壳体零件加工
变速箱壳体零件的加工工艺设计

变速箱壳体零件的加工工艺设计制造技术是一个永恒的主题,是设想、概念、科学技术物化的基础和手段,是国家经济和国防实力的体现,是国家工业化的关键。
工艺技术是制造技术的重要组成部分,提高工艺技术水平是机电产品提高质量、增强国际市场竞争力的有力措施。
传统大批大量生产方式广泛采用高效率的专用组合机床,按流水线排列进行生产,可以极大地降低产品成本,具有很高的产能。
但是,这些适用于大批、大量生产的传统的生产线,都有很大的刚性(专用性),很难迅速改变原有的生产对象,适应市场发展的需求。
发展适应多品种、中小批量、高效率、低成本和具有快速响应市场能力的以先进的制造技术和组织方式为基础的生产系统是未来的发展趋势。
本设计以中国第一拖拉机制造厂的东方红拖拉机变速箱壳体为研究对象,考虑到变速箱壳体为拖拉机中的重要部件,产品要求精度高,结构复杂,因而选择做拖拉机变速箱壳体加工工艺的设计对自己是个挑战又是个锻炼。
一、工艺性分析1.变速箱壳体零件的工艺特点变速箱内装有输入轴、输出轴、其他传动轴和齿轮等。
通过改变安装在这些轴上的滑移齿轮和固定齿轮的传动比,来改变拖拉机的行进速度。
从而可知,变速箱体的主要功用就是支撑个传动轴,保证各轴之间的中心距及平行度,并且保证拖拉机变速箱体部件与其相连接的其他部件的正确安装。
变速箱体的主要技术要求如下:(1)轴承孔的尺寸精度和几何形状精度。
(2)轴承孔孔距公差。
(3)中心线间的平行度公差。
(4)端面对轴承孔的垂直度公差,(5)轴承孔的同轴度公差。
(6)装配基面的平面度公差。
(7)各主要加工表面的粗糙度。
(8)各螺纹孔的位置度。
2.毛坯的工艺性由于灰铸铁具有良好的铸造性和切削性以及较好的耐磨性和减震性,同时价格低廉,因此箱体零件的毛坯通常采用铸铁件。
本箱体材料选用HT150.铸件表面涂以醇酸底漆。
二、机械加工工艺路线的编制1.定位基准的选择对主要定位基准进行分析。
作为一个薄壁壳体腔型零件,它的形状复杂,刚度差,易变形,但加工精度又要求较高。
浅谈壳体设计与加工成本

浅谈壳体设计与加工成本摘要:本文针对影响壳体加工成本的因素进行分析,例举了几种常见可优化的内容,同时进行了成本的计算。
最后针对EDU壳体的部分设计内容进行工艺性优化,计算了可节约的成本。
本文从经济性出发,为壳体的工艺性设计提供参考。
关键词:壳体设计,工艺性,加工成本一、引言壳体产品是变速箱总成的重要零部件,是各类轴系、齿轮的装配基础。
壳体产品有着壁薄、刚性差、结构复杂等特点,大大提高了产品的加工成本,抬高了产品的加工质量风险。
壳体的加工成本受制于产品的设计,不同的公差等级、结构设计等对于壳体产品的生产成本有着直接影响,在设计过程中,保证产品功能性的前提下,对壳体设计适当地优化,对于提高产品的工艺性,降低产品的加工成本有着重要的作用。
如EDU、SCM等项目的壳体产品,在生产过程中,部分设计内容过于复杂或工艺性不佳等原因,造成了生产成本高、质量风险大等弊端。
二、影响壳体加工成本的设计因素分析影响壳体加工成本的设计因素主要由以下几点:1.公差因素公差等级的高低直接影响加工壳体所使用的设备、刀具、夹具、切削参数等,杨将新[1]早在96年就针对车削加工成本进行研究,公差是影响车削的主要因素。
如位置度500范围内,Φ0.05位置度,必须高精度加工中心加工,Φ0.08可以使用二流加工中心,Φ0.15以内,可以使用普通加工中心。
孔径IT8级精度以内,必须使用精铰或精镗以保证质量,如满足使用的情况下,提高到IT9级,甚至可以直接粗镗到位,其刀具成本可以直接降低。
2.工艺性因素产品工艺性是产品加工成本的重要因素,其设计内容直接影响设备、刀具、夹具等,如侧面多角度加工,需要加工中心回转工作台,直接影响加工节拍;凹槽加工难度大于凸台加工;侧面孔系的角度精度,由设备的分度精度所限制;加工内容的干涉情况,直接影响刀具的设计等。
