实验二 PIN光电二极管的静态特性

合集下载

实验二 PIN光电二极管的静态特性

实验二 PIN光电二极管的静态特性

PIN光电二极管的静态特性实验目的1.了解PIN光电二极管的工作原理;2.能根据测试数据分析PIN管的基本静态特性;3.掌握PIN静态特性测试方法;4.掌握测试仪表中光源的基本参数的设置和使用方法;5.掌握测P-N结正负极的方法。

实验要求1、测量光电二极管PN结的极性;2、测量光电二极管的击穿电压和暗电流;3、测量光电二极管的响应度;4、测量光电二极管的光谱响应特性。

实验仪器1、PIN光电二极管一只2、光功率计一只3、PIN光电二极管静态测试实验箱一台4、光衰减器一台5、光纤跳线三根6、万用表一只实验原理1、PIN光电二级管的工作原理PIN光电二极管是在P-N结之间加了一个本征层I层,I层是一个接近本征的、掺杂很低的N区。

在这种结构中,零电场的和区非常薄,而低掺杂的I区很厚,耗尽区几乎占据了整个PN结,从而使光子在零电场区被吸收的可能性很小,而在耗尽区里被充分吸收,故PIN光电二极管又称耗尽层光电二极管,这是它比一般光电二极管的优越之处。

为抑制噪声,PIN光电二极管加反向电压(电源正极接二极管N区),则外加电场和内部电场区内的电场方向相同。

当有光照射二极管时,并且外加光子能量大于禁带宽度Eg,那么价带上的电子就会吸收光子能量跃迁到导带上,从而形成电子—空穴对,在耗尽区即在本征层内的电子空穴对,在强电场的作用下,电子向N区漂移,空穴向P区漂移,从而形成光生电流。

光功率变化时,光生电流也随之线性变化,从而光信号变成了电信号。

2、响应度实验原理响应度表征了光电二极管的能量转换效率,它是器件在外部电路中呈现的宏观灵敏特性。

它定义为在给定波长的光照射下,光电二极管的输出平均电流与入射的光功率平均值之比。

其单位为A/W或uA/uW,其表达式为:R=I/P其中I为光电流的平均值,P为入射光功率的平均值。

一般PIN的响应度在0.3~0.7uA/uW 范围内。

3、暗电流的测量实验原理无光照射时,PIN作为一种PN结器件,在反向偏压下也有反向电流流过,称此电流为PIN的暗电流。

实验二 发光二极管P I特性测试实验

实验二 发光二极管P I特性测试实验

实验二发光二极管P I特性测试实验实验二-发光二极管p-i特性测试实验普通光纤器件特性测试实验Ⅱ发光二极管P-I特性测试实验一、实验目的1.学习发光二极管的发光原理2、了解发光二极管平均输出光功率与注入电流的关系3.掌握LED的P(平均传输光功率)-I(注入电流)曲线测试二、实验内容1.测量LED的平均输出光功率和注入电流,绘制P-I关系曲线。

2.根据P-I特性曲线计算LED的斜率效率三、预备知识1.了解发光二极管和半导体激光器之间的异同四、实验仪器1套1套1根1台20件五、实验原理半导体光源主要包括半导体发光二极管(LED)和半导体激光器(LD)。

在上一次实验中引入了LD。

本实验主要介绍led。

发光二极管(led)结构简单,是一个正向偏置的pn同质节,电子-空穴对在耗尽区辐射复合发光,称为电致发光。

发光二极管(led)发射的不是激光,输出功率较小、具有较宽的谱宽(30~60nm)、发射角较大(≈100°)、与光纤的耦合效率较低。

其优点是:寿命很长,理论推算可达108至1010小时,其次是受温度影响较小,输出光功率与注入电流的线性关系较好,价格也比较便宜,驱动电路简单,不存在模式噪声等问题。

半导体发光二极管(led)可以做为中短距离、中小容量的光纤通信系统的光源。

对于发光二极管(LED),自发辐射产生的功率由正向偏置电压产生的注入电流提供。

当注入电流为I且工作在稳态时,电子-空穴对通过辐射和非辐射进行复合,其复合速率等于载流子注入速率IQ,其中发射电子的复合速率由内部量子效率决定?Int,光子产生率为(i?int/q),因此led内产生的光功率为品脱int(??/q)i(2-1)哪里是光的量子能量。

