冰的熔化热-实验报告
测定冰的熔化热实验

测定冰的熔化热实验测定冰的熔化热实验【目的和要求】用混合法测定冰的熔化热。
【仪器和器材】量热器(J2251型),学生天平(J0104型),温度计(0-100℃),温水,0℃的冰块约100克,干布,小勺子,镊子,小烧杯2个。
【实验方法】1.将量热器内筒(包括搅拌器)擦干净,用天平称出量热器内筒和用同种材料制成的搅拌器的质量m筒,再查出量热器内筒所用材料的比热[容]C筒。
记下室内温度。
2.在量热器内筒中装入大约100克比室温高10-12℃的温水,用天平称出内筒(包括搅拌器)和水的质量(m筒+M水),减去内筒的质量m筒求得水的质量M水。
3.将内筒放入量热器外筒内的木架上,盖好盖子,并将温度计插好,测出量热器内筒中水的温度t0。
4.取一些正在熔化的碎冰块(0℃),把冰块上的水擦干,然后小心地把它放入量热器内筒中,不要使水溅出。
投冰量应当使最后混合温度大约低于室温10-12℃为好。
5.用搅拌器上下轻轻搅动量热器内筒里的水,待水里的冰块完全熔化。
当水上下部分的温度稳定时,记下温度计所指示的最低温度,即混合温度t。
6.用天平称出量热器内筒、水和冰的总质最(m筒+M水+m 冰),然后算出冰的质量m冰。
将以上实验数据填入上表。
7.根据实验数据,利用(1)式求出冰的熔化热的实验平均值。
【注意事项】1.量热器和外界实际上有热交换,造成实验误差。
实验中使水温在高于室温10-12℃和低于室温10-12℃之间变化,就是为了使它从外界吸热和向外界放热的量大致相等,从而尽量减小因热交换引起的实验误差。
为了控制好水温的变化范围,冰和水的质量比大约为2:15;实验时,不可一次投冰过多。
2.实验前应将大冰块敲碎,加入少许水放入保温瓶中,以确保实验时冰的温度为0℃。
冰在投入量热器前要用毛巾擦干,冰块不可太大否则不利于冰和水的热交换,冰块也不宜太小,过小时,投入前,冰表面已熔为水的部分所占比例过大,也会增大实验误差。
3.冰块放入量热器后,要不停搅拌,以加速冰和水的热交换。
测定冰的熔化热-实验报告

测定冰的熔化热实验报告(一)实验数据及处理1.第一次实验数据处理C水=4.18×103 J/(Kg·K)C1=C2=0.389×103 J/(Kg·K)C冰=1.80×103 J/(Kg·K)m=22.69 g m0=164.16 g T2-T3=15.2℃2.第二次实验数据处理C水=4.18×103 J/(Kg·K)C1=C2=0.389×103 J/(Kg·K)C冰=1.80×103 J/(Kg·K)m=22.97g m0=171.13g T2-T3=13.8℃(T2-θ):(θ-T3)= 10.1 :3.7(二)分析与讨论1.从实测数据看,如果实验全过程中散热、吸热没有达到补偿,冰的熔化热结果不一定偏离“合理”的数据范围,这说明散热或吸热并不是该系统的主要实验误差来源。
那么,本实验的主要误差来源是什么?由熔化热的公式看,对计算结果影响最大的量是m,即冰的质量。
由于采用间接测量法,因此冰的质量是比较容易产生误差的,比如投冰时溅出水,就会对算出的冰的质量产生影响,从而产生误差。
2.通过实验去体会粗略修正散热的方法——补偿法在本实验中的应用对学习做实验的意义。
在实验系统不能很好地保证绝热时,用补偿法修正系统误差是一个办法,也是一个好的思路。
在这次实验中,我们应该反复摸索,对各物理参量进行合理的选择和调整,使散热和吸热基本达到补偿。
然而,实验结果证实量热器是一个很好的绝热系统,因此,在分析系统误差来源时,应实事求是地、定量地进行分析,不能将误差的来源归结为系统的散热、吸热未能达到补偿。
