全国数学竞赛小学六年级决赛集训试题(附答案)
小学六年级数学竞赛试题及详细答案

小学六年级数学竞赛试题及详细答案成若干个小正方体,其中有12个小正方体在长方体的底面上,有16个小正方体在长方体的侧面上,问这个长方体的体积是多少?解答过程:设长方体的长为x,则宽和高分别为x/2,由题意可得:底面上小正方体的个数为:(x/2)²=12,解得x=6√2侧面上小正方体的个数为:4(x/2)=16,解得x=8因为x只能有一个值,所以x=6√2所以长方体的体积为:(6√2)³=432√2答案:432√2法中,左右两个乘法的结果相同,于是可以直接将左右两个乘法相加,得到分子部分的简化形式,再将分母部分也进行类似的化简,最终得到1/3的结果。
二.填空题1.解法一:设7岁时兔子的数量为x,则10岁时兔子的数量为2x,14岁时兔子的数量为3x。
根据题意,有3x-2x=24,解得x=24,因此7岁时兔子的数量为24只。
解法二:设兔子的平均寿命为x岁,则根据题意,有3x=2(x+7)+24,解得x=10,因此兔子的平均寿命为10岁,7岁时兔子的数量为24只。
2.解法一:设第一个数为x,则第二个数为x+1,第三个数为x+2,根据题意,有3x+3=2(x+1)+x+2,解得x=1,因此这三个数分别为1、2、3.解法二:设这三个数的平均数为x,则根据题意,有3x=2(x+1)+x+2,解得x=2,因此这三个数分别为1、2、3.3.设这个大长方体的长、宽、高分别为a、b、c,则根据题意,有2(ab+bc+ac)=600,解得XXX。
又因为这个大长方体由12个小长方体组成,因此有abc=12V,其中V为大长方体的体积。
将ab+bc+ac=300代入abc=12V中,解得V=75.4.设这批书共有x本,则根据题意,有x≡2 (mod 11),x≡0 (mod 3),x≡1 (mod 4)。
根据中国剩余定理,可以得到x≡89 (mod 132),因此这批书共有89+132k (k为非负整数)本。
小学数学知识竞赛六年级决赛试题(附答案)

小学数学知识竞赛六年级决赛试题(附答案)班级 姓名 得分一、填空。
(每空3分,共27分)1、小明做20朵花用去23 小时,则她平均做一朵花用__ ___分钟。
2、一块长方形耕地如图所示,已知其中三块小长方形的面积分别是15、16、20亩,则阴影部分的面积是___ ___亩。
3、一项工作,甲独做10天完成,乙独做5天只能完成全部任务的13,现在两人合作 天才能完成全部工作。
4、甲、乙、丙三个数的比是3 :4 :5,已知丙是50,这三个数的平均数是 _5、甲、乙两辆汽车同时从A 地去B 地。
甲车去时每小时行30千米,返回时每小时行20千米;乙车往返都是每小时25千米。
甲、乙两车往返A 、B 两地所用的时间比是 。
6、某小学举行数学竞赛,共20道试题.做对一题得5分,没有做一题或做错一题都要倒扣3分。
小炜得了60分,问他做对了 道题。
7、一批货物第一次降价20%,第二次按降价后的价格又降价15%,这批货物的价格比原价格降低 。
8、在右边括号中填上相同的数,使等式成立:17+( )33+( ) =359、十字路口东西方向的交通指示灯中,绿灯、黄灯、红灯亮的时间之比为6:1:3,则一天中东西方向亮红灯的时间共_____ _____小时。
二、选择题,将答案填在括号中。
(每题3分,共24分) 1、从甲堆煤取出15 给乙堆,这时两堆煤的质量相等,原来甲、乙两堆煤的重量比是( )。
A 、5 :3B 、4 :5C 、2 :5D 、5 :12、已知MN=C ,CB =A ,(A ,B ,C ,D ,M ,N 都是自然数),那么下面的比例式中正确的是( )。
A 、M N =B A B 、M N =B AC 、A N =B MD 、M A =B N 3、一根绳子剪成两段,第一段长为711 米,第二段长占全长的611 ,那么下列结论正确的是( )。
A 、第一段长B 、第二段长C 、两段一样长D 、以上都不对 4、一项工作,原计划8天完成任务,由于改进操作技术,结果提前3天完成任务,工作效率提高了( )%。
小学六年级数学竞赛试卷(附答案)图文百度文库

小学六年级数学竞赛试卷(附答案)图文百度文库一、拓展提优试题1.有一口无水的井,用一根绳子测井的深度,将绳对折后垂到井底,绳子的一端高出井口9m;将绳子三折后垂到井底,绳子的一端高出井口2m,则绳长米,井深米.2.有一个温泉游泳池,池底有泉水不断涌出,要想抽干满池的水,10台抽水机需工作8小时,9台抽水机需工作9小时,为了保证游泳池水位不变(池水既不减少,也不增多),则向外抽水的抽水机需台.3.图中阴影部分的两段圆弧所对应的圆心分别为点A和点C,AE=4m,点B 是AE的中点,那么阴影部分的周长是m,面积是m2(圆周率π取3).4.把一个自然数分解质因数,若所有质因数每个数位上的数字的和等于原数每个数位上的数字的和,则称这样的数为“史密斯书数”如:27=3×3×3.3+3+3=2+7,即27是史密斯数,那么,在4,32,58,65,94中,史密斯数有个.5.老师让小明在400米的环形跑道上按照如下规律插上一些旗子做标记:从起点开始,沿着跑道每前进90米就插上一面旗子,直到下一个90米的地方已经插有旗子为止,则小明要准备面旗子.6.从1开始的n个连续的自然数,如果去掉其中的一个数后,余下的各个数的平均数是,那么去掉的数是.7.若A、B、C三种文具分别有38个,78和128个,将每种文具都平均分给学生,分完后剩下2个A,6个B,20个C,则学生最多有人.8.已知自然数N的个位数字是0,且有8个约数,则N最小是.9.若质数a,b满足5a+b=2027,则a+b=.10.如图,设定E、F分别是△ABC的边AB、AC上的点,线段CE,BF交于点D,若△CDF,△BCD,△BDE的面积分别为3,7,7,则四边形AEDF的面积是.11.甲挖一条水渠,第一天挖了水渠总长度的,第二天挖了剩下水渠长度的,第三天挖了未挖水渠长度的,第四天挖完剩下的100米水渠.那么,这条水渠长米.12.