3.平台性因素在同一平台开发设计的拓展产品,是否考虑相同的工艺孔与面,将直接影响夹具的通用性,设备的通用性,相关辅助件的互换性等。
壳体零件加工

壳体零件加⼯摘要数控技术应⽤的飞速发展对国民⽣产及⽣活起着越来越重要的作⽤。
本论⽂详细的介绍了壳体数控加⼯的全过程。
从怎样确定零件的选材;⼯艺路线的确定;数控机床⼑具的选择;测量⼯具的使⽤及切削参数的确定;⼯装的设计;数控编程、加⼯等。
内容涉及⼴泛,个章节紧密连接。
这次毕业设计查阅了⼤量资料和⽂献,咨询相关的专业⼈员,并结合了本⼈所学的知识加上实际的⼯作完成毕业论⽂。
使⾃⼰对数控技术及应⽤有了更深刻的了解。
关键词: ⼯艺路线, 数控加⼯, 数控编程, ⼑具、参数AbstractThe rapid development of numerical control technology and life on the national production is playing an increasingly important role. This paper describes in detail the whole process of machining the shell. How to determine from the parts selection; process route is indeed the choice of CNC machine tools; measure the use of tools and cutting parameters determination; tooling design; NC programming and processing. Covering a wide range, closely connected chapters. The graduation project examined a large amount of information and documentation, consult the relevant professionals, combined with the knowledge I learned with the actual completion of thesis. Keywords: technology line, CNC machining, CNC programming, tool, parameter第⼀章壳体零件加⼯⼯艺分析1.1零件的确定⽅案1.1.1 零件的选择、分析零件材料的合理是要满⾜零件性能要求下最⼤限度发挥材料潜⼒,再考虑到提⾼材料强度的使⽤⽔平。
壳体零件机械加工工艺及工艺装备设计

壳体零件机械加工工艺及工艺装备设计一、壳体零件机械加工工艺壳体零件常见的机械加工工艺包括铣削、车削、钻削、磨削等。
针对不同的工艺要求,可以采用不同的机床和刀具,下面介绍一些常用的加工工艺和注意事项。
1.铣削铣削是用刀具在工件上进行切削,常用于壳体零件表面的平面、开槽和轮廓加工。
铣削过程中,应注意选择合适的刀具和切削参数,保证加工精度和表面质量,并注意安全操作。
2.车削车削是通过工件在车床上旋转,刀具在工件上进行切削加工。
常用于壳体零件的外表面和内孔加工。
在车削过程中,应注意夹持牢固,避免振动和松动。
选择合适的刀具和切削参数可以保证加工质量。
3.钻削钻削是用钻头对壳体零件进行孔加工。
在钻削过程中,应选择合适的刀具类型和切削参数,控制进给速度和冷却液的使用,以确保孔的质量和尺寸精度。
4.磨削磨削是用磨料进行零件表面的加工,可以获得较高的表面质量和精度。
