详解】解:1880024060⨯=(人).答:本校七年级800名学生中选择项目B (乒乓球)的人数约为240人.23.图①是某种可调节支撑架,BC 为水平固定杆,竖直固定杆AB BC ⊥,活动杆AD 可绕点A 旋转,CD 为液压可伸缩...支撑杆,已知10cm AB =,20cm BC =,50cm AD =.(1)如图②,当活动杆AD 处于水平状态时,求可伸缩支撑杆CD 的长度(结果保留根号);(2)如图③,当活动杆AD 绕点A 由水平状态按逆时针方向旋转角度α,且3tan 4α=(α为锐角),求此时可伸缩支撑杆CD 的长度(结果保留根号).【答案】(1)CD =(2)CD =【解析】【分析】本题考查了解直角三角形的应用,解题的关键是:(1)过点C 作CE AD ⊥,垂足为E ,判断四边形ABCE 为矩形,可求出CE ,DE ,然后在在Rt CED 中,根据勾股定理求出CD 即可;(2)过点D 作DF BC ⊥,交BC 的延长线于点F ,交AD '于点G .判断四边形ABFG 为矩形,得出90AGD =︒△.在Rt AGD 中,利用正切定义求出34DG AG =.利用勾股定理求出54AD AG =,由50AD =,可求出40BF AG ==,10FG AB ==,20CF =,40DF =.在Rt CFD 中,根据勾股定理求出CD 即可.【小问1详解】解:如图,过点C 作CE AD ⊥,垂足为E ,由题意可知,90B A ∠=∠=︒,又CE AD ⊥ ,∴四边形ABCE 为矩形.10AB = ,20BC =,20AE ∴=,10CE =.50AD = ,30ED ∴=.∴在Rt CED 中,CD ===.即可伸缩支撑杆CD 的长度为;【小问2详解】解:过点D 作DF BC ⊥,交BC 的延长线于点F ,交AD '于点G .由题意可知,四边形ABFG 为矩形,90AGD ∴=︒△.在Rt AGD 中,3tan 4DG AG α==,34DG AG ∴=.54AD AG∴==,50AD=,40AG∴=,30DG=.40BF AG∴==,10FG AB==,20CF∴=,40DF=.∴在Rt CFD中,CD===即可伸缩支撑杆CD的长度为.24.如图,ABC中,AC BC=,90ACB∠=︒,()2,0A-,()6,0C,反比例函数()0,0ky k xx=≠>的图象与AB交于点(),1D m,与BC交于点E.(1)求m,k的值;(2)点P为反比例函数()0,0ky k xx=≠>图象上一动点(点P在D,E之间运动,不与D,E重合),过点P作PM AB∥,交y轴于点M,过点P作PN x∥轴,交BC于点N,连接MN,求PMN面积的最大值,并求出此时点P的坐标.【答案】(1)2m=,8k=(2)PMNS△有最大值92,此时83,3P⎛⎫⎪⎝⎭【解析】【分析】本题考查了二次函数,反比例函数,等腰三角形的判定与性质等知识,解题的关键是:(1)先求出B的坐标,然后利用待定系数法求出直线AB的函数表达式,把D的坐标代入直线AB 的函数表达式求出m ,再把D 的坐标代入反比例函数表达式求出k 即可;(2)延长NP 交y 轴于点Q ,交AB 于点L .利用等腰三角形的判定与性质可得出QM QP =,设点P 的坐标为8,t t ⎛⎫ ⎪⎝⎭,()26t <<,则可求出()162PMN S t t =⋅-⋅ ,然后利用二次函数的性质求解即可.【小问1详解】解:()2,0A - ,()6,0C ,8AC ∴=.又AC BC = ,8BC ∴=.90ACB ∠=︒ ,∴点()6,8B .设直线AB 的函数表达式为y ax b =+,将()2,0A -,()6,8B 代入y ax b =+,得2068a b a b -+=⎧⎨+=⎩,解得12a b =⎧⎨=⎩,∴直线AB 的函数表达式为2y x =+.将点(),4D m 代入2y x =+,得2m =.()2,4D ∴.将()2,4D 代入ky x =,得8k =.【小问2详解】解:延长NP 交y 轴于点Q ,交AB 于点L .AC BC = ,90BCA ∠=︒,45BAC ∴∠=︒.PN x ∥轴,45BLN BAC ∴∠=∠=︒,90∠=︒NQM .PM AB ∥ ,45MPL BLP ∴∠=∠=︒,45QMP QPM ∴∠=∠=︒,QM QP ∴=.设点P 的坐标为8,t t ⎛⎫⎪⎝⎭,()26t <<,则PQ t =,6PN t =-.MQ PQ t ∴==.()()21119632222PMN S PN MQ t t t ∴=⋅⋅=⋅-⋅=--+ .∴当3t =时,PMN S △有最大值92,此时83,3P ⎛⎫ ⎪⎝⎭.25.如图,ABC 中,42AB =,D 为AB 中点,BAC BCD ∠=∠,2cos 4ADC ∠=,O 是ACD 的外接圆.(1)求BC 的长;(2)求O 的半径.【答案】(1)4BC =(2)O 的半径为477【解析】【分析】本题考查相似三角形的判定及性质,解直角三角形,圆周角定理.(1)易证BAC BCD ∽,得到BC BA BD BC=,即可解答;(2)过点A 作AE CD ⊥,垂足为E ,连接CO ,并延长交⊙O 于F ,连接AF ,在Rt AED △中,通过解直角三角形得到1DE =,AE =BAC BCD ∽得到AC ABCD BC==.设CD x =,则AC =,1CE x =-,在Rt ACE 中,根据勾股定理构造方程,求得2CD =,AC =,由AFC ADC ∠=∠得到sin sin AFC ADC ∠=∠,根据正弦的定义即可求解.【小问1详解】解:BAC BCD ∠=∠ ,B B ∠=∠,BAC BCD ∴ ∽.BC BA BD BC∴=,即2BC AB BD =⋅AB =,D 为AB 中点,12BD AD AB ∴===,∴216BC AB BD =⋅==4BC ∴=.【小问2详解】解:过点A 作AE CD ⊥,垂足为E ,连接CO ,并延长交⊙O 于F ,连接AF ,。