将浓度为40%的100克糖水倒入浓度为20%的a克糖水中,得到浓度为25%的糖水,则a=.13.请你想好一个数,将它加上5,其结果乘以2,再减去4,得到的差除以2,再减去你最初想好的那个数,最后的计算结果是.14.小明把一本书的页码从1开始逐页相加,加到最后,得到的数是4979,后来他发现这本书中缺了一张(连续两个页码).那么,这本书原来有页.15.(15分)二进制是计算机技术中广泛采用的一种数制,其中二进制数转换成十进制数的方法如下:那么,将二进制数 11111011111 转化为十进制数,是多少?【参考答案】一、拓展提优试题1.解:(9×2﹣2×3)÷(3﹣2),=(18﹣6)÷1,=12÷1,=12(米),(12+9)×2,=21×2,=42(米).故答案为:42,12.2.解:设1台抽水机1小时抽1份水,每小时新增水:9×9﹣10×8=1;答:向外抽水的抽水机需1台.3.解:阴影部分的周长:4+3×4×2÷4+3×2×2÷4,=4+6+3,=13(米);阴影部分的面积:3×42÷4+3×22÷4﹣2×4,=12+3﹣8,=7(平方米);答:阴影部分的周长是13米,面积是7平方米.故答案为:13、7.4.解:4=2×2,2+2=4,所以4是史密斯数;32=2×2×2×2×2;2+2+2+2+2=10,而3+2=5;10≠5,32不是史密斯数;58=2×29,2+2+9=13=13;所以58是史密斯数;65=5×13;5+1+3=9;6+5=11;9≠11,65不是史密斯数;94=2×472+4+7=13=9+4;所以94是史密斯数.史密斯数有4,58,94一共是3个.故答案为:3.5.解:400和90的最小公倍数是3600,则3600÷90=40(面).答:小明要准备40面旗子.故答案为:40.6.解:设去掉的数是x,那么去掉一个数后的和是:(1+n)n÷2﹣x=×(n﹣1);显然,n﹣1是7的倍数;n=8、15、22、29、36时,x均为负数,不符合题意.n=43时,和为946,42×=912,946﹣912=34.n=50时,和为1225,49×=1064,1225﹣1064=161>50,不符合题意.答:去掉的数是34.故答案为:34.7.解:38﹣2=36(个)78﹣6=72(个)128﹣20=108(个)36、48和108的最大公约数是36,所以学生最多有36人.故答案为:36.8.解:自然数N的个位数字是0,它一定有质因数5和2,要使N最小,5的个数应最少为1个,而求其它因数最好都是2和3,并且2的个数不能超过2个,其它最好都是3;设这个自然数N=21×51×3a,根据约数和定理,可得:(a+1)×(1+1)×(1+1)=8,(a+1)×2×2=8,a=1;所以,N最小是:2×3×5=30;答:N最小是30.故答案为:30.9.解:依题意可知:两数字和为奇数,那么一定有一个偶数.偶质数是2.当b=2时,5a+2=2027,a=405不符合题意.当a=2时,10+b=2027,b=2017符合题意,a+b=2+2017=2019.故答案为:2019.10.解:连接AD,因△CDF和△BCD的高相等,所以FD:DB=3:7,所△AFD和△ABD的面积比也是3:7,即可把△AFD的面积看作是3份,△ABD的面积看作是7份,S△BCD=7,S△BDE=7所以CD=DE,S△ACD=S△ADE,S△ACD+S△BDE=S△ABD,S△ACD+S△BDE=7份,S△AFD+S△CDF+S△BDE=7份,3份+3+7=7份,则1份=2.5,S四边形AEDF=10份﹣7=10×2.5﹣7=25﹣7=18答:四边形AEDF的面积是18.故答案为:18.11.解:把这条水渠总长度看作单位“1”,则第一天挖的分率为,第二天挖的分率(1﹣)×=,第三天挖的分率为(1﹣)×=,100÷((1﹣﹣﹣)=100÷=350(米)答:这条水渠长350米.故答案为:350.12.解:依题意可知:根据浓度是十字交叉法可知:浓度差的比等于溶液质量比即1:3=100:a,所以a=300克故答案为:30013.解:设这个数是a,[(a+5)×2﹣4]÷2﹣a=[2a+6]÷2﹣a=a+3﹣a=3,故答案为:3.14.解:设这本书的页码是从1到n的自然数,正确的和应该是1+2+…+n=n(n+1),由题意可知,n(n+1)>4979,由估算,当n=100,n(n+1)=×100×101=5050,所以这本书有100页.答:这本书共有100页.故答案为:100.15.解:(11111011111)2=1×210+1×29+1×28+1×27+1×26+0×25+1×24+1×23+1×22+1×21+1×20=1024+512+256+128+64+0+16+8+4+2+1=(2015)10答:是2015.。
全国六年级小学数学竞赛测试带答案解析

全国六年级小学数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、解答题1.小新、阿呆等七个同学照像,分别求出在下列条件下有多少种站法?(1)七个人排成一排;(2)七个人排成一排,小新必须站在中间.(3)七个人排成一排,小新、阿呆必须有一人站在中间.(4)七个人排成一排,小新、阿呆必须都站在两边.(5)七个人排成一排,小新、阿呆都没有站在边上.(6)七个人战成两排,前排三人,后排四人.(7)七个人战成两排,前排三人,后排四人. 小新、阿呆不在同一排。
