systemview抽样定理PCM实验报告
基于SystemView的通信原理软件实验

通信原理实验报告题目:基于SystemView的通信原理软件实验实验一 低通抽样定理的验证1、 实验目的:1、 利用SystemView 模拟来验证低通抽样定理。
2、 熟悉SystemView 的基本操作,学会基本的分析方法。
2、 实验原理:奈奎斯特第一准则:∑∞-∞==+m s s T T m H )2(πω,sT πω≤||该式的物理意义是: 基带系统的传输特性沿ω轴平移sT mπ2),2,1,0( ±±=m 再相加起来,在区间),(ss T T ππ-叠加的结果为一条水平直线,即为一固定数值。
则理想低通信道的最高码元传输速率等于2W Baud 。
抽样定理是模拟信号数字化的理论基础,对上限频率为f H 的低通型信号,低通抽样定理要求抽样频率应满足: 其中,对于恒定频谱的冲激函数,通过低通滤波产生低通型信号,再进行低通抽样,最后滤波重建原始信号。
仿真分析时,三路信号的频率分别设为10Hz 、12Hz 和14Hz ,设置低通滤波器的上限频率为14Hz ,,低通抽样频率选为50Hz 。
3、 实验步骤:(一)设置“时间窗”参数:● 运行时间:Start Time: 0秒;Stop Time: 1.5秒; ● 采样频率:Sample Rate= 100Hz 。
(二)创建的仿真分析系统图:Hs f f 2≥(三)参数配置●信源:3组正弦,f1=10Hz.f2=12Hz.f3=14Hz●抽样:f= 50Hz●模拟低通滤波器:截止频率=50Hz●加法器:将3个信源信号叠加●乘法器:加入抽样●3个分析窗:三路正弦相加获得的原信号、抽样获得的信号和恢复后获得的信号(四)运行并观察结果4、实验结果:运行后,获得的实验结果如下所示:分别为三路正弦相加获得的原信号、抽样获得的信号和恢复后获得的信号5、实验分析与讨论:当抽样频率小于最高频率的2倍时,由于无法获得原信号一个周期内的完整信息,所以在对信号恢复的会产生误差,如图显示会将两个波峰相连,形成一个波峰,而丢失掉原信号的信息,无法无失真的恢复。
基于system_view的pcm+2dpsk_仿真及系统抗噪声性能测试实验报告.docx

通信系统实验报告--- 基于system view的2DPSK+PCM传输仿真一、系统仿真目的1、了解PCM+2DPK通信系统的原理和信息传输方案2、掌握通信系统的设计方法与参数选择原则3、掌握由图符模块建立了系统并构成通信系统的设计方法4、熟悉通信系统的SYSTEMVIEW仿真测试环境系统仿真内容简介5、测试实验所搭建2dpsk传输系统抗噪声性能,并与理论|11|线作对比6、观测不同信噪比条件下关键信号眼图变化情况,进一步了解眼图的作用与含义7、了解信号在系统传输过程屮衿阶段频率分量的变化,加深对限号调制解调在频域的认知二、实验内容1、用三个频率和幅度分别为400HZ, 2v、500HZ, 2v、700HZ, 0.5v的正弦信号作为系统的输入,经过PCM编码系统转换为数字信号,再经并串转换转换为基带信号2、以基带信号作为2DPSK系统输入信号,码速率Rb = 16kbit/So采用键控法实现2DPSK的调制,采用非相干解调法实现2DPSK的解调,分别观察系统各点波形。
3、将2DPSK系统输出信号进行串并变换,再经PCM解码系统还原为系统初始输入的模拟信号,并观察信号时域和频域的变化。
4、使丿IJ仿真软件SYSTEMVIEW,从SystemView配置的图标库中调岀相关合适的图符并讲行合适的参数设置,并连好图符间的连线,完成对PCM编码、2DPSK键控调制、非相干解调、pcm解码仿真电路设计,并完成仿真操作。
5、观察各点波形:包括时域波形、眼图、部分信号瀑布图、2dpsk系统抗噪声性能|11|线等, 以及记录主要信号点的功率谱密度。
6、分析实验所得图形数据,判断系统传输的正确性。