2023年江苏省泰州市中考数学试题附解析

2023年江苏省泰州市中考数学试题附解析

2023年江苏省泰州市中考数学试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.下列命题:①顶点在圆周上的角是圆周角;②圆周角的度数等于圆心角度数的一半;③90°的圆周角所对的弦是直径;④直径所对的角是直角;⑤圆周角相等,则它们所对的弧也相等;⑥同弧或等弧所对的圆周角相等. 其中真命题的个数为()A.1 个B.2 个C.3 个D.4个2.如图,同心圆中,大圆的弦 AB 交小圆子点 C.D,已知 AB = 4,CD= 2,圆心O到AB 的距离OE=1,则大、小两圆的半径之比为()A.3:2 B.3:2 C.5:2 D.5:33.下列运算正确的是()A.221.50.5 1.50.51-=-= B.20.520.51+⨯=C.2(5)5x x-=- D.22 x xx-=-4.如图,P(x,y)是以坐标原点为圆心、5为半径的圆周上的点,若x,y都是整数,则这样的点共有()A.4个B.8个C.12个D.16个5.已知点P(4,a+1)到两坐标轴的距离相等,则a的值为()A.3 B.4 C.-5 D.3或-56.将直角三角形的三边都扩大3倍后,得到的三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.无法确定7.如图,小明从点A 处出发,沿北偏东60°方向行走至点 B处,又沿北偏西20°方向行走至点 C处,此时把方向调整到与出发时一致,则调整的方向应是()A .右转 80°B .左转 80°C .右转 100°D .左转 100°8.实数7-、-2.5、-3的大小关系是( )A .7 2.53-<-<-B .37 2.5-<-<-C . 2.573-<-<-D .3 2.57-<-<-二、填空题9.某同学的身高为1.4米,某一时刻他在阳光下的影长为1.2米,此时,与他相邻的一棵小树的影长为3.6米,则这棵树的高度为 米.10.如图是一束平行的阳光从教室的窗户射入的平面示意图,光线与地面所成角60°,在教室地面的影长 MN= 23m ,若窗户的下檐到教室地面的距离 BC= lm ,则窗户的上檐地面的距离 AC 为 m .11. 有 6 张扑克牌,牌面上的数字分别是梅花 3、4、5 和方块 6、7、8. 小芳从梅花和方块里各模出一张牌,摸到两张数字之和为 10 的概率是 .12.关于x 的方程2(1)10x k x +--=的一个根为2,那么k 的值为 .13.若12-=+b a ,1-=ab ,则22b ab a ++= .14.某种商品因多种原因上涨25%,甲、乙两人分别在涨价前后各花 800元购买该商品,两人所购的件数相差10件,则该商品原售价是上 元.15.如图, △ABC 中,AB=AC=12,EF 为AC 的垂直平分线,若EC=8,则BE 的长为_______.16.把下列各式的公因式写在横线上:①y x x 22255- ;②n n x x 4264-- .17.在括号前面填上“+”或“-”号,使等式成立:(1)22)()(y x x y -=-;(2))2)(1()2)(1(--=--x x x x .18.在423=+y x 中,用含x 的代数式表示y ,可得 .19.驴子和骡子驮着货物并排在路上走着,驴子不停地理怨主人给它驮的货物太重,压得实在受不了. 骡子说:“你发什么牢骚啊 ! 我比你驮得多 ! 如果你给我一袋,我驮的袋数就是你的两倍.”驴子反驳说:“没那么回事,只要你给我一袋,我们就一样多了 !”你能算出驴子和骡子各驮几袋货物吗?设驴子驮x 袋货物,骡子驮y 袋货物,则可列出方程组 .20.如图,在线段AB 上任取C 、D 两点,若M 、P 分别是线段AC 、DB 上的点,且124123-1-2-3-1-2y xA OBCD AM=MC ,PB=12BD ,CD=3 cm ,AB=9 cm ,则MP= cm .三、解答题21.某商店中的一盒什锦糖是由甲、乙、丙三种糖果混合成的,小明购得这种糖果 80 颗,通过多次摸糖试验后,发现摸到甲、乙、丙三种糖果的频率依次是 35、35和 30,试估计小明所购得的糖中甲、乙、丙三种糖果的数目.22.如图,二次函数的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点C 、D 是二次函数图象上的一对对称点,一次函数的图象过点B 、D .(1)求D 点的坐标.(2)求一次函数的解析式.(3)根据图象写出使一次函数值大于二次函数的值的x 的取值范围.23.如图,在△ABC 中,DE ∥BC ,AD :DB=3 : 2(1)求DE BC 的值;(2)求BCEDADE S S 四边形的值.24.已如图,在△ABC 中,AB=AC, ∠ABC=2∠A, BM平分∠ABC 交外接圆于点M,ME∥BC 交AB于点 E. 试判断四边形EBCM的形状,并加以证明.25.矩形木板长 15 dm,宽 10 dm,现把长、宽各锯去 x(dm).(1)求锯去后木板的面积y与x 之间的函数关系式和自变量的取值范围;(2)求当x=5 dm 时,y 的值.26.如图,扶梯 AB 的坡比(BE 与AE 的长度之比)为 1:0. 8,滑梯 CD 的坡比为 1:1. 6,AE=32m,BC=12CD. 一男孩从扶梯走到滑梯的顶部,然后从滑梯滑下,他经过了多少路程?27.从A、B、C、D四位同学中任选2人参加学校演讲比赛,一共有几种不同的可能性?并列举各种可能的结果.28.人们发现某种蟋蟀在1min 时间内所叫次数 x(次)与当地温度 T(℃)之间的关系可近似地表示成T= ax+b,下面是该种蟋蟀1min 所叫次数与温度变化情况对照表:蟓蟀叫的次数x…8498119…温度T(℃)…151720…(1)根据表中的数据确定 a,b 的值;(2)如果蟋蟀1min 时间内叫了 63 次,那么估计该地当时的温度大约是多少?29.出租车司机小李某天下午的营运全是在东西走向的人民大街上进行的.如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+++15--++-,,2,4512,,5,110,(1)人民大街总长不小于__________千米;(2)将最后一名乘客送往目的地时,小李距离下午出车时的出发点多远?(3)若出租车耗油量为每千米a升,这天下午小李共耗油多少升?30.你班的同学中有在同一个月出生的吗?有在同月同日出生的吗?你的同学在哪个月出生最多?其它班的同学也是在那个月出生最多吗?做个小调查,看看会有什么有趣的发现.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.D4.C5.D6.A7.A8.B二、填空题9.4.210.311.2912. 12-13. 224- 14.1615.416.(1)25x ;(2)n x 2217.(1)+,(2)+18.x y 5.12-= 19.2(1)111x y x y -=+⎧⎨+=-⎩20. 6三、解答题21.甲:80×35%=28(颗)乙:80×35%=28(颗)丙:80×3O =24(颗22.(1)由图可得C (0,3).∵抛物线是轴对称图形,且抛物线与x 轴的两个交点为A (-3,0)、B (1,0), ∴抛物线的对称轴为1x =-,D 点的坐标为(-2,3).(2)设一次函数的解析式为y kx b =+,将点D (-2,3)、B (1,0)代入解析式,可得230k b k b -+=⎧⎨+=⎩,解得1,1k b =-=. ∴一次函数的解析式为1y x =-+.(3)当21x x <->或时,一次函数的值大于二次函数的值.23.(1)3:5(2)9:16.24.四边形 EBCM 是菱形.∵∠ABM=∠MBC=12∠ABC,∠ABC= 2∠A , ∴∠A=∠ABM,∵∠A=∠BMC, ∴∠ABM=∠BMC,∴BE ∥CM ,∵ME ∥BC ,∴四边形 EBCM 是平行四边形.∵∠A= ∠MBC, ∴⌒BC =⌒MC , ∴BC=MC,∴□EBCM 是菱形. 25.(1)由已知得:(15)(10)y x x =--,化简得225150y x x -=+,自变量的取值范围为:0<x<10.(2)把x=5代入2-5150y x x =+,得2512515050y =-+=(dm 2). 26.m 27.6种 AB AC AD BC BD CD .28. (1)17a =,3b =;(2) 12℃ 29.(1)人民大街总长不小于43千米;(2)向东38千米;(3)54a 升 30.略。

