粒子滤波算法原理及Matlab程序(专题)
matlab 粒子滤波重采样

matlab 粒子滤波重采样粒子滤波(Particle Filter)是一种用于非线性、非高斯系统的滤波算法,可以用于目标跟踪、状态估计等应用。
重采样是粒子滤波算法中的一个重要步骤,用于消除样本退化和样本间的互殴现象。
在Matlab中,可以使用以下步骤来实现粒子滤波重采样:1. 初始化粒子集合:生成一组初始的粒子样本,并赋予初始的权重。
2. 预测步骤:采用系统模型对粒子进行预测,得到下一时刻的状态集合。
3. 更新权重:使用观测数据对粒子的权重进行更新。
4. 权重归一化:将粒子的权重进行归一化,使其满足概率密度函数的性质。
5. 判断重采样条件:根据重采样条件判断是否需要对粒子进行重采样操作。
6. 重采样:对粒子进行重采样操作,从具有较高权重的粒子中进行有放回的抽样。
重采样可以使用Matlab中的`randsample`函数来实现有放回抽样。
以粒子权重作为采样概率,对粒子进行重采样操作。
以下是一个简单的Matlab示例代码:```matlab% 初始化粒子集合numParticles = 1000;particles = init_particles(numParticles);% 重采样条件resampling_threshold = numParticles / 2;for t = 1:T% 预测步骤particles = predict(particles);% 更新权重weights = update_weights(particles);% 权重归一化weights = weights / sum(weights);% 判断重采样条件effective_particles = 1 / sum(weights.^2);if effective_particles < resampling_threshold% 重采样resampled_particles = randsample(1:numParticles, numParticles, true, weights);particles = particles(resampled_particles);weights = ones(size(particles, 1), 1) / numParticles; endend```以上代码仅为演示示例,实际应用中需要根据具体问题进行相应修改。
粒子群算法matlab

粒子群算法matlab本文旨在介绍粒子群算法Matlab。
粒子群算法是一种全局搜索和优化技术,它的目的是通过可重复的迭代搜索来找到搜索空间中的最优解。
本文详细阐述了粒子群算法的基本原理,讨论了它的设计思想和参数设置,以及如何将粒子群算法应用于Matlab中。
最后,本文介绍了若干数值实例,来验证粒子群算法的可行性。
关键词:子群算法;Matlab;全局优化;迭代搜索1.论粒子群算法(Particle Swarm Optimization,PSO)是一种动态优化算法,它能自动识别全局最优解。
它结合了群众智慧和机器学习,是一种运用群体智能手段实现全局优化的有效方法。
由于其计算代价低廉,计算时间短,解决问题效果良好,因此得到了广泛的应用。
Matlab是屡获殊荣的数值计算软件,它能够对各类数据进行可视化分析和仿真模拟。
由于Matlab具有丰富的工具箱,可以快速准确地解决复杂的科学问题,因此它已经成为科学计算的标准软件。
本文将主要介绍如何将粒子群算法应用于Matlab中。
2.法原理粒子群算法是由Kennedy和Eberhart在1995年提出的,它也被称为Zebra算法,是建立在群体智能概念上的,由群体中全局优化算法之一。
粒子群算法以群体中的每个个体的最优位置和最优速度为基础,通过可重复的迭代搜索来找到搜索空间中的最优解。
算法的设计基本思想是:建立一组虚拟粒子,每个粒子代表一个可能的解决方案,每个粒子有一个位置和一个速度。
算法通过不断迭代,让这些粒子像鱼群一样游动,从而找到最优解。
3.法设计粒子群算法由三个参数组成:全局最优系数(cg)、社会系数(cs)和惯性权重(w)。
cg和cs是粒子群算法的两个基本系数,它们分别代表了粒子群对全局最优和社会最优的响应程度。
w是惯性权重,它代表了粒子群对历史最优位置的惯性搜索能力。
通常情况下,系数cg和w会在一定范围内不断变化,使得算法能够更快地找到最优解。
4. Matlab实现为了在Matlab中实现粒子群算法,需要对Matlab的调用进行必要的设置。
粒子滤波算法matlab实例

一、介绍粒子滤波算法粒子滤波算法是一种基于蒙特卡洛方法的非线性、非高斯滤波算法,它通过一组随机产生的粒子来近似表示系统的后验概率分布,从而实现对非线性、非高斯系统的状态估计。