假设所有发射光子的能量大致相等,从LED逸出的功率中产生的功率份额为?Ext,则LED的传输功率为pe??extpint??ext?int(??/q)i(2-2)ηext亦称为外量子效率。

由2-2式可知,led发射功率p和注入电流i近似成正比。

PIN光电二极管综合实验

PIN光电二极管综合实验

PIN光电二极管综合实验仪GCPIN-B实验指导书(V1.0)武汉光驰科技有限公司WUHAN GUANGCHI TECHNOLOGY CO.,LTD目录第一章 PIN光电二极管综合实验仪说明 ...................... - 3 -一、产品介绍 (3)二、实验仪说明 (3)1、电子电路部分结构分布............................... - 3 -2、光通路组件......................................... - 4 - 第二章实验指南.......................................... - 5 -一、实验目的 (5)二、实验内容 (5)三、实验仪器 (5)四、实验原理 (6)五、实验准备 (8)六、实验步骤 (8)1、PIN光电二极管暗电流测试 ........................... - 8 -2、PIN光电二极管光电流测试 ........................... - 9 -3、PIN光电二极管光照特性 ............................. - 9 -4、PIN光电二极管伏安特性 ............................ - 10 -5、PIN光电二极管时间响应特性测试 .................... - 10 -6、PIN光电二极管光谱特性测试 ........................ - 11 -第一章 PIN光电二极管综合实验仪说明一、产品介绍对于以高速响应为目标的光电二极管来说,未来减少p-n节的电容,在p与n之间设计一个i层的高阻抗层结构,即在n型硅片上制作一层低掺杂的高阻层,即i层(本征层)在该层上在形成p层。

其工作原理:来自p层外侧的入射光,主要由i层吸收,从而产生空穴和电子。

使用元件时要外加反向偏压,以使空穴朝p层移动,而电子朝n层移动,再由两电极流到外电路。

【精选】实验二光敏二极管特性实验

【精选】实验二光敏二极管特性实验

实验二光敏二极管特性实验一:实验原理:光敏二极管与半导体二极管在结构上是类似的,其管芯是一个具有光敏特征的PN结,具有单向导电性,因此工作时需加上反向电压。

无光照时,有很小的饱和反向漏电流,即暗电流,此时光敏二极管截止。

当受到光照时,饱和反向漏电流大大增加,形成光电流,它随入射光强度的变化而变化。

光敏二极管结构见图(6)。

二:实验所需部件:光敏二极管、稳压电源、负载电阻、遮光罩、光源、电压表(自备4 1/2位万用表).、微安表三:实验步骤:按图(7)接线,注意光敏二极管是工作在反向工作电压的。

由于硅光敏二极管的反向工作电流非常小,所以应提高工作电压,可用稳压电源上的+10V。

1、暗电流测试用遮光罩盖住光电器件模板,电路中反向工作电压接±12V,打开电源,微安表显示的电流值即为暗电流,或用4 1/2位万用表200mV档测得负载电阻RL上的压降V暗,则暗电流L暗=V暗/RL。

一般锗光敏二极管的暗电流要大于硅光敏二极管暗电流数十倍。

可在试件插座上更换其他光敏二极管进行测试比较。

2、光电流测试:取走遮光罩,读出微安表上的电流值,或是用4 1/2位万用表200mv档测得RL上的压降V光,光电流L光=V光/RL。

3、灵敏度测试:改变仪器照射光源强度及相对于光敏器件的距离,观察光电流的变化情况。

4、光谱特性测试:不同材料制成的光敏二极管对不同波长的入射光反应灵敏度是不同的。

由图(8)可以看出,硅光敏二极管和锗光敏二极管的响应峰值约在80~100μm,试用附件中的红外发射管、各色发光LED、光源光、激光光源照射光敏二极管,测得光电流并加以比较。

图(8)光敏管的伏安特性曲线图(9)光敏二极管的光谱特性曲线注意事项:本实验中暗电流测试最高反向工作电压受仪器电压条件限制定为±12V (24V),硅光敏二极管暗电流很小,不易测得。