2024年江苏省苏州市中考真题数学试卷含答案解析

2024年江苏省苏州市中考真题数学试卷含答案解析

2024年江苏省苏州市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.用数轴上的点表示下列各数,其中与原点距离最近的是()A.3-B.1C.2D.32.下列图案中,是轴对称图形的是()A.B.C.D.【答案】A【分析】此题主要考查轴对称图形的概念,掌握轴对称图形的概念是解题的关键.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选:A.3.苏州市统计局公布,2023年苏州市全年实现地区生产总值约为2.47万亿元,被誉为“最强地级市”.数据“2470000000000”用科学记数法可表示为()A.102.4710⨯D.1224710⨯⨯C.12247102.4710⨯B.10【答案】C【分析】本题考查的是科学记数法-表示较大的数,把一个大于10的数记成10na⨯的形式,其中a 是整数数位只有一位的数,n 是正整数,这种记数法叫做科学记数法.根据科学记数法-表示较大的数的方法解答.【详解】解:122470000000000 2.4710=⨯,故选:C .4.若1a b >-,则下列结论一定正确的是( )A .1a b+<B .1a b -<C .a b >D .1a b+>【答案】D【分析】本题主要考查不等式的性质,掌握不等式的性质是解题的关键.不等式的性质:不等式的两边同时加上或减去同一个数或字母,不等号方向不变;不等式的两边同时乘以或除以同一个正数,不等号方向不变;不等式的两边同时乘以或除以同一个负数,不等号方向改变.直接利用不等式的性质逐一判断即可.【详解】解:1a b >-,A 、1a b +>,故错误,该选项不合题意;B 、12a b ->-,故错误,该选项不合题意;C 、无法得出a b >,故错误,该选项不合题意;D 、1a b +>,故正确,该选项符合题意;故选:D .5.如图,AB CD ,若165∠=︒,2120∠=︒,则3∠的度数为( )A .45︒B .55︒C .60︒D .65︒【答案】B 【分析】题目主要考查平行线的性质求角度,根据题意得出60BAD ∠=︒,再由平角即可得出结果,熟练掌握平行线的性质是解题关键【详解】解:∵AB CD ,2120∠=︒,∴2180BAD ∠+∠=︒,∴60BAD ∠=︒,∴3180155BAD ∠=︒-∠-∠=︒,故选:B6.某公司拟推出由7个盲盒组成的套装产品,现有10个盲盒可供选择,统计这10个盲盒的质量如图所示.序号为1到5号的盲盒已选定,这5个盲盒质量的中位数恰好为100,6号盲盒从甲、乙、丙中选择1个,7号盲盒从丁、戊中选择1个,使选定7个盲盒质量的中位数仍为100,可以选择( )A .甲、丁B .乙、戊C .丙、丁D .丙、戊【答案】C 【分析】本题主要考查了用中位数做决策,由图像可知,要使选定7个盲盒质量的中位数仍为100,则需要选择100克以上的一个盲盒和100克以下的盲盒一个,根据选项即可得出正确的答案.【详解】解:由图像可知,要使选定7个盲盒质量的中位数仍为100,则需要从第6号盲盒和第7号盲盒里选择100克以上的一个盲盒和100克以下的盲盒一个,因此可排除甲、丁,乙、戊,丙、戊故选:C .7.如图,点A 为反比例函数()10y x x =-<图象上的一点,连接AO ,过点O 作OA 的垂线与反比例()40y x x =>的图象交于点B ,则AO BO 的值为( )A .12B .14C D .13∴11122ACO S=⨯-= ,142BDO S =⨯= ∵OA OB ⊥,∴90AOC OBD BOD ∠=∠=︒-∠,∴AOC OBD △∽△,8.如图,矩形ABCD 中,AB ,1BC =,动点E ,F 分别从点A ,C 同时出发,以每秒1个单位长度的速度沿AB ,CD 向终点B ,D 运动,过点E ,F 作直线l ,过点A 作直线l 的垂线,垂足为G ,则AG 的最大值为( )A B 2C .2D .1【答案】D 【分析】连接AC ,BD 交于点O ,取OA 中点H ,连接GH ,根据直角三角形斜边中线的性质,可以得出G 的轨迹,从而求出AG 的最大值.∵四边形ABCD 是矩形,∴90ABC ∠=︒,OA OC =,AB ∴在Rt ABC △中,AC AB =∴112OA OC AC ===,二、填空题9.计算:32x x ⋅= .【答案】5x 【分析】利用同底数幂的乘法解题即可.【详解】解:32325x x x x +⋅==,故答案为:5x .【点睛】本题考查了同底数幂的乘法,掌握相应的运算法则是解题的关键.10.若2a b =+,则()2b a -= .【答案】4【分析】本题考查了求代数式的值,把2a b =+整体代入化简计算即可.【详解】解:∵2a b =+,∴()2b a -()22b b ⎡⎤=-+⎣⎦()22b b =--()22=-4=,故答案为:4.11.如图,正八边形转盘被分成八个面积相等的三角形,任意转动这个转盘一次,当转盘停止转动时,指针落在阴影部分的概率是 .12.如图,ABC 是O 的内接三角形,若28OBC ∠=︒,则A ∠= .∵OB OC =,OBC ∠∴OCB OBC ∠=∠∴801OC OC B ∠∠=︒-113.直线1:1l y x =-与x 轴交于点A ,将直线1l 绕点A 逆时针旋转15︒,得到直线2l ,则直线2l 对应的函数表达式是 .设1l 与y 轴的交点为点B ,令0x =,得1y =-;令y =∴()1,0A ,()0,1B - ,∴1OA =,1OB =,即45OAB OBA ∠=∠=︒14.铁艺花窗是园林设计中常见的装饰元素.如图是一个花瓣造型的花窗示意图,由六条等弧连接而成,六条弧所对应的弦构成一个正六边形,中心为点O , AB 所在圆的圆心C 恰好是ABO 的内心,若AB == .(结果保留π)∵六条弧所对应的弦构成一个正六边形,∴60,AOB OA ∠=︒=∴AOB 为等边三角形,∵圆心C 恰好是ABO 15.二次函数()20y ax bx c a =++≠的图象过点()0,A m ,()1,B m -,()2,C n ,()3,D m -,其中m ,n 为常数,则mn的值为 .16.如图,ABC ,90ACB ∠=︒,5CB =,10CA =,点D ,E 分别在AC AB ,边上,AE ,连接DE ,将ADE V 沿DE 翻折,得到FDE V ,连接CE ,CF .若CEF △的面积是BEC 面积的2倍,则AD = .则90AHE ACB ︒∠=∠=,又∴AHE ACB ∽,三、解答题17.计算:()042-+-.【答案】2【分析】本题考查了实数的运算,利用绝对值的意义,零指数幂的意义,算术平方根的定义化简计算即可.【详解】解:原式413=+-2=.18.解方程组:27233x y x y +=⎧⎨-=⎩.【答案】31x y =⎧⎨=⎩【分析】本题考查的是解二元一次方程组,解题的关键是掌握加减消元法求解.根据加减消元法解二元一次方程组即可.【详解】解:27233x y x y +=⎧⎨-=⎩①②-①②得,44y =,解得,1y =.将1y =代入①得3x =.∴方程组的解是31x y =⎧⎨=⎩19.先化简,再求值:2212124x x x x x +-⎛⎫+÷ ⎪--.其中3x =-.20.如图,ABC 中,AB AC =,分别以B ,C 为圆心,大于12BC 长为半径画弧,两弧交于点D ,连接BD ,CD ,AD ,AD 与BC 交于点E .(1)求证:ABD ACD △≌△;(2)若2BD =,120BDC ∠=︒,求BC 的长.21.一个不透明的盒子里装有4张书签,分别描绘“春”,“夏”,“秋”,“冬”四个季节,书签除图案外都相同,并将4张书签充分搅匀.(1)若从盒子中任意抽取1张书签,恰好抽到“夏”的概率为______;(2)若从盒子中任意抽取2张书签(先抽取1张书签,且这张书签不放回,再抽取1张书签),求抽取的书签恰好1张为“春”,1张为“秋”的概率.(请用画树状图或列表等方法说明理由)等可能的结果:(春,夏),(春,秋),(春,冬),(夏,春)春),(秋,夏),(秋,冬),(冬,春),(冬,夏),(冬,秋)在12个等可能的结果中,抽取的书签1张为“春”,1张为122.某校计划在七年级开展阳光体育锻炼活动,开设以下五个球类项目:A(羽毛球),B (乒乓球),C(篮球),D(排球),E(足球),要求每位学生必须参加,且只能选择其中一个项目.为了了解学生对这五个项目的选择情况,学校从七年级全体学生中随机抽取部分学生进行问卷调查,对调查所得到的数据进行整理、描述和分析,部分信息如下:根据以上信息,解决下列问题:(1)将图①中的条形统计图补充完整(画图并标注相应数据);(2)图②中项目E对应的圆心角的度数为______°;(3)根据抽样调查结果,请估计本校七年级800名学生中选择项目B(乒乓球)的人数.【答案】(1)见解析(2)72(3)本校七年级800名学生中选择项目B(乒乓球)的人数约为240人【分析】本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.(1)利用C组的人数除以所占百分比求出总人数,然后用总人数减去A、B、C、E组的人数,最后补图即可;(2)用360︒乘以E组所占百分比即可;(3)用800乘以B组所占百分比即可.÷=,【详解】(1)解:总人数为915%60D组人数为6061891215----=,补图如下:(2)解:123607260︒⨯=︒,故答案为:72;(3)解:1880024060⨯=(人).答:本校七年级800名学生中选择项目23.图①是某种可调节支撑架,BC 为水平固定杆,竖直固定杆AB BC ⊥,活动杆AD 可绕点A 旋转,CD 为液压可伸缩支撑杆,已知10cm AB =,20cm BC =,50cm AD =.(1)如图②,当活动杆AD 处于水平状态时,求可伸缩支撑杆CD 的长度(结果保留根号);(2)如图③,当活动杆AD 绕点A 由水平状态按逆时针方向旋转角度α,且3tan 4α=(α为锐角),求此时可伸缩支撑杆CD 的长度(结果保留根号).由题意可知,90B A ∠=∠=︒,又CE AD ⊥ ,∴四边形ABCE 为矩形.20BC =由题意可知,四边形ABFG 为矩形,90AGD ∴=︒△.在Rt AGD 中,tan DG AG α==34DG AG ∴=.24.如图,ABC 中,AC BC =,90ACB ∠=︒,()2,0A -,()6,0C ,反比例函数()0,0k y k x x=≠>的图象与AB 交于点(),4D m ,与BC 交于点E .(1)求m ,k 的值;(2)点P 为反比例函数()0,0k y k x x=≠>图象上一动点(点P 在D ,E 之间运动,不与D ,E 重合),过点P 作PM AB ∥,交y 轴于点M ,过点P 作PN x ∥轴,交BC 于点N ,连接MN ,求PMN 面积的最大值,并求出此时点P 的坐标.45∴∠=︒.BAC∥轴,PN x∴∠=∠=︒,∠NQM BLN BAC4525.如图,ABC 中,AB =D 为AB 中点,BAC BCD ∠=∠,cos ADC ∠=,O 是ACD 的外接圆.(1)求BC 的长;(2)求O 的半径.又22,AD=DE=∴.1∴在Rt AED△中,22=-=AE AD DEBAC BCD△∽△,26.某条城际铁路线共有A,B,C三个车站,每日上午均有两班次列车从A站驶往C站,其中D 1001次列车从A 站始发,经停B 站后到达C 站,G 1002次列车从A 站始发,直达C 站,两个车次的列车在行驶过程中保持各自的行驶速度不变.某校数学学习小组对列车运行情况进行研究,收集到列车运行信息如下表所示.列车运行时刻表A 站B 站C 站车次发车时刻到站时刻发车时刻到站时刻D 10018:009:309:5010:50G 10028:25途经B 站,不停车10:30请根据表格中的信息,解答下列问题:(1)D 1001次列车从A 站到B 站行驶了______分钟,从B 站到C 站行驶了______分钟;(2)记D 1001次列车的行驶速度为1v ,离A 站的路程为1d ;G 1002次列车的行驶速度为2v ,离A 站的路程为2d .①12v v =______;②从上午8:00开始计时,时长记为t 分钟(如:上午9:15,则75t =),已知1240v =千米/小时(可换算为4千米/分钟),在G 1002次列车的行驶过程中()25150t ≤≤,若1260d d -=,求t 的值.27.如图①,二次函数2y x bx c =++的图象1C 与开口向下的二次函数图象2C 均过点()1,0A -,()3,0B .(1)求图象1C 对应的函数表达式;(2)若图象2C 过点()0,6C ,点P 位于第一象限,且在图象2C 上,直线l 过点P 且与x 轴平行,与图象2C 的另一个交点为Q (Q 在P 左侧),直线l 与图象1C 的交点为M ,N (N 在M 左侧).当PQ MP QN =+时,求点P 的坐标;(3)如图②,D ,E 分别为二次函数图象1C ,2C 的顶点,连接AD ,过点A 作AF AD ⊥.交图象2C 于点F ,连接EF ,当EF AD ∥时,求图象2C 对应的函数表达式.由二次函数的对称性得,∴PM NQ =.又PQ MP QN =+ ,而PQ PH PM ∴=.设()02PH t t =<<,则点将1x t =+代入(2y x =-+将21x t =+代入()(1y x =+P M y y = ,()(22t t ∴-+∴四边形IGJF 为矩形,IF GJ ∴=,IG FJ =.设2C 对应的函数表达式为 点D ,E 分别为二次函数图象将1x =分别代入22y x =-得4,4D E y y a =-=-,∴()1,4D -,()1,4E a -,4DG ∴=,2AG =,EG =。