7、搭建抗噪声性能测试原理图,测试在不同信噪比环境下,系统误码率的大小,并以此绘制出误码率随信噪比变化的数据曲线,即2DPSK系统的抗噪声性能,绘制该1111线,并与理论曲线进行对比。
三、原理简介1、PCM编码译码原理(1)编码原理编码过程分三步:抽样:需要满足低通采样定理,采样频率8kHz o量化:均匀量化时小信号量化谋差大,因此采用不均匀选取量化间隔的非线性量化方法,即景化特性在小信号时分层密、最化间隔小,而在大信号时分层疏、最化间隔大。
SystemView抽样定理验证实验

实验四、抽样定理验证实验
一、实验目的
1、熟悉使用System View软件,了解各部分功能模块的操作和使用方法。
2、通过实验进一步掌握低通抽样定理的原理。
二、实验内容
用System View建立一个低通抽样定理仿真电路,通过观察各个模块输出波形变化,理解低通抽样定理原理。
三、思考题
1、观察仿真电路中各个模块输出波形变化,理解低通抽样定理原理。
2、调节抽样速率的大小(f=80Hz、100Hz、200Hz),观察低通滤波器输出波形变化,理解变化原因。
观察模拟信号与抽样信号的功率谱密度,观察有何变化,说明原因。
四、电路构成
参数设置:
Token0:产生模拟信号(参数设置:Source――Periodic――Sinusoid,幅度1V,频率50HZ,相位0度)
Token1:Multiplier
Token2:产生抽样信号(参数设置:Source——Periodic——Pulse Train,幅度1V,频率100Hz,脉冲宽度0.000001,偏移0V,相位0度,抽样速率可调)
Token3:产生一个模拟低通滤波器,滤除高频信号,保留低频信号(参数设置:Operator——Filters/Systems——Linear Sys Filters,选择:Analog——Lowpass ——Butterworth,Lowcuttoff=50Hz,No of Poles=3,截止频率=模拟信号最高频率)。
SystemView实验报告

SystemView实验报告⽬录实验⼀模拟调制系统设计分析--振幅调制系统(常规AM) (2)1、实验⽬的 (2)2、实验原理 (2)3、实验内容和结果 (3)4、实验结果分析 (7)5、实验总结 (8)实验⼆模拟信号的数字传输系统设计分析 --脉冲振幅调制系统(PAM) (9)1、实验⽬的 (9)2、实验原理 (9)3、实验内容和结果 (10)4、实验结果分析 (16)5、实验总结 (16)实验三数字载波通信系统设计分析 --⼆进制频移键控系统(2FSK) (17)1、实验⽬的 (17)2、实验原理 (17)3、实验内容和结果 (18)4、实验结果分析 (31)5、实验总结 (31)参考书⽬ (31)实验⼀模拟调制系统设计分析--振幅调制系统(常规AM)1、实验⽬的1)回顾AM调制及解调的基本原理2)应⽤SystemView设计模拟调制仿真系统并分析系统性能3)观察各点波形并分析频谱特性, 改变参数研究其抗噪特性. 进⼀步了解AM调制的原理和性能2、实验原理1) 调制任意的AM调制信号可以表⽰为 S am=c(t)m(t),当m(t)= A0+f(t);c(t)=cos(ωc t+θ0),且A0不为0时, 称为常规调制, 其时域表达式是;S am=c(t)m(t)=[A0+f(t)]cos(ωc t+θ0)其中A0是外加的为外加的直流分量, m(t)为调制信号, 可以是确知信号, 也可以是随机信号ωc, θ0分别为载波的⾓频率、初始相位, 为简便起见, 通常设为0. 常规AM通常⽤下图所⽰的系统来实现:图1.12) 解调解调可以⽤相⼲解调也可以⽤包络检波(⾮相⼲). 对于相⼲解调,S am(t)cosωc t=[A0+f(t)]cos2ωc t=[A0+f(t)](1+cos2ωc t)/2 ,因此只需要⽤⼀个跟载波信号同频同相的正弦波跟接受信号相乘再通过低通滤波器滤波即可以将原信号解调出来. ⽽对于⾮相⼲解调, 从S am(t)的表达式可以看出只需要对它进⾏包络检波即可将原信号解调出来. 