光敏管的应用-----光控电路一:实验目的:了解光敏管在控制电路中的具体应用。

pin光电二极管技术参数

pin光电二极管技术参数

Pin光电二极管技术参数引言P i n光电二极管是一种常见的光电器件,用于将光信号转换为电信号。

本文将介绍P in光电二极管的技术参数,包括电学参数、光学参数和封装参数。

1.电学参数1.1额定电压(V r)额定电压是指在光电二极管正向工作时的最大电压。

超过该电压可能会导致器件损坏。

一般使用直流电压进行测试,单位为伏特(V)。

1.2最大反向电流(I r m a x)最大反向电流是指在光电二极管反向工作时的最大电流。

超过该电流可能会导致器件损坏。

一般使用直流电流进行测试,单位为安培(A)。

1.3额定输入功率(P i n)额定输入功率是指在光电二极管正向工作时的额定输入功率。

超过该功率可能会导致器件过热,影响其性能和寿命。

一般使用电压和电流进行计算,单位为瓦特(W)。

2.光学参数2.1最大响应波长(λm a x)最大响应波长是指在特定光照条件下,光电二极管对光信号响应最为敏感的波长。

波长的选择取决于应用需求。

一般使用纳米(nm)作为单位。

2.2波长范围(λra n g e)波长范围是指光电二极管能够接收并转换的波长范围。

波长范围的选择需根据应用需求进行,对于不同的波长段,光电二极管的响应强度可能不同。

一般使用纳米(n m)作为单位。

2.3光谱响应度(Re s p o n s i v i t y)光谱响应度是指光电二极管对光信号的转换效率。

它是输入光功率和光电二极管输出电流之比。

一般使用安培每瓦特(A/W)作为单位。

2.4饱和输出功率(P s a t)饱和输出功率是指光电二极管在光照足够大的条件下,输出电流达到稳定的最大值。

超过该功率可能会导致输出电流不再增加。

一般使用瓦特(W)作为单位。

2.5响应时间(R e sp o n s e T i m e)响应时间是指光电二极管从接收到光信号到输出电流稳定达到其稳态值所需的时间。

它反映了光电二极管对光信号的响应速度。

一般使用纳秒(n s)或皮秒(p s)作为单位。

PIN光电二极管综合实验

PIN光电二极管综合实验

PIN光电二极管综合实验仪GCPIN-B实验指导书(V1.0)武汉光驰科技有限公司WUHAN GUANGCHI TECHNOLOGY CO.,LTD目录第一章 PIN光电二极管综合实验仪说明 ...................... - 3 -一、产品介绍 (3)二、实验仪说明 (3)1、电子电路部分结构分布............................... - 3 -2、光通路组件......................................... - 4 - 第二章实验指南.......................................... - 5 -一、实验目的 (5)二、实验内容 (5)三、实验仪器 (5)四、实验原理 (6)五、实验准备 (8)六、实验步骤 (8)1、PIN光电二极管暗电流测试 ........................... - 8 -2、PIN光电二极管光电流测试 ........................... - 9 -3、PIN光电二极管光照特性 ............................. - 9 -4、PIN光电二极管伏安特性 ............................ - 10 -5、PIN光电二极管时间响应特性测试 .................... - 10 -6、PIN光电二极管光谱特性测试 ........................ - 11 -第一章 PIN光电二极管综合实验仪说明一、产品介绍对于以高速响应为目标的光电二极管来说,未来减少p-n节的电容,在p与n之间设计一个i层的高阻抗层结构,即在n型硅片上制作一层低掺杂的高阻层,即i层(本征层)在该层上在形成p层。

其工作原理:来自p层外侧的入射光,主要由i层吸收,从而产生空穴和电子。

使用元件时要外加反向偏压,以使空穴朝p层移动,而电子朝n层移动,再由两电极流到外电路。

二极管的静态工作点

二极管的静态工作点

二极管的静态工作点
二极管是电子技术领域使用最广泛的组件之一,它的静态工作点对于确保电路的正常工作具有重要的意义。

因此,本文将从基本原理出发,讨论二极管的静态工作点,包括定义,特性及应用等内容。

一、什么是二极管静态工作点
二极管静态工作点是指在一定的电源电压下,二极管可以正常工作的电压值,也称为二极管电压工作点。

例如,NPN管的正向静态工作点为0.7V,P-N管的正向静态工作点值为0.3V,也就是说,只有当加在管子两端的电压值分别大于0.7V和0.3V时,这两种管子才能正常工作,否则它们就会失效。