在实际应用中,粒子滤波算法被广泛应用于目标跟踪、导航、机器人定位等领域。
本文将以matlab 实例的形式介绍粒子滤波算法的基本原理和应用。
二、粒子滤波算法的原理及步骤粒子滤波算法的主要原理是基于贝叶斯滤波理论,通过一组随机产生的粒子来近似表示系统的后验概率分布。
其具体步骤如下:1. 初始化:随机生成一组粒子,对于状态变量的初始值和方差的估计,通过随机抽样得到一组粒子。
2. 预测:根据系统模型,对每个粒子进行状态预测,得到预测状态。
3. 更新:根据测量信息,对每个预测状态进行权重更新,得到更新后的状态。
4. 重采样:根据更新后的权重,对粒子进行重采样,以满足后验概率分布的表示。
5. 输出:根据重采样后的粒子,得到对系统状态的估计。
三、粒子滤波算法的matlab实例下面以一个简单的目标跟踪问题为例,介绍粒子滤波算法在matlab中的实现。
假设存在一个目标在二维空间中运动,我们需要通过一系列测量得到目标的状态。
我们初始化一组粒子来近似表示目标的状态分布。
我们根据目标的运动模型,预测每个粒子的状态。
根据测量信息,对每个预测状态进行权重更新。
根据更新后的权重,对粒子进行重采样,并输出对目标状态的估计。
在matlab中,我们可以通过编写一段简单的代码来实现粒子滤波算法。
我们需要定义目标的运动模型和测量模型,然后初始化一组粒子。
我们通过循环来进行预测、更新、重采样的步骤,最终得到目标状态的估计。
四、总结粒子滤波算法是一种非线性、非高斯滤波算法,通过一组随机产生的粒子来近似表示系统的后验概率分布。
在实际应用中,粒子滤波算法被广泛应用于目标跟踪、导航、机器人定位等领域。
本文以matlab实例的形式介绍了粒子滤波算法的基本原理和应用,并通过一个简单的目标跟踪问题,展示了粒子滤波算法在matlab中的实现过程。
粒子滤波算法综述

粒子滤波算法综述粒子滤波算法(Particle Filter),又被称为蒙特卡洛滤波算法(Monte Carlo Filter),是一种递归贝叶斯滤波方法,用于估计动态系统中的状态。
相比于传统的滤波算法,如卡尔曼滤波算法,粒子滤波算法更适用于非线性、非高斯的系统模型。
粒子滤波算法的核心思想是通过一组样本(粒子)来表示整个状态空间的分布,并通过递归地重采样和更新这些粒子来逼近真实状态的后验概率分布。
粒子滤波算法最早由Gordon等人在1993年提出,此后得到了广泛的研究和应用。
1.初始化:生成一组初始粒子,每个粒子都是状态空间中的一个假设。
2.重采样:根据先前的粒子权重,进行随机的有放回抽样,生成新的粒子集合。
3.预测:根据系统模型和控制输入,对新生成的粒子进行状态预测。
4.更新:利用观测数据和度量粒子与真实状态之间的相似度的权重函数,对预测的粒子进行权重更新。
5.标准化:对粒子权重进行标准化,以确保它们的总和为16.估计:利用粒子的权重对状态进行估计,可以使用加权平均或最大权重的粒子来表示估计值。
相对于传统的滤波算法,粒子滤波算法具有以下优势:1.粒子滤波算法能够处理非线性、非高斯的系统模型,适用性更广泛。
2.粒子滤波算法不需要假设系统模型的线性性和高斯噪声的假设,可以更准确地估计状态的后验概率分布。
3.粒子滤波算法可以处理任意复杂的系统模型,不受系统的非线性程度的限制。
然而,粒子滤波算法也存在一些缺点,如样本数的选择、计算复杂度较高、粒子退化等问题。
为了解决这些问题,研究者提出了一系列改进的算法,如重要性采样粒子滤波算法(Importance Sampling Particle Filter)、最优重采样粒子滤波算法(Optimal Resampling Particle Filter)等。
总的来说,粒子滤波算法是一种强大的非线性滤波算法,广泛应用于信号处理、机器人导航、智能交通等领域。
随着对算法的深入研究和改进,粒子滤波算法的性能和应用范围将进一步扩展。
Gabor滤波原理和matlab实现

Gabor滤波原理和matlab实现1. 傅⾥叶变换的缺点傅⾥叶变换的公式为从公式中可以看出,傅⾥叶变换对信号在整个时域做了积分处理,因此其结果对时域信号在整个时间轴上进⾏了信息平均。
这对于平稳信号来说是可⾏的,然⽽对于在时间上具有显著变化的⾮平稳信号来说,这样的做法显然不能满⾜我们对信号进⾏精确分析的要求。
我们希望将信号分解到不同频率成分上来研究组成该信号的各频率成分的含量的同时,也能看到在信号的时变过程中,到底在哪⼀个时间段某⼀频率成分含量较多。
(摘⾃)2. Gabor变换Gabor变换是D.Gabor 1946年提出的。