当然, ⽤⾮相⼲解调时不可过调制, ⽽相⼲解调则可以. 这两种⽅法相⽐⽽⾔, ⾮相⼲解调更经济, 设备简单,⽽相⼲解调由于需要跟载波同频同相的信号, 因此设备⽐较复杂.3、实验内容和结果1) 实验连线图根据AM已调信号的公式S am=c(t)m(t)=A0cosωc t+f(t)cosωc t其中A0≥|f(t)| (采⽤相⼲解调不需要这个条件). 通过有噪声的信号后, 接收并利⽤相⼲解调⽅法进⾏解调, 这样就可以获得如下的原理图. 其中正弦信号源信号(图符7)幅度为1V, 频率为40Hz; 载波信号(图符0)幅度为1V, 频率为100Hz. 解调部分的本振源(图符14)与载波信号源的设置相同, 幅度为1V, 频率为100Hz. 低通滤波器(图符13)的截⽌频率为45Hz, 保留正弦信号源的频率40Hz, 并滤除了⾼频的分量, 这样得到的输出信号的幅值是输⼊信号的1/2.图1.22) 设置⾸先设置的总体的定时, 如下图所⽰. 采样的速率要相对⾼⼀点, 否则会出现错误. ⾸先设置⾼斯噪声为0.图1.33)实验波形图1.4 AM调制45Hz滤波左上和左下分别是正弦载波和输⼊待调制正弦信号. 右上为已调制信号, 右下为解调信号. 从上图可以看出, 该系统可以正常⼯作, 解调输出的幅值是输⼊信号的1/2.图1.5 AM调制45Hz滤波频谱频谱图位置与上⾯的信号波形图⼀致. 右上是已调制信号的频谱, 由于直流分量的存在,在信号的频谱中会出现三个尖顶. 分别对应载波频率, 载波频率与原始信号频率之差以及载波频率与原始信号频率之和. 从右下解调信号的频谱可知, 解调结果略有失真,但是基本与原信号相同.图1.6 AM调制70Hz滤波上图为将低通滤波器(图符13)截⽌频率改为70Hz时所得的波形图. 可见波形略有失真.4) 抗噪性能分析加⼊噪声, 噪声电压设置为1V.上图是加⼊噪声源后的输⼊信号, 调制信号和解调信号的波形.上图是待调制信号的振幅改为10V后的波形图(相当于提⾼信噪⽐).图1.9 AM调制70Hz滤波加噪声上图为将低通滤波器(图符13)截⽌频率改为70Hz时所得的波形图, 噪声电压1V, 待调制信号振幅1V.图1.10 AM调制70Hz滤波加噪声信号10待调制信号振幅改为10V后的波形图.4、实验结果分析1)频谱分析理论上正弦信号的频谱为单⼀频率, 但是图中可见, 该正弦的频率是⼀个范围, 在特定的频率上有⼀个尖顶. ⽽已调信号的频谱如前⾯所说, 是由三个分量构成, 这可由公式推导出:即调制信号与本振信号相成之后会有三个分量. ⽽经过解调后得到频谱理论上也是单⼀的频率, 与输⼊信号的频率相同, 但实际上也只是⼀个尖顶. 下图是输⼊频谱与输出频谱的对⽐, 可见在⾼斯噪声为1V时, 输⼊与输出信号的频谱⼤致相同, 但是由于噪声较⼤, 输出信号受噪声的影响较⼤, 故⽽会出现⼀些较⼤的波动.图1.11 待调制信号与解调信号频谱对⽐2) 抗噪声性能分析图1.4与图1.4表明, 加噪声后解调信号有所失真.图1.4与图1.9表明, 低通滤波器的截⽌频率越⼩, 对噪声的抑制作⽤就越好, 解调信号的失真就越⼩.图1.7, 图1.8与图1.9, 图1.10表明, 信噪⽐越⼤, 解调信号的失真就越⼩.综上所述, 提⾼信噪⽐和合理设置低通滤波器的截⽌频率可以有效地减⼩失真现象. 5、实验总结本实验是常规的振幅调制, 较为简单, 实验原理也很熟悉, 按照教材可以很快建⽴起这个系统并进⾏波形观察和频谱分析.通过这个实验我熟悉了波形与信号频谱的观察⽅法与观察技巧, 进⼀步熟悉了systemview这个软件, 并且复习了AM调制与解调的原理.实验⼆模拟信号的数字传输系统设计分析 --脉冲振幅调制系统(PAM) 1、实验⽬的1)回顾PAM调制及解调的基本原理2)应⽤SystemView设计数字传输系统并分析系统性能3)观察各点波形并分析频谱特性. 进⼀步了解PAM调制的原理和性能2、实验原理1)脉冲振幅调制(PAM)是利⽤冲击函数对原始信号进⾏抽样, 它是⼀种最基本的模拟脉冲调制, 它往往是模拟信号数字化过程中的必经之路.2)设基带脉冲信号的波形为m(t), 其频谱为M(f); ⽤这⼀信号对⼀个脉冲载波s(t)调幅.s(t)的周期为T s, 其频谱为S(f); 脉冲宽度为τ, 幅度为A; 并设抽样信号m s(t)是m(t)和s(t)的乘积. 则抽样信号m s(t)的频谱就是⼆者频谱的卷积:其中.图2.1中⽰出PAM调制过程的波形与频谱.s(t)的频谱包络|S(f)|的包络与sinc函数类似, 并且PAM信号m s(t)的频谱M s(f)包络|M s(f)|的包络也与sinc函数类似. 若s(t)的周期T≤1/2f H, 则采⽤⼀个截⽌频率f H的低通滤波器仍可以分离原模拟信号.图2.1脉冲振幅调制3)实验总体的电路如下图所⽰, 把输⼊信号与脉冲信号通过相乘器相乘, 这样在频域就达到了卷积的效果. 这样频谱就会分开, 如图2.1所⽰, 通过信道传输后再通过低通滤波器, 只要低通滤波器的截⽌频率f c>f H就可以实现解调.图2.2 PAM原理3、实验内容和结果1) 实验连线图图2.3 PAM调制与解调如上图所⽰, 图中采⽤的是⾼斯信号源(图符12), 其幅值为1V. 两个低通滤波器(图符11与图符4)的截⽌频率均为150Hz, ⽽脉冲宽度1µs.增益(图符9)的⼤⼩为3. 信道噪声(图符14)先设置为0.1V. 经图符11滤波器输出的是原信号, 经图符2输出的是抽样调制信号, 经图符4输出的是解调信号.2) 观察波形和频谱◆波形: ⾸先设置脉冲(图符3)的频率为2000Hz.图2.42000Hz抽样波形图图2.4中, 上为⾼斯噪声经滤波后的输⼊波形. 中为抽样后的调制信号, 下为滤波解调后的输出波形.◆频谱图:图2.52000Hz抽样频谱图图2.5频谱图顺序与图2.4相同.◆波形和频谱对⽐图:图2.6 2000Hz采样输⼊输出波形对⽐图2.7 2000Hz采样输⼊输出频谱形对⽐从图2.6和图2.7可以看出, 输出波形和原波形相⽐形状基本相似, 只是略有延迟. 从频谱图也可以看出, 当频率⼩于150Hz(低通滤波器截⽌频率)时, 频谱图基本可以重合.3) 抽样频率与解调信号性能的关系⾸先将抽样频率改为500Hz.从图2.5的频谱图中可知, 输⼊信号的最⼤频率⼤约是500Hz(从低通滤波器截⽌频率150Hz来看, 输⼊信号的最⼤频率应该为150Hz, 但是因为滤波器并⾮理想, 事实上并不是这样, 不过读图可知, 500Hz频率之后的能量已经很⼩, 可以忽略), 这样抽样频率⼤于1000Hz时才能使抽样后的频谱信号⽆混叠.图2.8 500Hz输⼊输出波形对⽐图2.9 500Hz输⼊输出频谱对⽐图2.8和图2.9表明, 500Hz抽样时已经存在频域混叠. 从波形上来说已经有些失真, 但是⼤体形状还是符合的; 从频域观察, 这种失真表现的更加明显, 尤其是频率超过低通滤波器的截⽌频率150Hz之后的频谱图.◆其次将抽样频率改为5000Hz.此时可以认为没有频率混叠.图2.10 5000Hz输⼊输出波形对⽐图2.11 5000Hz输⼊输出频谱对⽐4) 观察噪声对信道传输的影响将噪声电压改为1V, 抽样频率仍为5000Hz, 观察波形和频谱图对⽐.图2.12 5000Hz加噪输⼊输出波形对⽐图2.13 5000Hz加噪输⼊输出频谱对⽐从图2.12可以看出来,噪声加⼤10倍对解调输出信号的影响很⼤, 波形失真较为严重. 图2.13频谱图也可以表明这个现象.4、实验结果分析1)当抽样频率是信号频率的两倍或以上的话, 所得的解调信号没有失真. 当抽样频率⼩于信号频率时, 解调信号有所失真.2)抽样频率较⾼时, 从频谱图可以看出, 其频率谱线更加贴近原信号的频率谱线, 表明失真较⼩.3)信噪⽐较低时噪声对信号的失真程度有很⼤影响.5、实验总结这次实验相⽐于上个实验略显复杂, 因此花费的功夫相对多⼀些. 主要的原因是遗忘了好多实验的原理. 仔细参考教材后, 做起来就简单多了.通过这个实验我更加熟悉了波形与信号频谱的观察⽅法与观察技巧, 进⼀步熟悉了systemview这个软件, 并且复习了PAM调制与解调的原理, 对于抽样定理, 那奎斯特频率等也有了深刻的认识.实验三数字载波通信系统设计分析 --⼆进制频移键控系统(2FSK) 1、实验⽬的1)回顾2FSK调制及解调的基本原理.2)应⽤SystemView设计数字载波通信系统并分析系统性能.3)观察各点波形并分析频谱特性, 眼图等, 改变参数研究其抗噪特性, 分析BER曲线.进⼀步了解2FSK调制与解调的原理和性能.2、实验原理1) 简介数字调频⼜称移频键控, 简记为FSK, 它是载波频率随数字信号⽽变化的⼀种调制⽅式.利⽤基带数字信号离散取值特点去键控载波频率以传递信息的⼀种数字调制技术. 除具有两个符号的⼆进制频移键控之外, 尚有代表多个符号的多进制频移键控, 简称多频调制. 是⼀种⽤多个载波频率承载数字信息的调制类型.2)调制原理最常见的是⽤两个频率承载⼆进制1和0的双频FSK系统, 常⽤模拟调频法和键控法产⽣2FSK信号. 本实验采⽤2FSK调制, 利⽤键控法产⽣2FSK信号. 其实验原理图如下图图3.1(b)所⽰, 即通过⼆进制数据的0值与1值控制开关与哪⼀路频率信号接通, 这样0值与1值对应不同的频率, 达到调制的⽬的.图3.1 2FSK信号产⽣原理图3) 解调原理FSK信号的解调⽅法有相⼲解调, ⾮相⼲解调等. 在⾼斯⽩噪声信道环境下FSK滤波⾮相⼲解调性能较相⼲FSK的性能要差, 但在⽆线衰落环境下,FSK滤波⾮相⼲解调却表现出较好的稳健性. 在这个实验⾥我们采⽤的是⾼斯信道, 故采⽤相⼲解调⽅法.FSK相⼲解调要求恢复出传号频率与空号频率, 恢复出的载波信号分别与接收的FSK调制信号相乘, 然后通过低通滤波器滤除相乘后得到的⾼频分量, 保留低频分量. 相⼲FSK 解调框图如图2所⽰.图3.2 FSK相⼲解调原理图本实验采⽤键控法产⽣FSK信号, ⽤相⼲解调法解调FSK信号.3、实验内容和结果1)实验连线图图3.3 FSK调制与解调原理图中添加了⾼斯信源(初始噪声电压设为0V), 其中低频正弦信号为10Hz, ⾼频正弦信号为20Hz, 随机码为2Hz. 上⽀路带通滤波器为8Hz到12Hz, 下⽀路带通滤波器为18Hz 到22Hz, 上下⽀路的低通滤波器分别为10Hz和20Hz. 上下之路相加后经抽样判决得到解调信号.2) 波形与频谱◆波形图图3.4 各点波形观察图3.4中, 左上为输⼊随机码信号, 左中为2FSK调频信号, 左下为经抽样判决后的解调输出波形. 右侧的波形分别为上边路滤波输出(图符12), 下边路滤波输出(图符13)和上下之路相加输出(图符14). 从此图可见, 抽样判决输出的波形在没有噪声的情况下与原信号基本⼀致, 只是有⼀定的延时.◆频谱图。
北邮通信原理实验 基于SYSTEMVIEW通信原理实验报告-

北京邮电大学实验报告题目:基于SYSTEMVIEW通信原理实验报告班级:2013211124专业:信息工程姓名:曹爽成绩:目录实验一:抽样定理 (3一、实验目的 (3二、实验要求 (3三、实验原理 (3四、实验步骤和结果 (3五、实验总结和讨论 (9实验二:验证奈奎斯特第一准则 (10一、实验目的 (10二、实验要求 (10三、实验原理 (10四、实验步骤和结果 (10五、实验总结和讨论 (19实验三:16QAM的调制与解调 (20一、实验目的 (20二、实验要求 (20三、实验原理 (20四、实验步骤和结果 (21五、实验总结和讨论 (33心得体会和实验建议 (34实验一:抽样定理一、实验目的1. 掌握抽样定理。
2. 通过时域频域波形分析系统性能。
二、实验要求改变抽样速率观察信号波形的变化。
三、实验原理一个频率限制在0f 的时间连续信号(m t ,如果以012S T f的间隔进行等间隔均匀抽样,则(m t 将被所得到的抽样值完全还原确定。
四、实验步骤和结果1. 按照图1.4.1所示连接电路,其中三个信号源设置频率值分别为10Hz 、15Hz 、20Hz ,如图1.4.2所示。
图1.4.1 连接框图图1.4.2 信号源设置,其余两个频率值设置分别为15和202.由于三个信号源最高频率为20Hz,根据奈奎斯特抽样定理,最低抽样频率应为40Hz,才能恢复出原信号,所以设置抽样脉冲为40Hz,如图1.4.3。
图1.4.3 抽样脉冲设置3.之后设置低通滤波器,设置数字低通滤波器为巴特沃斯滤波器(其他类型的低通滤波器也可以,影响不大,截止频率设置为信号源最高频率值20Hz,如图1.4.4。
图1.4.4 滤波器设置4.为了仿真效果明显,设置系统时间如图1.4.5所示。
图1.4.5 系统时间设置5.之后开始仿真,此时选择抽样速率恰好等于奈奎斯特抽样频率,仿真结果如图1.4.6所示,图中最上面的Sink4是相加后的输入信号波形,中间的Sink8是输入信号乘以抽样脉冲之后的波形,最下面的Sink9是低通滤波恢复后的波形。
SystemView实验报告(全)

昆明理工大学(SystemView)实验报告实验名称:SystemView实验时间:20013 年 9 月 8日专业:11电信指导教师:文斯姓名:张鉴学号:2 成绩:教师签名:文斯第一章SystemView的安装与操作一实验目的1、了解和熟悉Systemview 软件的基本使用;2、初步学习Systemview软件的图符库,能够构建简单系统。
二实验内容1、熟悉软件的工作界面;2、初步了解Systemview软件的图符库,并设定系统定时窗口;3、设计一些简单系统,观察信号频谱与输出信号波形。
三实验过程及结果1.1试用频率分别为f1=200HZ、f2=2000HZ的两个正弦信号源,合成一调制信号y(t)=5sin(2πf1t)*cos(2πf2t),观察其频谱与输出信号波形。
注意根据信号的频率选择适当的系统采样数率。
画图过程:(1)设置系统定时,单击按钮,设置采样率20000Hz,采样点数512;(2)定义两个幅度分别为1V,5V,频率分别为200Hz,2000Hz的正弦和余弦信号源;(3)拖出乘法器及接收图符;(4)连线;(5)运行并分析单击按钮和。
仿真电路图:波形图如下:频谱图如下:结果分析:频率为200HZ 的信号与频率为2000HZ的信号f2相乘,相当于在频域内卷积,卷积结果为两个频率想加减,实现频谱的搬移,形成1800HZ和2200HZ的信号,因信号最高频率为2000HZ所以采用5000HZ的采样数率。
1.2将一正弦信号与高斯噪声相加后观察输出波形及其频谱。
由小到大改变高斯噪声的功率,重新观察输出波形及其频谱。
画图过程:(1)设置系统定时,单击按钮,设置采样率100Hz,采样点数128;(2)定义一个幅度为1V,频率为100Hz正弦信号源和一个高斯噪声;(3)拖出加法器及接收图符;(4)连线;(5)运行并分析单击按钮和;(6)在分析窗口下单击进入频谱分析窗口,再单击点OK分析频谱。
仿真电路图:波形图如下:频谱图如下:结果分析:原始信号的频率为1000HZ,在加入均值为0方差为1的高斯噪声后,其波形发生严重失真,输出信号的各频率分量上的功率发生不规则变化。
抽样定理和PCM调制解调实验报告

《通信原理》实验报告实验一:抽样定理和PAM调制解调实验系别:信息科学与工程学院专业班级:通信工程1003班学生姓名:陈威同组学生:杨鑫成绩:指导教师:惠龙飞(实验时间:2012 年 12 月 7 日——2012 年 12 月28日)华中科技大学武昌分校1、实验目的1对电路的组成、波形和所测数据的分析,加深理解这种调制方法的优缺点。
2.通过脉冲幅度调制实验,使学生能加深理解脉冲幅度调制的原理。
2、实验器材1、信号源模块一块2、①号模块一块3、60M双踪示波器一台4、连接线若干3、实验原理3.1基本原理1、抽样定理图3-1 抽样与恢复2、脉冲振幅调制(PAM)所谓脉冲振幅调制,即是脉冲载波的幅度随输入信号变化的一种调制方式。
如果脉冲载波是由冲激脉冲组成的,则前面所说的抽样定理,就是脉冲增幅调制的原理。
自然抽样平顶抽样)(tm)(tT图3-3 自然抽样及平顶抽样波形PAM方式有两种:自然抽样和平顶抽样。
自然抽样又称为“曲顶”抽样,(t)的脉冲“顶部”是随m(t)变化的,即在顶部保持了m(t)变已抽样信号ms化的规律(如图3-3所示)。
平顶抽样所得的已抽样信号如图3-3所示,这里每一抽样脉冲的幅度正比于瞬时抽样值,但其形状都相同。
在实际中,平顶抽样的PAM信号常常采用保持电路来实现,得到的脉冲为矩形脉冲。
四、实验步骤1、将信号源模块、模块一固定到主机箱上面。
双踪示波器,设置CH1通道为同步源。
2、观测PAM自然抽样波形。
(1)将信号源上S4设为“1010”,使“CLK1”输出32K时钟。
(2)将模块一上K1选到“自然”。
(3)关闭电源,连接表3-1 抽样实验接线表(5)用示波器观测信号源“2K同步正弦波”输出,调节W1改变输出信号幅度,使输出信号峰-峰值在1V左右。
在PAMCLK处观察被抽样信号。
CH1接PAMCLK(同步源),CH2接“自然抽样输出”(自然抽样PAM信号)。
图3-1 2KHz模拟信号图3-2 自然抽样PAM输出分析:抽样定理表明个频带限制在(0,H f )内的时间连续信号()m t ,如果以T ≤Hf 21秒的间隔对它进行等间隔抽样,则()m t 将被所得到的抽样值完全确定。
抽样定理实验报告

抽样定理实验报告一、实验目的1.了解抽样定理的基本概念和原理;2.通过实验掌握抽样定理的应用方法;3.分析实验结果,验证抽样定理的有效性。
二、实验原理抽样定理,也称为中心极限定理,是概率论和数理统计学中的重要定理之一、它指出当从总体中抽取的样本数量足够大时,样本均值的分布接近于正态分布。
具体原理如下:假设总体的分布情况未知,从中抽取容量为n的样本,将样本观察值依次排列为X1,X2,...,Xn。
根据大数定律,当n趋向于无穷大时,样本均值的极限分布为正态分布。
三、实验步骤1.确定实验总体和样本容量:假设总体为一些城市的居民收入情况,样本容量为n=50。
2.随机抽取样本:从该城市的居民总体中随机选取50个人的收入数据作为样本数据。
3.计算样本均值:将样本数据相加后除以样本容量,得到样本均值。
4.重复步骤2和3,进行多次实验:重复50次实验,每次都从总体中随机抽取不同的样本,并计算样本均值。
5.统计实验结果:将50次实验中得到的样本均值进行统计,并绘制频数分布直方图。
6.分析实验结果:通过观察频数分布直方图,分析样本均值的分布情况,验证抽样定理的有效性。
四、实验结果及分析根据实验步骤,我们从城市的居民总体中随机抽取了50个人的收入数据,并计算了样本均值。
通过重复50次实验,并统计得到的样本均值,我们绘制了频数分布直方图。
从频数分布直方图中可以看出,样本均值的分布情况呈现出正态分布的特点,中间值出现的频率最高,两端值出现的频率相对较低。
这与抽样定理的结论一致,即样本均值的极限分布为正态分布。
实验结果的分析表明,当样本容量足够大(在本实验中,样本容量为50),从总体中抽取的样本均值趋近于总体均值,而且样本均值的分布接近正态分布。
这进一步验证了抽样定理的有效性。
五、实验结论通过本次实验,我们了解了抽样定理的基本概念和原理,并通过实验验证了抽样定理的有效性。
实验结果表明,当从总体中抽取足够大的样本时,样本均值的分布接近正态分布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信息学院