2023年江苏省徐州市中考数学试题附解析

2023年江苏省徐州市中考数学试题附解析

2023年江苏省徐州市中考数学试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,⊙O的直径 AB 与弦 AC 的夹角为35°,过C点的切线 PC 与 AB 的延长线交于点P,那么∠P 等于()A.15°B.20°C.25°D.30°2.一枚均匀的正方体骰子,六个面分别标有数字 1、2、3、4、5、6,连续抛掷两次,朝上的数字分别是 m、n,若把m、n作为点A 的横纵坐标,则点 A(m,n)在函数2y x=的图象上的概率是()A.118B.112C.16D.133.样本频数分布反映了()A.样本数据的多少 B.样本数据的平均水平C.样本数据的离散程度 D.样本数据在各个小范围内数量的多少4.下列函数中是一次函数的是()A.y=kx+b B.2yx-=C.2331y x x=-++D.112y x=-+5.小明家的坐标为(1,2),小丽家的坐标为(一2,一l),则小明家在小丽家的()A.东南方向B.东北方向C.西南方向D.西北方向6.已知0a<,且不等式组x ax b>⎧⎨>⎩的解是x a>,则不等式组x ax b<⎧⎨->⎩的解是()A.b x a-<<B.x b>或x a<C.x a<D.无解7.如图,将四边形AEFG变换到四边形ABCD,其中E ,G分别是AB、AD 的中点,下列叙述不正确...的是()A.这种变换是相似变换B.对应边扩大到原来到2倍C.各对应角度数不变D.面积是原来2倍8.计算(2)(3)x x-+的结果是()A.26x-B.26x+C.26x x+-D.26x x--9.若代数式2231a a++的值是 6,则代数式2695a a++的值是()3.A .18B .16C .15D .20 10.计算-6+3等于( )A . -9B . 9C .-3D . -3 11.若有理数0a b c ++<,则( )A .三个数中至少有两个负数B .三个数中有且只有一个负数C .三个数中最少有一个负数D .三个数中有两个负数12.给出下述几种说法,其中正确的说法有( )①763万精确到万位;②1.2亿精确到0.1;③8067保留2个有效数字的近似值是8.1 ×103;④22.20精确到0.01.A .3个B .2个C .1个D .0个二、填空题13.如图是一束平行的阳光从教室的窗户射入的平面示意图,光线与地面所成角60°,在教室地面的影长 MN= 23m ,若窗户的下檐到教室地面的距离 BC= lm ,则窗户的上檐地面的距离 AC 为 m .14.如图所示,D 、E 两点分别在△ABC 两条边上,且DE 与BC 不平行,请填上一个你认为适合的条件_________,使得△ADE ∽△ABC .15.半径为6 ㎝,弧长为2π2π的扇形面积为 ㎝2.16.多项式221x ny x y -+++中不含字母y ,则Q(n 2+1,2n)点关于x 轴的对称点的坐标是 .17.已知一组数据为5,6,8,6,8,8,8,则这组数据的众数是_________,平均数是_________.18.如图,∠1=75°,∠2 =75°,∠3 = 105°,那么∠4 = ,可推出的平行关系有 .19.当x =__________时,分式x 2-9x -3的值为零. 20.小王想把 20 元人民币全部兑换成 2元和 5元两种面值的人民币,她有 种不同的兑换方法(只兑换一种币值也可以).21.如图所示,已知在Rt △ABC 中,∠C=90°,AD 是△ABC 的角平分线,BC=5,CD :BD=2:3,则点D到AB的距离为.22.△ABC与△DEF全等,AB=DE,若∠A=50°,∠B=60°,则∠D= .23.如图,∠1=30°,∠2=40°,则∠EOB= ,∠AOF= .三、解答题24.张明、王成两位同学l0次数学单元自我检测的成绩(成绩均为整数,且个位数为0)分别如图所示:(1)根据图中提供的数据填写下表:平均成绩/分中位数/分众数/分方差张明80王成85260的成绩视为优秀,则优秀率高的同学是;(3)根据图表信息,请你对这两位同学各提一条不超过20个字的学习建议.25.已知△ABC中,∠C=Rt∠,BC=a,AC=b.(1)若a=1,b=2,求c;(2)若a=15,c=17,求b.26.如图,甲、乙两人蒙上眼睛投掷飞标.(1)若甲击中黄色区域,则甲胜;若击中白色区域,则乙胜,此游戏公平吗?为什么?(2)利用图中所示,请你再设计一个公平的游戏.27.如图是蝴蝶的部分示意图,请你在方格中画出另一半.28.某足球比赛的计分规则为胜一场得3分,平一场得1分,负一场得0分.一个队踢14场球负5场共得19分,问这个队胜了几场?29.利用计算器比较下列各数的大小,并用<”号连结:3563734π333<4576π30.A市辖区内的B、C、D、E四县市正被日益严重的水污染所困扰,居民的饮用水长期达不到较高的标准.为了人民的身体健康,该市与四个县市的领导、专家多次研究,计划从A市某水库引水,供给四县市的城市居民.五个市县间的距离如图所示(单位:km).已知铺设引水管道需费用14500元/km如果不考虑其它因素,请你设计出几种不同的引水管道铺设方案.并指出哪种铺设方案最经济.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.B3.D4.D5.B6.D7.D8.C9.D10.C11.C12.A二、填空题13.314.∠1=∠B (答案不唯一)15.6π 16.(2,-2)17.8,718.105°;1l ∥2l 、3l ∥4l19.3-=x 20.321.222.50°或60°23.110°,ll0°三、解答题24.(1)表中数据依次为80,80,60,80,90;(2)王成;(3)略.25.(1;(2)826.(1)不公平,因为甲击中黄色区域的成功率小于击中白色区域的成功率;(2)公平的规则:若甲击中黄色区域,则甲胜;若击中绿色区域,则乙胜 (答案不唯一) 27.图略28.解:设这个队胜了x场,依题意得:+--=,解得:5x x3(145)19x=.答:这个队胜了5场.29.333<<<<30.4576π方案一:A→B→C→D→E,W1=(30+30+45+30)×14500=1.9575×106(元)方案二:W2=(55+30+45+30)×14500=2.32×106(元)方案三:W3=(50+30+45+30)×14500=2.2475×106(元)方案四:W4=(30+50+30+45)×14500=2.24755×106(元)方案五:W5=(354-55+45+30)×14500=2.3925×106(元)方案六:W6=(30+55+50+35)×14500=2.465×106(元)方案七:A→E→D→C→B,W7=(35+30+45+30)×14500=2.03×106(元)方案八:W8=(30+30+35+30)×14500=1.8125×106(元)通过以上八个方案的比较,铺设方案八即从最经济,总费用只需181.25万元.。

(中考精品卷)江苏省连云港市中考数学真题(解析版)

(中考精品卷)江苏省连云港市中考数学真题(解析版)