为了由信号的傅⾥叶变换提取局部信息,引⼊了时间局部化的窗函数,得到了窗⼝傅⾥叶变换。
由于窗⼝傅⾥叶变换只依赖于部分时间的信号,所以,现在窗⼝傅⾥叶变换⼜称为短时傅⾥叶变换。
Gabor变换的基本思想:把信号划分成许多⼩的时间间隔,⽤傅⾥叶变换分析每⼀个时间间隔,以便确定信号在该时间间隔存在的频率。
其处理⽅法是对 f(t)加⼀个滑动窗,再作傅⾥叶变换。
Gabor变换所⽤的窗⼝函数是⾼斯函数,⼆维Gabor变换公式为(摘⾃)参数含义:λ:正弦函数波长,它的值以像素为单位指定,通常⼤于等于2,但不能⼤于输⼊图像尺⼨的1/5.θ:Gabor核函数(滤波器)的⽅向,这个参数指定了Gabor函数并⾏条纹的⽅向,他的取值为0到360度ψ:相位偏移,调谐函数的相位偏移,取值-180到180。
σ:带宽,⾼斯函数的标准差,通常取2πγ:空间的宽⾼⽐,决定了Gabor函数形状的椭圆率,当γ=1时,形状是圆的,当γ<1时,形状随着平⾏条纹⽅向⽽拉长。
通常该值为0.5在特征提取⽅⾯,Gabor⼩波变换与其它⽅法相⽐:⼀⽅⾯其处理的数据量较少,能满⾜系统的实时性要求;另⼀⽅⾯,⼩波变换对光照变化不敏感,且能容忍⼀定程度的图像旋转和变形,当采⽤基于欧⽒距离进⾏识别时,特征模式与待测特征不需要严格的对应,故能提⾼系统的鲁棒性。
pf算法举例及其matlab实现-概述说明以及解释

pf算法举例及其matlab实现-概述说明以及解释1.引言1.1 概述PF算法(Particle Filter Algorithm),又称为粒子滤波算法,是一种基于蒙特卡洛方法的非线性滤波算法。
与传统的滤波算法相比,PF算法具有更大的灵活性和鲁棒性,在估计复杂非线性系统状态的过程中表现出良好的性能。
PF算法基于一种随机采样的思想,通过对系统状态进行一系列粒子的采样,再通过对这些粒子的权重进行重要性重采样,最终获得对状态估计的准确性更高的结果。
在PF算法中,粒子的数量决定了滤波算法的精度,粒子越多,估计结果越准确,但也会增加计算复杂度。
因此,在实际应用中需要根据实际情况灵活选择粒子数量。
作为一种高效的滤波算法,PF算法在众多领域都有广泛的应用。
例如,粒子滤波算法在目标跟踪、传感器网络定位、机器人定位与导航等领域都有着重要的作用。
其在目标跟踪领域的应用尤为突出,由于PF算法可以处理非线性和非高斯分布的情况,使得目标跟踪更加准确和稳定。
在Matlab中,PF算法也得到了广泛的应用和实现。
Matlab提供了丰富的函数和工具箱,可以便捷地实现PF算法。
借助Matlab的强大数据处理和可视化功能,我们可以更加便捷地进行粒子滤波算法的实现和结果分析。
本文将从PF算法的基本概念出发,介绍其应用举例和在Matlab中的具体实现。
通过对PF算法的研究和实践,我们可以更好地理解和应用这一强大的滤波算法,为实际问题的解决提供有效的手段。
通过对Matlab 的使用,我们还可以更加高效地实现和验证粒子滤波算法的性能,为进一步的研究和应用奠定基础。
在接下来的章节中,我们将详细介绍PF算法的原理及其在现实应用中的具体案例。
随后,我们将展示如何使用Matlab实现PF算法,并通过实验结果对其性能进行评估和分析。
最后,我们将总结PF算法和Matlab 实现的主要特点,并对未来的发展进行展望。
文章结构的设定在撰写一篇长文时非常重要,它能够为读者提供一个整体的概览,帮助他们更好地理解文章的内容安排。
粒子滤波 matlab

粒子滤波matlab粒子滤波(Particle Filter)是一种基于蒙特卡洛方法的非线性贝叶斯滤波算法,广泛应用于目标跟踪、定位和状态估计等领域。
它在一些特定的问题中,如非线性、非高斯、非线性动态模型和非线性观测模型的情况下,表现出了良好的适应性和准确性。
本文将以MATLAB为例,一步一步介绍粒子滤波(Particle Filter)的原理和实现。
1. 粒子滤波的基本原理:粒子滤波是通过随机样本(粒子)来对目标状态进行估计的一种方法。
它通过构建一个粒子集合来代表目标状态空间上的概率密度函数,并按照贝叶斯滤波的理论进行权重更新和重采样,从而实现对目标状态的估计。
2. 粒子滤波的实现步骤:a) 初始化:根据已知的先验知识,初始化粒子集合。
粒子的初始状态可以根据先验分布随机生成,通常可以使用高斯分布进行初始化。
b) 预测/更新:根据系统的动态模型进行粒子的状态预测,然后根据观测模型,计算每个粒子与观测数据的相似度/权重。
c) 权重归一化:计算出所有粒子的权重之后,对权重进行归一化,使得所有权重之和等于1。
d) 重采样:根据权重对粒子进行重采样,即以一定的概率选取粒子,从而减少粒子集合中的多样性,提高粒子集合的估计准确性。