2.用1、2、3、4、5、6可以组成多少个没有重复数字的个位是5的三位数?3.用1、2、3、4、5这五个数字可组成多少个比大且百位数字不是的无重复数字的五位数?4.用0到9十个数字组成没有重复数字的四位数;若将这些四位数按从小到大的顺序排列,则5687是第几个数?5.用、、、、这五个数字,不许重复,位数不限,能写出多少个3的倍数?6.用1、2、3、4、5、6六张数字卡片,每次取三张卡片组成三位数,一共可以组成多少个不同的偶数?7.某管理员忘记了自己小保险柜的密码数字,只记得是由四个非数码组成,且四个数码之和是,那么确保打开保险柜至少要试几次?8.两对三胞胎喜相逢,他们围坐在桌子旁,要求每个人都不与自己的同胞兄妹相邻,(同一位置上坐不同的人算不同的坐法),那么共有多少种不同的坐法?9.一种电子表在6时24分30秒时的显示为6:24:30,那么从8时到9时这段时间里,此表的5个数字都不相同的时刻一共有多少个?10.一个六位数能被11整除,它的各位数字非零且互不相同的.将这个六位数的6个数字重新排列,最少还能排出多少个能被11整除的六位数?11.已知在由甲、乙、丙、丁、戊共5名同学进行的手工制作比赛中,决出了第一至第五名的名次.甲、乙两名参赛者去询问成绩,回答者对甲说:“很遗憾,你和乙都未拿到冠军.”对乙说:“你当然不会是最差的.”从这个回答分析,5人的名次排列共有多少种不同的情况?12.名男生,名女生,全体排成一行,问下列情形各有多少种不同的排法:⑴甲不在中间也不在两端;⑵甲、乙两人必须排在两端;⑶男、女生分别排在一起;⑷男女相间.13.五位同学扮成奥运会吉祥物福娃贝贝、晶晶、欢欢、迎迎和妮妮,排成一排表演节目。
全国六年级小学数学竞赛测试带答案解析

全国六年级小学数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、解答题1.一项工程,甲单独做6天完成,乙单独做12天完成。
现两人合作,途中乙因病休息了几天,这样用了4.5天才完成任务。
乙因病休息了几天?2.有240个零件,平均分给甲、乙两个车间加工。
乙车间有紧急任务,因此在甲车间开始加工了4小时之后才开始加工这批零件,而且比甲车间晚40分钟才完成任务。
已知乙车间的效率是甲车间的3倍,那么甲车间每小时能加工多少个零件?3.一项工程,甲队单独做24天完成,乙队单独做30天完成。
现在甲、乙两队先合做8天,剩下的由丙队单独做了6天完成了此项工程。
如果从开始就由丙队单独做,需要几天?4.某工程由甲、乙两个工程队合作需要12天完成。
甲工程队工作3天后离开,同时乙、丙两个工程队加入,又工作了3天后,乙工程队离开,此时刚好完成工程的一半,那么剩下的工程如果由丙工程队单独完成,还需要几天?5.马师傅和张师傅合伙加工一批零件,原计划马师傅每天比张师傅多加工8个零件,共用了15天完成。
张师傅为了赶上马师傅的效率,叫了一个徒弟从一开始就来帮忙,结果师徒俩每天反比马师傅还多加工4个零件,这样用了12天就完成了,那么马师傅每天加工多少个零件?6.有甲、乙、丙三组工人,甲组4人的工作,乙组需要5人来完成;乙组的3人工作,丙组需要8人来完成。
一项工作,需要甲组13人来完成,乙组15人3天来完成。
如果让丙组10人去做,需要多少天来完成?7.一项工程,45人可以若干天完成。
现在45人工作6天后,调走9人干其他工作。
这样,完成这项工程就比原来计划多用了4天。
原计划完成这项工程用多少天?8.A、B、C、D、E五个人干一项工作,若A、B、C、D四人一起干需要6天完成;若四人干,需要8天完工;若A、E两人一起干,需要12天完工。
那么,若E一人单独干需要几天完工?9.某工程如果由第一、二、三小队合干需要12天都能完成;如果由第一、三、五小队合干需要7天完成;如果由第二、四、五小队合干需要8天都能完成;如果由第一、三、四小队合干需要42天都能完成。
全国六年级小学数学竞赛测试带答案解析

全国六年级小学数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、解答题1.如图,正方形ABCD的边长为6, 1.5,2.长方形EFGH的面积为多少.2.如图所示,正方形的边长为厘米,长方形的长为厘米,那么长方形的宽为几厘米?3.长方形的面积为36,、、为各边中点,为边上任意一点,问阴影部分面积是多少?4.在边长为6厘米的正方形内任取一点,将正方形的一组对边二等分,另一组对边三等分,分别与点连接,求阴影部分面积.5.如图所示,长方形内的阴影部分的面积之和为70,,,四边形的面积为多少6.如图,长方形的面积是36,是的三等分点,,则阴影部分的面积为.7.已知为等边三角形,面积为400,、、分别为三边的中点,已知甲、乙、丙面积和为143,求阴影五边形的面积.(丙是三角形)8.如图,已知,,,,线段将图形分成两部分,左边部分面积是38,右边部分面积是65,那么三角形的面积是.9.如图在中,分别是上的点,且,,平方厘米,求的面积.10.如图,三角形中,是的5倍,是的3倍,如果三角形的面积等于1,那么三角形的面积是多少?11.如图,三角形ABC被分成了甲(阴影部分)、乙两部分,,,,乙部分面积是甲部分面积的几倍?12.如图在中,在的延长线上,在上,且,,平方厘米,求的面积.13.如图,平行四边形,,,,,平行四边形的面积是,求平行四边形与四边形的面积比.14.如图所示的四边形的面积等于多少?15.如图所示,中,,,,以为一边向外作正方形,中心为,求的面积.16.如图,以正方形的边为斜边在正方形内作直角三角形,,、交于.已知、的长分别为、,求三角形的面积.17.如图,正方形ABCD的边长为6, 1.5,2.长方形EFGH的面积为多少.18.如图,ABCD为平行四边形,EF平行AC,如果ADE的面积为4平方厘米.求三角形CDF的面积.19.如右图,在平行四边形中,直线交于,交延长线于,若,求的面积.20.图中两个正方形的边长分别是6厘米和4厘米,则图中阴影部分三角形的面积是多少平方厘米.21.如图,在中,延长至,使,延长至,使,是的中点,若的面积是,则的面积是多少?全国六年级小学数学竞赛测试答案及解析一、解答题1.如图,正方形ABCD的边长为6, 1.5,2.长方形EFGH的面积为多少.【答案】33【解析】连接DE,DF,则长方形EFGH的面积是三角形DEF面积的二倍.三角形DEF的面积等于正方形的面积减去三个三角形的面积,,所以长方形EFGH面积为33.2.如图所示,正方形的边长为厘米,长方形的长为厘米,那么长方形的宽为几厘米?【答案】6.4【解析】本题主要是让学生会运用等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形).