数学试题一、选择题(本大题共有8小题,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1. -3的倒数是()A. 3B. -3C. 13D.13-【答案】D【解析】【分析】根据倒数的定义,即可计算出结果.【详解】解:-3的倒数是1 3 -;故选:D【点睛】本题考查了倒数的定义:乘积是1的两数互为倒数.2. 下列图案中,是轴对称图形的是()A. B. C. D.【答案】A【解析】【分析】根据轴对称图形的概念逐项分析判断即可,轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.【详解】A.是轴对称图形,故该选项正确,符合题意;B.不是轴对称图形,故该选项不正确,不符合题意;C.不是轴对称图形,故该选项不正确,不符合题意;D.不是轴对称图形,故该选项不正确,不符合题意;故选A【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3. 2021年12月9日,“天宫课堂”正式开课,我国航天员在中国空间站首次进行太空授课,本次授课结束时,网络在线观看人数累计超过14600000人次.把“14600000”用科学记数法表示为( )A. 80.14610⨯B. 71.4610⨯C. 614.610⨯D. 514610⨯【答案】B【解析】【分析】科学记数法的表现形式为10n a ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案.【详解】解:714600000=1.4610⨯.故选:B .【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的具体要求.4. 在体育测试中,7名女生仰卧起坐的成绩如下(次/分钟):38,42,42,45,43,45,45,则这组数据的众数是( )A. 38B. 42C. 43D. 45 【答案】D【解析】【分析】根据众数的定义即可求解.【详解】解:∵45出现了3次,出现次数最多,∴众数为45.故选D .【点睛】本题考查了求众数,掌握众数的定义是解题的关键.众数:在一组数据中出现次数最多的数.5. 函数y =x 的取值范围是( ) A. 1≥xB. 0x ≥C. 0x ≤D. 1x ≤【答案】A【解析】【分析】根据二次根式有意义的条件列出不等式,即可求解.【详解】解:∵10x -≥,∴1≥x .故选A .【点睛】本题考查了求函数自变量取值范围,二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.6. ABC 的三边长分别为2,3,4,另有一个与它相似的三角形DEF ,其最长边为12,则DEF 的周长是( )A. 54B. 36C. 27D. 21【答案】C【解析】【分析】根据相似三角形的性质求解即可.【详解】解:∵△ABC 与△DEF 相似,△ABC 的最长边为4,△DEF 的最长边为12, ∴两个相似三角形的相似比为1:3,∴△DEF 的周长与△ABC 的周长比为3:1,∴△DEF 的周长为3×(2+3+4)=27,故选:C .【点睛】本题主要考查了相似三角形的性质,熟知相似三角形的周长之比等于相似之比是解题的关键.7. 如图,有一个半径为2的圆形时钟,其中每个刻度间的弧长均相等,过9点和11点的位置作一条线段,则钟面中阴影部分的面积为( )A. 23π-B. 23πC. 43π-D. 43π- 【答案】B【解析】【分析】阴影部分的面积等于扇形面积减去三角形面积,分别求出扇形面积和等边三角形的面积即可.【详解】解:如图,过点OC 作OD ⊥AB 于点D ,∵∠AOB =2×36012︒=60°, ∴△OAB 是等边三角形, ∴∠AOD =∠BOD =30°,OA =OB =AB =2,AD =BD =12AB =1,∴OD =∴阴影部分的面积为260212236023ππ⋅⨯-⨯=, 故选:B .【点睛】本题考查了扇形面积、等边三角形的面积计算方法,掌握扇形面积、等边三角形的面积的计算方法是正确解答的关键.8. 如图,将矩形ABCD 沿着GE EC 、GF 翻折,使得点A 、B 、D 恰好都落在点O 处,且点G 、O 、C 在同一条直线上,同时点E 、O 、F 在另一条直线上.小炜同学得出以下结论:①GF ∥EC ;②AB AD ;③GE DF ;④OC OF ;⑤△COF ∽△CEG .其中正确的是( )A. ①②③B. ①③④C. ①④⑤D. ②③④【答案】B【解析】 【分析】由折叠的性质知∠FGE =90°,∠GEC =90°,点G 为AD 的中点,点E 为AB 的中点,设AD=BC=2a,AB=CD=2b,在Rt△CDG中,由勾股定理求得b,然后利用勾股定理再求得DF=FO,据此求解即可.【详解】解:根据折叠的性质知∠DGF=∠OGF,∠AGE=∠OGE,∴∠FGE=∠OGF+∠OGE=12(∠DGO+∠AGO) =90°,同理∠GEC=90°,∴GF∥EC;故①正确;根据折叠的性质知DG=GO,GA=GO,∴DG=GO=GA,即点G为AD的中点,同理可得点E为AB的中点,设AD=BC=2a,AB=CD=2b,则DG=GO=GA=a,OC=BC=2a,AE=BE=OE=b,∴GC=3a,在Rt△CDG中,CG2=DG2+CD2,即(3a)2=a2+(2b)2,∴b,∴ABAD,故②不正确;设DF=FO=x,则FC=2b-x,在Rt△COF中,CF2=OF2+OC2,即(2b-x)2=x2+(2a)2,∴x=22b ab-,即DF=FO,GE=,∴GEDF==∴GEDF;故③正确;∴2OC aaOF==,∴OCOF;故④正确;∵∠FCO与∠GCE不一定相等,∴△COF∽△CEG不成立,故⑤不正确;综上,正确的有①③④,故选:B .【点睛】本题主要考查了折叠问题,解题时,我们常常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.二、填空题(本大题共8小题,不需要写出解答过程,请把答案直接填写在答题卡相应位置上)9. 计算:23a a +=______.【答案】5a【解析】【分析】直接运用合并同类项法则进行计算即可得到答案.【详解】解: 23a a +(23)a =+5a =.故答案为:5a .【点睛】本题主要考查了合并同类项,熟练掌握合并同类项法则是解答本题的关键. 10. 已知∠A 的补角是60°,则A ∠=_________︒.【答案】120【解析】【分析】如果两个角的和等于180°,就说这两个角互为补角.由此定义即可求解.【详解】解:∵∠A 的补角是60°,∴∠A =180°-60°=120°,故答案为:120.【点睛】本题考查补角的定义,熟练掌握两个角互为补角的定义是解题的关键. 11. 写出一个在1到3之间的无理数:_________.(答案不唯一)【解析】【分析】由于12=1,32=9,所以只需写出被开方数在1和9之间的,且不是完全平方数的数即可求解.【详解】解:1和3.(答案不唯一).【点睛】本题主要考查常见无理数的定义和性质,解题关键是估算无理数的整数部分和小数部分.12. 若关于x 的一元二次方程()2100mx nx m +-=≠的一个解是1x =,则m n +的值是___.【答案】1【解析】【分析】根据一元二次方程解的定义把1x =代入到()2100mxnx m +-=≠进行求解即可.【详解】解:∵关于x 的一元二次方程()2100mxnx m +-=≠的一个解是1x =,∴10m n +-=,∴1m n +=,故答案为:1.【点睛】本题主要考查了一元二次方程解的定义,代数式求值,熟知一元二次方程解的定义是解题的关键.13. 如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,连接BC ,与⊙O 交于点D ,连接OD .若82AOD ∠=︒,则C ∠=_________︒.【答案】49【解析】【分析】利用同弧所对的圆周角等于圆心角的一半求得∠B =12∠AOD =41°,根据AC 是⊙O 的切线得到∠BAC =90°,即可求出答案.【详解】解:∵∠AOD =82°,∴∠B =12∠AOD =41°,∵AC 为圆的切线,A 为切点,∴∠BAC =90°,∴∠C =90°-41°=49°故答案为49.【点睛】此题考查圆周角定理,圆的切线的性质定理,直角三角形两锐角互余,正确理解圆周角定理及切线的性质定理是解题的关键.14. 如图,在66⨯正方形网格中,ABC 的顶点A 、B 、C 都在网格线上,且都是小正方形边的中点,则sin A =_________.【答案】45 【解析】【分析】如图所示,过点C 作CE ⊥AB 于E ,先求出CE ,AE 的长,从而利用勾股定理求出AC 的长,由此求解即可.【详解】解:如图所示,过点C 作CE ⊥AB 于E ,由题意得43CE AE ==,,∴5AC ==, ∴4sin =5CE A AC =, 故答案为:45.【点睛】本题主要考查了求正弦值,勾股定理与网格问题正确作出辅助线,构造直角三角形是解题的关键.15. 