e) 重复以上步骤:重复预测/更新、权重归一化和重采样的步骤,直到满足终止条件(如达到最大迭代次数)或目标状态已被准确估计。
3. MATLAB中的粒子滤波实现:在MATLAB中,可以使用`particlefilter`函数来实现粒子滤波。
以下是一个简单的例子,演示如何使用MATLAB实现粒子滤波。
MATLAB% 设置粒子滤波参数numParticles = 1000; % 粒子数量maxIterations = 100; % 最大迭代次数% 初始化粒子集合initialParticles = initializeParticles(numParticles);% 初始化权重initialWeights = ones(numParticles, 1) / numParticles;% 创建粒子滤波对象pf = particlefilter(@predictionFcn, @observationFcn, initialParticles, initialWeights);pf.ResamplingMethod = 'systematic'; % 设置重采样方法% 遍历迭代for iteration = 1:maxIterations% 提取当前迭代的观测数据observation = getObservation(iteration);% 预测粒子的状态predictedParticles = predict(pf);% 更新粒子权重updatedWeights = update(pf, observation);% 完成一次迭代的粒子滤波estimate = estimate(pf);% 显示估计结果displayEstimate(estimate);end4. 粒子滤波的应用:粒子滤波广泛应用于目标跟踪、定位和状态估计等领域。
粒子滤波原理

粒子滤波原理粒子滤波(Particle Filter)是一种非参数实时滤波方法,用于估计目标的状态。
它适用于非线性和非高斯问题,并被广泛应用于机器人感知、目标跟踪、信号处理等领域。
本文将介绍粒子滤波的基本原理、流程和应用。
1. 基本原理粒子滤波的基本原理是根据贝叶斯定理,通过推断目标状态的后验分布来预测目标状态。
具体来说,粒子滤波将目标状态表示为一组粒子,每个粒子代表一种可能的状态。
粒子的数量越多,则对目标后验分布的估计就越准确。
粒子滤波算法的流程如下:(1)初始化粒子集合,即根据先验信息生成一组随机的粒子,并赋予它们相应的权重;(2)接收观测数据,并对每个粒子进行状态转移和权重更新。
状态转移是根据系统模型进行的,对于机器人定位问题,状态转移可以使用运动学方程描述机器人在环境中的运动;权重更新是根据观测模型计算得到的,对于机器人定位问题,权重可以用激光传感器的测量值和地图进行匹配计算;(3)根据粒子的权重进行重采样,生成新的粒子集合。
重采样的目的是为了减小样本的方差,并确保样本的代表性。
(4)重复步骤(2)、(3),直到目标状态的后验分布收敛,或达到设定的迭代次数。
2. 算法改进粒子滤波算法在实际应用中存在一些问题,例如样本退化和计算复杂度高等。
为了解决这些问题,学者们提出了一系列改进算法,主要包括以下几种:串行粒子滤波(Sequential Monte Carlo, SMC)、粒子群优化算法(Particle Swarm Optimization, PSO)、希尔伯特-黄变换粒子滤波(Hilbert-Huang Transform Particle Filter, HHTPF)和变分粒子群优化算法(Variational Particle Swarm Optimization, VPSO)等。
串行粒子滤波算法是一种常用的改进算法,它将原始粒子集合分为若干个子集,在每个子集上执行滤波过程。
通过这种方式,可以减少不必要的计算,提高算法的效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、蒙特卡洛原理
• • • 粒子滤波技术是以蒙特卡洛为基础的 蒙特卡洛:用实验模拟的方法解决复杂的积分计算问题 硬币投掷实验(1) 掷一枚均匀硬币,正面朝上的次数X服从参数为1,p的二项分 布,X~B(1,p) 在Matlab中编辑.m文件输入以下命令:
1
function cion_throw_test1 p=0.3; % 正面朝上的概率 m=1000; % 实验次数 fun(p,m); % 修改不同的p,m值 function fun(p,mm) pro=zeros(1,mm); randnum = binornd(1,p,1,mm); % 服从二项分布 a=0;
