扩展卡尔曼滤波matlab程序

合集下载

卡尔曼滤波轨迹预测matlab

卡尔曼滤波轨迹预测matlab

卡尔曼滤波是一种由芬兰控制理论专家卡尔曼(R.E.Kalman)于20世纪60年代提出的一种适用于线性动态系统的状态估计方法,它的原理是根据系统的数学模型通过观测数据对系统状态进行动态估计,具有对系统参数模型的误差进行校正、对系统运动的预测与跟踪的优点。

在今天的科学技术发展中,卡尔曼滤波已经广泛应用于航空航天、导航、通信、天文测量、生物医学工程等众多领域。

其中,在轨迹预测方面,卡尔曼滤波可以通过对目标的动态模型进行建模,结合观测数据,实现对目标位置的精确预测。

而在使用matlab进行卡尔曼滤波轨迹预测时,通常需要按照以下步骤进行操作:1. 建立系统模型在matlab中,首先需要根据目标运动的特点建立系统的动态模型。

这个过程通常会涉及到目标的运动方程、动态参数、观测误差等内容。

在建立好系统模型后,可以将系统模型表示为状态方程和观测方程。

2. 初始化滤波器参数在进行卡尔曼滤波之前,需要对滤波器的初始状态进行初始化,这包括系统状态向量的初始估计、系统噪声和观测噪声的协方差矩阵等参数的初始化。

3. 观测数据处理在实际应用中,通常会通过传感器或者其他设备获取目标的观测数据,这些数据需要进行预处理,包括去噪、滤波等操作,以提高滤波器的效果。

4. 卡尔曼滤波预测在完成上述准备工作后,就可以利用matlab中的卡尔曼滤波函数进行轨迹预测了。

这个过程通常包括对观测数据和系统模型进行融合,实现对目标轨迹的准确预测。

5. 评估与调整需要对滤波结果进行评估与调整。

这个过程包括对滤波器参数的调整优化以及与实际观测数据进行对比等步骤,以保证滤波器的准确性与稳定性。

总结来看,matlab在卡尔曼滤波轨迹预测中具有良好的适用性和灵活性,可以帮助用户快速、准确地实现对目标轨迹的预测与跟踪。

但在实际应用中,用户需要根据具体的系统模型和观测数据特点来合理选择滤波参数,以最大程度地发挥卡尔曼滤波的优势。

在进行卡尔曼滤波轨迹预测时,用户除了需要掌握matlab的基本操作以外,更需要对卡尔曼滤波理论有着深刻的理解与应用能力,这样才能更好地利用卡尔曼滤波来实现目标轨迹的准确预测与跟踪,为实际应用提供更好的支持与保障。

基于扩展卡尔曼滤波的目标跟踪定位算法及matlab程序实现

基于扩展卡尔曼滤波的目标跟踪定位算法及matlab程序实现

基于扩展卡尔曼滤波的目标跟踪定位算法及matlab程序实现扩展卡尔曼滤波(Extended Kalman Filter,EKF)是一种用于非线性系统状态估计的算法。

