复变函数积分方法总结定稿版
复变函数积分(总结).

意点的函数值也就完全确定;且其模 在f (边z)界处取得极值
3.解析函数可利用积分形式表示 f (z) 1 f ( )d
2i C z
4.解析函数的任意阶的导数都是存在的,且都是解析函数.
例1:
z3 cos 1
z 2dz
n
f (z)dz
C
=
k 1
Ck
f (z)dz
接下来,一般可按照情形(2)利用柯西积分公式进行计算
问题:若柯西积分公式不能利用的话, ????? 第五章,将给出一个计算积分简单实用的“万能公式”
3. 解析函数的性质
1. 在(多)连通域内解析的函数沿(多)连通域的边界积分值为0。
f (z)dz 0
分别围绕z1 , z2 构造小的闭曲线C1 , C2
根据复合闭路定理
c
(z
z 1)( z
1) 2
dz
c1
(z
z 1)(z
1) 2
dz
c2
(z
z 1)(z
1) 2
dz
i i 0
22
例4:
z zdz z zdz
z 3 z
z 3 3
1
1
z dz z dz
3 z 3
3 z 3
z
dz
c (z 1)( z 1)2
解: 被 积 函 数
z
在 积 分 曲 线 所 围 成 的 区域 内 只 有 一 个 奇 点
(z 1)(z 1)2
z 1
分母 z 1为零的点
z
(z
z 1)2
(z 1)(z 1)2
z 1
z dz c (z 1)(z 1)2
复变函数积分方法总结()

4.4.1如果f(z)在扩充复平面上只有有限个孤立奇点(包括无穷远处在内)设为z1,z2,…,zn 则f(z)在各奇点的留数总和为零,即
+Res[f(z), ]=0;
4.4.2Res[f(z), ]=-Res[f( ) ,0]
例题:求下列Res[f(z), ]的值
复变函数积分方法总结
经营教育
乐享
[选取日期]
复变函数积分方法总结
数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。就复变函数:
z=x+iy i²=-1,x,y分别称为z的实部和虚部,记作x=Re(z),y=Im(z)。arg z=θ₁θ₁称为主值-π<θ₁≤π,Arg=argz+2kπ。利用直角坐标和极坐标的关系式x=rcosθ,y=rsinθ,故z=rcosθ+irsinθ;利用欧拉公式eiθ=cosθ+isinθ。z=reiθ。
∑1= (zk-zk-1)
有可设k=zk,则
∑2= (zk-zk-1)
因为Sn的极限存在,且应与∑1及∑2极限相等。所以
Sn= (∑1+∑2)= =b2-a2
∴ =b2-a2
1.2定义衍生1:参数法:
f(z)=u(x,y)+iv(x,y), z=x+iy带入 得:
= - vdy + i + udy
再设z(t)=x(t)+iy(t) ( ≤t≤ )
= +
=
= + + +
=0+2πi+2πi+0
复变函数积分方法总结(2021年整理)

复变函数积分方法总结(2021年整理)
复变函数积分法,也称为积分变换法,是一种处理复变函数积分的方法。
复变函数积分法指的是用一种变换方式,将一个复变函数的求积分问题的复变函数积分问题转化为单变函数的积分问题,从而使复杂的求积分变得轻松实用。
根据不同的变换方式,它可以分为椭圆积分法、Elliptic Integrals方法、Hypergeometric Function方法、Kersey方法等。
椭圆积分的变换方式是令自变量z= g(x),将复变函数f(x)的求积分转化为在自变量g(x)上求单变函数F(z)的积分 f(x)dx,即 F(z)dg(x)。
它有效地建立了复合变换,进而使得复杂的求积分问题变得轻松可行。
Kersey 估值方法是一类方法,主要是利用梯度贴片方法估计超几何函数的值,从而进行积分计算。
它可以实现对复变函数的快速积分计算,从而求解复变函数的积分问题。
复变函数积分方法总结

复变函数积分方法总结经营教育乐享[选取日期]复变函数积分方法总结数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。
就复变函数:z=x+iy i2=-1 ,x,y分别称为z的实部和虚部,记作x=Re(z),y=Im(z)。
arg z=θ? θ?称为主值-π<θ?≤π,Arg=argz+2kπ。
利用直角坐标和极坐标的关系式x=rcosθ,y=rsinθ,故z= rcosθ+i rsinθ;利用欧拉公式e iθ=cosθ+isinθ。
z=re iθ。
1.定义法求积分:定义:设函数w=f(z)定义在区域D内,C为区域D内起点为A终点为B的一条光滑的有向曲线,把曲线C 任意分成n 个弧段,设分点为A=z 0 ,z 1,…,z k-1,z k ,…,z n =B ,在每个弧段z k-1 z k (k=1,2…n)上任取一点?k 并作和式S n =∑f (?k )nk −1(z k -z k-1)= ∑f (?k )n k −1?z k 记?z k = z k - z k-1,弧段z k-1 z k 的长度 δ=max1≤k ≤n {?S k }(k=1,2…,n),当 δ→0时,不论对c 的分发即?k 的取法如何,S n 有唯一的极限,则称该极限值为函数f(z)沿曲线C 的积分为:∫f (z )dz c=limδ 0∑f (?k )nk −1?z k设C 负方向(即B 到A 的积分记作) ∫f (z )dz c −.当C 为闭曲线时,f(z)的积分记作∮f (z )dz c (C 圆周正方向为逆时针方向)例题:计算积分1)∫dz c 2) ∫2zdz c ,其中C 表示a 到b 的任一曲线。
(1) 解:当C 为闭合曲线时,∫dz c =0. ∵f(z)=1 S n =∑f (?k )nk −1(z k -z k-1)=b-a∴lim n 0Sn =b-a,即1)∫dz c =b-a.(2)当C 为闭曲线时,∫dz c =0. f(z)=2z;沿C 连续,则积分∫zdz c 存在,设?k =z k-1,则 ∑1= ∑Z n k −1(k −1)(z k -z k-1) 有可设?k =z k ,则∑2= ∑Z n k −1(k −1)(z k -z k-1)因为S n 的极限存在,且应与∑1及∑2极限相等。
复变函数积分方法总结定稿版

复变函数积分方法总结 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】复变函数积分方法总结经营教育乐享[选取日期]复变函数积分方法总结数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。
就复变函数:z=x+iy i2=-1 ,x,y分别称为z的实部和虚部,记作x=Re(z),y=Im(z)。
arg z=θ? θ?称为主值 -π<θ?≤π,Arg=argz+2kπ。
利用直角坐标和极坐标的关系式x=rcosθ,y=rsinθ,故z= rcosθ+i rsinθ;利用欧拉公式e iθ=cosθ+isinθ。
z=re i θ。
1.定义法求积分:定义:设函数w=f(z)定义在区域D 内,C 为区域D 内起点为A 终点为B 的一条光滑的有向曲线,把曲线C 任意分成n 个弧段,设分点为A=z 0 ,z 1,…,z k-1,z k ,…,z n =B ,在每个弧段z k-1 z k (k=1,2…n)记?z k = z k - z k-1,弧段z k-1 z k 的长度 δ=max1≤k ≤n {?S k }(k=1,2…,n),当 δ→0时,不论对c 的分∫f (z )dz c=limδ 0∑f (?k )nk −1?z k设C 负方向(即B 到A 的积分记作) ∫f (z )dz c −.当C 为闭曲线时,f(z)的积分记作∮f (z )dz c(C 圆周正方向为逆时针方向) 例题:计算积分1)∫dz c 2) ∫2zdz c ,其中C 表示a 到b 的任一曲线。
(1) 解:当C 为闭合曲线时,∫dz c =0. ∵f(z)=1 S n =∑f (?k )nk −1(z k -z k-1)=b-a∴lim n 0Sn =b-a,即1)∫dz c =b-a.(2)当C 为闭曲线时,∫dz c =0. f(z)=2z;沿C 连续,则积分∫zdz c 存在,设?k =z k-1,则 ∑1= ∑Z n k −1(k −1)(z k -z k-1) 有可设?k =z k ,则∑2= ∑Z n k −1(k −1)(z k -z k-1)因为S n 的极限存在,且应与∑1及∑2极限相等。
(完整版)复变函数积分方法总结

复变函数积分方法总结[键入文档副标题]acer[选取日期]复变函数积分方法总结数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。