三角形面积等于与它等底等高的平行四边形面积的一半.证明:连接.(我们通过把这两个长方形和正方形联系在一起).∵在正方形中,边上的高,∴(三角形面积等于与它等底等高的平行四边形面积的一半)同理,.∴正方形与长方形面积相等.长方形的宽(厘米).3.长方形的面积为36,、、为各边中点,为边上任意一点,问阴影部分面积是多少?【答案】13.5【解析】解法一:寻找可利用的条件,连接、,如下图:可得:、、,而即;而,.所以阴影部分的面积是:解法二:特殊点法.找的特殊点,把点与点重合,那么图形就可变成右图:这样阴影部分的面积就是的面积,根据鸟头定理,则有:.4.在边长为6厘米的正方形内任取一点,将正方形的一组对边二等分,另一组对边三等分,分别与点连接,求阴影部分面积.【答案】15【解析】(法1)特殊点法.由于是正方形内部任意一点,可采用特殊点法,假设点与点重合,则阴影部分变为如上中图所示,图中的两个阴影三角形的面积分别占正方形面积的和,所以阴影部分的面积为平方厘米.(法2)连接、.由于与的面积之和等于正方形面积的一半,所以上、下两个阴影三角形的面积之和等于正方形面积的,同理可知左、右两个阴影三角形的面积之和等于正方形面积的,所以阴影部分的面积为平方厘米.5.如图所示,长方形内的阴影部分的面积之和为70,,,四边形的面积为多少【答案】10【解析】利用图形中的包含关系可以先求出三角形、和四边形的面积之和,以及三角形和的面积之和,进而求出四边形的面积.由于长方形的面积为,所以三角形的面积为,所以三角形和的面积之和为;又三角形、和四边形的面积之和为,所以四边形的面积为.另解:从整体上来看,四边形的面积三角形面积三角形面积白色部分的面积,而三角形面积三角形面积为长方形面积的一半,即60,白色部分的面积等于长方形面积减去阴影部分的面积,即,所以四边形的面积为.6.如图,长方形的面积是36,是的三等分点,,则阴影部分的面积为.【答案】2.7【解析】如图,连接.根据蝴蝶定理,,所以;,所以.又,,所以阴影部分面积为:.7.已知为等边三角形,面积为400,、、分别为三边的中点,已知甲、乙、丙面积和为143,求阴影五边形的面积.(丙是三角形)【答案】43【解析】因为、、分别为三边的中点,所以、、是三角形的中位线,也就与对应的边平行,根据面积比例模型,三角形和三角形的面积都等于三角形的一半,即为200.根据图形的容斥关系,有,即,所以.又,所以.8.如图,已知,,,,线段将图形分成两部分,左边部分面积是38,右边部分面积是65,那么三角形的面积是.【答案】40【解析】连接,.根据题意可知,;;所以,,,,,于是:;;可得.故三角形的面积是40.9.如图在中,分别是上的点,且,,平方厘米,求的面积.【答案】70【解析】连接,,,所以,设份,则份,平方厘米,所以份是平方厘米,份就是平方厘米,的面积是平方厘米.由此我们得到一个重要的定理,共角定理:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.10.如图,三角形中,是的5倍,是的3倍,如果三角形的面积等于1,那么三角形的面积是多少?【答案】15【解析】连接.∵∴又∵∴,∴.11.如图,三角形ABC被分成了甲(阴影部分)、乙两部分,,,,乙部分面积是甲部分面积的几倍?【答案】5【解析】连接.∵,∴,又∵,∴,∴,.12.如图在中,在的延长线上,在上,且,,平方厘米,求的面积.【答案】50【解析】连接,,所以,设份,则份,平方厘米,所以份是平方厘米,份就是平方厘米,的面积是平方厘米.由此我们得到一个重要的定理,共角定理:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比13.如图,平行四边形,,,,,平行四边形的面积是,求平行四边形与四边形的面积比.【答案】1:18【解析】连接、.根据共角定理∵在和中,与互补,∴.又,所以.同理可得,,.所以.所以.14.如图所示的四边形的面积等于多少?【答案】144【解析】题目中要求的四边形既不是正方形也不是长方形,难以运用公式直接求面积.我们可以利用旋转的方法对图形实施变换:把三角形绕顶点逆时针旋转,使长为的两条边重合,此时三角形将旋转到三角形的位置.这样,通过旋转后所得到的新图形是一个边长为的正方形,且这个正方形的面积就是原来四边形的面积.因此,原来四边形的面积为.(也可以用勾股定理)15.如图所示,中,,,,以为一边向外作正方形,中心为,求的面积.【答案】10【解析】如图,将沿着点顺时针旋转,到达的位置.由于,,所以.而,所以,那么、、三点在一条直线上.由于,,所以是等腰直角三角形,且斜边为,所以它的面积为.根据面积比例模型,的面积为.16.如图,以正方形的边为斜边在正方形内作直角三角形,,、交于.已知、的长分别为、,求三角形的面积.【答案】2.5【解析】如图,连接,以点为中心,将顺时针旋转到的位置.那么,而也是,所以四边形是直角梯形,且,所以梯形的面积为:().又因为是直角三角形,根据勾股定理,,所以().那么(),所以().17.如图,正方形ABCD的边长为6, 1.5,2.长方形EFGH的面积为多少.【答案】33【解析】连接DE,DF,则长方形EFGH的面积是三角形DEF面积的二倍.三角形DEF的面积等于正方形的面积减去三个三角形的面积,,所以长方形EFGH面积为33.18.如图,ABCD为平行四边形,EF平行AC,如果ADE的面积为4平方厘米.求三角形CDF的面积.【答案】4【解析】连结AF、CE.∴;;又∵AC与EF平行,∴.∴(平方厘米).19.如右图,在平行四边形中,直线交于,交延长线于,若,求的面积.【答案】1【解析】本题主要是让学生并会运用等底等高的两个三角形面积相等(或夹在一组平行线之间的三角形面积相等)和等量代换的思想.连接.∵∥,∴同理∥,∴又,,∴,即.20.图中两个正方形的边长分别是6厘米和4厘米,则图中阴影部分三角形的面积是多少平方厘米.【答案】8【解析】.21.如图,在中,延长至,使,延长至,使,是的中点,若的面积是,则的面积是多少?【答案】3.5【解析】∵在和中,与互补,∴.又,所以.同理可得,.所以。