3.在本实验室提供的条件下,实测熔化热的结果通常小于文献值L=3.34×105J/Kg,你能分析是什么原因吗?本实验未计算温度计插入水中的部分带来的影响。
冰的熔解热实验报告

用混合热量法测定冰的熔化热实验报告一、实验目的:1.正确使用热量器,熟练使用温度计。
2.用混合热量法测定冰的熔解热。
3.进行实验安排和参量选取。
4.学会一种粗略修正散热的方法——抵偿法。
二、实验用具:热量器、数字温度计、电子天平、秒表、干抹布、保温桶、冰以及热水等。
关于实验仪器的说明:1.电子天平使用前,请将电子天平放置于稳固、平坦的台面上,利用四只调整脚,使仪器保持平衡(勿放于摇动或振动台架上)。
注意水平仪内气泡应位于圆圈中央。
使用时应避免将其至于温度变化较大或者空气流动剧烈的场所,如日光直射或冷气机的出风口。
打开电源时,秤盘上请勿防止任何物品。
建议开机预热1~5分钟,以确保测量的精确度。
使用时,称量物品重心须位于称盘的中心点,且称量物不可超出称量范围,以确保准确度。
2.量热器量热器的构造如下图所示。
由铜质内筒、塑料外筒、绝热盖、环形绝热架、橡皮塞和铜质搅拌器组成。
绝热盖上附有中空橡皮塞,用于实验时插入温度计。
搅拌器通过绝热盖上的细孔置于内筒中,试验时上下搅动,使桶内各处温度迅速均匀。
内筒置于外筒内部的环形绝热架上,外筒又用胶木圆盖盖住。
因此,内部空气夹层与外界对流很小。
又因空气是热的不良导体,故外、内筒之间由传导所传递的热量可减到很小。
同时,内筒的外壁电镀得十分光亮,使得它们辐射或吸收热量的本领变得很小。
所以,因辐射而产生的热量传递也可以减至最小。
由上所述,量热器的这种结构,使将热量传递的三种方式:传导、对流及辐射都尽可能地减到最小;因而,他成为量热实验的常用仪器。
使用时,通常是先注入适量的水(约为容量的二分之一到三分之二),并将温度计、搅拌器等通过绝热盖的小孔插入,构成所谓已知热容的系统。
但上述量热器的绝热条件并不十分完善,因此在进行精确的量热实验时还必须据牛顿冷却定律进行散热修正。
三、实验原理:质量为m i,温度为θ0′的冰块与质量为m、温度为θ1的水相混合,冰全部熔化为水后,测得平衡温度为θ2。
冰的熔解热实验报告doc

冰的熔解热实验报告篇一:冰的熔解热的测定冰的熔解热的测定摘要:用混合法测定冰的熔解热是把冰和一个容量已知的系统混合起来达到热平衡,在与外界没有热交换条件下冰吸收的热量等于系统在实验过程中放出的热量,放出的热量可由温度的改变和热容量计算出来,冰的熔解热可根据条件计算出来。
关键词:冰的比熔解热、吸热、放热、散热修正引言:将一定质量的冰和一定质量的水混合,当混合后的系统达到一定的温度后,冰全部熔解为同温度的水,根据热力学第一定律,冰熔解所吸收的热量与水降温所放出的热量相等.只要测量出系统与外界的换热量、水的质量、冰的质量等,就可以求出冰的熔解热.文中采用混合法测量冰的熔解热,实验中并未考虑系统环境的散热损失.本实验研究方法中采用测量系统中水的质量变化来测量冰的质量。
实验用混合法来测定冰的熔解热,即把待测的系统个已知其热容的系统(和一混合起来,并设法使它们形成一个与外界没有热量交换的孤立系统(或)所放出的热量,全部为(或)所吸收。
因为已知和热容C计算出来的,)。
这样热容的系统在实验过程中所传递的热量是可以由其温度的改变即Q??TC。
因此,待测系统在实验过程中所传递的热量也就知道了。
由此可见,保持系统为孤立系统,是混合量热法所要求的基本实验条件,这要从仪器装置、测量方法及实验操作等各方面去保证。
如果实验过程中与外界的热交换不能忽略,就要做散热或吸热修正。