就复变函数: z=x+iy i²=-1 ,x,y 分别称为z 的实部和虚部,记作x=Re(z),y=Im(z)。
arg z =θ₁ θ₁称为主值 -π<θ₁≤π ,Arg=argz+2k π 。
利用直角坐标和极坐标的关系式x=rcos θ ,y=rsin θ,故z= rcos θ+i rsin θ;利用欧拉公式e i θ=cos θ+isin θ。
z=re i θ。
1.定义法求积分:定义:设函数w=f(z)定义在区域D 内,C 为区域D 内起点为A 终点为B 的一条光滑的有向曲线,把曲线C 任意分成n 个弧段,设分点为A=z 0 ,z 1,…,z k-1,z k ,…,z n =B ,在每个弧段z k-1 z k (k=1,2…n)上任取一点ξk 并作和式S n =∑f(ξk )n k−1(z k -z k-1)= ∑f(ξk )n k−1∆z k 记∆z k = z k - z k-1,弧段z k-1 z k 的长度 δ=max 1≤k≤n {∆S k }(k=1,2…,n),当 δ→0时,不论对c 的分发即ξk 的取法如何,S n 有唯一的极限,则称该极限值为函数f(z)沿曲线C 的积分为:∫f(z)dz c=lim δ 0∑f(ξk )nk−1∆z k设C 负方向(即B 到A 的积分记作) ∫f(z)dz c−.当C 为闭曲线时,f(z)的积分记作∮f(z)dz c(C 圆周正方向为逆时针方向) 例题:计算积分1)∫dz c 2) ∫2zdz c ,其中C 表示a 到b 的任一曲线。
(1) 解:当C 为闭合曲线时,∫dz c=0.∵f(z)=1 S n =∑f(ξk)n k−1(z k -z k-1)=b-a ∴lim n 0Sn =b-a,即1)∫dz c=b-a. (2)当C 为闭曲线时,∫dz c =0. f(z)=2z;沿C 连续,则积分∫zdz c 存在,设ξk =z k-1,则∑1= ∑Z n k−1(k −1)(z k -z k-1) 有可设ξk =z k ,则∑2= ∑Z n k−1(k −1)(z k -z k-1)因为S n 的极限存在,且应与∑1及∑2极限相等。
复变函数的积分方法

复变函数的积分方法一、引言复变函数是数学中的重要概念,它与实变函数有着很大的区别。
复变函数的积分方法是研究复变函数在复平面上的积分性质和计算积分值的方法。
本文将介绍一些常见的复变函数的积分方法。
二、复变函数的积分定义在复变函数中,积分是对函数的一种运算,类似于实变函数中的积分。
复变函数的积分定义如下:设f(z)是定义在复平面上的一个函数,如果存在一个复数C,使得对于给定曲线γ上的任意两个点A和B,都有:∫[A,B]f(z)dz = C那么我们就说f(z)在曲线γ上是可积的,并且称C为f(z)沿曲线γ的积分。
三、复变函数的积分方法1. 直线积分直线积分是最常见的一种复变函数的积分方法。
它是沿着一条直线对复变函数进行积分。
直线积分的计算方法是将直线分成若干小段,然后对每一小段进行积分,最后将所有小段的积分值相加得到整个直线的积分值。
2. 曲线积分曲线积分是复变函数的另一种常见的积分方法。
它是沿着一条曲线对复变函数进行积分。
曲线积分的计算方法是将曲线分成若干小段,然后对每一小段进行积分,最后将所有小段的积分值相加得到整个曲线的积分值。
3. 围道积分围道积分是复变函数的一种特殊的积分方法。
它是沿着一个围道对复变函数进行积分。
围道积分的计算方法是将围道分成若干小段,然后对每一小段进行积分,最后将所有小段的积分值相加得到整个围道的积分值。
围道积分的计算方法比直线积分和曲线积分要复杂一些,需要使用复变函数的柯西-黎曼积分定理等相关定理。
四、复变函数的积分应用复变函数的积分方法在数学和物理中有着广泛的应用。
它可以用来计算复变函数的积分值,求解一些特殊的微分方程,研究复杂的物理现象等。
在数学中,复变函数的积分方法可以用来计算复变函数的奇点,判断函数是否解析,计算函数的留数等。
在物理中,复变函数的积分方法可以用来计算电场、磁场等物理量的积分,求解电磁场的边界值问题,研究光学现象等。
五、总结复变函数的积分方法是研究复变函数的重要内容,它在数学和物理中有着广泛的应用。
复变函数积分方法总结

复变函数积分方法总结经营教育乐享[选取日期]复变函数积分方法总结数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。