小学六年级数学竞赛试题附答案
1 小学六年级数学竞赛试题一、选择题。
(毎小题10分)以下毎题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在毎题的圆括号内。
1.科技小组演示自制机器人,若机器人从点A 向南行走1.2米,再向东行走1米,接着又向南行走1.8米,再向东行走2米,最后又向南行走1米到达B 点,则B 点与A 点的距离是( )米。
(A )3 (B )4 (C )5 (D )72.将等边三角形纸片按图1所示的步骤折3次(图1中的虚线是三边中点的边线),然后沿两边中点的边线剪去一角(图2)。
将剩下的纸展开、铺平,得到的图形是()。
(A )(B)(C ) (D )3.将一个长和宽分别是是1833厘米和423厘米的长方形分割成若干修正在方形,则正方形最少是( )个。
(A )78 (B )7 (C )5 (D )64.已知图3是一个轴对称图形,若将图中某些黑色的图形去掉后,得到一些新的图形,则其中轴对称图形共有( )个。
(A )9 (B )8 (C )7 (D )6 图35.若a=1515…15×333…3,则整数a 的所有位数上的数字和等于( )。
1004个5 2008个3(A )18063 (B )18072 (C )18079 (D )180546.若a=2008200720062005⨯⨯,b=2009200820072006⨯⨯,c=2010200920082007⨯⨯,则有( )。
(A )a>b>c (B )a>c>b (C )a<c<b (D )a<b<c二、填空题。
(毎小题10分,满分40分。
第10题每空5分)7.如图4所示,甲车从A ,乙车从B 同时相向而行,两车第一次相遇后,甲车继续行驶4小时到达B ,而乙车只行驶了1小时就到达A ,甲乙两车的速度比为 。
图1 图2 甲车乙车 A B图42 8.华杯赛网址是 ,将其中的字母组成如下算式:www+hua+bei+sai+cn=2008.如果每个字母分别代表0~9这十个数字是的一个,相同的字母代表相同的数字,不同的字母代表不同的数字,并且w=8,h=6,a=9,c=7,则三位数bei 的最小值是 。
全国六年级小学数学竞赛测试带答案解析
全国六年级小学数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、解答题1.六年级一班全班有35名同学,共分成5排,每排7人,坐在教室里,每个座位的前后左右四个位置都叫做它的邻座.如果要让这35名同学各人都恰好坐到他的邻座上去,能办到吗?为什么?2.右图是某一湖泊的平面图,图中所有曲线都是湖岸.(1)如果P点在岸上,那么A点是在岸上还是在水中?(2)某人过此湖泊,他下水时脱鞋,上岸时穿鞋.如果他从A点出发走到某点B,他穿鞋与脱鞋的总次数是奇数,那么B点是在岸上还是在水中?为什么?3.某班有45名同学按9行5列坐好.老师想让每位同学都坐到他的邻座(前后左右)上去,问这能否办到?4.右图是某一套房子的平面图,共12个房间,每相邻两房间都有门相通.请问:你能从某个房间出发,不重复地走完每个房间吗?5.有一次车展共6×6=36个展室,如右图,每个展室与相邻的展室都有门相通,入口和出口如图所示.参观者能否从入口进去,不重复地参观完每个展室再从出口出来?6.在一个正方形的果园里,种有63棵果树,加上右下角的一间小屋,整齐地排列成八行八列,如图(1).守园人从小屋出发经过每一棵树,不重复也不遗漏(不许斜走),最后又回到小屋,行吗?如果有80棵果树,如图(2),连小屋排成九行九列呢?7.右图是半张中国象棋盘,棋盘上已放有一只马. 众所周知,马是走“日”字的. 请问:这只马能否不重复地走遍这半张棋盘上的每一个点,然后回到出发点?8.右图是由14个大小相同的方格组成的图形. 试问能不能剪裁成7个由相邻两方格组成的长方形?9.右图是由40个小正方形组成的图形,能否将它剪裁成20个相同的长方形?10.下面的三个图形都是从4×4的正方形纸片上剪去两个1×1的小方格后得到的. 问:能否把它们分别剪成1×2的七个小矩形.11.用11个和5个能否盖住8×8的大正方形?12.能否用9个所示的卡片拼成一个6×6的棋盘?13.9个1×4的长方形不能拼成一个6×6的正方形,请你说明理由!14.用若干个2×2和3×3的小正方形不能拼成一个11×11的大正方形,请你说明理由!15.对于表(1),每次使其中的任意两个数减去或加上同一个数,能否经过若干次后(各次减去或加上的数可以不同),变为表(2)?为什么?16.右图是一个圆盘,中心轴固定在黑板上.开始时,圆盘上每个数字所对应的黑板处均写着0.然后转动圆盘,每次可以转动90°的任意整数倍,圆盘上的四个数将分别正对着黑板上写数的位置,将圆盘上的数加到黑板上对应位置的数上.问:经过若干次后,黑板上的四个数是否可能都是999?17.有7个苹果要平均分给12个小朋友,园长要求每个苹果最多分成5份.应该怎样分?18.有一位老人,他有三个儿子和十七匹马.他在临终前对他的儿子们说:“我已经写好了遗嘱,我把马留给你们,你们一定要按我的要求去分.”老人去世后,三兄弟看到了遗嘱.遗嘱上写着:“我把十七匹马全都留给我的三个儿子.长子得,次子得,给幼子.不许流血,不许杀马.你们必须遵从父亲的遗愿!”请你帮助他们分分马吧!19.甲、乙、丙、丁分29头羊. 甲、乙、丙、丁分别得,应如何分?20.8个金币中,有一个比真金币轻的假金币,你能用天平称两次就找出来吗(天平无砝码)?21.9个金币中,有一个比真金币轻的假金币,你能用天平称两次就找出来吗(天平无砝码)?22.据说有一天,韩信骑马走在路上,看见两个人正在路边为分油发愁.这两个人有一只容量10斤的篓子,里面装满了油;还有一只空的罐和一只空的葫芦,罐可装7斤油,葫芦可装3斤油.要把这10斤油平分,每人5斤. 但是谁也没有带秤,只能拿手头的三个容器倒来倒去.应该怎样分呢?23.