新课标人教B版选修2-2第二章第1节《合情推理》合情推理说课稿
211合情推理教案(人教B版选修2-2)

课题:2.1.1 合情推理
题进行检验。
S n 具有P(S 「S 2, ,S n 是A 类事物的对象)
例1用推理的形式从函数
值,
并验证其真假。
可见,归纳推理得出的结论不可靠还需要进一步作出判断。
因为归纳推理的基 础是对个别或部分对象的实验和观察,而缺乏对全体对象的考察,因而所得的结论 具有豁然性,只能称之为归纳猜想,其正确与错误是需要严格论证的。
例2用归纳推理的思想填空
这个数列的通项公式。
例 4、:设 f(n) n 2
n 41, n N ,计算 f(1), f(2), f (3) f(10)的值,同时作出归
纳推理,
并用n 40的值说明猜想的结论是否正确。
例5:在平面上有n 条直线,任何两条都不平行,并且任何三条都不交于同一点, 问:这些直线把平面分成多少部分? 有效训练:1、通过计算152
,25 2
,352
,452
,你能很快算出1995?吗?
x
2 、设 f (x)
------ ,试求 f[f(x)], f{ f[f(x)]}, f{ f{ f[f(x)]}}的解析式,并 V 1 x 2
数), (1) 设 x (2) 已知 请推测a ___________ ,b ________ 1 3
x
6艮(a,b 均为实 i b
例3、已知数列{a n }的第一项a 1 1,且a n 1
a n 1 a n
(n 1,2,3 ),试用归纳法归纳出
、对所提出的一般性命
所以,A 类事物具有P.
3、例题分析:
f(x) (x 1)(x 2) (x 1000) 8中归纳出 f(n)(n N *)的。
人教B版选修2-2第二章第1节合情推理的教学设计

《合情推理》的教学设计【教学内容与教学内容解析】1、教学内容推理、合情推理、归纳推理的含义,作用;归纳推理的一般步骤;会利用归纳进行简单的推理.2、教学内容解析本节内容是普通高中程标准实验教科书《数学》人教B版(选修2-2)中第二章《推理与证明》的起始内容. 《推理与证明》是数学的一种基本思维过程,也是人们在学习和生活中经常使用的一种思维方式. 《推理与证明》是新课标教材的亮点,贯穿于高中数学的整个知识体系,本章为《推理与证明》的方法进行总结,归纳,同时也对后续知识的学习起到引领作用.推理包括合情推理和演绎推理,合情推理是一种含有较多猜想成分的推理,它有助于发现新的规律和事实.在数学中,合情推理得到命题的真实性需要通过证明来确立. 一系列演绎推理实际上就组成了数学证明,在解决实际问题中,发现新规律和事实我们更多的使用合情推理,而证明规律和事实一般使用演绎推理,合情推理和演绎推理紧密相连,相铺相成.节内容属于数学思维方法的范畴,在教学过程中让学生了解归纳推理的含义,体会归纳推理的作用,注重归纳推理的过程,加深对数学发现过程的认识,能够让学生更好的体会数学的本质.【教学目标与教学目标解析】1、教学目标:(1)知识与技能:了解推理、合情推理、归纳推理的含义、作用,掌握归纳推理的一般步骤,能够利用归纳进行一些简单的推理.(2)过程与方法:在欣赏哥德巴赫猜想的过程中,学习如何利用归纳推理去发现新事物,获得新结论,从而让学生对归纳推理有一个理性的认识,不仅停留在概念层次,更是一个数学过程.(3)情感与态度:通过教师引导,学生主动探究、合作学习、相互交流,培养不怕困难、勇于探索,互相协作的优良作风,增强学生的数学应用意识,提高学生数学思维能力,给学生成功的体验,形成学习数学知识、了解数学文化的积极态度.2、目标解析教学目标(1)和(2)是本节课的教学重点也是难点. 借助学生已有生活常识,形成推理以及合情推理的直观认识;从等差数列通项公式的推导过程中总结归纳推理的概念;让学生通过欣赏歌德巴赫猜想产生的过程,对归纳推理有初步认识,体验数学的一种基本思维过程,总结归纳推理的一般步骤,经历人们学习和生活中经常使用的思维活动. 教学目标(2)是学生初学时不易达到的目标,教学时要紧密地结合学生熟悉的已学过的数学实例和生活实例,让学生体会观察“几个事实”时应该关注的要点,如何观察更能发现“几个事实”中的“共性”.【教学问题诊断分析】(1)如何发现“几个事实”的“共性”,也就是“如何去观察,才能发现规律”. 这是学生学习时遇到的第一个教学问题,也是本节课的教学难点之一. 教学时,应通过实例,帮助学生总结出观察一定要有目标,数、式变形;语言的转化以及多角度的观察等都是有效的途径,并用具体问题让学生练习进行体会.(2)在充分体会了归纳推理的生活实例和数学实例以及其他学科实例之后,学生充分感受到数学美和发现规律的喜悦,能够自主总结出归纳推理的一般步骤,但是容易忽略归纳推理所得结论的不可靠性,从而忽略检验的步骤. 所以本节课设计了一道例题,经过验证后得出猜想是不正确的,体会数学发展的螺旋上升过程.(3)归纳推理的作用:对于归纳推理的作用,不能片面认为“万能”的,也不能由于归纳结论的或然性而否定其在科学中的发现作用,所以通过例题的设置、同学的分析和讨论、教师的必要讲解,要让学生对归纳推理有一个全方位的立体的认识.【教学支持条件】(1)在进行本节课的教学时,学生已经有大量的运用归纳推理生活实例和数学实例,这些内容是学生理解归纳推理的重要基础,因此教学时应充分注意这一教学条件,引导学生多进行归纳与概括.(2)数学史上有一些著名的猜想是运用归纳推理的典范,教学这一内容时应充分利用这一条件,不仅可让学生体会归纳推理的过程,感受归纳推理能猜测和发现一些新结论,探索和提供解决一些问题的思路和方向的作用,还可利用著名猜想让学生体会数学的人文价值,激发学生学习数学的兴趣和探索真理的欲望.【教学过程设计】一、推理推理:根据一个或几个已知事实(或假设)得出一个判断的思维方式.推理的结构1:已知的事实(或假设) ——前提由已知推出的判断 ——结论推理的结构2:用连接词将前提和结论逻辑的连接.二、合情推理 (1)1856年,法国微生物学家巴斯德发现乳酸杆菌是使啤酒变酸的原因,接着,通过对蚕病的研究,他发现细菌是引起蚕病的原因,据此,巴斯德推断人身上的一些传染病也是由细菌引起的;(2)我国地质学家李四光发现中国松辽地区和中亚细亚地质结构类似,而中亚细亚有丰富的石油,因此,他推断松辽地区也蕴藏着丰富的石油;(3)三角形的内角和是180(32), ︒⨯-四边形的内角和是180(42), ︒⨯-五边形的内角和是180(52)......