气动调节阀结构图
气动调节阀的结构和工作原理

气动调节阀的结构和工作原理一、阀体结构:阀体是气动调节阀的主要部分,常见的结构有直通型、角型和三通型等。
直通型阀体具有流体通道直接通畅、流体阻力小的特点,适用于流量调节;角型阀体具有结构紧凑、占用空间小的特点,适用于压力和温度的调节;三通型阀体具有两个入口和一个出口的特点,适用于流量的分散或合并。
二、阀芯结构:阀芯是气动调节阀的主要控制部分,常见的结构有直行式、角行式、微调式和滚筒式等。
直行式阀芯沿阀体轴线方向移动,一般用于流量和温度的调节;角行式阀芯可通过旋转来调节流量和温度;微调式阀芯是一种特殊的阀芯,其调节范围较小,适用于对流量或温度进行微小调节。
三、作用器:作用器是气动调节阀的执行部分,其主要作用是将输入的信号转化为阀芯的运动,从而实现流量、压力、温度等参数的调节。
常见的作用器有气动活塞式和气动膜片式两种。
气动活塞式作用器由气缸和活塞两部分组成,通过气源的输入和输出来控制活塞的移动,进而控制阀芯的位置。
气动膜片式作用器由膜片和导向件组成,当输入的气源压力改变时,膜片的形变引起阀芯的运动。
四、附件:附件是气动调节阀的辅助部分,用于增强阀芯的动力和稳定性。
常见的附件有位置器、阻尼器、限位器和手动装置等。
位置器通过检测阀芯位置,将信号转化为阀芯的运动,以实现准确的调节。
阻尼器用于减小阀芯的运动速度,防止因过快的动作造成流量冲击和液压冲击。
限位器用于限制阀芯的运动范围,保护阀芯和阀座不受过大的压力和扭矩。
手动装置用于在自动控制失效或维护时,通过手动操作来控制阀芯的位置。
气动调节阀的工作原理是通过控制输入的气源压力来控制阀芯的位置,从而改变介质的流量、压力、温度等参数。
当输入气源压力改变时,作用器会对阀芯施加力,使阀芯产生运动。
阀芯的位置决定了流通通道的开启程度,从而控制介质的流量或压力。
当输入气源压力恢复到初始状态时,作用器上部的弹簧会将阀芯恢复到初始位置,介质的流量或压力也随之恢复到初始状态。
气动调节阀的结构和原理

气动调节阀的结构和原理
气动调节阀是一种可以通过气动信号控制流体介质的流量、压力、温度等参数的调节阀。
它由执行机构、阀体、阀芯、阀座、导向机构等部分组成。
气动调节阀的结构主要包括:
1. 执行机构:执行机构将气动信号转化为机械动作,带动阀芯和阀座的开启和关闭。
2. 阀体:阀体是调节阀的主要部分,其内部有流体通道。
阀座和阀芯通常位于阀体内部,通过控制阀芯的位置来调节流体介质的通路。
3. 阀芯:阀芯是阀体内活动的零件,通常由柱状或圆柱状的构件组成。
阀芯与阀座紧密配合,可依靠阀芯的上下运动控制介质的流量。
4. 阀座:阀座是阀体内固定的部分,通常由金属或弹性材料制成。
它的形状与阀芯相呼应,通过与阀芯接触产生密封,控制流体的通道。
5. 导向机构:导向机构用于引导阀芯的运动轨迹,确保阀芯与阀座的良好配合。
气动调节阀的工作原理:
1. 当气动信号输入执行机构时,执行机构将气动信号转化为机械动作,推动阀芯与阀座分离或接触。
2. 当阀芯与阀座接触时,阀体内的流体介质通过阀芯与阀座之间的通道流过。
根据阀芯的位置,调节阀的开度大小,从而控制介质的流量或压力等参数。
3. 当气动信号停止或调节信号作用于执行机构方向变化时,阀
芯位置发生相应的变化,从而改变阀体内的通道大小,调整介质通路,实现对流体参数的调节。