大桶能装5千克油,小桶能装4千克油,你能用这两只桶量出6千克油吗?怎么量?24.有一个小朋友叫小满,他学会了韩信分油的方法,心里很是得意. 一天,他遇到了两位农妇. 两位农妇有两个各装满了10升奶的罐子,还有一个5升和一个4升的小桶,她们请求小满就用这些容器将罐子中的奶给两个小桶中各倒入2升奶.小满按照韩信分油的方法,略加变通,就将奶分好了!你说说具体的做法!25.老师在黑板上画了9个点,要求同学们用一笔画出一条通过这9个点的折线(只许拐三个弯儿).你能办到吗?26.你有四个装药丸的罐子,每个药丸都有一定的重量,被污染的药丸是没被污染的重量+1.只称量一次,如何判断哪个罐子的药被污染了?27.如右图所示,将1~12顺次排成一圈. 如果报出一个数a(在1~12之间),那么就从数a的位置顺时针走a 个数的位置. 例如a=3,就从3的位置顺时针走3个数的位置到达6的位置;a=11,就从11的位置顺时针走11个数的位置到达10的位置. 问:a是多少时,可以走到7的位置?28.对于任意一个自然数 n,当 n为奇数时,加上121;当n为偶数时,除以2,这算一次操作现在对231连续进行这种操作,在操作过程中是否可能出现100?为什么?29.一只电动老鼠从左下图的A点出发,沿格线奔跑,并且每到一个格点不是向左转就是向右转。
全国六年级小学数学竞赛测试带答案解析
全国六年级小学数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、解答题1.的和是奇数还是偶数?2.得数是奇数还是偶数?3.得数是奇数还是偶数?4.的计算结果是奇数还是偶数,为什么?5.的和是奇数还是偶数?为什么?6.东东在做算术题时,写出了如下一个等式:,他做得对吗?7.能否在下式的“□”内填入加号或减号,使等式成立,若能请填入符号,不能请说明理由(1)1 □ 2 □ 3 □ 4 □ 5 □ 6 □ 7 □ 8 □ 9=10(2)1 □ 2 □ 3 □ 4 □ 5 □ 6 □ 7 □ 8 □ 9=278.能否从、四个6,三个10,两个14中选出5个数,使这5个数的和等于44.9.一个自然数数分别与另外两个相邻奇数相乘,所得的两个积相差150,那么这个数是多少?10.一个偶数分别与其相邻的两个偶数相乘,所得的两个乘积相差80,那么这三个偶数的和是多少?11.多米诺骨牌是由塑料制成的1×2长方形,共28张,每张牌上的两个1×1正方形中刻有“点”,点的个数分别为0,1,2,…,6个不等,其中7张牌两端的点数一样,即两个0,两个1,…,两个6;其余21张牌两端的点数不一样,所谓连牌规则是指:每相邻两张牌必须有一端的点数相同,且以点数相同的端相连,例如:现将一付多米诺骨牌按连牌规则连成一条链,如果在链的一端为6点,那么在链的另一端为多少点?并简述你的理由.12.一条线段上分布着n个点,这些点的颜色不是黑的就是白的,它们将线段分为n+1段,已知线段两端的两个点都是黑的,而中间的每一个点的两边各有一黑一白.那么白点的数目是奇数还是偶数?13.是否存在自然数a和b,使得ab(a+b)="115?"14.是否存在自然数a、b、c,使得(a-b)(b-c)(a-c)=45327?15.a、b、c三个数的和与它们的积的和为奇数,问这三个数中最多可以有几个奇数?16.已知a,b,c中有一个是511,一个是622,一个是793。
全国六年级小学数学竞赛测试带答案解析
全国六年级小学数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、解答题1.小明沿着向上移动的自动扶梯从顶向下走到底,他走了150级,他的同学小刚沿着自动扶梯从底向上走到顶,走了75级,如果小明行走的速度是小刚的3倍,那么可以看到的自动扶梯的级数是多少?2.商场的自动扶梯以匀速由下往上行驶,两个孩子嫌扶梯走得太慢,于是在行驶的扶梯上,男孩每秒钟向上走2个梯级,女孩每2秒向上走3个梯级。
结果男孩用40秒钟到达,女孩用50秒钟到达。
则当该扶梯静止时有多少级?3.某商场有一部自动扶梯匀速由下而上运动,甲乙二人都急于上楼办事,因此在扶梯的同时匀速登梯,甲登了55级后到达楼上,乙登梯速度是甲的2倍(单位时间乙登梯级数是甲的2倍),他登了60级后到达楼上,求自动扶梯的级数?4.哥哥沿着向上移动的扶梯从顶向下走到底,共走了100级。
在相同的时间内,妹妹沿着自动扶梯从底向上走到顶,共走了50级.如果哥哥单位时间内走的级数是妹妹的2倍,那么当自动扶梯静止时,自动扶梯能看到的部分有多少级?5.某商场有一自动扶梯,某顾客沿开动(上行)的自动扶梯走上楼时,数得走了16级;当他以同样的速度(相对电梯)沿开动(上行)的自动扶梯走下楼时,数得走了48级,则该自动扶梯级数为?6.甲乙两人在匀速上升的自动扶梯从底部向顶部行走,甲每分钟走扶梯的级数是乙的2倍;当甲走了36级到达顶部,而乙则走了24级到顶部。
那么,自动扶梯有多少级露在外面?7.甲步行上楼梯的速度是乙的2倍,一层到二层有一上行滚梯(自动扶梯)正在运行。
二人从滚梯步行上楼,结果甲步行了10级到达楼上,乙步行了6级到达楼上。
这个滚梯共有多少级?8.在地铁车站中,从站台到地面有一架向上的自动扶梯。
小强想逆行从上到下,如果每秒向下迈两级台阶,那么他走过100级台阶后到达站台;如果每秒向下迈三级台阶,那么走过75级台阶到达站台。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国数学竞赛小学六年级决赛集训试题(一)____得分____一、填空题:(每小题6分,共60分)1.已知C C BA 1111616161-1+++=++,其中A 、B 、C 都是大于0且互不相同的自然数,则(A+B)÷C=。
2.有一类自然数,从左边第三位开始,每个数位上的数字都是它左边两个数位上的数字之和,如21347。
则这类自然数中,最大的奇数是。
3.如图1,△ABC 中,点E 在AB 上,点F 在AC 上,BF 与CE 相交于点P ,如果S 四边形AEPF =S △BEP =S △CFP =4,则S △BPC =。