温度是热学中的一个基本物理量,量热实验中必须测量温度。
一个系统的温度,只有在平衡态时才有意义,因此计温时必须使系统温度达到稳定而均匀。
用温度计的指示值代表系统温度,必须使系统与温度计之间达到热平衡。
1.1实验原理:一定压强下的晶体开始熔解时的温度称为该晶体在此压强下的熔点,质量为1g的某种物质的晶体熔解为相同温度的液体所吸收的热量叫做该晶体的熔解热。
本实验采用混合量热测定冰的熔解热,其基本原理是:把待测系统和一个已知其热容的系统混合起来,并使它们形成一个与外界没有热量交换的孤立系统。
冰的熔解实验报告

一、实验目的1. 观察冰的熔解过程,了解晶体熔解的基本特性。
2. 掌握实验操作技能,学习热量测定的基本方法。
3. 了解冰的熔解热,探究其与温度、压力等因素的关系。
二、实验原理冰的熔解热是指在标准大气压下,单位质量的冰从固态完全转变为液态所吸收的热量。
本实验采用混合量热法测定冰的熔解热,即在量热器中,将已知质量、温度的冰与已知质量、温度的水混合,通过测量混合后的温度变化,计算出冰的熔解热。
三、实验仪器与材料1. 量热器2. 温度计3. 天平4. 烧杯5. 冰块6. 水7. 玻璃棒8. 细沙四、实验步骤1. 用天平称量量热器及烧杯的总质量,记为m1。
2. 将已知质量、温度的水倒入烧杯中,用天平称量烧杯及水的总质量,记为m2。
3. 用玻璃棒搅拌烧杯中的水,使水温均匀。
4. 用天平称量冰块的质量,记为m3。
5. 将冰块放入量热器中,用玻璃棒轻轻搅拌。
6. 将烧杯中的水倒入量热器中,用玻璃棒轻轻搅拌。
7. 观察量热器中的温度变化,每隔1分钟记录一次温度,直至温度稳定。
8. 用天平称量量热器及烧杯的总质量,记为m4。
五、数据处理1. 计算水的质量:m水 = m2 - m12. 计算冰的熔解热:Q = m水× c水× (T2 - T1)其中,c水为水的比热容,T2为混合后的温度,T1为初始温度。
六、实验结果与分析1. 实验结果:根据实验数据,计算得到冰的熔解热为6.27 J/g。
2. 分析:(1)实验结果与理论值基本吻合,说明实验方法可靠。
(2)实验过程中,温度计读数误差、冰块融化过程中的热量损失等因素可能对实验结果产生影响。
七、实验结论1. 冰的熔解热为6.27 J/g,与理论值基本吻合。
2. 本实验采用混合量热法测定冰的熔解热,方法可靠,结果准确。
3. 实验过程中,注意控制实验条件,减小误差。
八、注意事项1. 实验过程中,注意安全,避免烫伤。
2. 称量冰块时,避免冰块沾水,影响实验结果。
冰的比熔化热的测量实验报告

大学物理实验报告课程名称:大学物理实验实验名称:冰的熔解热的测量冰的熔解热的测量一、 实验项目名称:冰的熔解热的测量 二、 实验目的1.理解熔解热的物理意义,掌握用混合量热法测定冰的熔解热.2.学会用图解法估计和消除系统散热损失的修正方法.三、 实验原理单位质量的固体物质在熔点时从固态全部变成液态所需的热量,称为该物质的比熔解热,一般用L 来表示。
实验时将质量为m 1克0℃的冰投入盛有m 2克T 1℃水的量热器内筒中,设冰全部熔解为水后平衡温度为T 2℃,保温杯、搅拌器的质量分别为m 3、 m 4,其比热容分别为C 1、C 2和水的比热容为C 0。
根据混合量热法的原理,冰全部熔解为同温度(0℃)的水并从0℃升到T 2℃过程中所吸收的热量等于其余部分(水m 1、保温杯m 3、搅拌器m 4)从温度T 1℃降到T 2℃时所放出的热量,有(1) 冰的熔解热的实验公式为(2)式中水的比热容C 0=4.18×103J/kg ℃。
本实验“热学系统”依据混合量热法测量冰的熔解热,必须在系统与外界绝热的条件下进行实验。
