新型智能交通信号控制系统(终)
智能交通信号控制系统的原理与实践

智能交通信号控制系统的作用
提高交通效率
节约能源
减少交通拥堵,提升通行效率
优化信号灯控制,减少车辆 停等时间
增加交通安全
改善环境质量
避免交通事故,保障行车安全 降低排放,减少空气污染
பைடு நூலகம்
智能信号控制系统的未来发展
智能交通网络
实现车辆互联互通,提高交通运行效率
智能交通大数据
基于数据分析优化交通管理策略
智能交通安全
未来,AI技术将在智能信号控制系统中发挥越 来越重要的作用。深度学习、强化学习等AI技 术将为系统提供更智能、高效的信号控制策略。
多模式信号控制的实现
支持多种交通模式 实现更灵活、高效的交通管理
智能信号控制普及 自行车、电动车等新型交通工 具将更加普及和完善
协同性交通管理的实现
实现车辆协同工作
车辆之间、车辆与基础设施之间的互联互通将更加密切,实现 更高效的交通管理
预测交通事故,提前采取应对措施
智能信号控制系统的优势比较
传统信号控制系统
静态时序控制 固定配时方案 对交通流量变化响应慢
智能信号控制系统
动态调整信号时序 智能优化配时 快速响应交通态势变化
机器学习应用
基于历史数据预测交通 状况 实现智能信号控制
智能交通管理平台
统一管理多个交通信号 系统 实现智能调度和监控
智能信号控制系 统的应用案例
智能信号控制系统在上海市的城市道路交通中 得到了广泛应用。通过实时的信号灯控制和交 通流量监测,成功减少了交通拥堵现象,提升 了整体交通效率。
THANKS
感谢观看
某市A区的智能控制系统成功降低了拥堵时间,提高 了通勤效率。某城市B的系统与智能公交系统联动, 优化了公共交通运营效率。某高速公路上的系统有效 减少了交通事故发生率。
智能交通信号控制技术手册

智能交通信号控制技术手册一、引言智能交通信号控制技术是现代城市交通管理的重要组成部分,通过应用计算机、通信、传感器等信息技术手段,实现对交通信号的自动控制和优化,提高城市交通系统的效率和安全性。
本手册旨在介绍智能交通信号控制技术的原理、应用和操作方法,为相关从业人员提供指导和参考。
二、智能交通信号控制技术的原理智能交通信号控制技术基于交通流理论和控制理论,通过对交通流量和信号灯状态的实时监测和分析,确定最优的信号控制策略。
主要原理包括:1.交通流量检测:利用传感器、摄像头等设备对交叉口车辆和行人流量进行实时监测,获取准确的交通数据。
2.信号状态优化:根据实时监测的交通数据,结合交通流理论和控制算法,确定最优的信号灯状态组合,以达到最大化交通效率的目标。
3.交通决策与控制:通过计算机和通信技术,实现交通信号灯的自动控制和协调。
根据实际情况进行决策,合理调整信号灯周期和绿灯时间,以适应不同时段和道路情况。
三、智能交通信号控制技术的应用智能交通信号控制技术广泛应用于城市交通管理、智能交通系统和智能交通设备等方面。
1.城市交通管理:通过智能交通信号控制技术,对城市道路交通进行智能调度,合理分配交通资源,缓解交通压力,提高交通运行效率。
2.智能交通系统:智能交通信号控制技术是智能交通系统的重要组成部分,通过与其他智能交通设备的联动,实现对交通流量、车辆行驶状态等信息的全面监控和分析。
3.智能交通设备:智能交通信号控制技术也应用于智能交通设备的研发和生产,如智能交通信号灯、智能交通检测设备等,提升设备的智能化水平,提高设备性能和可靠性。
四、智能交通信号控制技术的操作方法智能交通信号控制技术的操作包括以下几个步骤:1.系统设置与参数调整:根据实际道路情况,对智能交通信号控制系统进行设置和参数调整,包括交通流量监测区域、信号灯状态组合、延时时间等。
2.数据采集与分析:通过传感器、摄像头等设备对交通流量进行实时采集,并进行数据分析,获取交通流量、车速、拥堵情况等信息。
面向智能交通的智能交叉路口信号控制系统

面向智能交通的智能交叉路口信号控制系统智能交通是现代城市发展的必然产物,而智能交叉路口信号控制系统则是实现智能交通的重要组成部分。
本文将从智能交叉路口信号控制系统的需求、技术原理、实现方法等方面进行详细介绍。
一、智能交叉路口信号控制系统的需求在传统的交通信号灯控制系统中,信号的相位、时长和配时方案都是固定的,无法根据实时交通情况进行调整。
这就导致了交叉路口拥堵、行车速度低下等问题。
因此,智能交叉路口信号控制系统的出现解决了这些问题。
智能交叉路口信号控制系统的主要需求包括以下几个方面:1. 实时响应能力:系统能够根据实时的交通状况,及时调整信号的相位和时长,以提高交通效率和减少拥堵。
2. 智能化决策能力:系统能够根据不同时间段、不同路段的交通流量,以及交叉口的道路网络结构和拓扑关系,智能化地进行信号配时决策。
3. 协调性和平衡性:系统能够实现不同道路上的信号互相协调,并在保证主干道通畅的同时,适度减少次干道的等待时间,提高交通流量。
4. 可扩展性和可靠性:系统能够灵活扩展,适应不同规模和类型的交通路口,并能够保证系统的稳定运行。
二、智能交叉路口信号控制系统的技术原理智能交叉路口信号控制系统的实现离不开以下几种关键技术:1. 实时交通数据采集与处理技术:通过交通视频监控、车辆感知技术等手段,实时采集交通流量、车速、车辆类型等数据,并进行处理和分析。
2. 交通流量预测技术:通过对历史数据和实时数据的分析,可以对未来一段时间内的交通流量进行预测,为信号配时决策提供依据。
3. 信号相位优化技术:通过优化信号相位的配时方案,使各个交叉口的信号互相配合,最大程度地提高交通流量和通行效率。
4. 通讯技术:将交通信号控制系统与中心控制中心进行连接,实现实时的数据传输、交互和协调。
5. 智能算法技术:利用人工智能、机器学习等技术,对交通数据进行分析和建模,实现信号配时决策的智能化。
三、智能交叉路口信号控制系统的实现方法智能交叉路口信号控制系统的实现方法主要有以下几种:1. 基于传统控制方法的优化:通过对现有控制算法进行改进和优化,来减少交通拥堵和提高交通效率。
交通信号智能控制系统-毕业论文正文

1引言1.1 本课题的意义城市交通控制系统主要是用于城市交通数据监测、交通信号灯控制与交通疏导的计算机综合管理系统,它已经成为现代城市交通监控指挥系统中最重要的组成部分。
因此,如何利用先进的信息技术改造城市交通系统已成为城市交通管理者的共识[1]。
高效的交通灯智能控制系统是解决城市交通问题的关键。
随着经济的快速发展,城市中的车辆逐渐增多,交通拥挤和堵塞现象日趋严重,引起交通事故频发、环境污染加剧等一系列问题。
本设计采用单片机控制,实现交通信号灯的智能控制。
系统根据东西和南北两个方向的车辆情况,自动进行定时控制和智能控制方式的切换,当某一方向没有车辆时,系统会自动切换使另一方向车辆通行。
当两个方向都有车辆时,按照定时控制方式通行。
本设计与普通的交通信号控制系统相比,其优点是可根据路口情况的不同,对交通灯进行差异化控制,从而达到使道路更为通畅的目的,最大限度的缓解交通拥挤情况[2]。
交通信号控制系统是现代城市交通控制和疏导的主要手段。
而作为城市交通基本组成部分的平面交叉路口,其通行能力是解决城市交通问题的关键,而交通信号灯又是交叉路口必不可少的交通控制手段。
随着计算机技术和自动控制技术的发展,以及交通流理论的不断发展完善,交通运输组织与优化理论、技术的不断提高,国内外逐步形成了一批高水平有实效的城市道路交通控制系统[3]。
1.2 国内外发展状况交通信号控制系统是现代城市交通控制和疏导的主要手段。
而作为城市交通基本组成部分的平面交叉路口,其通行能力是解决城市交通问题的关键,而交通信号灯又是交叉路口必不可少的交通控制手段。
随着计算机技术和自动控制技术的发展,以及交通流理论的不断发展完善,交通运输组织与优化理论、技术的不断提高,国内外逐步形成了一批高水平有实效的城市道路交通控制系统[4]。
国外现状1 澳大利亚SCAT系统SCATS采取分层递阶式控制结构。
其控制中心备有一台监控计算机和一台管理计算机,通过串行数据通讯线路相连。
2025年新型交通信号控制系统施工方案(智能交通管理)

《新型交通信号控制系统施工方案(智能交通管理)》一、项目背景随着城市的快速发展和汽车保有量的不断增加,交通拥堵问题日益严重。
传统的交通信号控制系统已经难以满足现代交通管理的需求。
为了提高交通效率,改善交通状况,提升城市交通管理水平,决定实施新型交通信号控制系统项目。
新型交通信号控制系统采用先进的智能技术,能够实时监测交通流量,自动调整信号灯时间,实现交通信号的智能化控制。
该系统将大大提高道路通行能力,减少交通拥堵,降低交通事故发生率,为市民提供更加安全、便捷、高效的出行环境。
二、施工步骤1. 现场勘查- 组织专业技术人员对施工区域进行详细的现场勘查,了解道路状况、交通流量、周边环境等情况。
- 确定交通信号控制设备的安装位置、线路走向、基础施工要求等。
2. 基础施工- 根据设计要求,进行交通信号控制设备基础的施工。
基础施工包括挖掘、浇筑混凝土、预埋管线等工作。
- 确保基础的强度和稳定性,满足设备安装的要求。
3. 设备安装- 安装交通信号控制机、信号灯、倒计时器、车辆检测器等设备。
- 按照设备安装说明书进行正确安装,确保设备的牢固性和可靠性。
4. 线路敷设- 敷设交通信号控制设备之间的连接线路,包括电源线、信号线、通信线等。
- 线路敷设应符合相关标准和规范,确保线路的安全、可靠。
5. 系统调试- 对安装好的交通信号控制系统进行调试,包括设备调试、软件调试、系统联调等。
- 调试过程中,要对系统的各项功能进行测试,确保系统能够正常运行。
6. 验收交付- 组织相关部门对施工完成的交通信号控制系统进行验收。
- 验收合格后,将系统交付使用,并提供相关的技术资料和培训服务。
三、材料清单1. 交通信号控制机2. 信号灯(红、黄、绿)3. 倒计时器4. 车辆检测器5. 电缆、电线6. 管材7. 混凝土8. 基础预埋件9. 螺丝、螺母等紧固件10. 工具及设备(如起重机、电焊机、测试仪等)四、时间安排1. 现场勘查:[具体日期区间 1],共计[X]天。
智能交通信号系统

人工智能技术:利 用人工智能算法对 交通信号灯进行智 能控制,提高交通 运行效率。
通信技术:实现交 通信号灯之间的信 息互通,提高交通 信号控制的协同性 和准确性。
信号灯的硬件组成 信号灯的软件设计 信号灯的优化策略 信号灯的未来发展趋势
实时自适应控制策略 优化配时设计方法 信号协同控制技术 智能交通信号控制系统软件架构设计
智能交通信号系统
汇报人:
目录
智能交通信号系 统的背景和意义
智能交通信号系 统的技术实现
智能交通信号系 统的应用与实践
智能交通信号系 统的优势和前景
结论与展望
智能交通信号系 统的背景和意义
早期的交通信号 系统以红绿两种
颜色为主
随着技术的不断 发展,交通信号 系统逐渐完善, 增加了黄灯等其
他信号灯
应用场景:城市 交通、高速公路、 机场、火车站等 交通节点
优势:提高交通 运行效率、减少 拥堵、降低交通 事故发生率、节 能环保等
智能交通信号系 统的技术实现
实时监测技术:对 交通信号灯进行实 时监测,及时发现 交通拥堵等问题。
数据分析技术:通 过数据采集和分析, 对交通信号灯的配 时方案进行优化。
减少交通拥堵 提高交通安全性 优化交通布局 提升出行体验
智能化程度更高
与物联网深度融合
更加注重行人体验
更加节能环保
智能交通信号系 统的优势和前景
道路通行能力:智能交通信号系统通过优化交通信号灯的配时方案,能够提高道路通行能 力。
减少拥堵:智能交通信号系统可以通过实时监测交通流量,调整信号灯的配时方案,从而 减少交通拥堵。
发展趋势:智能 化、自动化、协 同化、人性化
挑战:技术、资 金、政策、社会 接受度等
智能交通信号灯控制系统的设计与实现

智能交通信号灯控制系统的设计与实现随着城市交通的日益拥挤和人们对交通安全的不断关注,交通信号灯已成为城市道路上不可或缺的一部分。
而传统的交通信号灯控制方式无法满足城市交通的需要,因此出现了智能交通信号灯控制系统。
本文将介绍智能交通信号灯控制系统的设计与实现过程。
一、需求分析智能交通信号灯控制系统需要满足以下需求:1. 实时掌握道路交通情况,根据车辆流量、车速等因素进行智能控制。
2. 能够自适应道路状况,调整信号灯的绿灯保持时间和黄灯时间。
3. 具有预测性能,可以预测交通拥堵情况并进行相应的调节。
4. 支持多种车辆检测方式,包括摄像头、地感线圈等。
5. 具有良好的稳定性和可靠性,能够保证长时间稳定运行。
二、系统架构设计智能交通信号灯控制系统的架构由三部分组成:硬件平台、软件平台和通信平台。
1. 硬件平台硬件平台主要包括交通信号灯、车辆检测设备、控制器等。
交通信号灯可采用LED灯,具有能耗低、寿命长等优点;车辆检测设备可选用车辆识别仪、摄像头、地感线圈等方式进行车辆检测;控制器是系统的核心部分,负责信号灯的控制和车辆数据的分析。
2. 软件平台软件平台主要包括数据采集、算法运行、控制指令生成等功能。
数据采集模块负责采集车辆数据,经过算法运行模块对数据进行分析,生成控制指令并传输给控制器。
3. 通信平台通信平台主要是将硬件平台和软件平台进行连接,通信平台要求通信速度快、可靠性高。
可以采用以太网、WiFi等方式进行通信。
三、系统实现智能交通信号灯控制系统的实现过程可以分为以下几个步骤:1. 数据采集通过设置合理的车辆检测设备,对路口的车辆数据进行采集。
采集到的车辆数据包括车辆数量、车辆速度等。
2. 数据分析将采集到的车辆数据传输到软件平台进行分析,根据车辆流量、车速等因素进行智能控制,并生成相应的控制指令传输给控制器。
3. 控制器控制信号灯控制器根据生成的控制指令进行信号灯的控制。
通过调整信号灯绿灯保持时间和黄灯时间,达到使交通流畅的效果。
智能交通 城市交通信号控制系统

智能交通城市交通信号控制系统在现代城市的快节奏生活中,交通拥堵已成为一个普遍存在且令人头疼的问题。
为了有效地管理和优化城市交通流量,提高道路通行效率,保障交通安全,智能交通中的城市交通信号控制系统应运而生。
城市交通信号控制系统,简单来说,就是通过各种技术手段和策略,对道路交叉口的信号灯进行智能化控制,以实现交通流的合理分配和疏导。
它就像是城市交通的“指挥家”,根据实时的交通状况,灵活地调整信号灯的时长,确保车辆和行人能够安全、高效地通过路口。
一个完善的城市交通信号控制系统通常由多个部分组成。
首先是交通数据采集设备,如摄像头、地磁传感器、雷达等,它们分布在道路的各个关键位置,实时收集交通流量、车速、车辆排队长度等信息。
这些数据就像是系统的“眼睛”,为后续的决策提供了依据。
接下来是数据传输网络,负责将采集到的交通数据快速、准确地传输到控制中心。
控制中心是整个系统的“大脑”,里面运行着复杂的算法和软件,对接收的数据进行分析和处理,并根据预设的规则和策略生成信号灯控制指令。
然后是信号灯控制设备,它们接收控制中心的指令,对信号灯的时长进行调整。
此外,还有信息发布系统,将交通状况和信号灯的变化信息及时传递给驾驶员和行人,例如道路上的可变情报板、手机应用程序等。
那么,城市交通信号控制系统是如何工作的呢?以常见的定时控制模式为例,在交通流量相对稳定的时段,信号灯按照预先设定的固定时长进行切换。
但这种模式的缺点也很明显,如果交通流量发生了较大变化,就容易导致拥堵。
为了克服定时控制的不足,感应控制模式出现了。
它能够根据车辆到达路口的情况实时调整信号灯时长。
比如,当某个方向的车辆排队较长时,系统会自动延长该方向的绿灯时间,以尽快疏散车辆。
而在更先进的自适应控制模式中,系统不仅考虑当前的交通状况,还能对未来一段时间的交通流量进行预测,并据此动态调整信号灯时长。
这种模式需要更强大的数据处理能力和更精准的预测算法,但能够更好地适应复杂多变的交通环境。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新型智能交通信号控制系统报名号:BS2011-B241设计者:GARDING指导教师:匿名摘要:本作品针对当前日益严重的交通拥堵问题,以EXP-89S51单片机为核心,设计出了一种新型智能交通信号控制系统,实现了对交通信号灯的实时智能控制。
该新型控制系统在控制方案上采用了我们自主设计的新型两级模糊控制方案,该方案是一种同时具有自适应控制、分级模糊控制、相位繁忙优先和准确显时等优势的控制方案,更适用于实际的交通情况,且已获国家实用新型专利和相关论文已在科技核心期刊《现代电子技术》上发表。
在软件设计上,采用了MATLAB和VB进行动态模拟,并与当前正在采用的几种控制方案进行了对比验证,验证了新方案的优越性。
在硬件设计上,我们采用了EXP-89S51单片机、SP-MDCE25A 交通灯模组、E-TRY通用板和倒计时LED数码管模块等,并搭建了较好的逼真的外围平台来对其实现更具真实性的实时控制。
该作品不论是在创新性、实用性、技术先进性,还是在可靠性、经济性上都具有很强的优势。
关键词:智能交通信号新型两级模糊控制 VB动态模拟 EXP-89S51单片机1、系统总体方案介绍1.1自主提出的新型智能交通信号控制的总控制系统原理我们自主提出的新型智能交通信号控制的总控制系统原理如图1所示:图1自主提出的新型智能交通信号控制的总控制系统原理图在该系统中,交叉口的交通参数经检测装置检测,将被测参数转换成统一的标准电信号,再经A/D转换器进行模数转换,转换后的数字量通过I/O接口电路送入新型两级模糊控制器再到控制台。
在新型两级模糊控制器和控制台内部,用软件对采集的数据进行处理和计算,然后经数字量输出通道输出。
输出的数字量通过D/A转换器转换成模拟量,再经驱动模块对交通情况进行控制,从而实现对交叉口的实时智能交通控制。
1.2 基于EXP-89S51单片机的新型智能交通信号控制系统的总控制系统设计本系统运用我们的新型两级模糊控制方案,采用了EXP-89S51来控制智能交通系统。
系统的整体结构框图如图2所示:图2 系统的整体结构框图本系统主要由电源、EXP-89S51单片机、E-TRY通用板和SP-MDCE25A交通灯模组构成。
SP-MDCE25A交通灯模组中包含红绿灯模块和倒计时LED数码管模块。
EXP-89S51单片机作为整个系统的主控板,采用了我们的新型两级模糊控制方案模拟真实交通灯的功能。
红、绿灯交替闪亮,倒计数显示时间,方向灯指示方向等。
2 实现原理——新型两级模糊控制方案的提出与优越性验证2.1交叉口交通平面几何设计与相位设计通过对当前城市交叉口交通平面几何设计和相位设计的具体情况进行深入调研并参考了大量文献后,确定出当前相对最优的一种交叉口交通平面几何设计方案如图3所示。
交叉路口分东、南、西、北四个通行方向,每个通行方向均有左转、直行和右转三股车流。
路口检测设备路口上的检测设备图3 典型的单交叉路口几何设计方案图针对当前存在的各种相位设计方案,从其交叉口利用率、安全性、人性化和实用性等方面综合分析对比后,确定出当前相对最优的相位设计方案如图4所示,即南北直行、南北左右转、东西直行和东西左右转,行人和非机动车可以在第1相位和第3相位开通时顺利通行。
本作品将以此为研究对象。
相位1 相位2 相位3 相位4图4 典型的单交叉路口的相位设计示意图2.2交通信号新型两级模糊控制思想新型两级模糊控制方案的整体控制图如图5所示,先通过车辆检测器检测出当前所有处于红灯相位的等待车辆数和各车流方向自上次绿灯以来的红灯持续时间,然后将检测出来的交通流数据传送到新型两级模糊控制器。
车辆检测器交通信号灯交通流确定绿灯延时模块新型两级模糊控制红灯相位选择模块图5 新型两级模糊控制系统整体控制框图第一模糊控制级接收到车辆检测器检测出的红灯相位等待车辆数和红灯持续时间后,经过该模糊控制级处理推出当前各红灯相位的繁忙度,从而可以确定出在当前绿灯相位跳转前一瞬间下一个该亮绿灯的等待相位。
同时,找出繁忙度最大的两个相位,并返回去得到这繁忙度最大的两个相位的交通流数据(即这两相位的相位等待车辆数)。
第二模糊控制级通过对繁忙度最大的两个相位的交通流数据处理后,推出下一个绿灯等待相位的绿灯时间,并将该绿灯时间传到交通显时信号灯上。
当等到上一绿灯相位亮完绿灯后立即让第一级模糊控制选出的绿灯等待相位显示绿灯,同时使其显示绿灯时间,其显示时间即为第二级模糊控制确定出的绿灯时间。
这样周而复始的运行,即可很好地对交通流进行实时智能控制了。
另外,我们还充分考虑到在实际交通信号控制中,控制方案应人性化且适用性强。
对此,我们对其红绿灯显时控制系统做了如下规定:显示绿灯的相位显示准确的绿灯运行时间;对于红灯相位,我们只对下一个绿灯相位就是它的红灯相位显示时间,且只在当前绿灯相位绿灯时间即将结束前瞬间(假定5s),使其显示准确的红灯倒计时间。
显示了红灯时间的相位即表示下一相位该它通行,而其他不显时间的红灯相位,表示需要多等待,下一相位不是它。
这样充分发挥了现有显时交通信号装置的优势,更易遵守,更具人性化,更适用于实际交通情况。
2.3新型两级模糊器的设计以第一级模糊控制器的设计为例做具体设计。
该模糊级为红灯相位选择模块,该模块为双输入单输出模糊控制,其两个输入为:当前处于红灯相位的等待(排队)车辆数(qr)和各车流方向自上次绿灯以来的红灯持续时间(tr),输出为各红灯相位的繁忙度 (Ur)。
qr的基本论域为[0,30],离散论域为{1,2,3,4,5,6,7,8,9,10,11,12,13,14},在离散论域上定义五个模糊子集{很短、短、中等、长、很长};tr的基本论域为[0,120],离散论域为{1,2,3,4,5,6,7,8,9,10,11,12},在离散论域上定义五个模糊子集{很短、短、中等、长、很长};Ur的基本论域为[0,6],离散论域为{1,2,3,4,5,6},在离散论域上定义五个模糊子集很{低、低、中等、高、很高}。
qr、tr、Ur模糊子集的隶属度函数如图6所示,模糊控制规则表见表1。
图6qr、tr、Ur隶属度函数表1 红灯相位选择模块的模糊控制规则相位繁忙度各相位排队长度很短短中等长很长红灯持续时间很短很低很低很低低中等短很低很低低中等高中等低中等中等高很高长中等高高很高很高很长偏高很高很高很高很高2.4 仿真研究为了验证新型两级模糊控制器的控制效果, 用MATLAB结合VB编写了新型两级模糊控制的仿真程序,并与当前广泛运用的感应控制和定时控制进行了比较。
假定路口各方向车辆到达交叉口是随机的且服从均匀分布,利用VB中的随机函数产生12个方向车流每秒钟到达的车辆数,到达率为0-0.4辆/秒,设某车流红灯转变为绿灯后车辆以1辆/s的速率离开等候的车队,以通过交叉口的平均车辆延误作为评价指标。
分别对新型模糊控制、感应控制和定时控制在不同的交通条件下各进行10次仿真比较,每次仿真时间均为1200s,10次仿真的平均结果如表2所示。
表2 仿真结果表交通运行时期新型模糊控制平均延误(s)感应控制平均延误(s)定时控制平均延误(s)交通低峰期25.7809 32.26587 39.94878交通中峰期35.30734 40.85476 45.79226交通高峰期42.03777 45.81263 47.87664整体控制效果34.37534 39.64442 44.53923从仿真结果表中可知,采用新型两级模糊控制方法从整体控制效果上看,在平均车辆延误上比感应控制方法提高了13.2908%,比定时控制方法提高了22.8201%,可见优势明显。
2.5 动态模拟演示为了使其更具可观性与实用性,更易于运用到交通现场,我们还对新型两级模糊控制进行了动态模拟演示。
其动态模拟演示图如图7所示。
图7 新型两级模糊控制方案的动态模拟演示图我们可以对交通参数进行随意设定从而实现不同情况下的动态模拟,在演示图中我们可以通过繁忙度知道下一绿灯相位应为何相位,通过当前相位可以知道正处于绿灯的相位,且由绿灯时间可知整个相位的总绿灯时间,由绿灯剩余时间可以准确的知道其剩余绿灯时间。
这样就使我们的新方案更具可观性与实用性。
对于实际交通流时,只需把检测到的实时数据输入,通过我们的新型两级模糊控制器就可以实现其实时在线控制了。
3. 硬件设计3.1、EXP-89S51特性简介EXP-89S51是北京精仪达盛科技有限公司研发生产的性价比很高的一款8位单片机。
它支持Keil C环境下的汇编、C;完全仿真P0、P1、P2口;可以设置单步全速断点运行方式;可以查阅变量RAM、xdata 等数据。
该器件采用高密度非易失性存储技术,其指令与工业标准的80C51 指令集兼容。
片内程序存储器允许重复在线编程。
通过把通用的8 位CPU 与可在线下载的Flash 集成在一个芯片上,EXP-89S51 便成为一个高效的微型计算机,为众多嵌入式控制应用系统提供高灵活、超有效的解决方案,可用于解决复杂的控制问题,且成本较低,是多种智能便携仪器的理想选择。
3.2、交通灯控制板模拟交通灯控制板布局示意图如图8所示。
图中的表示2位7段的LED数码管(用作倒计时显示),表示双色LED(用作红黄绿灯),表示小按键(用来模拟车流)。
这是针对一个典型的十字路口,分别用1、2、3、4表明四个流向的主车道,用L、S、R、P分别表示各主车道的左行车道、直行车道、右行车道以及人行横道。
图8 模拟交通灯控制板布局示意图3.3、倒计时LED数码管模块图9 倒计时LED数码管电路图数码管完成倒计时显示功能。
拿南北方向举例,数码管从绿灯的设置时间最大值往下显示,每秒钟减1,一直减到1。
然后又从红灯的设置时间最大值往下显示,每秒钟减1,一直减到1。
接下来又是显示绿灯时间。
如此循环。
系统共有4个两位的LED数码管,分别放置在模拟交通灯控制板上的四个路口。
因为四个方向的数码管应该显示同样的内容,所以我们可以把它们同样对待。
也就是说各个方向的数码管个位(把数码管第二位定义为个位,第一位定义为十位)用一根信号线去控制,十位用另一根信号线去控制。
这里采用动态显示,段选信号线为a-dp,位选信号为CS-4和CS-5。
3.4、红绿灯模块图10 红绿灯模块电路图红绿灯模块电路可以显示红色、绿色和黄色,可以用作红绿黄灯。
我们可以把16个LED 分成4个组,东西南北每个方向的灯为一组。
每组LED的数据线和倒计时数码管的段选线共用,通过CS-0到CS-3去选通。
每个方向4个灯,分别是左转弯灯、直行灯、右转弯灯和人行道灯。
这些红绿灯的动作过程和实际路口一致。
4、软件设计该系统软件采用模块式结构,主要分为两部分:第一部分为主程序,第二部分为倒计时LED数码管子程序、红绿灯显示子程序等。