现代交换实验报告
姓名:刘璐
学号: 2011080331229 专业:通信工程
2014年6月10日
实验一:抽样定理仿真
一、实验目的
1、掌握Systemview 软件的使用
2、熟练使用软件的图符库,能够构建简单系统
二、实验内容
1、熟悉软件的工作界面;
2、用Systemview 软件建立仿真电路
3、进行参数设置
4、观测过程中各关键点波形
5、对仿真结果进行分析
三、实验原理
所谓抽样。
就是对时间连续的信号隔一定的时间间隔T抽取一个瞬时幅度值(样值),抽样是由抽样门完成的。
在一个频带限制在(0,f h)内的时间连续信号f(t),如果以小于等于1/(2 f h)的时间间隔对它进行抽样,那么根据这些抽样值就能完全恢复原信号。
或者说,如果一个连续信号f(t)的频谱中最高频率不超过f h,这种信号必定是个周期性的信号,当抽样频率f S≥2 f h 时,抽样后的信号就包含原连续信号的全部信息,而不会有信息丢失,当需要时,可以根据这些抽样信号的样本来还原原来的连续信号。
根据这一特性,可以完成信号的模-数转换和数-模转换过程。
四、实验结果
参数设置:1V500HZ 1V8000HZ 16000HZ
正弦波Sinusoid
参数: 1.幅度 2.频率 3.相位
功能: 产生一个正弦波:y(t)=Asin(2PIfct+*)
脉冲串Pulse Train
参数: 1.幅度 2.频率(HZ) 3.脉冲宽度(秒) 4.偏置 5.相位
功能: 产生具有设定幅度和频率的周期性脉冲串,脉宽由设置决定。
y(t)=+-A*PT(t)+Bias 有方波选项。
实时显示 Real Time
功能: 能在系统仿真运行同时,实时地在系统窗口显示接收到的波形。
加法器 Adder
参数: 1.寄存器大小N 2.分数大小F 3.指数大小K 4.输出类型T 5.整型数转换选择
功能: 将输入的一个或多个值求和,并给出适当的标志。
线性系统滤波器 Linear Sys Filters
结论:由此证明了证明了抽样定理的正确性,抽样信号在fs>=fm时可以还原,抽样频率越高效果越好。
实验二:PCM编译码仿真
一、实验目的
1、掌握滤波器的各种设计方法。
2、掌握各种滤波器的参数设计。
二、实验内容
1、熟悉SYSTEMVIEW 仿真环境的基本操作;
2、构建滤波器性能演示仿真系统;
3、根据滤波要求设置合适的滤波器参数和滤波器类型;
三、实验原理
SystemView仿真软件可以实现多层次的通信系统仿真。
脉冲编码调制(PCM)是现代语音通信中数字化的重要编码方式。
利用SystemView实现脉冲编码调制(PCM)仿真,可以为硬件电路实现提供理论依据。
通过仿真展示了PCM编码实现的设计思路及具体过程,并加以进行分析。
PCM即脉冲编码调制,在通信系统中完成将语音信号数字化功能。
PCM的实现主要包括三个步骤完成:抽样、量化、编码。
分别完成时间上离散、幅度上离散、及量化信号的二进制表示。
四、实验结果
参数设置:1V1500HZ 1V1000HZ 1V500HZ
1V1000HZ 1V3000HZ 1V2000HZ 1V1000HZ 30000HZ
由以上数据波形可以看出在PCM编码的过程中,译码输出的波形具有一定的延迟现象,其波形基本上不失真的在接收端得到恢复,传输的过程中实现了数字化的传输过程。
五、实验心得
通过这次设计,掌握了PCM编码的工作原理及PCM系统的工作过程,学会了使用仿真软件 SystemView(通信系统的动态仿真软件),并学会通过应用软件仿真来实现各种通信系统的设计,对以后的学习和工作都起到了一定的作用,加强了动手能力和学业技能。
总体来说,这次实习我受益匪浅。
在摸索该如何设计电路使之实现所需功能的过程中,特别有趣,培养了我的设计思维,增加了实际操作能力。
在让我体会到了设计电路的艰辛的同时,更让我体会到成功的喜悦和快乐。