在目标跟踪定位中,它可以用于估计目标的运动轨迹。

下面是一个简单的基于扩展卡尔曼滤波的目标跟踪定位算法的描述,以及一个简化的MATLAB程序实现。

算法描述1. 初始化:设置初始状态估计值(例如位置和速度)以及初始的估计误差协方差矩阵。

2. 预测:根据上一时刻的状态估计值和模型预测下一时刻的状态。

3. 更新:结合观测数据和预测值,使用扩展卡尔曼滤波算法更新状态估计值和估计误差协方差矩阵。

4. 迭代:重复步骤2和3,直到达到终止条件。

MATLAB程序实现这是一个简化的示例,仅用于说明扩展卡尔曼滤波在目标跟踪定位中的应用。

实际应用中,您需要根据具体问题和数据调整模型和参数。

```matlab% 参数设置dt = ; % 时间间隔Q = ; % 过程噪声协方差R = 1; % 观测噪声协方差x_est = [0; 0]; % 初始位置估计P_est = eye(2); % 初始估计误差协方差矩阵% 模拟数据:观测位置和真实轨迹N = 100; % 模拟数据点数x_true = [0; 0]; % 真实轨迹初始位置for k = 1:N% 真实轨迹模型(这里使用简化的匀速模型)x_true(1) = x_true(1) + x_true(2)dt;x_true(2) = x_true(2);% 观测模型(这里假设有噪声)z = x_true + sqrt(R)randn; % 观测位置% 扩展卡尔曼滤波更新步骤[x_est, P_est] = ekf_update(x_est, P_est, z, dt, Q, R);end% 扩展卡尔曼滤波更新函数(这里简化为2D一维情况)function [x_est, P_est] = ekf_update(x_est, P_est, z, dt, Q, R)% 预测步骤:无观测时使用上一时刻的状态和模型预测下一时刻状态F = [1 dt; 0 1]; % 状态转移矩阵(这里使用简化的匀速模型)x_pred = Fx_est + [0; 0]; % 预测位置P_pred = FP_estF' + Q; % 预测误差协方差矩阵% 更新步骤:结合观测数据和预测值进行状态更新和误差协方差矩阵更新K = P_predinv(HP_pred + R); % 卡尔曼增益矩阵x_est = x_pred + K(z - Hx_pred); % 更新位置估计值P_est = (eye(2) - KH)P_pred; % 更新误差协方差矩阵end```这个示例代码使用扩展卡尔曼滤波对一个简化的匀速运动模型进行估计。

信号处理 扩展卡尔曼滤波数据融合代码matlab

信号处理 扩展卡尔曼滤波数据融合代码matlab

信号处理扩展卡尔曼滤波数据融合代码matlab 如何使用扩展卡尔曼滤波(Extended Kalman Filter, EKF)进行数据融合的问题,并提供MATLAB代码示例。

引言:现代技术的快速发展使得传感器的数量和种类越来越多。

数据融合是将多个传感器的测量结果进行合并,以得到更准确、更可靠的估计值的过程。

扩展卡尔曼滤波是一种常用的数据融合算法,特别适用于非线性系统的估计。

正文:扩展卡尔曼滤波是对卡尔曼滤波的一种扩展,它利用非线性系统的一阶泰勒展开,以线性化的形式近似非线性系统。

步骤一:构建状态方程和观测方程首先,我们需要构建状态方程和观测方程。

状态方程描述系统的动力学变化,而观测方程描述传感器对状态量的测量。