如图,一位篮球运动员投篮,球沿抛物线20.2 2.25y x x =-++运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为3.05m ,则他距篮筐中心的水平距离OH 是_________m .【答案】4【解析】【分析】将 3.05y =代入20.2 2.25y x x =-++中可求出x ,结合图形可知4x =,即可求出OH .【详解】解:当 3.05y =时,20.2 2.25 3.05-++x x =,解得:1x =或4x =, 结合图形可知:4OH m =,故答案为:4【点睛】本题考查二次函数的实际应用:投球问题,解题的关键是结合函数图形确定x 的值.16. 如图,在ABCD 中,150ABC ∠=︒.利用尺规在BC 、BA 上分别截取BE 、BF ,使BE BF =;分别以E 、F 为圆心,大于12EF 的长为半径作弧,两弧在CBA ∠内交于点G ;作射线BG 交DC 于点H .若1AD =,则BH 的长为_________.【解析】【分析】如图所示,过点H 作HM ⊥BC 于M ,由作图方法可知,BH 平分∠ABC ,即可证明∠CBH =∠CHB ,得到1CH BC ==+,从而求出HM ,CM 的长,进而求出BM 的长,即可利用勾股定理求出BH 的长.【详解】解:如图所示,过点H 作HM ⊥BC 于M ,由作图方法可知,BH 平分∠ABC ,∴∠ABH =∠CBH ,∵四边形ABCD 是平行四边形,∴1BC AD AB CD ==+∥,,∴∠CHB =∠ABH ,∠C =180°-∠ABC =30°,∴∠CBH =∠CHB ,∴1CH BC ==+,∴12HM CH ==,∴CM ==,∴BM BC CM =-=∴BH ==.【点睛】本题主要考查了角平分线的尺规作图,平行四边形的性质,含30度角的直角三角形的性质,勾股定理,等腰三角形的性质与判定等等,正确求出CH 的长是解题的关键.三、解答题(本大题共11小题,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.计算:01(10)20222⎛⎫-⨯- ⎪⎝⎭. 【答案】2【解析】【分析】根据有理数的乘法,二次根式的性质,零指数的计算法则求解即可.详解】解:原式541=-+=2.【点睛】本题主要考查了有理数的乘法,二次根式的性质,零指数,熟知相关计算法则是解题的关键.18. 解不等式2x ﹣1>312x -,并把它的解集在数轴上表示出来.【【答案】不等式的解集为x >1,在数轴上表示见解析.【解析】【详解】试题分析:根据不等式的基本性质去分母、去括号、移项可得不等式的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来.试题解析:去分母,得:4x ﹣2>3x ﹣1,移项,得:4x ﹣3x >2﹣1,合并同类项,得:x >1,将不等式解集表示在数轴上如图:19. 化简:221311x x x x -+--. 【答案】11x x -+ 【解析】【分析】根据异分母分式的加法计算法则求解即可.【详解】解:原式211x x +=+- 22131x x x x ++-=- 22211x x x -+=- 22(1)1x x -=- 2(1)=(1)(1)x x x -+- 11x x -=+. 【点睛】本题主要考查了异分母分式的加法,熟知相关计算法则是解题的关键. 20. 为落实国家“双减”政策,某校为学生开展了课后服务,其中在体育类活动中开设了四种运动项目:A 乒乓球,B 排球,C 篮球,D 跳绳.为了解学生最喜欢哪一种运动项目,随机抽取部分学生进行调查(每位学生仅选一种),并将调查结果制成如下尚不完整的统计图表.问卷情况统计表:运动项目人数A乒乓球mB排球10C篮球80D跳绳70(1)本次调查的样本容量是_______,统计表中m=_________;(2)在扇形统计图中,“B排球”对应的圆心角的度数是_________ ;(3)若该校共有2000名学生,请你估计该校最喜欢“A乒乓球”的学生人数.【答案】(1)200,40(2)18 (3)约为400人【解析】【分析】(1)从两个统计图中可知,“C篮球”的人数80人,占调查人数的40%,可求出本次调查的样本容量,进而求出m的值;(2)“B排球”的人数10人,据此可求得相应的圆心角;(3)用总人数乘以“A乒乓球”的学生所占的百分比即可.【小问1详解】解:本次调查的样本容量是:80÷40%=200(人),m=200-10-80-70=40;故答案为:200,40;【小问2详解】解:扇形统计图中B部分扇形所对应的圆心角是360°×10200=18°,故答案为:18;【小问3详解】解:402000400200⨯=(人),估计该校最喜欢“A乒乓球”的学生人数约为400人.【点睛】此题考查统计表、扇形统计图的结合,从两个统计图中获取数量和数量之间的关系是解决问题的前提.21. “石头、剪子、布”是一个广为流传的游戏,规则是:甲、乙两人都做出“石头”“剪子”“布”3种手势中的1种,其中“石头”赢“剪子”,“剪子”赢“布”,“布”赢“石头”,手势相同不分输赢.假设甲、乙两人每次都随意并且同时做出3种手势中的1种.(1)甲每次做出“石头”手势的概率为_________;(2)用画树状图或列表的方法,求乙不输的概率.【答案】(1)1 3(2)见解析,2 3【解析】【分析】(1)根据概率计算公式求解即可;(2)先画树状图得出所有等可能性的结果数,然后找到乙不输的结果数,最后利用概率计算公式求解即可.【小问1详解】解:∵甲每次做出的手势只有“石头”、“剪子”、“布”其中的一种,∴甲每次做出“石头”手势的概率为13;【小问2详解】解:树状图如图所示:甲、乙两人同时做出手势共有9种等可能结果,其中乙不输的共有6种,∴P(乙不输)62 93 ==.的答:乙不输的概率是23. 【点睛】本题主要考查了简单的概率计算,利用列表法或树状图法求解概率,熟知概率计算公式是解题的关键.22. 我国古代数学名著《九章算术》中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”其大意是:今有几个人共同出钱购买一件物品.每人出8钱,剩余3钱;每人出7钱,还缺4钱.问人数、物品价格各是多少?请你求出以上问题中的人数和物品价格.【答案】有7人,物品价格是53钱【解析】【分析】设人数为x 人,根据“物品价格=8×人数-多余钱数=7×人数+缺少的钱数”可得方程,求解方程即可.【详解】解:设人数为x 人,由题意得8374x x -=+,解得7x =.所以物品价格是87353⨯-=.答:有7人,物品价格是53钱.【点睛】本题主要考查由实际问题抽象出一元一次方程,由实际问题列方程组是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系.23. 如图,在平面直角坐标系xOy 中,一次函数()0y ax b a =+≠的图像与反比例函数()0k y k x=≠的图像交于P 、Q 两点.点()43P ,-,点Q 的纵坐标为-2.(1)求反比例函数与一次函数的表达式;(2)求POQ △面积.【答案】(1)12y x =-,112y x =-+ (2)5的【解析】【分析】(1)通过点P 坐标求出反比例函数解析式,再通过解析式求出点Q 坐标,从而解出PQ 一次函数解析式;(2)令PQ 与y 轴的交点为M ,则三角形POQ 的面积为OM 乘以点P 横坐标除以2加上OM 乘以点Q 横坐标除以2即可.【小问1详解】将()43P ,-代入k y x=,解得12k =-, ∴反比例函数表达式为12y x =-. 当2y =-时,代入12y x=-,解得6x =,即()6,2Q -. 将()43P ,-、()6,2Q -代入()0y ax b a =+≠,得4362a b a b -+=⎧⎨+=-⎩,解得121a b ⎧=-⎪⎨⎪=⎩. ∴一次函数表达式为112y x =-+. 【小问2详解】设一次函数的图像与y 轴交点为M ,将0x =代入112y x =-+,得1y =,即()0,1M . ∵()43P ,-,()6,2Q -,()0,1M , ∴111416522POQ POM QOM S S S =+=⨯⨯+⨯⨯=△△△. 【点睛】本题考查待定系数法求反比例函数解析式、一次函数解析式、求一次函数和反比例函数围成的三角形面积,掌握拆分法是解本题关键.24. 我市的花果山景区大圣湖畔屹立着一座古塔——阿育王塔,是苏北地区现存最高和最古老的宝塔.小明与小亮要测量阿育王塔的高度,如图所示,小明在点A 处测得阿育王塔最高点C 的仰角45CAE ∠=︒,再沿正对阿育王塔方向前进至B 处测得最高点C 的仰角53CBE ∠=︒,10m AB =;小亮在点G 处竖立标杆FG ,小亮的所在位置点D 、标杆顶F 、最高点C 在一条直线上, 1.5m FG =,2m GD =.(注:结果精确到0.01m ,参考数据:sin 530.799︒≈,cos530.602︒≈,tan 53 1.327︒≈)(1)求阿育王塔的高度CE ;(2)求小亮与阿育王塔之间的距离ED .