为了满足此条件,从实验装置、测量方法和实验操作等方面尽量减少系统与外界的热交换。
由于实验系统不可能与环境温度始终一致,因此不满足绝热条件,可能会吸收或散失能量。
因此,要适当地选择参数进行散热修正。
牛顿冷却定律告诉我们,一个环境的温度T 如果略高于环境温度T 0(两者的温度差不超过10℃),系统就会散失热量,散热速率与温度差成正比,用数学形式表示为当时(即直线围成的两块面积近似相等),系统的散热与吸热相互抵消,就可以将系统很好地近似为一个孤立系统。
203142121120()()m c m c m c T T m L m T C ++-=+203142122011()()L m c m c m c T T T C m =++--0()dQK T T dt =-A B S S ≈四、实验仪器保温杯、搅拌器、温度计、天平、吸水纸、水、冰、烧杯、取冰夹、秒表。
测定冰的熔解热实验报告

测定冰的熔解热实验报告测定冰的熔解热实验报告引言:熔解热是物质从固态转变为液态所需吸收的热量。
在日常生活中,我们经常接触到冰,因此了解冰的熔解热对于理解物质状态变化和热力学性质具有重要意义。
本实验旨在通过测定冰的熔解热,探索冰的物理特性和热力学过程。
实验原理:冰的熔解是一个吸热过程,当冰从固态转变为液态时,需要吸收一定的热量。
根据热力学原理,冰的熔解热可以通过以下公式计算得出:Q = m × L其中,Q表示熔解热,m表示冰的质量,L表示冰的熔解潜热。
实验步骤:1. 准备实验器材:电子天平、烧杯、温度计、冰块。
2. 使用电子天平称量一定质量的冰块,并记录下冰块的质量m。
3. 将称量好的冰块放入烧杯中。
4. 在烧杯中插入温度计,并记录下初始温度T1。
5. 加热烧杯中的冰块,直到冰完全熔化为止。
期间需不断搅拌以保持温度均匀。
6. 在冰完全熔化后,记录下此时的温度T2。
数据处理:根据实验原理中的公式,可以计算出冰的熔解热Q。
首先,计算冰的质量m,然后根据温度变化ΔT = T2 - T1,再结合水的比热容C,可以计算出吸收的热量Q = m × C × ΔT。
由于水的比热容C已知,所以可以通过实验数据计算出冰的熔解热。
实验结果:根据实验数据和计算公式,我们可以得出冰的熔解热。
以一次实验数据为例,假设冰的质量为50g,初始温度为0°C,冰完全熔化后的温度为10°C。
根据公式,ΔT = 10°C - 0°C = 10°C。
假设水的比热容为4.18 J/(g·°C),则吸收的热量Q = 50g × 4.18 J/(g·°C) × 10°C = 2090 J。
因此,冰的熔解热为2090 J。
讨论与分析:通过多次实验,我们可以得出冰的熔解热的平均值。
在实验中,我们发现冰的熔解过程是一个温度稳定的过程,即使在加热的过程中,温度不会显著上升,直到冰完全熔化为止。
冰的熔解热实验报告

冰的熔解热实验报告实验目的,通过实验测定冰的熔解热,探究冰的熔解过程中吸收的热量与熔解热的关系。
实验仪器与试剂,热量计、冰块、温度计、容器、水。
实验原理,冰的熔解是指冰从固态转变为液态的过程。
在熔解过程中,冰吸收的热量称为熔解热。
熔解热的大小与物质的性质有关,对于水而言,其熔解热为334 J/g。
实验步骤:1. 将热量计置于容器中,加入一定质量的水,并记录水的初始温度。
2. 将冰块放入水中,用温度计不断测量水的温度变化,直至冰完全熔化。
3. 记录冰熔化过程中水的最终温度。
实验数据:1. 水的初始温度,20℃。
2. 冰块质量,50g。
3. 冰熔化后水的最终温度,5℃。
实验结果与分析:根据实验数据,冰熔化过程中水的温度下降了15℃。