假设我们有一个非线性系统,其状态方程可以表示为:x(k) = f(x(k-1), u(k-1)) + w(k-1)其中,x(k)是系统在时刻k的状态量,f是非线性函数,u(k-1)是时刻k-1的控制量,w(k-1)是过程噪声。

观测方程可以表示为:z(k) = h(x(k)) + v(k)其中,z(k)是传感器在时刻k的测量值,h是非线性函数,v(k)是观测噪声。

步骤二:线性化模型由于扩展卡尔曼滤波是基于线性化模型的,我们需要对状态方程和观测方程进行线性化处理。

线性化可以使用一阶泰勒展开来近似非线性函数。

具体地,我们可以通过对状态方程和观测方程求一阶偏导数得到线性化模型。

步骤三:初始化滤波器扩展卡尔曼滤波的初始化包括初始化状态量估计和协方差矩阵。

初始状态量估计可以通过系统初始条件提供,而协方差矩阵可以设置为一个足够大的值,表示对初始估计的不确定性。

步骤四:预测步骤在预测步骤中,我们使用状态方程和控制量来预测时刻k的状态量估计。

同时,我们也需要更新状态量的协方差矩阵。

具体地,预测的状态量估计可以表示为:x^(k) = f(x^(k-1), u(k-1))预测的协方差矩阵可以表示为:P^(k) = A * P(k-1) * A' + Q(k-1)其中,x^(k)是时刻k的预测状态量估计,P^(k)是时刻k的预测协方差矩阵,A是状态方程的雅可比矩阵,Q(k-1)是过程噪声的协方差矩阵。

卡尔曼滤波 正弦函数 matlab

卡尔曼滤波 正弦函数 matlab

一、介绍卡尔曼滤波卡尔曼滤波是一种用于估计系统状态的线性动态系统的方法。

它是由朗迪·卡尔曼在1960年提出的。

卡尔曼滤波是一种递归滤波器,通过使用过去时刻的状态和测量,以及系统动态的模型,来预测当前时刻的状态。

二、卡尔曼滤波原理1. 状态更新步骤:在状态更新步骤中,卡尔曼滤波使用系统的动态方程来预测下一个时刻的状态。

这一步骤包括预测状态、预测状态协方差和计算卡尔曼增益。

2. 测量更新步骤:在测量更新步骤中,卡尔曼滤波使用最新的测量值来修正之前的预测。

这一步骤包括计算测量预测、计算残差、计算卡尔曼增益和更新状态估计。

三、正弦函数及其在卡尔曼滤波中的应用正弦函数是一种周期性变化的函数,具有良好的数学性质和广泛的应用。

在卡尔曼滤波中,正弦函数可以用于模拟系统的动态特性,对系统的状态进行预测和更新。

四、matlab中的卡尔曼滤波实现matlab是一种用于科学计算和工程应用的高级技术计算语言和交互环境。

在matlab中,可以很方便地实现和应用卡尔曼滤波算法。

1. 使用matlab进行线性动态系统建模在matlab中,可以使用state-space模型来表示线性动态系统的状态空间方程。

通过定义系统的状态方程、测量方程、过程噪声和观测噪声,可以建立系统的状态空间模型。

2. 使用matlab实现卡尔曼滤波算法在matlab中,可以使用kalman滤波器函数来实现卡尔曼滤波算法。

首先需要定义系统的状态转移矩阵、测量矩阵、过程噪声协方差矩阵和观测噪声协方差矩阵。

然后利用kalman滤波器函数,输入系统模型和测量值,即可得到卡尔曼滤波器的输出。

3. 使用matlab对正弦函数进行卡尔曼滤波在matlab中,可以构建一个包含正弦函数的模拟系统,并对其进行卡尔曼滤波。

通过比较卡尔曼滤波的结果和真实正弦函数的值,可以评估卡尔曼滤波算法的性能。

五、结论卡尔曼滤波是一种用于估计系统状态的有效方法,在很多领域都有广泛的应用。

卡尔曼滤波器及matlab实现

卡尔曼滤波器及matlab实现

卡尔曼滤波器及Matlab实现简介卡尔曼滤波器是一种常用于估计系统状态的滤波器,特别适用于具有线性动态模型和高斯噪声的系统。