4.老师带领六(1)班的学生去种树,学生恰好可平均分成5组。
已知师生每人种的树一样多,共种树527棵,则六(1)班有学生人。
5.两个顽皮的孩子逆着自动扶梯行驶的方向行走,从扶梯的一端到达另一端,男孩走了100秒,女孩走了300秒。
已知在电梯静止时,男孩每秒走3米,女孩每秒走2米。
则该自动扶梯长米。
6.有7根直径都是5分米的圆柱形木头,现用绳子分别在两处把它们捆在一起,如图2,则至少需要绳子分米(结头处绳长不计,π取3.14)。
7.一个深30厘米的圆柱形容器,外圆直径22厘米,壁厚1厘米,已装有深27.5厘米的水。
现放人一个底面直径10厘米,高30厘米的圆锥形铁块,则将有立方厘米的水溢出。
8.新年联欢会共有8个节目,其中有3个非歌唱类节目。
排列节目单时规定,非歌唱类节目不相邻,而且第一个和最后一个节目都是歌唱类节目。
则节目单可有种不同的排法。
9.为了创建绿色学校,科学俱乐部的同学设计了一个回收食堂的洗菜水来浇花草的水池,要求单独打开进水管3小时可以把水池注满,单独打开出水管4小时可以排完满池水。
水池建成后,发现水池漏水。
这时,若同时打开进水管与出水管14小时才能把水池注满。
则当池水注满,并且关闭进水管与出水管时,经过小时池水就会漏完。
10.甲、乙两人分别从A、B两地同时出发,相向而行。
已知甲、乙两人的速度之比是6:5,他们相遇时距两地的中点5千米。
则当甲到达B地时,乙离A地还有千米。
二、解答题:(每小题20分,共40分)要求:写出推算过程11.修筑一条高速公路。
若甲、乙、丙合作,90天可完工;若甲、乙、丁合作,120天可完工;若丙、丁合作,180天可完工。
若甲、乙合作36天后,剩下的工程由甲、乙、丙、丁合作,还需多少天可完工?12.定义:k)((其中,n是自然数,就是0.8……的小数点后的第n位数f=n字),如9=)2(f,7)3(f,=)1(f,8=求:)))ffff的值。
5ff(((8(2+5()))(全国数学竞赛小学六年级决赛集训试题(二)____得分____一、填空题(每小题 10分, 共80分)1.如右图, 边长为12米的正方形池塘的周围是草地, 池塘边A , B , C , D 处各有一根木桩, 且AB=BC=CD=3米. 现用长4米的绳子将一头羊拴在其中的某根木桩上(不计打结处). 为使羊在草地上活动区域的面积最大, 应将绳子拴在处的木桩上.2.在所有是20 的倍数的自然数中, 不超过3000并且是14的倍数的数之和是.3.从1~8这八个自然数中, 任取三个数,其中没有连续自然数的取法有种.4.如右图所示, 网格中每个小正方格的面积都为1平方厘米. 小明在网格纸上画了一匹红鬃烈马的剪影(马的轮廓由小线段组成, 小线段的端点在格子点上或在格线上), 则这个剪影的面积为平方厘米.5.如果54□711○<<成立, 则“○”与“□”中可以填入的非零自然数之和最大为.6.如右图, 三个圆交出七个部分.将整数1~7分别填到七个部分中, 要求每个圆的四个数字的和都相等. 那么和的最大值是.7.学校组织482人去郊游, 租用42座大巴和20座中巴两种汽车. 如果要求每人一座且每座一人, 则有种租车方案.8.平面上的五个点A , B , C , D , E 满足:AB = 16厘米, BC = 8厘米, AD = 10厘米, DE = 2厘米, AC = 24厘米, AE =12厘米. 如果三角形EAB 的面积为96平方厘米,则点A 到CD 的距离等于厘米.二、 解答下列各题(每题10分, 共40分, 要求写出简要过程)9.把n 个相同的正方形纸片无重叠地放置在桌面上, 拼成至少两层的多层长方形(含正方形)组成的图形, 并且每一个上层正方形纸片要有两个顶点各自在某个下层的正方形纸片一边的中点上. 下图给出了n =6时所有的不同放置方法, 那么n =8时有多少种不同放置方法?10.有一杯子装满了浓度为15% 的盐水. 有大中小铁球各一个, 它们的体积比为10∶5∶3. 首先将小球沉入盐水杯中, 结果盐水溢出10%, 取出小球; 其次把中球沉入盐水杯中, 又将它取出; 接着将大球沉入盐水杯中后取出; 最后在杯中倒入纯水至杯满为止. 此时杯中盐水的浓度是多少?11.清明节, 同学们乘车去烈士陵园扫墓. 如果汽车行驶1个小时后, 将车速 提高五分之一, 就可以比预定时间提前10分钟赶到; 如果该车先按原速行驶 60千米, 再将速度提高三分之一, 就可以比预定时间提前20分钟赶到. 那么从学校到烈士陵园有多少千米?12.如右图, 在三角形ABC 中, AF=2BF, CE=3AE,CD=2BD. 连接CF 交DE 于P 点, 求DPEP 的值.三、 解答下列各题(每小题 15分,共30分,要求写出详细过程)13.在下边的算式中, 字母a,b,c,d 和“□”代表十个数字0到9中的一个, 其中a,b,c,d 四个字母代表不同的数字, 求a,b,c,d 代表的数字之和.14.从连续自然数1, 2, 3, …, 2014中取出n 个数, 使这n 个数满足: 任意取其中两个数, 不会有一个数是另一个数的7倍. 试求n 的最大值, 并说明理由.2□□□□□□□54-+d c b a全国数学竞赛小学六年级决赛集训试题(三)____得分____一、填空题:(每小题6分,共60分)1.计算=4.5×35.12.0×433 2、将分数2943的分子减去b ,分母加b ,则分数约分后是23。
那么b= 。
3、已知两个质数的平方差等于21,那么,这两个质数的平方和等于 。
4、在1到2008的正整数中,能同时被2,5,8整除的那些数之和为 。
5、456、466、476三个自然数,分别减去同一个正整数a ,得到的差均为质数,则a= 。
6、一项工程,甲队单独完成需要10天,乙队单独完成需要15天,丙队单独完成需要20天。
开始时三个队一起工作,中途甲队撤走,由乙、丙两个队一起完成剩下的工程。
最后用6天时间完成该工程。
那么甲队实际工作了 天。
7、一种商品,第一天卖出13件,每件利润7元;第二天卖出12件,每件利润11元。