通过控制气动信号的大小和方向,气动调节阀可以精确地控制流体介质的流量、压力、温度等参数,保证工业过程的正常运行和控制。
气动调节阀结构与原理

气动调节阀结构与原理气动调节阀是一种通过气动力来控制流体介质流量、压力和液位的调节装置。
它由阀体、阀瓣、执行器、气缸、位置调节机构等部件组成。
1. 阀体:阀体通常采用铸铁、碳钢、不锈钢等材料制成,具有较高的强度和耐腐蚀能力。
阀体内部设有阀座,阀座上有一个阀座孔,用以控制流体的流量。
2. 阀瓣:阀瓣是气动调节阀的关键部件,通常由金属制成,具有良好的耐磨损和耐腐蚀性能。
阀瓣的动作受到执行器的控制,能按照设定的信号实现开、关和调节流量的控制。
3. 执行器:执行器是用来控制阀瓣的开闭和调节的装置,一般由气缸、活塞和传感器组成。
它通过获取输入的控制信号,并将其转换为对阀瓣的运动的力和位移。
4. 气缸:气缸是执行器的核心部件,由气体活塞和气缸筒组成。
当气缸接收到气源信号时,气体活塞会在气缸筒内做往复运动,通过连接杆将力传递给阀瓣,实现流量和压力的调节。
5. 位置调节机构:位置调节机构用于测量和控制阀瓣的位置,在气动调节阀的工作过程中起到调节和控制流量的作用。
位置调节机构一般包括定位阀和位置传感器。
气动调节阀的工作原理如下:当气动调节阀接收到来自控制系统的压力信号时,信号会被传递给执行器,执行器接收到信号后会控制气缸的运动。
当气缸伸出时,连接杆将力传递给阀瓣,使其打开;当气缸缩回时,连接杆将力收回,阀瓣关闭。
通过改变气缸的长度来调节阀瓣的开度,进而控制流体介质的流量和压力。
在实际应用中,气动调节阀通常会配备位置传感器,用来监测阀瓣的位置并反馈给控制系统。
控制系统会根据位置传感器的反馈信号来调整气动调节阀的动作,从而实现更精确的流量调节和压力控制。
总之,气动调节阀通过气动力来控制流体介质的流量、压力和液位。
其结构由阀体、阀瓣、执行器、气缸和位置调节机构等部件组成。
它的工作原理是通过控制执行器的运动,使阀瓣开闭,进而实现对流体介质的精确调节和控制。
干货:气动调节阀工作原理图解及结构图

⼲货:⽓动调节阀⼯作原理图解及结构图⽓动调节阀在化⼯⽣产中是很重要的,它是组成⼯业⾃动化系统的重要环节,它就像是⽣产过程⾃动化的⼿和脚⼀样必须。
⽓动调节阀在⽯油、化⼯、电⼒、冶⾦等⼯业企业中都有着⼴泛的应⽤,接下来就带⼤家来了解⽓动调节阀的相关知识。
⽓动调节阀⼯作原理图解 ⽓动调节阀通常由⽓动执⾏机构和调节阀连接安装调试组成,⽓动执⾏机构可分为单作⽤式和双作⽤式两种,单作⽤执⾏器内有复位弹簧,⽽双作⽤执⾏器内没有复位弹簧。
其中单作⽤执⾏器,可在失去起源或突然故障时,⾃动归位到阀门初始所设置的开启或关闭状态。
⽓动调节阀根据动作形式分⽓开型和⽓关型两种,即所谓的常开型和常闭型,⽓动调节阀的⽓开或⽓关,通常是通过执⾏机构的正反作⽤和阀态结构的不同组装⽅式实现。
⽓动调节阀结构 ⽓动调节阀主要由⽓动执⾏机构、阀体和附件三部分组成。
执⾏机构以洁净压缩空⽓为动⼒,接收4~20毫安电信号或20~100KPa⽓信号,驱动阀体运动,改变阀芯与阀座间的流通⾯积,从⽽达到调节流量的作⽤。
为了改善阀门的线性度,克服阀杆的摩擦⼒和被调介质⼯况(温度、压⼒)变化引起的影响,使⽤阀门定位器与调节阀配套,从⽽使阀门位置能按调节信号精准定位。
执⾏机构由隔膜/活塞、弹簧、⼿轮、⽓动杆、连轴器等主要部件构成;阀体的主要部件有阀笼、阀瓣、阀座、阀杆、阀笼压环等;其他附件如电磁阀、减压阀、过滤器、电流/⽓压转换器、定位器、流量放⼤器等。