对于壳体零件,常用的磨削方法包括平面磨削、外圆磨削和内圆磨削。
磨削过程中,应选择合适的磨料和磨削参数,如磨削速度、进给量和磨削深度等。
1.机床选择根据壳体零件的加工要求,可以选择不同类型的机床,如铣床、车床、钻床和磨床等。
在选型时,需要考虑加工尺寸、加工精度和生产效率等因素。
2.刀具选择根据壳体零件的加工需求,选择适合的刀具类型和规格。
如铣削可采用立铣刀、面铣刀和球头铣刀等;车削可采用外圆刀具和内圆刀具;钻削可选择中心钻、钻头和镗刀等。
3.夹具设计壳体零件加工时需要固定在机床上,所以需要设计合适的夹具。
夹具的设计应考虑零件的形状、尺寸、夹持力和稳定性等因素。
夹具的设计应易于操作和调整,并能保证加工精度。
4.冷却液系统壳体零件加工过程中,冷却液的使用可以降低切削温度、延长刀具寿命和提高加工质量。
因此,需要设计合适的冷却液系统,包括冷却液的供给、流量、喷射方式和回收等。
5.自动化与智能化在壳体零件加工中,可以应用自动化设备和智能化技术,提高生产效率和产品质量。
壳体类零件机械加工去毛刺改进方案

壳体类零件机械加工去毛刺改进方案摘要:壳体零件具有结构复杂、加工精度高的特点,随着先进制造技术的应用与推广,制造业的竞争日益激烈,客户对于产品的质量要求和加工效率也日益提高,但我们的去毛刺方法仍停留在使用锉刀、固结砂轮、铲刀、钢丝刷、针刷、砂带及油石等带磨料的工具,使用手工方法去除产品加工部位的毛刺。
目前,该方法已经远远不能满足客户的需求,各加工企业也逐渐认识到去毛刺是提高壳体清洁度的一个重要环节,如何提升去毛刺效果和质量成为一个重要课题,去毛刺的效果对于产品的最终加工质量和外观质量至关重要。
据调查,目前清洁度控制的重要环节,可以通过主动去毛刺技术,去除加工过程中产生的毛刺,提升零件的加工质量,避免毛刺引起的清洁度问题。
关键词:壳体类;去毛刺;清洁度1 传统的去毛刺方法壳体零件在制造过程中,加工面的交接处总会产生毛刺或飞边。
去毛刺的内容主要就是清除壳体零件在加工部位周围所形成的刺状物或飞边。
对于壳体零件而言,主要的加工特征为孔、面和槽,毛刺主要存在于这些特征的边缘。
传统的去毛刺方法比较落后,加工效率低,直接影响产品的交付周期及加工质量。
2 壳体毛刺的分类按照对切削过程中毛刺的外观形态及尺寸的要求,将加工过程中的毛刺按照大小划分为微小毛刺、小毛刺和大毛刺。
3 机械加工去毛刺方法机械加工是毛刺产生的源头,同时也是毛刺控制的关键点。
为了进一步提高毛刺去除的加工质量,确保零件的加工效率,采用数控加工的方式,更利于保证壳体零件的加工质量。
按照毛刺大小的划分方法,遵循毛刺从大到小、从小到无的原则进行逐级控制和去除。
对壳体毛刺控制的基本原则:首先,必须消除加工过程中产生的大毛刺,减少小、微毛刺的产生,这样才能减少后期毛刺去除工作量;其次,在加工过程中刀具必须锋利,使得切削过程中不会产生大毛刺,当出现大毛刺时,应及时更换刀具,确保毛刺的大小在可控制范围内;最后,在加工过程中,应遵循一定的加工原则,确保毛刺的产生方向在有利于去除的部位。
铸造壳体零件的机械加工工艺

1 序言铸造壳体类零件外形复杂,关联尺寸多,精度高,加工基准的选择十分重要。
某型产品的操纵机构安装在可分开的外壳中,可分开的外壳如图1所示,由1号、2号和3号壳体组成。
其中2号壳体处于中间位置,起着承上启下的作用,其上有1号壳体,下有3号壳体,其内装配有轴等多个重要零部件。
由此可以看出,2号壳体是装配时的基准零件,它的加工精度将直接影响操纵机构的装配精度。
图1 可分开的外壳2 零件的技术要求1号、2号和3号壳体的毛坯为砂型铸件,材料为ZL116铝合金(T5),铸造精度等级CT9(HB 6103—2004)。
2号壳体如图2所示。