就复变函数:z=x+iy i2=-1 ,x,y分别称为z的实部和虚部,记作x=Re(z),y=Im(z)。
arg z=θ? θ?称为主值-π<θ?≤π,Arg=argz+2kπ。
利用直角坐标和极坐标的关系式x=rcosθ,y=rsinθ,故z= rcosθ+i rsinθ;利用欧拉公式e iθ=cosθ+isinθ。
z=re iθ。
1.定义法求积分:定义:设函数w=f(z)定义在区域D内,C为区域D内起点为A终点为B的一条光滑的有向曲线,把曲线C 任意分成n 个弧段,设分点为A=z 0 ,z 1,…,z k-1,z k ,…,z n =B ,在每个弧段z k-1 z k (k=1,2…n)上任取一点?k 并作和式S n =∑f (?k )nk −1(z k -z k-1)= ∑f (?k )n k −1?z k 记?z k = z k - z k-1,弧段z k-1 z k 的长度 δ=max1≤k ≤n {?S k }(k=1,2…,n),当 δ→0时,不论对c 的分发即?k 的取法如何,S n 有唯一的极限,则称该极限值为函数f(z)沿曲线C 的积分为:∫f (z )dz c=limδ 0∑f (?k )nk −1?z k设C 负方向(即B 到A 的积分记作) ∫f (z )dz c −.当C 为闭曲线时,f(z)的积分记作∮f (z )dz c (C 圆周正方向为逆时针方向)例题:计算积分1)∫dz c 2) ∫2zdz c ,其中C 表示a 到b 的任一曲线。
(1) 解:当C 为闭合曲线时,∫dz c =0. ∵f(z)=1 S n =∑f (?k )nk −1(z k -z k-1)=b-a∴lim n 0Sn =b-a,即1)∫dz c =b-a.(2)当C 为闭曲线时,∫dz c =0. f(z)=2z;沿C 连续,则积分∫zdz c 存在,设?k =z k-1,则 ∑1= ∑Z n k −1(k −1)(z k -z k-1) 有可设?k =z k ,则∑2= ∑Z n k −1(k −1)(z k -z k-1)因为S n 的极限存在,且应与∑1及∑2极限相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复变函数积分方法总结精编W O R D版IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】复变函数积分方法总结经营教育乐享[选取日期]复变函数积分方法总结数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。
就复变函数:z=x+iy i2=-1 ,x,y分别称为z的实部和虚部,记作x=Re(z),y=Im(z)。
arg z=θ θ称为主值-π<θ≤π,Arg=argz+2kπ。
利用直角坐标和极坐标的关系式x=rcosθ,y=rsinθ,故z=rcosθ+i rsinθ;利用欧拉公式e iθ=cosθ+isinθ。
z=re iθ。
1.定义法求积分:定义:设函数w=f(z)定义在区域D内,C为区域D内起点为A终点为B的一条光滑的有向曲线,把曲线C 任意分成n 个弧段,设分点为A=z 0 ,z 1,…,z k-1,z k ,…,z n =B ,在每个弧段z k-1 z k (k=1,2…n)上任取一点k 并作和式S n =∑f (k )nk −1(z k -z k-1)= ∑f (k )nk −1z k 记z k =z k - z k-1,弧段z k-1 z k 的长度 δ=max1≤k ≤n {S k }(k=1,2…,n),当 δ→0时,不论对c 的分发即k 的取法如何,S n 有唯一的极限,则称该极限值为函数f(z)沿曲线C 的积分为:∫f (z )dz c=limδ 0∑f (k)n k −1z k设C 负方向(即B 到A 的积分记作) ∫f (z )dz c −.当C 为闭曲线时,f(z)的积分记作∮f (z )dz c (C 圆周正方向为逆时针方向)例题:计算积分1)∫dz c 2) ∫2zdz c ,其中C 表示a 到b 的任一曲线。