为了机组安全运⾏,⼀些重要的阀门设计有电磁阀、保位阀、快速泄压阀等附件,确保调节阀在失电、失信号或失⽓情况下实现快开(关)或保卫功能(三断⾃锁保护功能),满⾜⼯艺系统安全运⾏要求。
控制阀的三断保护:断⽓源保护、断电源保护和断信号源保护。
⽓动调节阀结构图 ⽓动调节阀作⽤⽅式: ⽓开型(常闭型)是当膜头上空⽓压⼒增加时,阀门向增加开度⽅向动作,当达到输⼊⽓压上限时,阀门处于全开状态。
反过来,当空⽓压⼒减⼩时,阀门向关闭⽅向动作,在没有输⼊空⽓时,阀门全闭。
气动调节阀的结构和工作原理

气动调节阀常见于钢铁行业,尤其广泛应用于加热炉、卷取炉等燃烧控制系统。
本文根据气动调节阀的结构和工作原理对在气动调节阀在日常使用的常规维护和常见故障进行了分析研究,为设备维护和故障维修提供了参考。
本文以美国博雷(BARY)厂家生产的S92/93系列的气动执行机构为例,结合现场实际使用情况,进行了分析和总结。
阀门公称直径DN250,介质为混合煤气,气源为仪表压空,压力为3-5Bar,电磁阀为24V。
1、气动调节阀的结构和工作原理1.1、气动调节阀的结构气动调节阀由执行机构和阀体两部分组成。
1.2、气动调节阀的工作原理气动调节阀的工作原理:气动调节阀由执行机构和调节机构组成。
执行机构是调节阀的推力部件,当调节器或定位器得到4-20mA信号时,控制电磁阀24V信号到,打开,使得仪表压空进入执行机构汽缸,转动阀杆使阀体动作,当到达需要指定开度时,位置反馈使得定位器停止信号输出,维持当前位置。
当需要关闭阀门时,定位器得到关闭信号,使电磁阀停止供气,汽缸靠内部弹簧反作用力,使阀门关闭。
当需要从满度减少开度时,定位器输出气源压力会减弱,弹簧自身反作用力致使阀门向关闭方向动作,直至信号压力与弹簧压力平衡,到达指定开度,以此来控制该介质流量。
2、气动调节阀的日常维护在对气动调节阀日常点巡检中,要注意以下几点:一是检查仪表气源是否正常,检查过滤器、减压阀是否正常,观察压力是否在3-5Bar;二是观察汽缸有无漏气现象,尤其是阀杆连接处和两端盖处;三是检查电磁阀是否工作正常,有无漏气现象;四是检查定位器工作是否正常,有无漏气现象;五是检查所有连接部件固定螺丝是否紧牢;六是尽量避免过多浮灰覆盖到执行机构上,要市场保持工作环境清洁。
3、气动调节阀常见故障原因分析3.1、气动调节阀无反馈信号气动调节阀的信号线由一对控制信号线和一对反馈信号线组成。
当PLC给阀门一个信号时,信号在调节阀的定位器中进行信号转换,通过气源压力来控制阀杆动作。
气动阀原理和操作介绍ppt课件

气动截止阀
图2-8 设计中性点位置的轴系图
26
气动截止阀
“中性点”勺尺是怎么做出来的? 以失气关/直接式手轮的气动截止阀轴系图为例 维修人员在每次解体检修阀门后期都要重新标定勺尺高度,该 工作在阀门组装完成后,品质再鉴定之前执行。内容有测量数 据;总体计算,气动检查和机加工4个步骤 1.测量数据 首先检查各联接紧固部件是否牢固可靠; *摇手轮使手轮杆滑块在气动杆导套中至下止位。测量锁紧器 到手轮轴下表面的距离记为H;(此时阀门为关闭状态) *反向摇手轮使手轮杆滑块在气动杆导套中至上止位。测量锁 紧器到手轮轴下表面的距离记为H1;(阀门仍为关闭状态)