【答案】(1)40.58m(2)54.11m【解析】【分析】(1)在Rt CEB 中,由tan 5310CE CE BE CE ︒==-,解方程即可求解. (2)证明Rt FGD Rt CED △∽△,根据相似三角形的性质即可求解.【小问1详解】在Rt CAE 中,∵45CAE ∠=︒,∴CE AE =.∵10AB =,∴1010BE AE CE =-=-.在Rt CEB 中,由tan 5310CE CE BE CE ︒==-, 得()tan5310CE CE ︒-=,解得40.58CE ≈.经检验40.58CE ≈是方程的解答:阿育王塔的高度约为40.58m .【小问2详解】由题意知Rt FGD Rt CED △∽△, ∴FG GD CE ED=,即 1.5240.58ED=, ∴54.11ED ≈.经检验54.11ED ≈是方程的解答:小亮与阿育王塔之间的距离约为54.11m .【点睛】本题考查了解直角三角形的应用,相似三角形的应用,掌握以上知识是解题的关键.25. 如图,四边形ABCD 为平行四边形,延长AD 到点E ,使DE AD =,且BE DC ⊥.(1)求证:四边形DBCE 菱形;(2)若DBC △是边长为2的等边三角形,点P 、M 、N 分别在线段BE 、BC 、CE 上运动,求PM PN +的最小值.【答案】(1)证明见解析(2【解析】【分析】(1)先根据四边形ABCD 为平行四边形的性质和DE AD =证明四边形DBCE 为平行四边形,再根据BE DC ⊥,即可得证;(2)先根据菱形对称性得,得到'PM PN PM PN +=+,进一步说明PM PN +的最小值即为菱形的高,再利用三角函数即可求解.【小问1详解】证明:∵四边形ABCD 是平行四边形,∴AD BC ∥,AD BC =,∵DE AD =,∴DE BC =,又∵点E 在AD 的延长线上,∴∥DE BC ,∴四边形DBCE 为平行四边形,为又∵BE DC ⊥,∴四边形DBCE 为菱形.【小问2详解】解:如图,由菱形对称性得,点N 关于BE 的对称点'N 在DE 上,∴'PM PN PM PN +=+,当P 、M 、'N 共线时,''PM PN PM PN MN +=+=,过点D 作DH BC ⊥,垂足为H ,∵∥DE BC ,∴'MN 的最小值即为平行线间的距离DH 的长,∵DBC △是边长为2的等边三角形,∴在Rt DBH 中,60DBC ∠=︒,2DB =,sin DH DBC DB∠=,∴sin 2DH DB DBC =∠==∴PM PN +【点睛】本题考查了最值问题,考查了菱形的判定和性质,平行四边形的判定和性质,三角函数等知识,运用了转化的思想方法.将最值问题转化为求菱形的高是解答本题的关键.26. 已知二次函数2(2)4y x m x m =+-+-,其中2m >.(1)当该函数的图像经过原点()0,0O ,求此时函数图像的顶点A 的坐标;(2)求证:二次函数2(2)4y x m x m =+-+-的顶点在第三象限;(3)如图,在(1)的条件下,若平移该二次函数的图像,使其顶点在直线2y x =--上运动,平移后所得函数的图像与y 轴的负半轴的交点为B ,求AOB 面积的最大值.【答案】(1)()1,1A --(2)见解析(3)最大值为98【解析】【分析】(1)先利用待定系数法求出二次函数解析式,再将二次函数解析式化为顶点式即可得到答案; (2)先根据顶点坐标公式求出顶点坐标为22820,24m m m ⎛⎫--+- ⎪⎝⎭,然后分别证明顶点坐标的横纵坐标都小于0即可;(3)设平移后图像对应的二次函数表达式为2y x bx c =++,则其顶点坐标为24,24b c b ⎛⎫-- ⎪⎝⎭,然后求出点B 的坐标,根据平移后的二次函数顶点在直线2y x =--上推出2284b bc +-=,过点A 作AH OB ⊥,垂足为H ,可以推出219=(1)88AOB S b -++△,由此即可求解. 【小问1详解】解:将()0,0O 代入2(2)4y xm x m =+-+-,解得4m =.由2m >,则4m =符合题意,∴222(1)1y x x x =+=+-,∴()1,1A --.【小问2详解】 解:由抛物线顶点坐标公式得顶点坐标为22820,24m m m ⎛⎫--+- ⎪⎝⎭. ∵2m >,∴20m ->,∴20m -<, ∴202m -<. ∵228201(4)11044m m m -+-=---≤-<, ∴二次函数2(2)4y xm x m =+-+-的顶点在第三象限.【小问3详解】解:设平移后图像对应的二次函数表达式为2y x bx c =++,则其顶点坐标为24,24b c b ⎛⎫-- ⎪⎝⎭ 当0x =时,y c =,∴()0,B c . 将24,24b c b ⎛⎫-- ⎪⎝⎭代入2y x =--, 解得2284b bc +-=. ∵()0,B c 在y 轴的负半轴上,∴0c <. ∴2284b b OBc +-=-=-. 过点A 作AH OB ⊥,垂足为H ,∵()1,1A --,∴1AH =.在AOB 中,211281224AOB b b S OB AH ⎛⎫+-=⋅=⨯-⨯ ⎪⎝⎭△ 211184b b =--+ 219(1)88b =-++, ∴当1b =-时,此时0c <,AOB 面积有最大值,最大值为98.【点睛】本题主要考查了待定系数法求二次函数解析式,二次函数的性质,二次函数的平移,二次函数的最值问题,正确理解题意,熟练掌握二次函数的相关知识是解题的关键. 27. 【问题情境】在一次数学兴趣小组活动中,小昕同学将一大一小两个三角板按照如图1所示的方式摆放.其中90ACB DEB ∠=∠=︒,30B ∠=︒,3BE AC ==.【问题探究】小昕同学将三角板DEB 绕点B 按顺时针方向旋转.(1)如图2,当点E 落在边AB 上时,延长DE 交BC 于点F ,求BF 的长.(2)若点C 、E 、D 在同一条直线上,求点D 到直线BC 的距离.(3)连接DC ,取DC 的中点G ,三角板DEB 由初始位置(图1),旋转到点C 、B 、D 首次在同一条直线上(如图3),求点G 所经过的路径长.(4)如图4,G 为DC 的中点,则在旋转过程中,点G 到直线AB 的距离的最大值是_____.【答案】(1)(21±(3(4 【解析】【分析】(1)在Rt △BEF 中,根据余弦的定义求解即可;(2)分点E 在BC 上方和下方两种情况讨论求解即可;(3)取BC 的中点O ,连接GO ,从而求出OG G 在以O 径的圆上,然后根据弧长公式即可求解;(4)由(3)知,点G 在以O O 作OH ⊥AB 于H ,当G 在OH 的反向延长线上时,GH 最大,即点G 到直线AB 的距离的最大,在Rt △BOH 中求出OH ,进而可求GH .【小问1详解】解:由题意得,90BEF BED ∠=∠=︒,∵在Rt BEF △中,30ABC ∠=︒,3BE =,cos BE ABC BF ∠=.∴3cos cos 30BE BF ABC =︒==∠. 【小问2详解】①当点E 在BC 上方时,如图一,过点D 作DH BC ⊥,垂足为H ,∵在ABC 中,90ACB ∠=︒,30ABC ∠=︒,3AC =, ∴tan AC ABC BC ∠=,∴3tan tan 30AC BC ABC =︒==∠ ∵BDE 中,90DEB ∠=︒,30DBE ABC ∠=∠=︒,在3BE =,tan DE DBE BE ∠=,∴tan30DE BE =︒⋅.∵点C 、E 、D 在同一直线上,且90DEB ∠=︒,∴18090CEB DEB ∠=-∠=︒︒.又∵在CBE △中,90CEB ∠=︒,BC =3BE =,∴CE ==,∴C D C E D E =+=∵在BCD △中,1122BCD S CD BE BC DH =⋅=⋅△,∴1CD BE DH BC ⋅==+.②当点E 在BC 下方时,如图二,在BCE 中,∵90CEB ∠=︒,3BE =,BC =∴CE ==.∴C D C E D E =-=.过点D 作DM BC ⊥,垂足为M . 在BDC 中,1122BDC S BC DM CD BE =⋅=⋅△,∴1D M -.综上,点D 到直线BC 1±.【小问3详解】解:如图三,取BC 的中点O ,连接GO ,则12GO BD ==∴点G 在以O当三角板DEB 绕点B 顺时针由初始位置旋转到点C 、B 、D 首次在同一条直线上时,点G所经过的轨迹为150︒所对的圆弧,圆弧长为1502360π⨯=.∴点G . 【小问4详解】解:由(3)知,点G 在以O如图四,过O 作OH ⊥AB 于H ,当G 在OH 的反向延长线上时,GH 最大,即点G 到直线AB 的距离的最大,在Rt △BOH 中,∠BHO =90°,∠OBH =30°,12BO BC ==,∴sin sin 30OH BO OBH =⋅∠=︒=,∴GH OG OH =+=即点G到直线AB【点睛】本题考查了勾股定理,旋转的性质,弧长公式,解直角三角形等知识,分点E在BC上方和下方是解第(2)的关键,确定点G的运动轨迹是解第(3)(4)的关键。