(1) 解:当C 为闭合曲线时,∫dz c =0. ∵f(z)=1 S n =∑f (k )nk −1(z k -z k-1)=b-a∴lim n 0Sn =b-a,即1)∫dz c =b-a.(2)当C 为闭曲线时,∫dz c =0. f(z)=2z;沿C 连续,则积分∫zdz c 存在,设k =z k-1,则 ∑1= ∑Z n k −1(k −1)(z k -z k-1) 有可设k =z k ,则∑2= ∑Z n k −1(k −1)(z k -z k-1)因为S n 的极限存在,且应与∑1及∑2极限相等。
所以S n = (∑1+∑2)= ∑k −1n z k (z k 2−z k −12)=b 2-a2∴ ∫2zdz c=b 2-a 2 1.2 定义衍生1:参数法:f(z)=u(x,y)+iv(x,y), z=x+iy 带入∫f (z )dz c 得: ∫f (z )dz c = ∫udx c - vdy + i ∫vdx c + udy 再设z(t)=x(t)+iy(t) (α≤t ≤β)∫f (z )dz c =∫f (z (t ))z (t )dt βα参数方程书写:z=z 0+(z 1-z 0)t (0≤t ≤1);z=z 0+re i θ,(0≤θ≤2π)例题1: ∫z 2dz 3+i 0积分路线是原点到3+i 的直线段解:参数方程 z=(3+i )t∫z 2dz 3+i 0=∫[(3+i )t ]2[(3+i )t ]′dt 1=(3+i)3∫t 2dt 10=6+263i例题2: 沿曲线y=x 2计算∫(x 2+iy)dz 1+i解: 参数方程 {x =ty =t 2 或z=t+it 2 (0≤t ≤1)∫(x 2+iy )dz 1+i 0=∫(t 2+it 2)(1+2it )dt 1=(1+i)[∫(t 2dt )dt 10 + 2i ∫t 3dt 1] =-16+56i1.3定义衍生2 重要积分结果: z=z 0+ re i θ ,(0≤θ≤2π) 由参数法可得:∮dz (z −z 0)n +1c =∫ire iθe i(n +1)θrn +12πd θ=irn ∫e −inθ1+i 0d θ∮dz(z −z 0)n +1c={2πi n =00 n ≠0例题1:∮dzz −2|z |=1例题2:∮dzz −12|z |=1解: =0 解 =2πi 2.柯西积分定理法:2.1 柯西-古萨特定理:若f(z)dz 在单连通区域B 内解析,则对B 内的任意一条封闭曲线有:∮f (z )dz c=02.2定理2:当f 为单连通B 内的解析函数是积分与路线无关,仅由积分路线的起点z 0与终点z 1来确定。
2.3闭路复合定理:设函数f(z)在单连通区域D 内解析,C 与C 1是D 内两条正向简单闭曲线,C 1在C 的内部,且以复合闭路Γ=C+C 1所围成的多连通区域G 全含于D 则有:∮f (z )dz Γ=∮f (z )dz c+∮f (z )dz c 1=0即∮f (z )dz c=∮f (z )dzc 1推论:∮f (z )dz c=∑∮f (z )dzc kn k =1例题:∮2z −1z 2−zdz cC 为包含0和1的正向简单曲线。
解: 被积函数奇点z=0和z=1.在C 内互不相交,互不包含的正向曲线c 1和c 2。
∮2z −1z 2−zdz c=∮2z −1z(1−z )dz c1+∮2z −1z(1−z )dzc2=∮1z −1+1zdz c1+∮1z −1+1zdzc2=∮1z −1dz c1+∮1zdz c1+∮1z −1dz c2+∮1zdzc2=0+2πi+2πi+0 =4πi2.4原函数法(牛顿-莱布尼茨公式):定理2.2可知,解析函数在单连通域B 内沿简单曲线C 的积分只与起点z 0与终点z 1有关,即∫f ()c d = ∫f ()z1z 0d 这里的z 1和z 0积分的上下限。
当下限z 0固定,让上限z 1在B 内变动,则积分∫f ()z1zd在B 内确定了一个单值函数F(z),即F(z)= ∫f ()z1z 0d 所以有 若f(z)在单连通区域B 内解析,则函数F(z)必为B 内的解析函数,且F (z) =f(z).根据定理2.2和2.4可得∫f (k )z 1zd k = F(z 1) - F(z 0). 例题:求∫zcosz 1d k 解: 函数zcosz 在全平面内解析∴∫zcosz 1d k =zsinz |0i -∫sinz 10d k = isin i+cosz |0i =isin i+cos i-1 =ie −1−12i+e −1+12i-1=e -1-1此方法计算复变函数的积分和计算微积分学中类似的方法,但是要注意复变适合此方法的条件。