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 200 400 600 800 1000
2、蒙特卡洛原理
• 蒙特卡洛的应用
从而针线相交的概率为:
应用说明:利用蒙特卡洛模拟 计算圆周率 方法解决: 假设平面上有无数条距离为1的等距平行线, 现向该平面随机投掷一根长度为l的针(l1), 则我们可计算该针与任一平行线相交的概率。 这里,随机投针指的是:针的中心点与最近 的平行线间的距离X均匀地分布在区间[0,1/2] 上,针与平行线的夹角(不管相交与否) 均匀的分布在区间[0,]上。此时,针与线相 交的充要条件是
80
60
Y/m
40
20
观测站位置 目标真实轨迹 PF算 法 轨 迹 0 20 40 60 X/m 80 100 120
RMSE,q=0.0001 2.5 2
error/m
RMS跟 踪 误 差
1.5 1 0.5 0 0 5 10 15 time/s
• 多目标跟踪系统
3、粒子滤波原理
• 随机重采样
执行仿真程序,得到以下仿真 结果,图中上部就是程序中给 定的W随机样本,而下部分是 由随机采样得到的V样本集合。 从连线关系可以看出,W样本 集中的第2个样本被复制一次, 第3个样本被复制2次,第7个 样本被复制2次,第8个样本被 复制1次,第9个样本被复制2 次,……,W中除了被复制的 样本外,其他样本被舍弃,这 就是“优胜劣汰”的思想。
4、粒子滤波在单目标跟踪中的应用
• 状态方程:
• 观测方程:
• 噪声模型:Q、R
4、纯方位角单目标跟踪
•
• • • • • • • • • • • • • • • • • • • •
纯方位跟踪系统仿真程序
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%% % 程序说明: 单站单目标基于角度的跟踪系统,采用粒子滤波 算法 % 状态方程 X(k+1)=F*X(k)+Lw(k) % 观测方程 Z(k)=h(X)+v(k) function main %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%% % 初始化参数 clear; T=1; % 采样周期 M=30; % 采样点数 delta_w=1e-4; % 过程噪声调整参数,设得越大,目标运行的机 动性越大,轨迹越随机(乱) Q=delta_w*diag([0.5,1,0.5,1]) ; % 过程噪声均方差 R=pi/180*0.1; % 观测角度均方差,可将0.1设置的更 小 F=[1,T,0,0;0,1,0,0;0,0,1,T;0,0,0,1]; %%%%%%%%%%%%%%% 系统初始化 %%%%%%%%%%%%%%%%%% Length=100; % 目标运动的场地空间 Width=100; % 观测站的位置随即部署 Node.x=Width*rand; Node.y=Length*rand;
• 状态方程
250 200
• 观测方程
150
100
50
0
-50 -50
0
50
100
150
200
250
5、粒子滤波在多目标跟踪中的应用
• 近邻法分类
5、粒子滤波在多目标跟踪中的应用
•
• • • • • • • • • • • • • • • • • • • • • •
•
近邻法分类程序
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%% % 函数功能:近邻法分类程序 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%% function Neighbour_Classify_exam2 % 初始化数据 Type=3; % 假设已知三类目标 % 随机产生M个样本点 M=30; % 场地空间的长和宽 Width=4; Length=4; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%% % 样本初始化、并模拟一组样本空间 for i=1:Type x0=10*cos(pi*2*i/3); y0=10*sin(pi*2*i/3); XX{i}=[x0,y0]'; % 已知类别的样本集合 for j=1:M % 模拟真实样本的空间,在类空间的位置 X{i}(:,j)=[x0+Width*randn;y0+Length*randn]; end End
3、粒子滤波原理
• 粒子滤波目前有四大基本 的重采样方法,分别是残 差重采样(Residual resampling),多项式重 采样(Multinomial resampling),系统重采 样(Systematic resampling),随机重采 样(random resampling),关于他们 的原理,读者可以到网上 检索相关的论文。