︒⨯-所以n 边形的内角和是180(n 2).︒⨯-通过这些例子我们发现,前提都是真的,结论可能为真,像这样的推理我们叫做合情推理.设计意图:从实际生活,数学,其他科学展示合情推理的例子,提高学生的学习兴趣,认识到数学与实际生活紧密相连,密不可分.三、从等差数列通项公式的推导的过程中总结归纳推理的概念等差数列通项公式的推导 112113210,1,2,......____________________a a d a a d a d a a d a d =+=+=+=+=+等差数列{}n a 的通项公式是1(n 1)d.n a a =+- 归纳推理概念:根据一类事物的部分对象具有的某种性质,推出这类事物的所有对象都具有这种性质的推理,叫做归纳推理(简称归纳).设计意图:从学生已知的知识出发,总结出归纳推理的概念,并且引导学生注意,如何发现共同的性质,如何表述得出的一般性命题,让学生重视归纳推理的方法和过程,而不仅仅是概念,抓住重点.四、展示哥德巴赫猜想过程,总结归纳推理的步骤1、从一下几个式子你能发现什么?6=3+38=3+5,10=3+7=5+5,12=5+7,14=3+11,16=3+13=5+11.结论:3,7,13,17都是奇质数,10,20,30都是偶数,它们写成了两个奇质数的和.2、你能得到一般的结论吗?是所有的偶数都能写成两个质数的和吗?显然2,4不能写成奇质数的和,第一个等于两个奇质数和的偶数是 6=3+3,接着有8=3+5,10=3+7=5+5,12=5+7,14=3+11,16=3+13=5+11.这样下去总是对的吗?无论如何我们所观察到的个别情况,可以启发我们提出一个一般性的命题:任何一个大于4的偶数都是两个奇质数的和.3、哥德巴赫猜想是如何被发现的呢?(归纳推理的步骤)几个事实 观察 得出一般性命题寻找共同特征一般地,如果归纳的个别情况越多,越具有代表性,那么推广的一般性命题就可能为真.【例题精讲】例1、用推理的形式表示等差数列1,3,5,…,(2n-1),…的前n 项和n S 的归纳过程. 设计意图:巩固归纳推理的步骤,体会如何发现共性,为了便于观察有时候需要做适当的变形以更加突出共性.例2、设2()41, f n n n n N +=++∈,计算f(1),f(2),f(3),f(4),…,f(10) 的值,同时做出归纳推理,并用n=40验证猜想是否正确.设计意图:巩固归纳推理的步骤,更重要的是要学生注意,归纳推理的前提与结论具有或然性联系,结论不一定正确.结论的正确性还需要理论证明或实验检验.但归纳推理有由特殊到一般,由具体到抽象的认识功能,对于数学的发展是非常有用的,是数学研究的基本方法之一.【小结】归纳推理的含义,作用,步骤设计意图:通过归纳总结,使学生对本节课有一个明晰的认识,并且抓住重点. 【板书】2.1合情推理与演绎推理⎧⎨⎩合情推理推理演演推理1. 归纳推理2.1.1 合情推理根据一类事物的部分对象具有某种性质,推出前提为真,结论可能为真的推理叫做所有对象都具有这种性质的推理(简称归纳). 合情推理. 归纳从特殊到一般.⎧⎨⎩归纳推理合情推理类比推理2、一般步骤:几个事实观察得出一般性命题寻找共同特征【布置作业】P56练习题A1,2有能力的同学在完成探索与研究设计意图:巩固归纳推理的步骤,方法的重要性,面向全体又实现分层教育.。
类比推理教学设计

《类比推理》教学设计一、教材分析本节课选自人教B版普通高中数学选修2-2,是本书第二章推理与证明、第一节合情推理与演绎推理的第一课时。
学生对于类比推理并不陌生,是学生原有认知基础的一个延伸。
类比推理是重要的推理,具有提供新结论、开拓新思路的功能,学习这部分知识对数学日常学习和研究意义重大。
二、教学目标依据课程标准,我提出如下三维教学目标:1、知识与技能目标:了解类比推理的概念,理解类比推理的本质特征;能熟练的进行类比推理。
2、过程与方法目标:让学生经历类比推理概念的形成过程,体会类比推理在数学创造发明的重要意义。
培养学生的思维能力与创新能力。
3、情感态度价值观目标:增加学生的学习兴趣与信心,形成良好的数学学习习惯。
培养学生的问题意识,丰富对类比推理的认识。
三、学情分析本节课的教学对象是高二学生。
他们具有一定的特点与优势:在知识方面:他们对类比推理不陌生。
在能力方面:能通过探究活动完成数学学习,具有一定的抽象、概括能力。
在情感方面:具有强烈的学习兴趣与信心。
但他们还存在着一定的不足。
在理解类比推理概念本质、熟练进行类比推理上存在着困难,常常犯类比对象选择不恰当的错误。
四、教学重点与难点依据课程标准和学情分析,我确定本节课的教学重点:类比推理概念、本质的理解,以及如何进行类比推理。
这同时也是本节课的教学难点。
五、教法与学法本节课将以引导式教学方法为主,通过创设适宜的问题情境,来启发学生思考,通过组织学生自主探索、合作探究,来开展数学学习活动,促进学生的多样化数学学习。
同时为了直观清晰地展示材料,突出重点,提高课堂教学效率,本节课还采用多媒体进行辅助教学。
六、教学过程设计七、板书设计。
人教课标版高中数学选修2-2《合情推理》教案-新版

2.1 合情推理与演绎推理2.1.1 合情推理一、教学目标 1.核心素养通过学习归纳推理与类比推理,初步形成基本的数学抽象和逻辑推理能力. 2.学习目标(1)结合已学过的数学实例和生活实例,了解归纳推理的含义及逻辑特点,体会归纳推理的作用,掌握归纳推理的一般步骤,能够利用归纳进行一些简单的推理.(2)结合已学过的数学实例和生活中的实例,了解类比推理的含义及逻辑特点,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用. 3.学习重点了解合情推理的含义,能利用归纳推理与类比推理进行一些简单的推理. 4.学习难点运用所学知识对具体问题进行归纳和类比的推理,做出合理的猜想. 二、教学设计 (一)课前设计 1.预习任务任务1 阅读教材P 70-P 77,思考:什么是归纳推理?什么是类比推理?2.预习自测1.下列表述正确的是( ).①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理; ③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理; ⑤类比推理是由特殊到特殊的推理.A .①②③;B .②③④;C .②④⑤;D .① ③ ⑤. 解:D2.已知数列}{n a 的前n 项和)2(2≥⋅=n a n S n n ,且,通过计算猜 想( )A .B .C .D .解:A3.下面使用类比推理正确的是( )(二)课堂设计1.知识回顾(1)由等差数列的定义推导其通项公式是怎么实现的.(2)平面向量的运算与空间向量的运算有什么共性.(3)椭圆和圆的哪些几何性质是相似的.2.问题探究问题探究一归纳推理的含义●活动一结合实例,体会归纳推理1.由铜,铁,金等金属都能导电,猜想:一切金属都能导电.2.由三角形内角和为180°,凸四边形内角和为360°,凸五边形内角和为540°,猜想:凸n边形内角和为(n-2)180°这些思维过程就是归纳推理,那么你认为什么是归纳推理呢?●活动二梳理小结,掌握归纳推理的逻辑含义下面两个推理:1.金受热后体积膨胀;银受热后体积膨胀;铜受热后体积膨胀;铁受热后体积膨胀.由此猜想:金属受热后体积膨胀.2.1,1+3=4,1+3+5=9,1+3+5+7=161+3+5+7+9=25......由此猜想:1+3+5+7+...+(2n-1)= n2提出问题:这两个推理在思维方式上有什么共同特点?学生先独立思考,然后可小组交流归纳推理定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概栝出一般结论的推理,称为归纳推理,简称归纳.归纳推理的特点:1.归纳推理是由部分到整体,由个别到一般的推理.2.人们在进行归纳推理的时候,总是先搜集一定的事实材料,有了个别性、特殊性的事实作为前提,然后才能进行归纳推理,因此归纳推理要在观察和试验的基础上进行.3.归纳推理能够发现新事实,获得新结论,是做出科学发现的重要手段.归纳推理的一般步骤:①对有限的资料进行观察、分析、归纳整理;②在此基础上提出带有规律性的结论,即猜想;③检验猜想.说明:由归纳推理所获得的结论,仅仅是一种猜想,未必可靠,(如:费马猜想)但它由特殊到一般,由具体到抽象的认识性能,对于提供科学的发现方法,确实是非常有用的.问题探究二类比推理的含义.●活动一结合实例,体会类比推理问题1:为什么人们会猜测火星上有生命呢?问题2:用以上方法,类比圆的特征,填写下表球的特征,说说推理的过程.并回答下面两个问题:1. 为什么圆可以和球类比?2. 圆和球类比的规律是什么?规律总结:圆←→球弦←→截面圆直径←→大圆周长←→表面积面积←→体积●活动二梳理小结,掌握类比推理的逻辑含义类比推理定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简称类比.类比推理的特点1. 类比推理是由特殊到特殊的推理.2. 由于类比的前提是两类对象之间具有某些可以清楚定义的类似特征,所以进行类比推理的关键是明确的指出两类对象在某些方面的类似特征.3. 类比推理是以旧的知识做基础,推测新的结果,具有发现的功能.类比推理的一般步骤:①找出两类对象之间可以确切表述的相似特征;②用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想;③检验这个猜想.S的归纳过程.例1:用推理的形式表示等差数列1,3,5,…,(2n-1),…的前n项和n 【知识点:归纳推理】详解:对等差数列1,3,5,…,(2n-1),…的前1,2,3,4,5,6 项和分别进行计算:21222324252611;1342;13593;1357164;13579255;1357911366.___________________________S S S S S S ===+===++===+++===++++===+++++==故,等差数列1,3,5,…,(2n -1),…的前n 项和2.n S n =点拨:归纳推理是由部分到整体,由个别到一般的推理,需要对有限的资料进行观察、分析、归纳 整理,在此基础上提出带有规律性的结论,即猜想.例2:设2()41, f n n n n N +=++∈,计算f (1),f (2),f (3),f (4),…,f (10)的值,同时做出归纳推理,并用n =40验证猜想是否正确. 【知识点:归纳推理】 详解:2222222222(1)114143;(2)224147;(3)334153;(4)444161;(5)554171;(6)664183;(7)774197;(8)8841113;(9)9941131;(10)101041151,f f f f f f f f f f =++==++==++==++==++==++==++==++==++==++=43,47,53,61,71,83,97,113,131,151都是质数.结论:当n 取任何正整数时,2()41f n n n =++的值都是质数.因为当n =40时,2(40)4040414141,f =++=⨯所以(40)f 是合数.因此,上面的归纳推理得到的猜想不正确.点拨:由归纳推理所获得的结论,仅仅是一种猜想,未必可靠,需要进行严格的证明或通过举反例推翻其一般性.例3:类比平面内直角三角形的勾股定理,试给出空间中四面体性质的猜想.【知识点:类比推理】 详解:列表如下结论:2222123S S S S =++.点拨:类比推理是由特殊到特殊的推理,由于类比的前提是两类对象之间具有某些可以清楚定义的类似特征,所以进行类比推理的关键是明确的指出两类对象在某些方面的类似特征. 3.课堂总结【知识梳理】(1)归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概栝出一般结论的推理.归纳推理是由特殊到一般的推理.(2)类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理.类比推理是由特殊到特殊的推理.(3)归纳与类比都是合情推理,但是它们的结论都未必正确,需要进行证明结论是真或通过举反例说明结论是假.【重难点突破】(1)进行归纳推理的时候,要先搜集一定的事实材料,有了个别性、特殊性的事实作为前提,然后才能进行归纳推理,因此归纳推理要在观察和试验的基础上进行.(2)类比的前提是两类对象之间具有某些可以清楚定义的类似特征,所以进行类比推理的关键是明确的指出两类对象在某些方面的类似特征. 4.随堂检测1.下列说法正确的是( )A .由合情推理得出的结论一定是正确的B .合情推理必须有前提有结论C .合情推理不能猜想D .