2.5柯西积分公式法:设B为以单连通区域,z0位B中一点,如f(z)在B内解析,则函数f(z)z−z0在z0不解析,所以在B内沿围绕z0的闭曲线C的积分∫f(z)z−z0dzc一般不为零。
取z0位中心,以δ>0为半径的正向圆周|z−z0|=δ位积分曲线cδ,由于f(z)的连续性,所以∫f(z)z−z0dzc =∫f(z)z−z0dzcδ=2πif(z0)2.5.1定理:若f(z)在区域D内解析,C为D内任何一条正向简单闭曲线,它的内部完全含于D,z0为C内的任一点,有:f(z0)=12πi∮f(z)z−z0dz例题:1)∮|z|=2)∮z(9−z2)(z+i)dz |z|=2解:=2π isin z|z=0=0 解: =∮z9−z2z−(−i)dz|z|=2=2πi z9−z2|z=-i=π52.6解析函数的高阶导数:解析函数的导数仍是解析函数,它的n阶导数为f(n)(z0)=n!2πi ∮f(z)(z−z0)n+1dz(n=1,2…)其中C为f(z)的解析区域D内围绕z0的任一条正向简单闭曲线,而它的内部全含于D.例题:∮e zz5dzcC:|Z|=1解:由高阶导数的柯西积分公式:原式=2πi 14!(e z )(4)|z=π2=πi123.解析函数与调和函数:定义:(1)调和函数:如果二元实函数φ(x,y)在区域D 内具有二阶连续函数,且满足拉普拉斯方程:2φx 2+2φy 2=0,则称φ(x,y)为区域D 内的调和函数。
若f(z)=u+iv 为解析函数,则u 和v 都是调和函数,反之不一定正确(2)共轭调和函数:u(x ,y)为区域内给定的调和函数,我们把是 u+iv 在D 内构成解析函数的调和函数v(x,y)称为u(x,y)的共轭调和函数。
若v 是u 的共轭调和函数,则-u 是v 的共轭调和函数关系:任何在区域D 内解析的函数,它的实部和虚部都是D 内的调和函数;且虚部为实部的共轭调和函数。
3.1求解方法:(1)偏积分法:若已知实部u=u(x,y),利用C-R 方程先求得v 的偏导数ux=vy ,两边对y 积分得v=∫u x dy +g (x ).再由u y =−vx 又得x ∫vx dy +g (x )=- uy 从而g (x )=∫[−u y−x∫ux dy ]dx + Cv=∫u xdy + ∫[−u y−x∫ux dy ]dx + C 同理可由v(x,y)求u(x,y).3.2不定积分法:因为f (z)=U x +i V x = U x -iU y = V y +iV X所以f(z)=∫U (z )dz +c f(z)=∫V (z )dz +c 3.3线积分法:若已知实部u=u(x,y),利用C-R 方程可得的dv=vxdx+vydy=-uydx+∫u xdy 故虚部为v=∫−u ydx +(x,y)(x0,y 0,)u xdy +C该积分与路径无关,可自选路径,同理已知v(x,y)也可求u(x,y).例题:设u=x 2-y 2+xy 为调和函数,试求其共轭函数v(x,y)级解析函数f(z)=u(x,y)+iv(x,y) 解:利用C-R 条件u x=2x+y uy=-2y+x2ux 2=22uy 2=-2所以满足拉普拉斯方程,有v x=−u y=2y-xvy=u x=2x+y所以v=∫(2y −x )dx +φ(y )=2xy- x 22+φ(y )v y=2x+φ(y)=2x+y φ(y)=y φ(y )=y 22+c v(x,y)=2xy- x 22+y 22+cf(z)=u(x,y)+iv(x,y)=12(2-i)z 2+iC4.留数求积分:留数定义:设z 0为函数f(z)的一个孤立奇点,即f(z)在去心邻域、0<|z −z 0|<δ ,我们把f(z)在z 0处的洛朗展开式中负一次幂项系数c -1称为f(z)在z 0处的留数,记为Res[f(z),z 0]即Res[f(z),z 0]=c -1或者Res[f(z),z 0]=12πi ∮f (z )dz cC 为0<|z −z 0|<δ4.1留数定理:设函数f(z)在区域D 内除有限个孤立奇点z 1z 2…z n,其中z k 表示函数f (z )的孤立奇点 4.2孤立奇点:定义:如果函数k (k )在z 0不解析,但在z 0某个去心邻域0<|z −z 0|<δ内解析,则称z 0为f (z )的孤立奇点。