它通过结合系统的测量值和模型预测的状态来估计系统的状态,并利用测量噪声和模型噪声的特性进行优化。

本文将介绍卡尔曼滤波器的基本原理,并使用Matlab实现一个简单的卡尔曼滤波器。

卡尔曼滤波器的基本原理卡尔曼滤波器的基本原理可以描述为以下步骤:1.初始化卡尔曼滤波器的状态估计值和协方差矩阵。

通常情况下,可以将初始状态设定为系统的初始状态,协方差矩阵设定为一个较大的值。

2.预测步骤:根据系统的动态模型预测下一时刻的状态和协方差矩阵。

3.更新步骤:使用测量值来更新预测的状态和协方差矩阵,得到最优的状态估计值和协方差矩阵。

具体的数学表达式如下:预测步骤:预测的状态估计值:x_k = A*x_(k-1) + B*u_k预测的协方差矩阵:P_k = A*P_(k-1)*A' + Q其中,A是状态转移矩阵,B是输入控制矩阵,u_k是输入控制向量,Q是模型噪声协方差。

更新步骤:测量残差:y_k = z_k - H*x_k残差协方差矩阵:S_k = H*P_k*H' + R卡尔曼增益:K_k = P_k*H'*inv(S_k)更新后的状态估计值:x_k = x_k + K_k*y_k更新后的协方差矩阵:P_k = (I - K_k*H)*P_k其中,H是观测矩阵,z_k是测量值,R是测量噪声协方差。

Matlab实现接下来,我们使用Matlab来实现一个简单的卡尔曼滤波器。

我们假设一个一维运动系统,系统状态为位置,系统模型如下:x_k = x_(k-1) + v_(k-1) * dtv_k = v_(k-1) + a_(k-1) * dt式中,x_k是当前时刻的位置,v_k是当前时刻的速度,a_k是当前时刻的加速度,dt是时间步长。

假设我们只能通过传感器得到位置信息,并且测量噪声服从均值为0、方差为0.1的高斯分布。

自适应扩展卡尔曼滤波matlab

自适应扩展卡尔曼滤波matlab

自适应扩展卡尔曼滤波matlab自适应扩展卡尔曼滤波(Adaptive Extended Kalman Filter,AEKF)是一种用于非线性系统状态估计的滤波算法。

本文将介绍AEKF算法的原理、步骤和实现方法,并结合MATLAB 编写代码进行演示。

一、扩展卡尔曼滤波原理扩展卡尔曼滤波(Extended Kalman Filter,EKF)是一种用于非线性系统状态估计的滤波算法。

它通过使用线性化系统模型的方式将非线性系统转换为线性系统,在每个时间步骤中用线性卡尔曼滤波器进行状态估计。

然而,EKF仅限于具有凸多边形测量特性的问题,并且对线性化过程误差敏感。

为了解决这些问题,AEKF通过自适应更新协方差矩阵的方式提高了滤波器的性能。

AEKF通过测量残差的方差更新协方差矩阵,从而提高了滤波器对非线性系统的适应能力。

AEKF算法的步骤如下:1. 初始化状态向量和协方差矩阵。

2. 根据系统的非线性动力学方程和测量方程计算预测状态向量和协方差矩阵。

3. 计算测量残差,即测量值与预测值之间的差值。

4. 计算测量残差的方差。

5. 判断测量残差的方差是否超过预设阈值,如果超过,则更新协方差矩阵。

6. 利用更新后的协方差矩阵计算最优滤波增益。

7. 更新状态向量和协方差矩阵。

8. 返回第2步,进行下一次预测。

二、AEKF算法的MATLAB实现下面,我们将使用MATLAB编写AEKF算法的代码,并通过一个实例进行演示。

首先,定义非线性系统的动力学方程和测量方程。

在本例中,我们使用一个双摆系统作为非线性系统模型。

```matlabfunction x_next = nonlinear_dynamics(x_current, u)% Nonlinear system dynamicstheta1 = x_current(1);theta2 = x_current(2);d_theta1 = x_current(3);d_theta2 = x_current(4);g = 9.8; % Gravitational accelerationd_theta1_next = d_theta1 + dt * (-3*g*sin(theta1) - sin(theta1-theta2) ...+ 2*sin(theta1-theta2)*(d_theta2^2 + d_theta1^2*cos(theta1-theta2))) .../ (3 - cos(2*(theta1-theta2)));d_theta2_next = d_theta2 + dt * (2*sin(theta1-theta2)*(2*d_theta2^2 ...+ d_theta1^2*cos(theta1-theta2) + g*cos(theta1) +g*cos(theta1-theta2))) .../ (3 - cos(2*(theta1-theta2)));theta1_next = theta1 + dt * d_theta1_next;theta2_next = theta2 + dt * d_theta2_next;x_next = [theta1_next; theta2_next; d_theta1_next;d_theta2_next];endfunction y = measurement_model(x)% Measurement model, measure the angles of the double pendulumtheta1 = x(1);theta2 = x(2);y = [theta1; theta2];end```然后,定义AEKF算法的实现。

扩展卡尔曼滤波算法的matlab程序

扩展卡尔曼滤波算法的matlab程序

clear allv=150; %%目标速度v_sensor=0;%%传感器速度t=1; %%扫描周期xradarpositon=0; %%传感器坐标yradarpositon=0; %%ppred=zeros(4,4);Pzz=zeros(2,2);Pxx=zeros(4,2);xpred=zeros(4,1);ypred=zeros(2,1);sumx=0;sumy=0;sumxukf=0;sumyukf=0;sumxekf=0;sumyekf=0; %%%统计的初值L=4;alpha=1;kalpha=0;belta=2;ramda=3-L;azimutherror=0.015; %%方位均方误差rangeerror=100; %%距离均方误差processnoise=1; %%过程噪声均方差tao=[t^3/3 t^2/2 0 0;t^2/2 t 0 0;0 0 t^3/3 t^2/2;0 0 t^2/2 t]; %% the input matrix of process G=[t^2/2 0t 00 t^2/20 t ];a=35*pi/180;a_v=5/100;a_sensor=45*pi/180;x(1)=8000; %%初始位置y(1)=12000;for i=1:200x(i+1)=x(i)+v*cos(a)*t;y(i+1)=y(i)+v*sin(a)*t;endfor i=1:200xradarpositon=0;yradarpositon=0;Zmeasure(1,i)=atan((y(i)-yradarpositon)/(x(i)-xradarpositon))+random('Normal',0,azimutherror,1,1); Zmeasure(2,i)=sqrt((y(i)-yradarpositon)^2+(x(i)-xradarpositon)^2)+random('Normal',0,rangeerror,1,1);xx(i)=Zmeasure(2,i)*cos(Zmeasure(1,i));%%观测值yy(i)=Zmeasure(2,i)*sin(Zmeasure(1,i));measureerror=[azimutherror^2 0;0 rangeerror^2];processerror=tao*processnoise;vNoise = size(processerror,1);wNoise = size(measureerror,1);A=[1 t 0 0;0 1 0 0;0 0 1 t;0 0 0 1];Anoise=size(A,1);for j=1:2*L+1Wm(j)=1/(2*(L+ramda));Wc(j)=1/(2*(L+ramda));endWm(1)=ramda/(L+ramda);Wc(1)=ramda/(L+ramda);%+1-alpha^2+belta; %%%权值if i==1xerror=rangeerror^2*cos(Zmeasure(1,i))^2+Zmeasure(2,i)^2*azimutherror^2*sin(Zmeasure(1,i))^2; yerror=rangeerror^2*sin(Zmeasure(1,i))^2+Zmeasure(2,i)^2*azimutherror^2*cos(Zmeasure(1,i))^2; xyerror=(rangeerror^2-Zmeasure(2,i)^2*azimutherror^2)*sin(Zmeasure(1,i))*cos(Zmeasure(1,i));P=[xerror xerror/t xyerror xyerror/t;xerror/t 2*xerror/(t^2) xyerror/t 2*xyerror/(t^2);xyerror xyerror/t yerror yerror/t;xyerror/t 2*xyerror/(t^2) yerror/t 2*yerror/(t^2)];xestimate=[Zmeasure(2,i)*cos(Zmeasure(1,i)) 0 Zmeasure(2,i)*sin(Zmeasure(1,i)) 0 ]'; endcho=(chol(P*(L+ramda)))';%for j=1:LxgamaP1(:,j)=xestimate+cho(:,j);xgamaP2(:,j)=xestimate-cho(:,j);endXsigma=[xestimate xgamaP1 xgamaP2];F=A;Xsigmapre=F*Xsigma;xpred=zeros(Anoise,1);for j=1:2*L+1xpred=xpred+Wm(j)*Xsigmapre(:,j);endNoise1=Anoise;ppred=zeros(Noise1,Noise1);for j=1:2*L+1ppred=ppred+Wc(j)*(Xsigmapre(:,j)-xpred)*(Xsigmapre(:,j)-xpred)';endppred=ppred+processerror;chor=(chol((L+ramda)*ppred))';for j=1:LXaugsigmaP1(:,j)=xpred+chor(:,j);XaugsigmaP2(:,j)=xpred-chor(:,j);endXaugsigma=[xpred XaugsigmaP1 XaugsigmaP2 ];for j=1:2*L+1Ysigmapre(1,j)=atan(Xaugsigma(3,j)/Xaugsigma(1,j)) ;Ysigmapre(2,j)=sqrt((Xaugsigma(1,j))^2+(Xaugsigma(3,j))^2);endypred=zeros(2,1);for j=1:2*L+1ypred=ypred+Wm(j)*Ysigmapre(:,j);endPzz=zeros(2,2);for j=1:2*L+1Pzz=Pzz+Wc(j)*(Ysigmapre(:,j)-ypred)*(Ysigmapre(:,j)-ypred)';endPzz=Pzz+measureerror;Pxy=zeros(Anoise,2);for j=1:2*L+1Pxy=Pxy+Wc(j)*(Xaugsigma(:,j)-xpred)*(Ysigmapre(:,j)-ypred)';endK=Pxy*inv(Pzz);xestimate=xpred+K*(Zmeasure(:,i)-ypred);P=ppred-K*Pzz*K';xukf(i)=xestimate(1,1);yukf(i)=xestimate(3,1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%% EKF PRO%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%if i==1ekf_p=[xerror xerror/t xyerror xyerror/t;xerror/t 2*xerror/(t^2) xyerror/t 2*xyerror/(t^2);xyerror xyerror/t yerror yerror/t;xyerror/t 2*xyerror/(t^2) yerror/t 2*yerror/(t^2)];ekf_xestimate=[Zmeasure(2,i)*cos(Zmeasure(1,i)) 0 Zmeasure(2,i)*sin(Zmeasure(1,i)) 0 ]';ekf_xpred=ekf_xestimate;end;F=A;ekf_xpred=F*ekf_xestimate;ekf_ppred=F*ekf_p*F'+processerror;H=[-ekf_xpred(3)/(ekf_xpred(3)^2+ekf_xpred(1)^2) 0 ekf_xpred(1)/(ekf_xpred(3)^2+ekf_xpred(1)^2) 0;ekf_xpred(1)/sqrt(ekf_xpred(3)^2+ekf_xpred(1)^2) 0 ekf_xpred(3)/sqrt(ekf_xpred(3)^2+ekf_xpred(1)^2) 0];ekf_z(1,1)=atan(ekf_xpred(3)/ekf_xpred(1)) ;ekf_z(2,1)=sqrt((ekf_xpred(1))^2+(ekf_xpred(3))^2);PHHP=H*ekf_ppred*H'+measureerror;ekf_K=ekf_ppred*H'*inv(PHHP);ekf_p=(eye(L)-ekf_K*H)*ekf_ppred;ekf_xestimate=ekf_xpred+ekf_K*(Zmeasure(:,i)-ekf_z);traceekf(i)=trace(ekf_p);xekf(i)=ekf_xestimate(1,1);yekf(i)=ekf_xestimate(3,1);errorx(i)=xx(i)+xradarpositon-x(i);errory(i)=yy(i)+yradarpositon-y(i);ukferrorx(i)=xestimate(1)+xradarpositon-x(i);ukferrory(i)=xestimate(3)+yradarpositon-y(i);ekferrorx(i)=ekf_xestimate(1)+xradarpositon-x(i); ekferrory(i)=ekf_xestimate(3)+yradarpositon-y(i);aa(i)=xx(i)+xradarpositon-x(i);;bb(i)=yy(i)+yradarpositon-y(i);sumx=sumx+(errorx(i)^2);sumy=sumy+(errory(i)^2);sumxukf=sumxukf+(ukferrorx(i)^2);sumyukf=sumyukf+(ukferrory(i)^2);sumxekf=sumxekf+(ekferrorx(i)^2);sumyekf=sumyekf+(ekferrory(i)^2);mseerrorx(i)=sqrt(sumx/(i-1));%噪声的统计均方误差mseerrory(i)=sqrt(sumy/(i-1));mseerrorxukf(i)=sqrt(sumxukf/(i-1));%UKF的统计均方误差mseerroryukf(i)=sqrt(sumyukf/(i-1));mseerrorxekf(i)=sqrt(sumxekf/(i-1));%EKF的统计均方误差mseerroryekf(i)=sqrt(sumyekf/(i-1));endfigure(1);plot(mseerrorxukf,'r');hold on;plot(mseerrorxekf,'g');hold on;plot(mseerrorx,'.');hold on;ylabel('MSE of X axis','fontsize',15);xlabel('sample number','fontsize',15);legend('UKF','EKF','measurement error');figure(2)plot(mseerroryukf,'r');hold on;plot(mseerroryekf,'g');hold on;plot(mseerrory,'.');hold on;ylabel('MSE of Y axis','fontsize',15); xlabel('sample number','fontsize',15); legend('UKF','EKF','measurement error');figure(3)plot(x,y);hold on;plot(xekf,yekf,'g');hold on;plot(xukf,yukf,'r');hold on;plot(xx,yy,'m');ylabel(' X ','fontsize',15);xlabel('Y','fontsize',15);legend('TRUE','UKF','EKF','measurements');。

卡尔曼滤波 matlab算法

卡尔曼滤波 matlab算法

卡尔曼滤波 matlab算法卡尔曼滤波是一种用于状态估计的数学方法,它通过将系统的动态模型和测量数据进行融合,可以有效地估计出系统的状态。

在Matlab中,实现卡尔曼滤波算法可以通过以下步骤进行:1. 确定系统的动态模型,首先需要将系统的动态模型表示为状态空间方程,包括状态转移矩阵、控制输入矩阵和过程噪声的协方差矩阵。

2. 初始化卡尔曼滤波器,在Matlab中,可以使用“kf = kalmanfilter(StateTransitionModel, MeasurementModel, ProcessNoise, MeasurementNoise, InitialState, 'State', InitialCovariance)”来初始化一个卡尔曼滤波器对象。

其中StateTransitionModel和MeasurementModel分别是状态转移模型和测量模型,ProcessNoise和MeasurementNoise是过程噪声和测量噪声的协方差矩阵,InitialState是初始状态向量,InitialCovariance是初始状态协方差矩阵。

3. 进行预测和更新,在每个时间步,通过调用“predict”和“correct”方法,可以对状态进行预测和更新,得到最优的状态估计值。

4. 实时应用,将测量数据输入到卡尔曼滤波器中,实时获取系统的状态估计值。

需要注意的是,在实际应用中,还需要考虑卡尔曼滤波器的参数调节、性能评估以及对不确定性的处理等问题。

此外,Matlab提供了丰富的工具箱和函数,可以帮助用户更便捷地实现和应用卡尔曼滤波算法。

总的来说,实现卡尔曼滤波算法需要对系统建模和Matlab编程有一定的了解和技能。

希望以上内容能够对你有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文件一
% THIS PROGRAM IS FOR IMPLEMENTATION OF DISCRETE TIME PROCESS EXTENDED KALMAN FILTER
% FOR GAUSSIAN AND LINEAR STOCHASTIC DIFFERENCE EQUATION.
% By (R.C.R.C.R),SPLABS,MPL.
% (17 JULY 2005).
% Help by Aarthi Nadarajan is acknowledged.
% (drawback of EKF is when nonlinearity is high, we can extend the % approximation taking additional terms in Taylor's series).
clc; close all; clear all;
Xint_v = [1; 0; 0; 0; 0];
wk = [1 0 0 0 0];
vk = [1 0 0 0 0];
for ii = 1:1:length(Xint_v)
Ap(ii) = Xint_v(ii)*2;
W(ii) = 0;
H(ii) = ‐sin(Xint_v(ii));
V(ii) = 0;
Wk(ii) = 0;
end
Uk = randn(1,200);
Qu = cov(Uk);
Vk = randn(1,200);
Qv = cov(Vk);
C = [1 0 0 0 0];
n = 100;
[YY XX] = EKLMNFTR1(Ap,Xint_v,Uk,Qu,Vk,Qv,C,n,Wk,W,V);
for it = 1:1:length(XX)
MSE(it) = YY(it) ‐ XX(it);
end
tt = 1:1:length(XX);
figure(1); subplot(211); plot(XX); title('ORIGINAL SIGNAL'); subplot(212); plot(YY); title('ESTIMATED SIGNAL');
figure(2); plot(tt,XX,tt,YY); title('Combined plot');
legend('original','estimated');
figure(3); plot(MSE.^2); title('Mean square error');
子文件::function [YY,XX] =
EKLMNFTR1(Ap,Xint_v,Uk,Qu,Vk,Qv,C,n,Wk,W,V);
Ap(2,:) = 0;
for ii = 1:1:length(Ap)‐1
Ap(ii+1,ii) = 1;
end
inx = 1;
UUk = [Uk(inx); 0; 0; 0; 0];
PPk = (Xint_v*Xint_v');
VVk = [Vk(inx); 0; 0; 0; 0];
Qv = V*V';
for ii = 1:1:length(Xint_v)
XKk(ii,1) =
Xint_v(ii)^2; % FIRST STEP end
PPk = Ap*PPk*Ap'; % SECOND STEP
Kk = PPk*C'*inv( (C*PPk*C') + (V*Qv*V') ); % THIRD STEP
for ii = 1:1:length(Xint_v)
XUPK(ii,1) = XKk(ii)^2 + UUk(ii); % UPPER EQUATIONS.
Zk(ii,1) = cos(XUPK(ii)) +
VVk(ii); % UPPER EQUATIONS.
end
for ii = 1:1:length(XKk)
XBARk(ii,1) = XKk(ii) + Kk(ii)*(Zk(ii) ‐
(cos(XKk(ii)))) ; % FOURTH STEP
end
II = eye(5,5);
Pk = ( II ‐ Kk*C)*PPk; % FIFTH STEP
%‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
%‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
for ii = 1:1:n
UUk = [Uk(ii+1); 0; 0; 0; 0];
PPk = XBARk*XBARk';
VVk = [Vk(ii+1); 0; 0; 0; 0];
XKk = exp(‐XBARk); % FIRST STEP
PPkM = Ap*PPk*Ap'; % SECOND STEP
Kk = PPkM*C'*inv( (C*PPkM*C') + (V*Qv*V') ); % THIRD STEP
for nn = 1:1:length(XBARk)
XUPK(nn) = exp(‐XKk(nn)) + UUk(nn); % UPPER EQUATIONS.
Zk(nn) = cos(XUPK(nn)) + VVk(nn); % UPPER EQUATIONS.
end
for in = 1:1:length(XUPK)
XNEW(in) = XBARk(in) + Kk(in)*(Zk(in) ‐ cos(XBARk(in))); % FOURTH STEP
end
II = eye(5,5);
Pk = (II ‐ Kk*C)*PPkM; % FIFTH STEP
XBARk = XNEW;
OUTX(ii) = XBARk(1,1);
OUTY(ii) = Zk(1,1);
end
YY = OUTY;
XX = OUTX;。

相关文档
最新文档