合情推理得出的结论不能判断正误 【知识点:合情推理的含义与作用】解:B. 根据合情推理可知,合情推理必须有前提有结论.2.下列平面图形中,与空间中的平行六面体作为类比对象较为合适的是()A.三角形B.梯形C.平行四边形D.矩形【知识点:类比推理的含义】解:C3.类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列性质,你认为比较恰当的是()①各棱长相等,同一顶点上的任两条棱的夹角都相等②各个面都是全等的正三角形,相邻两个面所成的二面角都相等③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等A.①B.①②C.①②③D.③【知识点:类比推理的含义】解:C正四面体的面(或棱)可与正三角形的边类比,正四面体的相邻两面成的二面角(或共顶点的两棱的夹角)可与正三角形相邻两边的夹角类比,故①②③都对.4.观察下列各式:72=49,73=343,74=2 401,…,则72 015的末两位数字为() A.01 B.43C.07 D.49【知识点:简单的合情推理】解:B因为71=7,72=49,73=343,74=2 401,75=16 807,76=117 649,…,所以这些数的末两位数字呈周期性出现,且周期T=4.又2 015=4×503+3,所以72 015的末两位数字与73的末两位数字相同,为43.5.设f(x)=2xx+2,x1=1,x n=f(x n-1)(n≥2),则x2,x3,x4分别为________.猜想x n=________.【知识点:简单的合情推理】解:23,24,25…2n+1x2=f(x1)=21+2=23,x3=f(x2)=2×2323+2=12=24,x4=f(x3)=2×1212+2=25,∴x n =2n +1. (三)课后作业基础型 自主突破1.数列2,5,11,20,x ,47,…中的x 等于( ) A .28 B .32 C .33 D .27 【知识点:归纳推理】解:B 观察发现从第二项开始,每一项与前一项的差构成公差为3的等差数列,所以x=32. 2.已知扇形的弧长为l ,半径为r ,类比三角形的面积公式:S =底×高2,可推知扇形面积公式S 扇等于( )A.r 22B.22lC.2lrD .不可类比 【知识点:类比推理】 解:C3.观察:112156<+,1125.155.5<+,11221724<++-,...,对于任意的正实数b a ,,使112<+b a 成立的一个条件可以是( ) A .22=+b a B .21=+b a C .20=ab D .21=ab 【知识点:归纳推理】 解:B4.已知数列{}n a 的前n 项和为n S ,且n n a n S a 21,1== *N n ∈,试归纳猜想出n S 的表达式为( ) A.12+n n B. 112+-n n C. 112++n n D. 22+n n【知识点:归纳推理】 解:A 依次求得11=S ,342=S ,46233==S ,猜想n S 12+=n n.5. 下面几种推理是合情推理的是________.(填序号) ①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③张军某次考试成绩是100分,由此推出全班同学的成绩都是100分;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得凸n边形内角和是(n-2)·180°.【知识点:简单的合情推理】解:①②④6.已知2+23=223,3+38=338,4+415=4415,…,若6+ab=6ab(a,b∈R),则a+b=________. 【知识点:归纳推理】解:41 根据题意,由于2+23=223,3+38=338,4+415=4415,…,那么可知6+ab=6ab,a=6,b=6×6-1=35,所以a+b=41.能力型师生共研7.在如下数表中,已知每行、每列中的数都成等差数列,那么位于表中的第n【知识点:归纳推理】解:n2+n由题中数表知:第n行中的项分别为n,2n,3n,…,组成一等差数列,所以第n 行第n+1列的数是n2+n.8.在Rt△ABC中,若∠C=90°,AC=b,BC=a,则△ABC外接圆半径r=a2+b22.运用类比方法,若三棱锥的三条侧棱两两互相垂直且长度分别为a,b,c,则其外接球的半径R=________.【知识点:类比推理】解:a2+b2+c22通过类比可得R=a2+b2+c22.证明:作一个在同一个顶点处棱长分别为a,b,c的长方体,则这个长方体的体对角线的长度是a2+b2+c2,故这个长方体的外接球的半径是a 2+b 2+c 22,这也是所求的三棱锥的外接球的半径.9.在平面内有n (n ∈N *,n ≥3)条直线,其中任何两条不平行,任何三条不过同一点,若这n 条直线把平面分成f (n )个平面区域,则f (5)的值是______,f (n )的表达式是________. 【知识点:归纳推理】解:16;f (n )=n 2+n +22 由题意得,n 条直线将平面分成nn +12+1个平面区域,故f (5)=16,f (n )=n 2+n +22.10.仔细观察下面○和●的排列规律: ○●○○●○○○●○○○○●○○○○○●○○○○○○ ●……若依此规律继续下去,得到一系列的○和●,那么在前120个○和●中,●的个数是________. 【知识点:归纳推理】解:14 进行分组○●|○○●|○○○●|○○○○●|○○○○○●|○○○○○○●|……,则前n 组两种圈的总数是f (n )=2+3+4+…+(n +1)=2)3(+n n ,易知f (14)=119,f (15)=135,故n =14. 探究型 多维突破11.如图(1)若从点O 所作的两条射线OM 、ON 上分别有点M 1、M 2与点N 1、N 2,则三角形面积之比1122OM N OM N S S ∆∆=OM 1OM 2·ON 1ON 2.如图(2),若从点O 所作的不在同一平面内的三条射线OP 、OQ和OR 上分别有点P 1、P 2,点Q 1、Q 2和点R 1、R 2,则类似的结论为______________________.【知识点:类比推理】解:111222O PQ R O P Q R V V --=OP 1OP 2·OQ 1OQ 2·OR 1OR 2 由图看出三棱锥P 1-OR 1Q 1及三棱锥P 2-OR 2Q 2的底面面积之比为OQ 1OQ 2·OR 1OR 2,又过顶点分别向底面作垂线,得到高的比为OP 1OP 2,故体积之比为111222O PQ R O P Q R V V--=OP 1OP 2·OQ 1OQ 2·OR 1OR 2.12. 设f (x )=13x +3,先分别求f (0)+f (1),f (-1)+f (2),f (-2)+f (3),然后归纳猜想一般性结论,并给出证明.【知识点:简单的合情推理】解:f(0)+f(1)=130+3+131+3=11+3+13+3=3-12+3-36=33,同理可得:f(-1)+f(2)=33,f (-2)+f(3)=33,并注意到在这三个特殊式子中,自变量之和均等于1.归纳猜想得:当x1+x2=1时,均有f(x1)+f(x2)=3 3.证明:设x1+x2=1,∵f(x1)+f(x2)=====自助餐1.下列推理是归纳推理的是()A.A,B为定点,动点P满足|P A|+|PB|=2a>|AB|,则P点的轨迹为椭圆B.由a1=1,a n=3n-1,求出S1,S2,S3,猜想出数列的前n项和S n的表达式C.由圆x2+y2=r2的面积πr2,猜想出椭圆x2a2+y2b2=1的面积S=πabD.科学家利用鱼的沉浮原理制造潜艇【知识点:归纳推理】解:B从S1,S2,S3猜想出数列的前n项和S n,是从特殊到一般的推理,所以B是归纳推理,故应选B.2.类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列性质,你认为比较恰当的是()①各棱长相等,同一顶点上的任两条棱的夹角都相等②各个面都是全等的正三角形,相邻两个面所成的二面角都相等③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等A.①B.①②C.①②③D.③【知识点:类比推理】解:C .正四面体的面(或棱)可与正三角形的边类比,正四面体的相邻两面成的二面角(或共顶点的两棱的夹角)可与正三角形相邻两边的夹角类比,故①②③都对. 3.给出下列三个类比结论:①(ab )n =a n b n 与(a +b )n 类比,则有(a +b )n =a n +b n ;②log a (xy )=log a x +log a y 与sin(α+β)类比,则有sin(α+β)=sin αsin β; ③(a +b )2=a 2+2ab +b 2与(a +b )2类比,则有(a +b )2=a 2+2a ·b +b 2. 其中正确结论的个数是( ) A .0 B .1 C .2D .3【知识点:类比推理】解:B (a +b )n ≠a n +b n (n ≠1,a ·b ≠0),故①错误.sin(α+β)=sin αsin β不恒成立.如α=30°,β=60°,sin 90°=1,sin 30°·sin 60°=34,故②错误.由向量的运算公式知③正确. 4.若数列{a n }是等差数列,则数列{b n }(b n =a 1+a 2+…+a nn)也为等差数列.类比这一性质可知,若正项数列{c n }是等比数列,且{d n }也是等比数列,则d n 的表达式应为( ) A .d n =c 1+c 2+…+c nnB .d n =c 1·c 2·…·c nnC .d n = n c n 1+c n 2+…+c nn n D .d n =nc 1·c 2·…·c n 【知识点:类比推理】解:D 若{a n }是等差数列,则a 1+a 2+…+a n =na 1+n n -12d ,∴b n =a 1+n -12d =d 2n +a 1-d 2,即{b n }为等差数列;若{c n }是等比数列,则c 1·c 2·…·c n =c n 1·q 1+2+…+(n -1)=c n1·q (1)2n n -,∴d n =nc 1·c 2·…·c n =c 1·q12n -,即{d n }为等比数列,故选D.5.数列{}n a 中,a 1=1,S n 表示前n 项和,且S n ,S n +1,2S 1成等差数列,通过计算S 1,S 2,S 3,猜想当n ≥1时,S n =( )A .1212-+n nB .1212--n nC .nn n 2)1(+ D .1-121-n【知识点:归纳推理】 解:B6.古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:图(1)图(2)他们研究过图(1)中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图(2)中的1,4,9,16,…这样的数为正方形数.下列数中既是三角形数又是正方形数的是( ) A .289 B .1 024 C .1 225D .1 378【知识点:简单的合情推理】解:C .记三角形数构成的数列为{a n },则a 1=1,a 2=3=1+2,a 3=6=1+2+3,a 4=10=1+2+3+4,可得通项公式为a n =1+2+3+…+n =n n +12.同理可得正方形数构成的数列的通项公式为b n =n 2.将四个选项的数字分别代入上述两个通项公式,使得n 都为正整数的只有1 225.7.在平面几何中,有“正三角形内切圆半径等于这个正三角形高的13”.拓展到空间,类比平面几何的上述正确结论,则正四面体的内切球半径等于这个正四面体的高的________. 【知识点:类比推理】解:14 设正三角形的边长为a ,高为h ,内切圆半径为r ,由等面积法知3ar =ah ,所以r =13h ;同理,由等体积法知4SR =HS ,所以R =14H . 8.观察下列等式: (1+1)=2×1(2+1)(2+2)=22×1×3 (3+1)(3+2)(3+3)=23×1×3×5 …照此规律,第n 个等式可为____________________________. 【知识点:归纳推理】解:(n +1)(n +2)…(n +n )=2n ×1×3×…×(2n -1) 由已知的三个等式左边的变化规律,得第n 个等式左边为(n +1)(n +2)…(n +n ),由已知的三个等式右边的变化规律,得第n 个等式右边为2n 与n 个奇数之积,即2n ×1×3×…×(2n -1).9. 已知数列{a n }为等差数列,若a m =a ,a n =b (n -m ≥1,m ,n ∈N *),则a m +n =nb -man -m .类比等差数列{a n }的上述结论,对于等比数列{b n }(b n >0,n ∈N *),若b m =c ,b n =d (n -m ≥2,m ,n ∈N *),则可以得到b m +n =________. 【知识点:类比推理】解:n -m d ncm 设数列{a n }的公差为d ,数列{b n }的公比为q .因为a n =a 1+(n -1)d ,b n =b 1q n -1,a m +n =nb -ma n -m,所以类比得b m +n =n -m d n c m . 10. 在平面上,设h a ,h b ,h c 是三角形ABC 三条边上的高,P 为三角形内任一点,P 到相应三边的距离分别为P a ,P b ,P c ,我们可以得到结论:P a h a+P b h b+P ch c=1.把它类比到空间,则三棱锥中的类似结论为______________________. 【知识点:类比推理】解:P a h a +P b h b +P c h c +P dh d =1 设h a ,h b ,h c ,h d 分别是三棱锥A -BCD 四个面上的高,P 为三棱锥A -BCD 内任一点,P 到相应四个面的距离分别为P a ,P b ,P c ,P d ,于是可以得出结论:P aha+P b h b+P c h c+P dh d=1.11.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.①sin 213°+cos 217°-sin 13°cos 17° ②sin 215°+cos 215°-sin 15°cos 15° ③sin 218°+cos 212°-sin 18°cos 12° ④sin 2(-18°)+cos 248°-sin(-18°)cos 48° ⑤sin 2(-25°)+cos 255°-sin(-25°)cos 55°(1)试从上述五个式子中选择一个,求出这个常数.(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.【知识点:简单的合情推理】 解:(1)选择②式计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-12sin 30°=34. (2)sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34. 证明:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°·cos α+sin 30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α=34. 12. 已知函数f (x )=-aa x +a (a >0,且a ≠1).(1)证明:函数y =f (x )的图象关于点(12,-12)对称; (2)求f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)的值. 【知识点:简单的合情推理】解:(1)证明:函数f (x )的定义域为全体实数,任取一点(x ,y ),它关于点(12,-12)对称的点的坐标为(1-x ,-1-y ).由已知y =-a a x +a ,则-1-y =-1+a a x +a =-a xa x +a ,f (1-x )=-a a 1-x +a =-a a a x +a =-a ·a x a +a ·a x =-a xa x +a,∴-1-y =f (1-x ),即函数y =f (x )的图象关于点(12,-12)对称.(2)由(1)知-1-f (x )=f (1-x ),即f (x )+f (1-x )=-1. ∴f (-2)+f (3)=-1,f (-1)+f (2)=-1,f (0)+f (1)=-1. 则f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)=-3.。
数学:2.1.1《合情推理与演绎推理-合情推理》PPT课件(新人教选修2-2)

归纳推理的一般步骤:
⑴ 对有限的资料进行观察、分析、归纳 整理; ⑵ 提出带有规律性的结论,即猜想; ⑶ 检验猜想。
例1:已知数列{an}的第1项a1=1且a
n +1
=
an 1 + an
(n=1,2,3 …),试归纳出这个数列的通项公式.
例2:数一数图中的凸多面体的面数F、顶
点数V和棱数E,然后用归纳法推理得出它们 之间的关系.
1 2
+
1 3
+ L + 5 2
1 n
(n Î
N )计 算 得 7 2
*
f(2)=
,f(4)>2,f(8)> 2时 ,有
, f ( 1 6 ) > 3 , f (3 2) >
-----------------.
例:如图有三根针和套在一根针上的若干金属片. 按下列规则,把金属片从一根针上全部移到另一根针上. 1.每次只能移动1个金属片; 2.较大的金属片不能放在较小的金属片上面.试推测; 把n个金属片从1号针移到3号针,最少需要移动多少次? 解;设an表示移动n块金属片时的移动次数. 当n=1时,a1=1 当n=2时,a2= 3
哥德巴赫猜想(Goldbach Conjecture)
目前最佳的结果是中国数学家陈景润於1966年 证明的,称为陈氏定理(Chen„s Theorem) ? “ 任何充份大的偶数都是一个质数与一个自然数 之和,而後者仅仅是两个质数的乘积。” 通 常都简称这个结果为大偶数可表示为 “1 + 2 ”的形式。
2
1
3
解;设an表示移动n块金属片时的移动次数. 当n=1时,a1=1 当n=2时,a2= 3 猜想 an= 2n -1 当n=3时,a3= 7 当n=4时,a4= 15
数学归纳法

陵县一中 张勇
说 课内容
1、教材分析 2、教学方法 3、学法指导
4、教学过程
5 、效果分析
一、
教材分析
1、教材的地位和作用
2、 重点、难点
3、 教学目标
(一)教材的地位和作用
数学归纳法数学归纳法是人教B版普通高 中课程标准实验教科书选修2-2第2章第三 小节的内容,此前学生刚学习了合情推理, 合情推理用的是不完全归纳法,结论的正 确性有待证明。通过本节课的学习,对培 养学生的抽象思维能力和创新能力,深化 不等式、数列等知识,提高学生的数学素 养,有重要作用。
3、有效训练
用数学归纳法证明: 1、1+2+3+…+n=n(n+1)/2 2、首项为a1,公比为q 的等比数列 的通项公式为:an=a1qn-1 (n∈N﹡)
作业:P72 1、3
课后思考题:归纳结论并证明:
S=1/(1•3)+1/(3•5)+1/(5•7)+…+1/[(2n-1)•(2n+1)]
=a1+[(k+1)-1]d
(进行恒等变形)
这就是说当n=k+1时,等式也成立 由(1)(2)可以断定,等式对任何正整数都 成立
合作探究
例2、用数学 归纳法证明
2 1+3+5+…+(2n-1)=n
精讲点拨
知识小结:数学归纳法证明的步骤 递推基础不可少, 归纳假设要用到, 结论写明莫忘掉
2、课内探究
多米诺骨牌游戏成功依赖两个条件 (1)第一张牌被 推倒
(1)当n=1时,命题成立
(2)假设前一张牌被推倒,则后 一张牌也被推倒
选修21合情推理教学设计

选修2-2《2.1.1 合情推理》教学设计一.教学背景分析教学内容推理与证明贯穿于整个数学课程,但是作为一章的内容却是第一次出现在中学的教材中,对之进行系统学习是新课程的一个变化。
推理与证明是数学的基本思维过程,是做数学的基本功,也是人们在一般的学习和生活中常用的思维方式,是发展理性思维的重要方面。
数学与其它学科的区别除了研究对象的不同,最突出的就是数学内部规律的正确性必须用演绎推理的方式来证明,而在证明或学习数学的过程中,又经常要用合情推理去猜测和发现结论,探索和提供思路。
两者紧密联系、相辅相成。
因此,无论是学习数学、做数学,还是对于学生理性思维的培养,都需要在基础教育阶段的高中数学中加强这方面的学习和训练。
本节课是合情推理的第二课时,在前面已经学习了归纳推理。
学生已经初步体会并认识到合情推理在数学发展中的作用。
对于类比,学生其实并不陌生,它出现在各个章节中,但实际上,学生对它的认识是模糊的。
通过本节课的系统学习,学生会了解什么是类比、如何进行类比,会感受到数学的创造过程。
学生情况【知识基础】学生已经学完了所有的必修模块,即已经学完了高中阶段传统的数学基础知识和基本技能的主要部分。
【学习水平】作为我校高二年级的一个普通班,优秀生少,整体成绩居中;如前所说,用一年多一点的时间学完了高中阶段段传统的数学基础知识和基本技能的主要部分,对于普通班的学生来说,基础掌握得极不扎实,知识遗忘现象严重。
【学习态度】学生比较喜欢学习数学,在课堂上基本上能做到认真听讲,积极思考。
但是,不是很愿意表达自己的看法。
教学方式问题导引式:通过精心设计的问题,激发学生的学习兴趣和动机,使学生产生疑而未解,又欲解之的强烈愿望,调动学生学习的积极性和主动性。
教学手段多媒体辅助教学二.教学目标(内容框架)1.知识与技能(1)结合数学实例和生活中的实例,了解类比推理的含义及作用,掌握类比推理的一般步骤。
(2)能利用类比进行简单的推理,体会并认识类比推理在发现中的作用;(3)了解经类比推理得到的结论是否正确,在数学上需要严格证明。
人教版B版高中数学选修2-2:合情推理_课件1(2)

虽然归纳推理所得到的结论未必是正确 的,但它所具有的由特殊到一般,由具体 到抽象的认识功能,对于数学的发现是十 分有用的。观察、实验、对有限的资料作 归纳整理,提出带有规律性的猜想,是数 学研究的基本方法之一。
归纳推理与演绎推理虽有上述区别,但 它们在人们的认识过程中是紧密的联系着 的,两者互相依赖、互为补充,比如说, 演绎推理的一般性知识的大前提必须借助 于归纳推理从具体的经验中概括出来,从 这个意义上我们可以说,没有归纳推理也 就没有演绎推理。当然,归纳推理也离不 开演绎推理。
比如,归纳活动的目的、任务和方向是归纳 过程本身所不能解决和提供的,这只有借助 于理论思维,依靠人们先前积累的一般性理 论知识的指导,而这本身就是一种演绎活动。 而且,单靠归纳推理是不能证明必然性的, 因此,在归纳推理的过程中,人们常常需要 应用演绎推理对某些归纳的前提或者结论加 以论证。从这个意义上我们也可以说,没有 演绎推理也就不可能有归纳推理。
(3)因为三角形的内角和是180°×(3- 2),四边形的内角和是180°×(4-2),五 边形的内角和是180°×(5-2),……,所 以n边形的内角和是180°×(n-2)。
从上述事例中可以发现,其中的推理得 到的结论都是可能为真的判断,像这种前 提为真时,结论可能为真的推理,叫做合 情推理。
在学习等差数列时,我们是这样推导首 项为a1,公差为d的等差数列{an}的通项公 式的:
a1=a1+0d; a2=a1+1×d; a3=a1+2×d; a4=a1+3×d; …………
等差数列{an}的通项公式是an=a1+(n-1)d.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《合情推理》说课稿
一、教材分析
(1)课题内容
课题内容是《合情推理》,出自普通高中新课程标准实验教科书人教B版高
中数学选修2-2,2.1.1.
(2)地位和作用
本节课是《推理与证明》的起始内容。
《推理与证明》是数学的一种基本思维过程,也是人们在学习和生活中经常使用的一种思维方式。
贯穿于高中数学的整个知识体系,同时也对后续知识的学习起到引领作用。
合情推理有助于发现新的规律和事实,是重要的数学思想方法之一。
(3)重点,难点
重点:了解归纳推理的含义,作用,掌握归纳推理的步骤,体会归纳推理的思想。
难点:归纳推理步骤中的如何发现几个事实的共性,如何由个别事实总结,归纳出一般的命题。
二、学情分析
(1)在进行本节课的教学时,学生已经有大量的运用归纳推理生活实例和数学实例,这些内容是学生理解归纳推理的重要基础,因此教学时应充分注意这一教学条件,引导学生多进行归纳与概括。
(2)数学史上有一些著名的猜想是运用归纳推理的典范,教学这一内容时应充分利用这一条件,不仅可让学生体会归纳推理的过程,感受归纳推理能猜测和发现一些新结论,探索和提供解决一些问题的思路和方向的作用,还可利用著名猜想让学生体会数学的人文价值,激发学生学习数学的兴趣和探索真理的欲望。
三、教学目标
(1)知识与技能:了解推理、合情推理、归纳推理的含义,作用,掌握归纳推理的一般步骤,能够利用归纳进行一些简单的推理.
(2)过程与方法:在欣赏哥德巴赫猜想的过程中,学习如何利用归纳推理去发现新事物,获得新结论,从而让学生对归纳推理有一个理性的认识,不仅停留在概念层次,更是一个数学过程.
(3)情感与态度:通过教师引导,学生主动探究、合作学习、相互交流,培养不怕困难、勇于探索,互相协作的优良作风,增强学生的数学应用意识,提高学生数学思维能力,给学生成功的体验,形成学习数学知识、了解数学文化的积极态度.
四、教学分析
教法分析:本接采用“引导探究”和“讨论交流”的教学方法相结合。
(1)举例说明实际生活和学习中存在大量的推理、合情推理,提高学生学习的的兴趣,认识到数学与实际生活密不可分。
(2)引导学生从等差数列通项公式的推导中以及哥德巴赫猜想被发现的过程中,总结归纳推理的概念,初步认识归纳推理的推理过程和思想。
(3)例1,巩固归纳推理的步骤,体会如何发现共性,为了便于观察有时候需要做适当的变形以更加突出共性.例2,让学生注意到归纳推理的前提与结论具有或然性联系,结论不一定正确.结论的正确性还需要理论证明或实验检验.但归纳推理有由特殊到一般,由具体到抽象的认识功能,对于数学的发展是非常有用的,是数学研究的基本方法之一.
学法分析:
(1)通过老师引导,与同学交流,了解归纳推理的含义,作用,步骤和思想,能够利用归纳进行简单的推理。
(2)从例子中体会数学与实际生活,其他科学的联系,从著名猜想体会数学的人文价值。
五、教学过程分析
五、教学评价
教学评价的及时,能够有效的调动课堂气氛,感染学生的情绪,对课堂教学有积极的推动作用,因此,我将教学评价贯穿到本节课的每个教学环节。
例如,课题引入时的表达式评价,得出归纳时的归纳评价,解题时的规范性评价,小结时的表述性评价。
通过多种评价方式,让更多的学生获得学习的自信,在轻松融洽的课堂评价气氛中完成本节课的教学与学习。
七、教学反思
通过对学生作业的批阅获得更全面的学生知识掌握情况和课堂效果的反
思,并且在后续的时间里修改教学设计,达到预期的教学目标。
所谓说课是教师在备课的基础上,面对评委、同行、系统地口头表述自己的教学设计及其理论依据,然后由听者评说,达到相互交流,共同提高的目的的一种教学研究形式。
说课的基本步骤
一、说教材
1、教材的地位:
从地位上、结构上、内容上、教育意义上等方面论述本节教材在本课\本书中的地位和作用。
2、教学目标:
根据新课程标准的要求、学生年龄特点、生活经验、认识问题的层次、程度、学生发展的需要等方面制定出三维学习目标。
3、教学重点、难点:
从教学内容、课标要求、学生实际、理论层次、对学生的作用等方面找出确立重点难点的依据并确定教学的重点和难点。
二、说教法
依据《纲要》、课标的四性、新理念、新教法等理论具体说明将在课堂设计中运用那些方法。
这里可以从大的方面,从宏观上来说一下,具体详细可以放在下一个教学程序里说明。
如:
1、参与式
2、讨论式
3、互动式
4、体验式
5、研究性学习
6、谈话、对话、辩论、调查、情景模拟、亲历体验、小活动等
三、说学法
依据新的教学理念、学习方式的转变,说出所倡导自主、合作、探究等方式方法。
达到体验中感悟情感、态度、价值观;活动中归纳知识;参与中培养能力;合作中学会学习。
四、说教学程序
主体部分:说出教学的基本环节、知识点的处理、运用的方法、教学手段、开展的活动、运用的教具、设计的练习、学法的指导等。
并说出你这样设计的依据是什么。
五、说板书
一般正规的说课如果时间允许的情况下,是要在说教学程序的过程中写出板书提纲的。
如果时间很紧张,你可以提前写在一张大纸上,张贴在黑板上也可以。
能够配合讲解适时出示,达到调控学生、吸引注意、使师生思路合拍共振的目的说出这样设计的理由。
如:能体现知识结构、突出重点难点、直观形象、利于巩固新知识、有审美价值等。
说课应遵循的四个原则
一、科学性原则--说课活动的前提
科学性原则是教学应遵循的基本原则,也是说课应遵循的基本原则,它是保证说课质量的前提和基础。
科学性原则对说课的基本要求主要体现在以下几个方面。
1、教材分析正确、透彻。
2、学情分析客观、准确,符合实际。
3、教学目
的的确定符号大纲要求、教材内容和学生实际。
4、教法设计紧扣教学目的、符合课型特点和学科特点、有利于发展学生智能,可行性强。
二、理论联系实际原则--说课活动的灵魂
说课是说者向听者战士其对某节课教学设想的一种方式,是教学与研究相结合的一种活动。
因此在说课活动小中,说课人不仅要说清其教学构想,还要说清
其构想的理论与实际两个方面的依据,将教育教学理论与课堂教学时间有机的结合起来,做到理论与实践的高度统一。
1、说课要有理论指导。
2、教法设计应上升到理论高度。
3、理论与实际要
有机统一。
三、实效性原则--说课活动的核心
任何活动的开展,考试大都有其鲜明的目的。
说课活动也不例外。
说课的目的就是要通过“说课”这一简易、速成的形式或手段来在短时间内集思广益,检验和提高教师的教学能力、教研能力,从而优化了课堂教学过程,提高课堂教学效率。
因此,“实效性”就成了说课活动的核心。
为保证每一次说课活动都能达到预期目的、收到可观实效,至少要做到以下几点。
1、目的明确。
2、针对性强大。
3、准备充分。
4、评说准确。
四、创新性原则——说课活动的生命线
说课是深层次的教研活动,是教师将教学构想转化为教学活动之前的一种课前预演,其本身也是集体备课。
在说课活动的一个组成部分。
尤其是研究性说课,其实质就是集体备课。
在说课活动中,说课人一方面要立足自己的教学特长、教学风格。
另一方面更要借助有同行、专家参与评说众人共同研究的良好机会,树立创新的意识和勇气,大胆假设,小心求证,探索出新的教学思路和方法,从而为断提高自己的业务水平,进而不断提高教学质量。
只有在说课中不断发现新问题、解决新问题,才能使说课活动永远“新鲜”、充满生机和活力。