为了保证能与1号、3号壳体紧密贴合,要求A、B 两面有良好的尺寸精度(±0.1mm)、几何公差(平面度为0.05mm)和表面质量(表面粗糙度值Ra=1.6μm)。
同时,为了保证装配后的位置关系,对A、B 两面上的定位孔也有相当高的要求,孔距尺寸精度为±0.05mm,孔径尺寸精度为H8级,表面粗糙度值Ra=1.6μm。
对于非定位孔,例如一般的安装孔、螺纹孔,尺寸精度也达到了±0.1mm。
a)三维立体图b)实物图2 2号壳体此外,为了保证轴的位置安装正确,C孔的加工也相当重要。
该孔的加工精度将直接影响轴在其内的安装位置以及轴是否能够灵活转动。
通过以上分析,从装配要求及使用上出发,该零件的机械加工主要有两方面内容:一是加工A、B面及其上的定位孔和安装孔;二是加工C孔。
3 精基准的选择精基准是指在最初几道工序中就加工出来,为后面的工序做好定位、装夹的准备,在后续的加工中,以它为基准对别的部位进行加工。
就该零件而言,选择A面作为精基准,主要是由于考虑到以下几个方面。
1)A面及其上的两个定位孔是装配基面(设计基准),这样能使工艺与设计基准重合,符合“基准重合”原则,可以减少尺寸换算,避免因基准不重合而引起的误差。
2)在后续加工过程中,将多次用到A面作为定位基准加工其他表面,这样符合“基准统一”原则,便于保证各加工表面间的相互位置精度,避免了因为基准变换所产生的误差,并简化夹具设计和制作工作。
浅谈壳体加工工艺技术研究与应用

浅谈壳体加工工艺技术研究与应用摘要:本文主要从壳体加工的工艺特点及难点,工艺设计及工艺技术的实践应用入手,对壳体加工的工艺技术进行了深度的分析及研究,进而能够充分利用壳体加工的工艺技术各项功能优势,提升壳体加工的质量及效率。
关键词:壳体;加工;工艺;技术;研究;应用;前言壳体件(Shell parts),为我国航空业发动机的燃油总控制系统当最为核心的零部件,为各种分布器、调节器、油泵等相关组件装配的母体。
在燃油的总控制系统当中,壳体所起到的功能作用为支撑所有高中低的压油路及控制元件之导引性作用。
壳体的结构相对较为复杂,对各项加工制造工艺及相关技术的要求相对较高。
1、工艺特点及难点分析1.1基本特点为了能够切实地保证壳体的加工工艺及相关技术应用效果,就需先从其实际的壳体结构及加工工艺特点上入手,做到从根本上了解与掌握壳体及其加工的相关要点。
那么,从壳体结构上分析,它主要的特点在于因其实际的安装空间相对较为有限,壳体的结构通常是较为复杂性的形状、紧凑性较为明显,位置的精度相对较高。
壳体内部的油路孔交错纵横,多数是大长径的深孔;而从壳体的加工工艺入手分析,为了将壳体整体结构的重量减轻,多数应用刚度性及强度性相对较高的一些有色的金属合金,如高强度性铝合金及高强度性的镁合金等材料。
那么,针对于这种材料工艺的设备选型、各项参数设计、加工来说,难度性相对较大。
壳体内部的深沟槽中孔系与其相贯的油路孔系加工与毛刺的去除,都有着较大的难度性。
燃油的控制系统中壳体上通常会进行活门的衬套安装,必须是热压性装配的衬套。
在一定程度上,这种壳体需进行研磨的配套,保证其活门与衬套间配合的间隙。
1.2主要难点如图1所示,以某壳体为例,它的结构极具紧凑性及复杂性,工作期间壳体承受着10MPa油压。
壳体最大的外形尺寸270mm*254mm*248mm,复杂的孔系共有12处,油路的孔多达130余条,多数是孔径、深孔、过桥孔尺寸均相对较小,有10余条Φ3.7mm、Φ3.2mm等较小直径的油路孔,孔深度为135mm-189mm。
壳体的加工工艺有

壳体的加工工艺有
许多种,以下是几种常见的壳体加工工艺:
1. 切割:使用切割工具将金属板材、管材等材料按尺寸切割成所需的形状。
2. 冲压:将金属板材放在冲床上,通过模具将材料进行冲压成所需的形状。