2024年江苏省无锡市中考数学真题(含答案)

2024年江苏省无锡市中考数学真题(含答案)

2024年江苏省无锡市中考数学试题一、选择题(本大题共10小题,每小题3分,共30分。

在每小题所给出的四个选项中,只有一项是正确的。

)1.4的倒数是( )A.14B.﹣4C.2D.±22.在函数y=x−3中,自变量x的取值范围是( )A.x≠3B.x>3C.x<3D.x≥33.分式方程1x=2x+1的解是( )A.x=1B.x=﹣2C.x=12D.x=24.一组数据:31,32,35,37,35,这组数据的平均数和中位数分别是( )A.34,34B.35,35C.34,35D.35,345.下列图形是中心对称图形的是( )A.等边三角形B.直角三角形C.平行四边形D.正五边形6.已知圆锥的底面圆半径为3,母线长为4,则圆锥的侧面积为( )A.6πB.12πC.15πD.24π7.《九章算术》中有一道“凫雁相逢”问题(凫:野鸭),大意如下:野鸭从南海飞到北海需要7天,大雁从北海飞到南海需要9天.如果野鸭、大雁分别从南海、北海同时起飞,经过多少天相遇?设经过x天相遇,则下列方程正确的是( )A.17x+19x=1B.17x−19x=1C.9x+7x=1D.9x﹣7x=18.如图,在△ABC中,∠B=80°,∠C=65°,将△ABC绕点A逆时针旋转得到△AB′C′.当AB′落在AC上时,∠BAC′的度数为( )A.65°B.70°C.80°D.85°9.如图,在菱形ABCD中,∠ABC=60°,E是CD的中点,则sin∠EBC的值为( )A .35B .75C .2114D .571410.已知y 是x 的函数,若存在实数m ,n (m <n ),当m ≤x ≤n 时,y 的取值范围是tm ≤y ≤tn (t >0).我们将m ≤x ≤n 称为这个函数的“t 级关联范围”.例如:函数y =2x ,存在m =1,n =2,当1≤x ≤2时,2≤y ≤4,即t =2,所以1≤x ≤2是函数y =2x 的“2级关联范围”.下列结论:①1≤x ≤3是函数y =﹣x +4的“1级关联范围”;②0≤x ≤2不是函数y =x 2的“2级关联范围”;③函数y =kx(k >0)总存在“3级关联范围”;④函数y =﹣x 2+2x +1不存在“4级关联范围”.其中正确的为( )A .①③B .①④C .②③D .②④二、填空题(本大题共8小题,每小题3分,共24分)11.分解因式:x 2﹣9=  .12.在科技创新的强力驱动下,中国高铁事业飞速发展,高铁技术已经领跑世界.截至2023年底,我国高铁营业里程达到45000km .数据45000用科学记数法表示为  .13.正十二边形的内角和等于  度.14.命题“若a >b ,则a ﹣3<b ﹣3”是 命题.(填“真”或“假”)15.某个函数的图象关于原点对称,且当x >0时,y 随x 的增大而增大.请写出一个符合上述条件的函数表达式:  .16.在△ABC 中,AB =4,BC =6,AC =8,D ,E ,F 分别是AB ,BC ,AC 的中点,则△DEF 的周长为 .17.在探究“反比例函数的图象与性质”时,小明先将直角边长为5个单位长度的等腰直角三角板ABC 摆放在平面直角坐标系中,使其两条直角边AC ,BC 分别落在x 轴负半轴、y 轴正半轴上(如图所示),然后将三角板向右平移a 个单位长度,再向下平移a 个单位长度后,小明发现A ,B 两点恰好都落在函数y =6x 的图象上,则a 的值为  .18.如图,在△ABC 中,AC =2,AB =3,直线CM ∥AB ,E 是BC 上的动点(端点除外),射线AE 交CM 于点D .在射线AE 上取一点P ,使得AP =2ED ,作PQ ∥AB ,交射线AC 于点Q .设AQ =x ,PQ =y .当x =y 时,CD = ;在点E 运动的过程中,y 关于x 的函数表达式为  .三、解答题(本大题共10小题,共96分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年中考试题数 学注 意 事 项考生在答题前请认真阅读本注意事项1.本试卷共6页,满分为150分,考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回. 2.答题前,请务必将自己的姓名、考试证号用0.5毫米黑色字迹的签字笔填写在试卷及答题卡指定的位置. 3.答案必须按要求填涂、书写在答题卡上,在试卷、草稿纸上答题一律无效.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上. 1. -4的倒数是 A .4B .-4C .14D .-142. 9的算术平方根是 A .3B .-3C .81D .-813. 用科学记数法表示0.000031,结果是A .3.1×10-4B .3.1×10-5C .0.31×10-4D .31×10-64. 若36x -在实数范围内有意义,则x 的取值范围是A .2x -≥B .2x ≠-C .2x ≥D .2x ≠5. 如图,⊙O 的直径AB =4,点C 在⊙O 上,∠ABC =30°,则AC 的长是A .1B .2C .3D .26. 某纺织厂从10万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么估计该厂这10万件产品中合格品约为 A .9.5万件 B .9万件 C .9500件D .5000件7. 关于x 的方程12mx x -=的解为正实数,则m 的取值范围是A .m ≥2B .m ≤2C .m >2D .m <28. 如图,菱形ABCD 中,AB = 5,∠BCD = 120°,则对角线BACD(第8题)(第5题)·O ABCAC 的长是A .20B .15C .10D .59. 如图,已知□ABCD 的对角线BD =4cm ,将□ABCD 绕其对称中心O 旋转180°,则点D 所转过的路径长为 A .4π cmB .3π cmC .2π cmD .π cm10.在平面直角坐标系xOy 中,已知点P (2,2),点Q 在y 轴上,△PQO 是等腰三角形,则满足条件的点Q 共有 A .5个 B .4个 C .3个 D .2个二、填空题:本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相....应位置...上. 11.如果正比例函数y kx =的图象经过点(1,-2),那么k 的值等于 ▲ .12.若△ABC ∽△DEF , △ABC 与△DEF 的相似比为1∶2,则△ABC 与△DEF 的周长比为 ▲ . 13.分解因式:2ax ax -= ▲ .14.质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,投掷这个骰子一次,则向上一面的数字是偶数的概率为 ▲ .15.在平面直角坐标系中,已知线段MN 的两个端点的坐标分别是M (-4,-1)、N (0,1),将线段MN 平移后得到线段M ′N ′(点M 、N 分别平移到点M ′、N ′的位置),若点M ′的坐标为 (-2,2),则点N ′的坐标为 ▲ .16.如图,小章利用一张左、右两边已经破损的长方形纸片ABCD 做折纸游戏,他将纸片沿EF 折叠后,D 、C 两点分别落在D ′、C ′的位 置,并利用量角器量得∠EFB =65°,则∠AED ′等于 ▲ 度. 17.如图,正方形ABCD 的边长为4,点M 在边DC 上,M 、N 两点关于对角线AC 对称,若DM =1,则tan ∠ADN = ▲ . 18.设x 1、x 2 是一元二次方程x 2+4x -3=0的两个根,2x 1(x 22+5x 2-3)+a =2,则a = ▲ .(第9题)ABCDOA (第17题)BDM NC··EDBD ′ A(第16题)F CC′三、解答题:本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.19.(本小题满分10分)计算:(1)203(4)(π3)2|5|-+----;(2)2293(1)69aa a a-÷-++.20.(本小题满分8分)如图,⊙O的直径AB垂直于弦CD,垂足P是OB的中点,CD=6 cm,求直径AB的长.21.(本小题满分9分)如图,直线y x m=+与双曲线kyx=相交于A(2,1)、B两点.(1)求m及k的值;(2)不解关于x、y的方程组,,y x mkyx=+⎧⎪⎨=⎪⎩直接写出点B的坐标;(3)直线24y x m=-+经过点B吗?请说明理由.OBAD C·P(第20题)ABO xy(第21题)2123-3 -1-213-3-1-222.(本小题满分8分)某地区随机抽取若干名八年级学生进行地理会考模拟测试,并对测试成绩(x 分)进行了统计,具体统计结果见下表:某地区八年级地理会考模拟测试成绩统计表分数段 90<x ≤100 80<x ≤90 70<x ≤80 60<x ≤70 x ≤60 人数1200 1461 642 480 217(1)填空:①本次抽样调查共测试了 ▲ 名学生;②参加地理会考模拟测试的学生成绩的中位数落在分数段 ▲ 上;③若用扇形统计图表示统计结果,则分数段为90<x ≤100的人数所对应扇形的圆心角的度数为 ▲ ;(2)该地区确定地理会考成绩60分以上(含60分)的为合格,要求合格率不低于97%.现已知本次测试得60分的学生有117人,通过计算说明本次地理会考模拟测试的合格率是否达到要求?23.(本小题满分9分)光明中学九年级(1)班开展数学实践活动,小李沿着东西方向的公路以50 m/min 的速度向正东方向行走,在A 处测得建筑物C 在北偏东60°方向上,20min 后他走到B 处,测得建筑物C 在北偏西45°方向上,求建筑物C 到公路AB 的距离.(已知3 1.732 )北北 ABC60°45°(第23题)24.(本小题满分8分)(1)将一批重490吨的货物分配给甲、乙两船运输.现甲、乙两船已分别运走其任务数的57、37,在已运走的货物中,甲船比乙船多运30吨.求分配给甲、乙两船的任务数各多少吨? (2)自编一道应用题,要求如下:①是路程应用题.三个数据100,25,15必须全部用到,不添加其他数据. ②只要编题,不必解答.25.(本小题满分8分)如图,已知:点B 、F 、C 、E 在一条直线上,FB =CE ,AC =DF .能否由上面的已知条件证明AB ∥ED ?如果能,请给出证明;如果不能,请从下列三个条件中选择一个..合适的条件.....,添加到已知条件中,使AB ∥ED 成立,并给出证明. 供选择的三个条件(请从其中选择一个): ①AB =ED ; ②BC =EF ; ③∠ACB =∠DFE .26.(本小题满分10分)小沈准备给小陈打电话,由于保管不善,电话本上的小陈手机号码中,有两个数字已模糊不清.如果用x 、y 表示这两个看不清的数字,那么小陈的手机号码为139x 370y 580(手机号码由11个数字组成),小沈记得这11个数字之和是20的整数倍. (1)求x +y 的值;(2)求小沈一次拨对小陈手机号码的概率.ABDEFC(第25题)27.(本小题满分12分)如图,在矩形ABCD 中,AB =m (m 是大于0的常数),BC =8,E 为线段BC 上的动点(不与B 、C 重合).连结DE ,作EF ⊥DE ,EF 与射线BA 交于点F ,设CE =x ,BF =y . (1)求y 关于x 的函数关系式;(2)若m =8,求x 为何值时,y 的值最大,最大值是多少? (3)若12y m,要使△DEF 为等腰三角形,m 的值应为多少?28.(本小题满分14分)已知抛物线y =ax 2+bx +c 经过A (-4,3)、B (2,0)两点,当x =3和x =-3时,这条抛物线上对应点的纵坐标相等.经过点C (0,-2)的直线l 与 x 轴平行,O 为坐标原点. (1)求直线AB 和这条抛物线的解析式;(2)以A 为圆心,AO 为半径的圆记为⊙A ,判断直线l 与⊙A 的位置关系,并说明理由; (3)设直线AB 上的点D 的横坐标为-1,P (m ,n )是抛物线y =ax 2+bx +c 上的动点,当△PDO 的周长最小时,求四边形CODP 的面积.A BCDEF(第27题)-1 y xO(第28题)12 3 4 -2 -4-3 3 -1-2 -3 -4 4 1 2。

相关文档
最新文档