二、二极管静态工作点的特性
二极管静态工作点的特性主要包括两个方面,一是特性线,即加在管子两端的电压值VS电流的关系曲线;另一个是二极管的参数,包括电阻、电容和电容率等参数。

特性线可以利用参数分析出来,而二极管参数可以从管子本身测量出来,也可以从厂家出产的数据手册中获取得到。

三、二极管静态工作点的应用
二极管静态工作点可以控制电路的开关,在一定程度上提高电路的可靠性,从而使用更小的器件实现更多的功能,这是二极管静态工作点的主要应用。

例如,电路中的NPN管可以用来控制电压的输出,
P-N管可以用来控制电流的输出,以实现电路的更加准确、稳定的工作。

最后,二极管静态工作点对电路的正常工作至关重要,如果没有充分的认识和理解,就无法确保电路的稳定性和可靠性,因此了解二极管静态工作点的重要性更不用说了。

四、结语
简而言之,二极管静态工作点是二极管正常工作的必要条件,电路设计者需要根据二极管的参数和特性线,结合具体应用场合,准确的设计二极管的静态工作点,以确保电路的正常工作。

PIN光电二极管特性(精)

PIN光电二极管特性(精)
教学章节
PIN光电二极管特性教Fra bibliotek环境多媒体机房
教学
内容
1.PIN光电二极管一般性能
2.量子效率和响应度
教学
目标
1.了解PIN光电二极管一般性能
2.掌握量子效率和响应度
重点
难点
1、量子效率和响应度
教学
方法
讲授、讨论、总结
教学
过程
讲授:
1.PIN光电二极管一般性能
以滨松(hamamatsu)公司的Si PIN光电二极管,型号为S12271的一般性能参数表为例说明。光电二极管的主要性能包括响应波长、响应度、暗电流、结电容、截止波长等。
3.量子效率和响应度
每个能量为hν的入射光子所产生的电子-空穴对数称为量子效率,单位光功率所产生的光电流称为响应度,了解这两个概念,学会从数据表单中读取有用信息。
小结:
课堂总结
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PIN光电二极管的静态特性
实验目的
1.了解PIN光电二极管的工作原理;
2.能根据测试数据分析PIN管的基本静态特性;
3.掌握PIN静态特性测试方法;
4.掌握测试仪表中光源的基本参数的设置和使用方法;
5.掌握测P-N结正负极的方法。

实验要求
1、测量光电二极管PN结的极性;
2、测量光电二极管的击穿电压和暗电流;
3、测量光电二极管的响应度;
4、测量光电二极管的光谱响应特性。

实验仪器
1、PIN光电二极管一只
2、光功率计一只
3、PIN光电二极管静态测试实验箱一台
4、光衰减器一台
5、光纤跳线三根
6、万用表一只
实验原理
1、PIN光电二级管的工作原理
PIN光电二极管是在P-N结之间加了一个本征层I层,I层是一个接近本征的、掺杂很
低的N区。

在这种结构中,零电场的和区非常薄,而低掺杂的I区很厚,耗尽区几乎占据了整个PN结,从而使光子在零电场区被吸收的可能性很小,而在耗尽区里被充分吸收,故PIN光电二极管又称耗尽层光电二极管,这是它比一般光电二极管的优越之处。

为抑制噪声,PIN光电二极管加反向电压(电源正极接二极管N区),则外加电场和内部电场区内的电场方向相同。

当有光照射二极管时,并且外加光子能量大于禁带宽度Eg,那么价带上的电子就会吸收光子能量跃迁到导带上,从而形成电子—空穴对,在耗尽区即在本征层内的电子空穴对,在强电场的作用下,电子向N区漂移,空穴向P区漂移,从而形成光生电流。