3. 折弯:将金属板材通过折弯工具将其弯曲成所需角度或形状。
4. 焊接:将两个或多个金属零件通过焊接方法连接起来,常用的焊接方法包括氩弧焊、电阻焊、激光焊等。
5. 铣削:使用铣床工具将金属材料切削成所需形状,常用的铣削方法包括平面铣削、立式铣削、倾斜铣削等。
6. 钻孔:使用钻床工具在金属材料上钻孔,常用的钻孔方法包括立式钻孔、卧式钻孔、车床钻孔等。
7. 表面处理:通过机械研磨、化学抛光等方法对壳体表面进行处理,使其表面光滑、美观,以及提高其耐腐蚀性和抗氧化性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要数控技术应用的飞速发展对国民生产及生活起着越来越重要的作用。
本论文详细的介绍了壳体数控加工的全过程。
从怎样确定零件的选材;工艺路线的确定;数控机床刀具的选择;测量工具的使用及切削参数的确定;工装的设计;数控编程、加工等。
内容涉及广泛,个章节紧密连接。
这次毕业设计查阅了大量资料和文献,咨询相关的专业人员,并结合了本人所学的知识加上实际的工作完成毕业论文。
使自己对数控技术及应用有了更深刻的了解。
关键词: 工艺路线, 数控加工, 数控编程, 刀具、参数AbstractThe rapid development of numerical control technology and life on the national production is playing an increasingly important role. This paper describes in detail the whole process of machining the shell. How to determine from the parts selection; process route is indeed the choice of CNC machine tools; measure the use of tools and cutting parameters determination; tooling design; NC programming and processing. Covering a wide range, closely connected chapters. The graduation project examined a large amount of information and documentation, consult the relevant professionals, combined with the knowledge I learned with the actual completion of thesis. Keywords: technology line, CNC machining, CNC programming, tool, parameter第一章壳体零件加工工艺分析1.1零件的确定方案1.1.1 零件的选择、分析零件材料的合理是要满足零件性能要求下最大限度发挥材料潜力,再考虑到提高材料强度的使用水平。
同时也要减少材料的消耗和降低加工成本,周全它的工艺性、经济性。
零件使用性能是机械零件,它包括力学性能和物理化学性能等。
而对于构件工具来说,主要考虑力学性能。
材料的工艺性能指材料适应某种加工能力。
它包括材料的铸造性能,焊接性能,切削加工性能,热处理工艺性能等。
材料的经济性涉及到材料的成本高低,材料供应是否充足,加工工艺过程是否复杂,成品率高低以及同产品中使用材料的品种规格等。
综其上述,我所选择的为铸铁,铸铁是Wc﹥2.11的铸造铁、碳、硅合金,它的成分范围一般是:Wc=2.5%~4.0%,Wsi=1.0%~2.5%,Wmn=0.5%~1.4%,Wp《0.3%,Ws〈0.15%。
它与碳素钢相比,铸铁含c、si量较高,含杂质元素s、p较多。
成分不同导致铸铁力学性能(特别是抗拉强度及塑性韧性)较钢低,铸铁具有优良的铸造性,减振性,耐磨性,较小的缺口敏感性。
它的硬度在160~230HBC范围内,切削加工性较好,我选择的铸铁硬度适中,不易形成长切削而造成工具的发热或磨损,且生产工艺和设备简单,成本低廉,在工业生产中得到普遍应用。
铸铁又分为白口铸铁和灰口铸铁,白口铸铁硬度较高,脆性大,难以切削加工,所以选用灰铸铁,灰铸铁的一系列性能优点被广泛的用来制作各种受压力作用和要求消震的机床与机架、结构复杂的壳体与箱体。
承受摩擦的缸体与导轨等,而我研究数控加工的正是较复杂的壳体。
铸铁牌号由“HT”最小抗拉强度值为200Mpa。
根据铸铁受力处主要壁厚(平均壁厚),我选择了HT200(牌号)力学性能大于200,HBS157~236,性质适用于承受较大载荷和要求一定的气密性或耐腐蚀性等较重要铸件,如汽缸,齿轮,活塞,刹车轮,轴承等,而我做的外贸壳体就是应用于轴承上,所以选材较合理。
零件要进行热处理,它主要用于消除铸件内应力和白口组织来稳定尺寸,提高表面硬度和耐磨性。
其方法有1.去应力退火2.消除白口组织,高温退火3.表面淬火。
我用的是去应力退火。
以上看来,我选择的铸铁它既价廉、货源充足,又能满足工艺性、使用性要求,所以它适合用于书空加工的研究。
1.1.2 毛坯铸成确定铸造是现代机械制造业中毛坯成形的主要方法之一,它是指将熔化后的金属液浇入铸形中,待凝固,冷却后获得具有一定形状和性能铸件的成型方法。
它对铸件形状和尺寸适应性强,对材料适应性强。
成本低,机床中60%-80%,汽车中50%-60%采用铸件。
铸造氛围砂型铸造和特种铸造,我采用的是砂型铸造,因为它具有适应性广、生产准备简单、成本低廉,材料来源广泛,且目前我国采用砂型铸造的约占铸件产量的80%。
先是进行熔炼、浇注、造型、选芯,再是熔炼浇注,其次合型铸件检查,最后是落沙、清理、检验。
毛坯铸成确定后,它的总长约为238mm,宽192mm,高154mm。
因为经过翻砂等,粗糙度要求较低,表面粗糙度为1.6。
1.1.3 零件的尺寸及公差零件的尺寸句是要求加工的尺寸,它的要求一般较高,且我选择研究的又是外贸壳体,国外对尺寸及公差要求的更为严谨。
零件的要求加工全唱为232+-0.1mm,宽为192(任意公差),高为1470-0.2mm,可见,对于它的全长及总高要求高,而宽为不需要加工部分,在毛坯铸造时已经过翻砂等措施,工艺已保证了它为192这个尺寸。
1.1.4 工时定额计算与零件生产纲领工时定额的计算,是在一定的技术组织下指定出来的,是相关设备和工人完成单件产品或某项工作所需要的时间,不同生产类型的零件工时也不同。
它的估算,有利于生产的明确性。
通过估算可以知道生产所应获得的经济效益。
设Tp为共需要的时间,Ta为所做的时间,Tb为辅助时间,Ts为布置工作地时间,Tr为休息和生理需要时间。
(所研究的壳体主要是数控加工,工序集中在卧式加工中心上进行,在别的上的工序不考虑)所做时间为30分钟,装卸、调正时间为10分钟,布置工作时间为3,休息时间为7分钟,Tp=Ta+Tb+Ts+Tr=30+10+3+7=50分钟,在加工中心上做一个约为50分钟,因为是外贸来图,并非是一个较长期的做下去(定量),所以不能按年生产零件纲领进行计算。
一天8个小时,除去上下班工作准备,一天大概可以做9个,一个月按26天工作进行计算的话一个月可做234个。
1.2数控加工工艺部分所谓数控工艺实际上是指在数控机床上加工零件的一种工艺方法。
它是数控加工程序编制的依据,数控机床上的数控零件加工程序都有相应的数控工艺与此对应。