当气动阀手轮机构设置在某一点(或区)时,既不影响远程控 制阀门全开又不影响其全关,这个点(或区)就称其为这个气动阀 的手轮“中性点”.或者叫做“空位点”。
气动阀的“中性点”是由手动机构的添置带来的,因此没 有手动机构的气动阀门不存在“中性点”问题。
18
气动截止阀
失气开
失气关
SEREG间接手轮气动阀 SEREG直接手轮气动阀
为了防止活塞无限制的外滑而损坏阀门,既在气缸盖上安置 了限位螺栓,来控制阀门的开(或关)情况。为了使气动头能快 速可靠地操作阀门,限位螺栓上的排气孔是非常必要的。
10
气动阀的基本知识
图1-5 卧式活塞式气动头模型
11
气动阀的基本知识
12
气动阀的基本知识
B 立式活塞式气动头 立式活塞式气动头一般多用于调节阀。它由圆筒气缸和盖与 活塞以及其上的密封环组成密闭的空间,气动弹簧(双向进气 没有弹簧)使活塞体沿气缸壁压向阀门的安全位置,当进气口 充入压缩空气后气缸的密闭区压力升高,迫使活塞克服弹簧力 向弹簧力反向滑动,达到开关(或调节)阀门的目的. 当气动头失去气源后,阀门在弹簧的作用下,迅速回到安全 位置。为了使气动头能快速可靠地操作阀门,维修时及时疏通 排气孔是非常必要的。
气动调节阀教学课件PPT

案例二
某电厂锅炉给水系统,选用具有大流量、 高可调比和低泄漏率的气动调节阀,满足 了系统对流量和压力的精确控制要求。
06 发展趋势与智能化技术应 用
当前行业发展趋势分析
节能环保需求推动
随着全球环保意识的提高,气动调节阀行业正朝着更加节 能环保的方向发展,高效、低能耗的产品受到市场青睐。
智能化、自动化趋势明显
考虑附件配置
根据需要选择定位器、手轮、电磁阀等附件, 提高阀门的使用性能和可靠性。
案例分析:成功选型经验分享
案例一
案例三
某化工厂反应釜温度控制系统,选用具 有良好密封性能和耐高温性能的气动调 节阀,成功实现了温度的精确控制。
某制药厂药液流量控制系统,选用具有 防腐蚀材质和卫生级标准的气动调节阀 ,确保了药品生产的质量和安全。
弹簧复位型在频繁动作时可能导致弹簧疲劳 失效;非弹簧复位型在失去气源时无法自动 复位,需要手动操作。
03 阀门定位器与附件选择
阀门定位器作用及原理
作用
阀门定位器是气动调节阀的重要附件,主要用于改善阀门的位置控制精度,提高阀门对信号变化的响应速度,以 及克服阀杆摩擦力等非线性因素对控制性能的影响。
自动化控制算法
采用先进的控制算法,实现气动调节阀的精确控 制和自动调节,提高生产效率和产品质量。
3
远程监控与故障诊断
借助物联网技术,实现远程监控和故障诊断,及 时发现并解决问题,降低运维成本。
未来发展方向预测
智能化水平进一步提高
01
随着人工智能、机器学习等技术的不断发展,气动调节阀的智
能化水平将进一步提高,实现更加精准、高效的控制。
原理
阀门定位器通过接收来自控制器的控制信号,与阀门的实际位置进行比较,然后输出相应的气压信号去驱动执行 机构,使阀门移动到正确的位置。同时,阀门定位器还具有反馈功能,可以将阀门的实际位置反馈给控制器,以 便进行更精确的控制。
CCI调节阀样本中文

法兰体设计在结构上满足 ISAS75.03 法兰间距尺寸,承插焊 适于 2 寸以下阀,对焊适于 16 寸以下阀。
图 1:带手轮或手轮切断的 840G 调节阀
CCI 的 MSD-Ⅱ弹簧-膜片结构执行机构是标准化的,并可根 据调节阀的尺寸事先选样,为内置式,分为反作用(弹簧关) 或正作用(弹簧开)两种作用形式。详细资料请参见 CCI MSD-Ⅱ执行结构一览表。