光功率变化时,光生电流也随之线性变化,从而光信号变成了电信号。

2、响应度实验原理
响应度表征了光电二极管的能量转换效率,它是器件在外部电路中呈现的宏观灵敏特性。

它定义为在给定波长的光照射下,光电二极管的输出平均电流与入射的光功率平均值之比。

其单位为A/W或uA/uW,其表达式为:
R=I/P
其中I为光电流的平均值,P为入射光功率的平均值。

一般PIN的响应度在0.3~0.7uA/uW 范围内。

3、暗电流的测量实验原理
无光照射时,PIN作为一种PN结器件,在反向偏压下也有反向电流流过,称此电流为PIN的暗电流。

暗电流主要是PN结内热效应产生的电子-空穴对形成的。

暗电流非常小,在nA数量级。

实验步骤
一、PIN光电二极管PN结极性测量
在做实验之前,我们先来看一下万用表的使用和光电二极管P-N结的测量方法。

万用表测电阻此时万用表相当于电源,黑表头为电源正级,红表头为负级。

光电二极管工作在反向电压下,耗尽区加宽,从而使其电阻变大,所以光电二极管在反向偏压下的电阻要比在正向电压下的电阻大的多。

我们可以通过这个方法来测量光电二极管的正负级。

方法如下:
1、将万用表打到电阻档;
2、接到二极管两个管脚上,如果所得电阻值很大,则黑表头一端接的是二极管的N区,红表头接的是二极管的P区,如果所测电阻值相对很小,则黑表头接P区,红表头接N区。

二、PIN光电二极管暗电流的测量
本实验中我们所采用的方法是:在无光照的情况下,将一个1uF的电容接在PIN管两端,由于暗电流的存在,电容的两端将被充电,其中充电量Q=It=CV,C为电容,V为电容两端的电压,t为充电时间。

所以可得PIN管的暗电流即为:I=CV/t。

1.切换开关打到暗电流档。

2.将“放电、测试”开关打到“测试”档位。

3.此时记录时间三分钟,三分钟后将切换开关打到光电流档。

(将切换开关打到光电流档的目的是防止测量时手接触到表笔的前端,从而手上所带静电将PIN管击穿)
4.将数字万压表打到电压mV档,将指针分别接到机箱上的红、黑两个接线柱,记录此时的电压表读数。

注意:此时电压表读数逐渐变小,因为有放电现象存在,所以要记录最初的电压表读数。

5.利用公式I=CV/t,可求得暗电流值。

其中,C=1uF,V为万用电表读数,t=180s
6.将“放电、测试”开关打到“放电”档位,放电三分钟。

7.调整反向偏压值,分别测量不同反相偏压下的暗电流读数。

反向偏压(V )

电流( I )
三、PIN 光电二极管响应度的测量
1. 将电源开光打开,此时光电流表和电压表正常供电。

2. 将切换开关打到光电流档。

3. 调节可变电阻,使电压表V 值在2~5V 之间。

4. 将衰减器读数设为0dB,记录此时电流表读数。

5. 每次将衰减器衰减1dB,2dB,3dB……,并分别记录电流表读数。

6. 将光功率计接上,按照所记录的衰减数,分别记录相应于每次衰减时的光功率读数。

7. 根据所记录的电流数及光功率数作出P-I 曲线。

衰减系数(dB )
输出光电流
光功率
实验注意事项
1、 在对PIN 管正负极进行测量时,应当使用表针式模拟万用表。

2、 单色仪输出各波长的功率均匀性由标准的光功率计校准。

3、 不要用手直接接触PIN 管的管脚,以免静电使PIN 管烧毁。

4、 逐渐改变可变电阻阻值,电压表和检流计数值随之发生变化,注意电压表的数值不
要超过5V(实验仪器已经设定)。

5、 光跳线和法兰连接前,必须用酒精擦拭干净,并吹干,然后连接,不可擦拭后随意
放置,以免无人跳线端面。

光跳线取下后,一定要将光跳线端头盖好,以免跳线端
面受到污染。

6、跳线两端比较脆弱,在使用过程中,避免用力弯折、拉伸等。

7、光功率计、光谱仪均属于精密测试仪表,使用前请参阅相关使用说明。

实验报告要求
1、根据实验数据,在坐标系中作出光电二极管的反向偏压与暗电流曲线,即V-I曲线。

2、根据实验表格数据,计算出相应的光功率值,并在坐标系中作出光电二极管的P-I
特性曲线,并对曲线作出分析,求出二极管的响应度。

3、自行设计电路测量PIN的静态特性。

相关文档
最新文档