数控工艺特点有:1.工序数目少,工序内容多。
2.工序与工步的内容特别详细。
工艺路线的拟定是指拟定零件加工所经过的有关部门和工序先后顺序,它是工艺规程制定过程中关键阶段,是工艺规程制定的总体设计。
本品并不是在加工中心上统一完成的,由零件装配图可看出,必须要以一个孔为定位装夹的基准。
所以先在数控车上把直径154+0.050的孔车出来。
用三爪卡盘夹住底面,先粗车2mm,再进行精车30丝,保证在5丝内。
考虑到以后在加工中心上的工装(154的孔卡在圆盘里面,八个M10的螺纹孔卡在里面不好进行加工)且根据一面两孔原则,再在钻床上用画线的方法划出八个孔的位置,157.5°处用7.9的钻头和直径8的绞刀做一直径为8的定位孔,其余7个用8.5的钻头打孔,然后在进行M10的螺纹攻丝。
把它再放到磨床上磨两个面(高)以次保证平行度,再放到加工中心上来先铣直径83孔的那个面(用组合刀片式面铣刀 7片)3mm,再铣131的面3+_0.1,粗镗直径100的孔,(没做时是97)镗2.6mm,粗镗80孔由77镗2.7mm,再用齿片刀在14.2处开2.65深的槽,然后精镗80的孔(镗30丝的余量),再镗100(40丝的余量),用试切法做,最后用直径4的钻头点G56面上的孔,再是G55面上的,最后为G54上的,最后在把点好的孔放到钻床上钻孔,攻丝。
为拧上螺栓准备,最后就是倒角,去毛刺等。
下面就具体来说说加工工艺吧。
1.2.1 对零件图进行数控加工工艺性分析在选择和决定数控加工内容时,我们就必定对零件图进行工艺性分析.根据所掌握的数控加工基本特点及所用数控机床的功能和实际工作经验,力求把这一前期准备工作做得更仔细,更扎实一些,以便为下面要进行的工作铺平道路,减少失误和返工。
我从数控加工的方便性和可能性两个角度进行了一些必要的分析。
审查与分析了零件图样中的尺寸标准方法,分析尺寸标注是否适应数控加工特点,对数控加工来说,最好以同一基准引注尺寸或直接给出坐标尺寸。
参看零件图,本壳体多以中心孔为一基准与编程原点设置的,一致性带来很大的方便,减少了因局部分散标注而带来的积累误差。
分析了定位基准的可靠性.数控加工工艺特点强调定位加工.尤其像我加工的壳体需要进行多面加工,这样以同一基准定位十分重要,否则很难保证多次定位安装加工后多面上的轮廓位置尺寸的协调。
所以如零件本身有适合的孔最好就用它作为定位基准孔,我加工的壳体就是以直径154为定位基准孔的,就保证了它的尺寸协调。
分析了零件所要求的加工精度。
根据选择的数控机床,对照图上的加工精度、尺寸公差等,可以保证能够达到它的精度、尺寸要求。
1.2.2 加工方法的选择(确定)尽管零件的结构形状多种多样,但它们都是由外圆、内孔,成型面等表面组成的。
零件的加工实际是对各种不同表面的加工。
加工方法的选择原则是保证加工表面的加工精度和表面粗糙度要求。
同一级精度及表面粗糙度加工方法有许多,而我在实际选择这个壳体时结合形状、尺寸大小和热处理要求等全面考虑。
对于IT7级精度,它在一般机械制造中应用较为普遍,如连轴器、凸轮等孔径,机床卡盘座孔,7.8级齿轮基准孔等。
我所用数控加工的精度为IT7级。
对于IT7级精度孔可采用镗孔、铰削,磨孔等加工方法均可达到精度要求。
我这个是壳体上的孔,要用镗孔或铰削,不易采用磨孔。
一般小尺寸的壳体选铰孔,我的壳体孔径都较大。
根据图纸精度要求分为粗镗,刀片形精镗。
孔是配合公差且这个壳体又为放轴承所用,所以分析它为间隙配合。
对于要铣的面,均为孔径面,用组合刀片面铣刀,从零件图看,对面的精度要求不高,保证它的总长(20丝内就可以),表面粗糙度要求不高,在这就不细说了。
加工方法选择,我也考虑生产率、经济效益要求,以及我选用的生产设备等一些实际情况。