Exia Ⅱ BT6 IP66
空空气气过过滤滤调调节节器器
最大最供大压供:压1:51k5gkf/gcfm/c3m3 最大输出压力:4-7kgf/cm3
铝,不锈钢
含环氧树脂的铝镀层适于远海
气动定位器(P/P)
输入:315Psi(0.27kgf/cm3) 提供:20100Psi(1.47kgf/cm3)
附件 多种规格适用
于不同需要
故障方式 标准类型是气关式, 也可以选择气开式, 也适用于膜片式,活 塞,液动及电动执行 机构
易改变的阀芯 所有阀内组件便 于检查和更换
多弹簧 多弹簧的设计提供了 非常小的滞后和死区
旋转膜片执行机构 旋转膜片执行机构使得 有效压力区域变化最小 及提高精确度
可靠的阀芯设计 单个 P 端,多级,V 形槽笼 罩
■ 防气蚀阀内组建 ■ 低噪音阀内组建 ■ 高可调范围 ■ 适合于恶劣环境 ■ 小型,易维护 ■ 建议闪蒸使用
■ 高容量 ■ 操作稳定 ■ 结构耐久 ■ 多种阀体,阀芯设计 ■ QA 符合 ANSI B16.34
阀门 150 300 600 900 1500 2500
尺寸 -6" -12" -20
阀门 150 300 600 900 1500 2500
8
840 系列调节阀的额定 CV 值
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
气动调节阀结构图
气动薄膜调节阀:按其结构和用途的不同种类很多,高压氧能大多选用正作用、直通、单座等百分比调节阀,其标准代号为ZMAP,主要由气室、薄膜、推力盘、弹簧、推杆、调节螺母。
阀位标尺、阀杆、阀芯、阀座、填料函、阀体、阀盖和支架等组成。
工作原理:当气室输入了0.02~0.10MPa信号压力之后,薄膜产生推力,使推力盘向下移动,压缩弹簧,带动推杆、阀杆、阀芯向下移动,阀芯离开了阀座,从而使压缩空气流通。
当信号压力维持一定时,阀门就维持在一定的开度上。
隔膜阀联接着润滑油的低压安全油系统与EH油的高压安全油系统,其作用是润滑油系统的低压安全油压力降低到1.4Mpa时,可以通过EH油系统遮断汽轮机。
当汽轮机正常工作时,润滑油系统的透平油进入阀内活塞上的油室中,克服弹簧力,使隔膜阀在关闭位置,堵住EH危急遮断油母管的泄油通道,使EH系统投入工作。
当危急遮断器动作或手动打闸时均能使透平油压力降低或消失,从而使弹簧打开把EH危急遮断油泄掉,关闭主汽门和调门
很多阀门的名称都是有误区的,气动薄膜阀国内喜欢把他看成是调节阀.但从专业角度来说,这个名词只说明这个阀门是由一个"气动薄膜执行机构"来控制的阀门,阀门与薄膜没有什么关系,用气动薄膜来控制的,不一定是调节用的,(但现在很多调节阀门都是用薄膜执行机构来控制).薄膜执行机构可以安装在任何阀门上面,但
国内很多厂家只装在截止阀(单座阀)、调节阀上面.
隔膜阀,这是一个阀门的品种。
这个阀门是通过阀体内安装的膜片与阀体产生挤压达到密封效果。
隔膜阀可以由手动、电动、气动控制。
气动中就可以选择薄膜执行机构和活塞执行机构,隔膜阀的结构不同,还可以分为:直通隔膜阀,堰式隔膜阀,角型隔膜阀。
他们的运用场合是不同的。
综上所述,回答楼主的问题。
薄膜调节阀:一种有气动薄膜执行机构加定位器加某某阀门组成的一个调节阀,国内一般就是用截止类阀门做调节,也叫做单座薄膜调节阀。
隔膜阀,只是一款发的品种。
无法判断他的控制方式和详细的结构。