根据热量计的原理,吸收的热量可以通过以下公式计算:Q = mcΔT。
其中,Q为吸收的热量,m为水的质量,c为水的比热容,ΔT为温度变化。
根据实验数据可得:Q = 50g × 4.18J/g℃× 15℃ = 3135J。
根据热量守恒定律,冰熔化吸收的热量应该等于熔解热乘以冰的质量,即:Q = mL。
其中,L为熔解热,m为冰的质量。
代入实验数据可得:3135J = 50g × L。
解得熔解热L为3135J/50g = 62.7J/g。
结论,通过实验测定,得到水的熔解热为62.7J/g,与理论值334 J/g有一定偏差。
可能的误差来源包括实验过程中热量的损失、温度测量的误差等。
为了减小误差,可以采用更精密的仪器进行实验,提高实验操作的准确性。
实验总结,通过本次实验,我们深入了解了冰的熔解过程以及熔解热的测定方法。
在今后的实验中,我们将更加严谨地进行操作,提高实验数据的准确性,以便更好地理解物质的热学性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
XX大学物理学院实验报告
实验名称:测定冰的熔化热
学生姓名:XXX 学号:XX
实验日期:20XX年XX月XX日
一、数据及处理
3. 投入冰的时刻:t=250s
冰的温度:-13.0℃
室温:26.1℃
5. 计算得到冰的熔化热L=3.22x10J/kg
6. T-t图像:
7. 从图中得到的信息:
水的初始温度(承装水时):39.5℃;
投入冰前水温下降速度:0.1℃/30s;
投入冰时水温:38.7℃;
冰完全融化后的温度:22.1℃;
系统达到稳定状态耗时:约100s;
投入冰时温度比室温高12.6℃,稳定后温度比室温低4℃,其比值为3.15;
二、分析与讨论
1. 误差的主要来源:
误差主要来源于搅拌过程和转移过程之中水的溅出,包括溅出到桌上与溅出到外筒里,这将直接影响冰的测量质量,由于在计算式中,冰的质量位于分母,故放大了绝对误差。
因此,在失败(误差过大)一次后,采取连同外筒一起测量质量的方法,防止在取出内筒过程中造成的溅出,同时测量包括溅入外筒的水。
2. 补偿法的意义:
理论公式的适用范围是有限的,在相当多的实验情况下,不可避免的会出现超出适用范围的因素,例如本实验中的对环境吸放热,无法实现完全绝热的实验条件,带来系统的偏差。
补偿法可以在一定程度上减小这些不可抗因素的影响,使作用效果相反的两种因素相互抵消以维持实验结果,从而减小实验误差。
在其他的实验中,例如迈克尔逊干涉仪中,也存在着大量的补偿法应用。
3. 测量值偏小的原因:
(1)取出冰块和将冰块擦干时不可避免的会与外界,特别是加持、擦拭工具间相互传热,甚至与手掌间接传热,造成温度上升,使熔化热计算值偏低;
(2)读取系统热平衡温度时,由于外界导热的影响以及温度计示数的延迟使温度读取值偏大,导致熔化热计算值偏低;
(3)拟合过程采取直线拟合,与原本的二次拟合存在差异,导致起始温度较推断值更高,使熔化热计算值偏低。
三、收获与感想
(1)投入冰前与最终稳定后,温度的变化较为缓慢,测量数据点可以选择更疏一些。
(2)投入冰后到稳定前,温度变化非常剧烈,测量数据点可以选择更密一些。
(3)投入冰与记录时间、温度难以同时进行,故可以根据投入冰前的温度变化线性推出投入冰时刻的系统温度,以获得准确值,在其他热学实验中也可以应用。
(4)在量程允许的情况下,将整个量热器称量质量,而不取出内筒,减少必要的操作步骤,减少水的溅出带来的误差。
(5)初步了解并使用了补偿法,为以后在测电阻、迈克尔逊干涉仪等实验增加经验。