如果这两天的售货总金额是一样多,那么这种商品的进货价格是件 元。
8、下列算式中,不同的汉字代表不同的数字,那么,五位数“风筝飞飞飞”的所有可能值之和是 。
风筝飞飞飞× 放2 0 0 8 8 89、数一数下图中共有 个三角形。
10、A 、B 两地相距54千米,甲、乙骑车从A 地到B 地,丙骑车从B 地出发到A 。
甲、乙、丙骑车的速度分别是每小时7公里、13公里、8公里。
如果他们同时出发,那么,当丙的位置在甲、乙之间,并且与甲乙的距离正好相等时,他们在路上行进了 小时。
二、解答题:(每小题20分,共40分)要求:写出推算过程11、有一个电子计算器的数字显示屏坏了,有部分区域在该亮时不亮,使原本的一道一位数乘以一位数,积是两位数的乘法算式,出现如图3所示的怪样(不妨用火柴棒来表示)。
小明对此用火柴棒摆出一种可能的算式:请问:图3所示的算式的乘积有哪几种?12、甲、乙两辆汽车在与铁路并行的道路上相向而行。
一列长180米的火车以60千米/时的速度与甲车同向前进。
火车从追上甲车到遇到乙车,相隔5分钟。
若火车从追上到超过甲车用时30秒,从与乙车相遇到离开用时6秒。
求乙车遇到火车后再过多少分钟与甲车相遇?全国数学竞赛小学六年级决赛集训试题(四)____得分____一、填空题:(每小题6分,共60分)1. 2.45× 1.09+0.245×9.1-0.245×10.9-0.0245×91+0.00245×1090+0.000245×9100=b ,b = 。
2. y ba b a b a b a b a b a =-+⨯⨯++-=+-43)43(9979984343且,9994343已知,y = 。
3.图1-1是一个由两个正方形拼合而成的图形,它们的连长分别是m 厘米及n 厘米,且CDE 为一直线,已知m 和n 都是两位数,且m 2=2n ,若三角形ABC 的面积等于a 平方厘米,求a= 。
4.已知P 为50以的一个两位质数,且2p+1也是质数,若所有P 的和是X ,求X= 。
5.图1-2所示为四个半径为2cm 的圆,它们刚好能拼砌于一个正方形方框.已知阴影部分面积等于7a cm 2,求a = 。
取π=722).6.某山区的村落有人口2476人,全村落的人都会说普通话或话,调查所得,会说普通话的有1756人,会说话的有987人,问会说普通话和话两种语言的有 人。
7.有糖果a 粒,若分给9个小孩,则余8粒;若分给11个小孩,则欠1粒;若分给3个小孩,则余2粒;a 最少 粒。
8. 某贵金属工场职员误把每克售••37.0元的贵金属看成为每克售0.73元.他售出b公斤后,出纳员发觉工场损失了146元,求b 公斤。
9.设19164119112s=++++,则s= 。
10.非洲有一种爬虫,牠的成长期是很特别的,牠由出生后第五天开始,直至成长至成虫,每天长度较上一天增加一倍另多一厘米.工作人员在牠出生后第十天量度得牠的长度是896厘米.那么,牠出生后第七天的长度是厘米。
二、解答题:(每小题20分,共40分)要求:写出推算过程11.在下午时分,小强在泥地上量度得某大厦的影子的长度是10米.小强实时把一根长35厘米的木棍的七分之一插入泥中,使木棍垂直竖立在大厦前面的地上,小强量度得木棍的影子的长度是5厘米.小强利用这些数据准确计算得大厦的高度是d米,求d的值.12.某按摩椅生产商为促销按摩椅,做了以下的优惠承诺:(a)任何顾客购买按摩椅,可获25%折扣;(b)若是会员,可折后再折35%;(c)若是会员,同时又是长者,可折后,额外再折40%.若一名长者会员以585元,购买了一台按摩椅,问他付的买价较原价便宜了多少元?全国数学竞赛小学六年级决赛集训试题(五)____得分____一、填空题(每小题 10分, 共80分)1.计算:9.0195105375.119484⨯+⨯=.2.右图是用六个正方形、六个三角形、一个正六边形组成的图案, 正方形边长都是2 cm, 这个图案的周长是cm.3.某项工程需要100天完成.开始由10个人用30天完成了全部工程的51, 随后再增加10个人来完成这项工程, 那么能提前天完成任务.4.王教授早上8点到达车站候车, 登上列车时, 站台上时钟的时针和分针恰好左右对称.列车8点35分出发, 下午2点15分到达终点站.当王教授走下列车时, 站台上时钟的时针和分针恰好上下对称, 走出车站时恰好3点整.那么王教授在列车上的时间共计分钟.5.由四个非零数字组成的没有重复数字的所有四位数的和为73326,则这些四位数中最大的是,最小的是.6.如右图所示, 从长、宽、高分别为15 cm, 5 cm, 4 cm 的长方体中切割走一块长、宽、高分别为y cm, 5cm, x cm 的长方体(x , y 为整数), 余下部分的体积为120 cm 3, 那么x 为cm, y 为cm.7.一次数学竞赛有A,B,C 三题,参赛的39个人中,每人至少答对了一道题.在答对A 的人中,只答对A 的比还答对其它题目的多5人; 在没答对A的人中,答对B的是答对C的2倍; 又知道只答对A的等于只答对B的与只答对C的人数之和.那么答对A的最多有人.8.甲、乙进行乒乓球比赛,三局两胜制.每局比赛中, 先得11 分且对方少于10分者胜; 10平后多得2 分者胜.甲、乙二人得分总和都是30分,在不计比分先后顺序时,三局的比分共有种情况.二、解答下列各题(每小题10分, 共40分, 要求写出简要过程)9.两个自然数之和为667,它们的最小公倍数除以最大公约数所得的商等于120.求这两个数.10.酒店有100个标准间,房价为400元/天,但入住率只有50%.若每降低20元的房价,则能增加5间入住.求合适的房价,使酒店收到的房费最高.11.如图,长方形ABCD的面积是56 cm2.3BE=cm,2DF=cm.请你回答:三角形AEF的面积是多少?n+的数中能够被7整除12.当n取遍1,2,3,…,2015中所有的数时,形如33n的有多少个?全国数学竞赛小学六年级决赛集训试题参考答案训练(一)训练(二)训练(三)训练(四)训练(五)。