……
5、粒子滤波在多目标跟踪的应用
•
• • • • • • • • • • • • • • •
基于近邻法的多目标跟踪粒子滤波程序
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%% % 单站多目标跟踪的建模程序,并用近邻法分类 % 主要模拟多目标的运动和观测过程,涉及融合算法---近邻法 function MTT_Model_With_NNClass_PF_SingleStation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%% % 初始化参数 % 观测站位置,随机的 T=10; % 仿真时间长度 TargetNum=3; % 目标个数 dt=1; % 采样时间间隔 S.x=100*rand; % 观测站水平位置 S.y=100*rand; % 观测站纵向位置 F=[1,dt,0,0;0,1,0,0;0,0,1,dt;0,0,0,1]; % 采用CV模型的状态转移矩 阵 G=[0.5*dt^2,0;dt,0;0,0.5*dt^2;0,dt]; % 过程噪声驱动矩阵 H=[1,0,0,0;0,0,1,0]; % 观测矩阵
粒子滤波算法原理及Matlab程序
主讲: 方牛娃 QQ: 345194112
1、粒子滤波的发展历史
• 90年代初,Gordon、Salmond、和Smith所提出的重采样 (Resampling)技术 。
• 90年中期,计算机的计算能力的提高 • 近年来的新技术,EPF、UPF、RBPF等 • 新的应用领域:目标定位和跟踪、图像处理、语音处理、 故障检测、经济数据处理
7
10 10 10 11 13 13 14 19 19 19 20 20 22 23 24 25 26 27 28 28
参考资料
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 第二部分 应用篇 第四章 粒子滤波在单目标跟踪中的应用 4.1 目标跟踪过程描述 4.2 单站单目标跟踪系统建模 4.3 单站单目标观测距离的系统及仿真程序 4.3.1 基于距离的系统模型 4.3.2 基于距离的跟踪系统仿真程序 4.4 单站单目标纯方位角度观测系统及仿真程序 4.4.1 纯方位目标跟踪系统模型 4.4.2 纯方位跟踪系统仿真程序 4.5 多站单目标纯方位角度观测系统及仿真程序 4.5.1 多站纯方位目标跟踪系统模型 4.5.2 多站纯方位跟踪系统仿真程序 第五章 粒子滤波在多目标跟踪中的应用 5.1 多目标跟踪系统建模 5.1.1 单站多目标跟踪系统建模 5.1.2 多站多目标跟踪系统建模 5.1.3 单站多目标线性跟踪系统的建模仿真程序 5.1.4 多站多目标非线性跟踪系统的建模仿真程序 5.2 多目标跟踪分类算法 5.2.1 多目标数据融合概述 5.2.2 近邻法分类算法及程序 5.2.3 近邻法用于目标跟踪中的航迹关联及算法程序 5.2.4 K-近邻法分类算法 5.3 粒子滤波用于多目标跟算法中的状态估计 5.3.1 原理介绍 5.3.2 基于近邻法的多目标跟踪粒子滤波程序 第六章 粒子滤波在电池寿命预测中的应用 6.1 概述 6.2 电池寿命预测的模型 6.3 基于粒子滤波的电池寿命预测仿真程序 33 33
X l sin 2
l l 2l sin 2 p P X sin 0 02 dxdw ˆ 2
2、蒙特卡洛
• • • • • • • • • • • • • • • • • • • • • %%%%%%%%%%%%%%%%%%%%%%%%% % 说明:利用蒙特卡洛模拟计算圆周率 %%%%%%%%%%%%%%%%%%%%%%%%% function buffon_test l=0.6; m=10000; % 实验次数 buffon(l,m); %%%%%%%%%%%%%%%%%%%%%%%%% function piguji=buffon(llength,mm) %llength 是针的长度 %mm 是随机实验次数 frq=0; xrandnum = unifrnd(0,0.5,1,mm); phi= unifrnd(0,pi,1,mm); for ii=1:mm if (xrandnum(1,ii)<=(llength*sin(phi(1,ii))/2)) frq=frq+1; end end piguji=2*llength/(frq/mm) 实验结果如下: