通信原理实验(软件)实验六:低通型采样定理实验报告
低通信号的抽样定理

低通信号的抽样定理
一、设计任务:运用SYSTEMVIEW 软件,对低通信号的抽样定理进行仿真,观察得到的
信号波形。
被采样的模拟信号源是幅度为1V ,频率为100HZ 的正弦波,
抽样脉冲为窄脉冲矩形脉冲,脉宽为1us 。
抽样器用乘法器代替,选取
100HZ ,200HZ ,500HZ 三种不同的抽样频率。
用于恢复信号的低通滤波
器采用三阶巴特沃斯低通滤波器。
二、仿真环境:
SYSTEMVIEW 5.0
三、实验原理:
抽样信号是由连续信号通过抽样脉冲的相乘得到,如下图
连续信号
抽样信号抽样脉冲
()t f ()t f S ⊗
()t p
其中()f t 为连续信号;() p t 为抽样脉冲序列;()()() s f t f t p t =⋅为抽样信号。
S
四、实验仿真电路及参数设置:
1、仿真全图
仿真电路全图如下,信号发生器为编号0装置,产生如1V ,100Hz 的正弦信号,经滤波后与抽样脉冲相乘,装置6、7、5、10为示波器,其中7为正弦信号,6为抽样信号,10为脉冲信号,5为恢复信号
抽样全图
2、参数设置
正弦波信号参数如下
抽样脉冲信号参数如下
其频率可由100Hz改为200Hz及500Hz
Butterworth滤波器参数如下
五、仿真结果
100Hz的仿真波形图
200Hz的仿真波形图
500Hz的仿真波形图。
采样定理实验报告

一、实验目的1. 熟悉信号采样过程,了解采样定理的基本原理。
2. 通过实验观察采样时信号频谱的混叠现象。
3. 加深对采样前后信号频谱变化的理解,验证采样定理的正确性。
4. 掌握采样频率的选择对信号恢复的影响。
二、实验原理采样定理(Nyquist-Shannon采样定理)指出,一个频率为f的连续时间信号,如果以至少2f的频率进行采样,则采样后的信号可以无失真地恢复原信号。
本实验主要验证这一定理。
三、实验设备1. 信号发生器2. 示波器3. 采样器4. 低通滤波器5. 采样定理验证软件四、实验步骤1. 信号生成:使用信号发生器产生一个频率为f的连续时间信号。
2. 采样:将信号通过采样器进行采样,采样频率分别为f、2f、3f。
3. 频谱分析:使用示波器观察采样信号的时域波形,并使用频谱分析软件观察采样信号的频谱。
4. 信号恢复:对采样信号进行低通滤波,滤波器的截止频率为f/2,观察恢复后的信号。
5. 结果对比:对比不同采样频率下信号恢复的结果,分析采样频率对信号恢复的影响。
五、实验结果与分析1. 采样频率为f时:采样信号的频谱出现混叠现象,无法恢复原信号。
2. 采样频率为2f时:采样信号的频谱没有混叠现象,恢复后的信号与原信号基本一致。
3. 采样频率为3f时:采样信号的频谱没有混叠现象,恢复后的信号与原信号基本一致。
实验结果表明,当采样频率为2f时,采样信号可以无失真地恢复原信号,验证了采样定理的正确性。
同时,实验也表明,采样频率越高,信号恢复的效果越好。
六、实验结论1. 采样定理是信号处理中重要的基本原理,它为信号的数字化提供了理论依据。
2. 采样频率的选择对信号恢复的影响很大,采样频率越高,信号恢复的效果越好。
3. 在实际应用中,应根据信号的频率特性和系统要求选择合适的采样频率。
七、实验心得体会通过本次实验,我对采样定理有了更深入的理解,认识到采样频率选择的重要性。
同时,实验也让我体会到实验在验证理论、提高动手能力方面的作用。
通信原理实验-抽样定理(总9页)

通信原理实验-抽样定理(总9页)
实验名称:抽样定理
实验目的:
1.理解抽样定理的意义和应用
2.掌握抽样定理的实验方法
实验原理:
抽样定理是通信原理中非常重要的一个原理,它是指在信号经过理想低通滤波器之后,如果采样频率大于等于信号频率的两倍,就可以完全恢复原始信号,这个定理也称为奈奎
斯特定理。
实验器材:
示波器、函数信号发生器、导线、面包板。
实验步骤:
1.将函数信号发生器的频率调整至1kHz,并将示波器连接至信号发生器输出端口检测波形。
2.在示波器上观察到正弦波形之后,将频率调整至5kHz,再次观察波形。
5.根据抽样定理的公式计算出采样频率,例如在10kHz时,采样频率应大于等于
20kHz。
6.将采样频率设置为30kHz,并观察波形。
7.继续提高采样频率直至可清晰观察到原始信号的波形。
实验结果:
在采样频率大于20kHz的情况下,可以清晰地观察到原始信号的波形。
在采样频率低
于20kHz的情况下,原始信号的波形会出现明显的径向失真。
实验分析:
在通信系统中,信号传输的过程中可能会发生失真现象,而抽样定理可以帮助我们消
除这种失真。
在本实验中,我们使用函数信号发生器产生不同频率的信号,并通过示波器
观察波形。
通过设置不同的采样频率,可以清晰地观察到原始信号的波形,并验证奈奎斯特定理的正确性。
通过本实验验证了奈奎斯特定理的正确性,即在采样频率大于信号频率的两倍时,可以完全恢复原始信号,避免信号采样带来的失真。
低通抽样定理验证实验

实验二低通抽样定理验证实验一、实验目的1、熟悉使用System View软件,了解各部分功能模块的操作和使用方法。
2、通过实验进一步掌握低通抽样定理的原理。
二、实验内容}用System View建立一个低通抽样定理仿真电路,通过观察各个模块输出波形变化,理解低通抽样定理原理。
三、电路构成图1 低通抽样定理验证实验原理图参数设置:Token3:产生模拟信号(参数设置:Source――Periodic――Sinusoid,幅度1V,频率50HZ,相位0度)《Token4:MultiplierToken5:产生抽样信号(参数设置:Source——Periodic——Pulse Train,幅度1V,频率100Hz,脉冲宽度,偏移0V,相位0度,抽样速率可调)Token6:产生一个模拟低通滤波器,滤除高频信号,保留低频信号(参数设置:Operator——Filters/Systems——Linear Sys Filters,选择:Analog——Lowpass——Butterworth,Lowcuttoff=50Hz,No of Poles=3,截止频率=模拟信号最高频率)四、实验结果(1)原始的输入信号波形图)图2 原始的输入信号波形图(2)原始的输入信号的频谱图图3 原始的输入信号频谱图。
(3)被抽样以后的图形图4 被抽样以后的图形>(4)被抽样以后的频谱图图5 被抽样以后的频谱图分析:由于原始输入波形的离散化,使得输出频谱周期化。
输出频谱如图5所示。
\(5)经过低通滤波器后,还原出波形如图6】图6 还原出的波形(6)经过低通滤波器后,还原后的频谱图!图7 还原后的频谱图可以发现频谱图基本和图3所示相同,但是由于滤波器不是理想低通,使得使得输出频谱周期化的现象仍然存在。
但是基本上已被滤波器滤除,不影响输出波形。
五、思考题#1、观察仿真电路中各个模块输出波形变化,理解低通抽样定理原理。
答:输出波形如上图2至7所示。
通信原理抽样定理实验报告

通信原理抽样定理实验报告一、实验目的。
本实验旨在通过实际操作验证抽样定理在通信原理中的应用,加深对抽样定理的理解,掌握其实际应用方法。
二、实验原理。
抽样定理是指在一定条件下,对信号进行抽样采集后,可以准确还原原始信号。
在通信原理中,抽样定理是确保数字信号可以通过采样准确地表示模拟信号的重要基础。
三、实验仪器与材料。
1. 示波器。
2. 信号发生器。
3. 电缆。
4. 电脑。
5. 实验电路板。
四、实验步骤。
1. 将信号发生器与示波器连接,调节信号发生器输出频率为50Hz;2. 将示波器触发方式设置为自动触发;3. 调节示波器的水平和垂直灵敏度,使波形在示波器屏幕上居中显示;4. 通过示波器观察信号波形,并记录采样率;5. 逐渐增大信号发生器的频率,观察波形的变化;6. 将实验数据导入电脑,进行数据处理和分析。
五、实验结果与分析。
通过实验操作,我们得到了不同频率下的信号波形,并记录了相应的采样率。
在数据处理和分析过程中,我们发现随着频率的增大,如果采样率不足,将会出现混叠现象,导致信号失真。
这验证了抽样定理的重要性,即采样频率必须大于信号频率的两倍,才能准确还原原始信号。
六、实验总结。
通过本次实验,我们深刻理解了抽样定理在通信原理中的重要性,了解了采样率对信号重建的影响。
在实际应用中,我们需要严格按照抽样定理的要求进行信号采样,以确保数字信号能够准确地表示模拟信号。
七、实验感想。
本次实验使我对抽样定理有了更深入的理解,也增强了我对通信原理的实际操作能力。
通过实验,我意识到理论知识与实际操作相结合的重要性,也更加重视了实验数据的准确性和分析的重要性。
八、参考文献。
[1] 《通信原理》,XXX,XXX出版社,2018年。
[2] 《电子技术基础》,XXX,XXX出版社,2017年。
以上为本次实验的报告内容,希望能对大家的学习和实践有所帮助。
北京邮电大学通信原理软件实验报告

北京邮电大学实验报告题目:基于SYSTEMVIEW通信原理实验报告实验一:验证抽样定理一、实验目的1、掌握抽样定理2. 通过时域频域波形分析系统性能二、实验原理低通滤波器频率与m(t)相同三、实验步骤1. 要求三个基带信号相加后抽样,然后通过低通滤波器恢复出原信号。
2. 连接各模块完成系统,同时在必要输出端设置观察窗。
3. 设置各模块参数。
三个基带信号的频率从上到下分别设置为10hz、12hz、14hz。
抽样信号频率设置为28hz,即2*14hz。
(由抽样定理知,)将低通滤波器频率设置为14hz,则将恢复第三个信号(其频率为14hz)进行系统定时设置,起始时间设为0,终止时间设为1s.抽样率设为1khz。
3.观察基带信号、抽样后的信号、最终恢复的信号波形四、实验结果最上面的图为原基带信号波形,中间图为最终恢复的信号波形,最下面的图为抽样后的信号波形。
五、实验讨论从实验结果可以看出,正如前面实验原理所述,满足抽样定理的理想抽样应该使抽样后的波形图如同冲激信号,且其包络图形为原基带信号波形图。
抽样后的信号通过低通滤波器后,恢复出的信号波形与原基带信号相同。
由此可知,如果每秒对基带模拟信号均匀抽样不少于2次,则所得样值序列含有原基带信号的全部信息,从该样值序列可以无失真地恢复成原来的基带信号。
讨论:若抽样速率少于每秒2次,会出现什么情况?答:会产生失真,这种失真被称为混叠失真。
六、实验建议、意见增加改变抽样率的步骤,观察是否产生失真。
实验二:奈奎斯特第一准则一、实验目的(1)理解无码间干扰数字基带信号的传输;(2)掌握升余弦滚降滤波器的特性;(3)通过时域、频域波形分析系统性能。
二、实验原理在现代通信系统中,码元是按照一定的间隔发送的,接收端只要能够正确地恢复出幅度序列,就能够无误地恢复传送的信号。
因此,只需要研究如何使波形在特定的时刻无失真,而不必追求整个波形不变。
奈奎斯特准则提出:只要信号经过整形后能够在抽样点保持不变,即使其波形已经发生了变化,也能够在抽样判决后恢复原始的信号,因为信息完全恢复携带在抽样点幅度上。
抽样定理_实验报告

1. 了解电信号的采样方法与过程。
2. 理解信号恢复的方法。
3. 验证抽样定理的正确性。
二、实验原理抽样定理是信号处理中的一个基本原理,它指出:如果一个连续信号x(t)的频谱X(f)在频率域中满足带限条件,即X(f)在f=0到f=fm的范围内为有限值,且在f=fm之后为零,那么,只要采样频率fs大于2fm(其中fm是信号中最高频率分量的频率),则通过这些采样值就可以无失真地恢复出原信号。
三、实验设备与器材1. 信号与系统实验箱TKSS-C型。
2. 双踪示波器。
四、实验步骤1. 信号产生:使用信号与系统实验箱产生一个带限信号,其频谱在f=fm以下,在f=fm以上为零。
2. 采样:设置采样频率fs为fm的2倍以上,对产生的信号进行采样,得到采样序列。
3. 频谱分析:对采样序列进行频谱分析,观察其频谱特性。
4. 信号恢复:使用数字信号处理技术,对采样序列进行插值,恢复出原信号。
5. 波形比较:将恢复出的信号与原信号在示波器上进行比较,观察其波形差异。
五、实验结果与分析1. 采样序列的频谱分析:从实验结果可以看出,当采样频率fs大于2fm时,采样序列的频谱在f=fm以下与原信号的频谱相同,在f=fm以上为零,符合抽样定理的要求。
2. 信号恢复:通过插值恢复出的信号与原信号在示波器上显示的波形基本一致,说明在满足抽样定理的条件下,可以通过采样值无失真地恢复出原信号。
1. 通过本次实验,验证了抽样定理的正确性,加深了对信号采样与恢复方法的理解。
2. 在实际应用中,应根据信号的特点选择合适的采样频率,以确保信号采样后的质量。
3. 采样定理是信号处理中的基本原理,对于理解信号处理技术具有重要意义。
七、实验心得1. 本次实验使我深刻理解了抽样定理的基本原理,以及信号采样与恢复的方法。
2. 在实验过程中,我学会了使用信号与系统实验箱产生信号,以及进行频谱分析等基本操作。
3. 通过本次实验,我认识到理论与实践相结合的重要性,为今后的学习和工作打下了基础。
通信原理抽样定理实验报告

通信原理抽样定理实验报告通信原理抽样定理实验报告摘要:本实验通过对抽样定理的研究和实践,探究了通信原理中抽样定理的重要性和应用。
通过实验结果的分析,验证了抽样定理的正确性,并得出了一些有关抽样定理的结论。
1. 引言通信原理是现代通信技术的基础,而抽样定理是通信原理中一个重要的理论基础。
抽样定理指出,在进行模拟信号的数字化处理时,为了保证处理结果的准确性,需要对模拟信号进行一定的采样频率。
本实验旨在通过实践验证抽样定理的正确性,并探究其在通信原理中的应用。
2. 实验原理抽样定理是由奈奎斯特(Nyquist)于20世纪20年代提出的,也被称为奈奎斯特定理。
该定理的核心思想是:对于一个带宽有限的信号,如果将其以大于两倍的最高频率进行采样,那么采样后的数字信号可以完全恢复原始信号。
3. 实验步骤3.1 实验仪器与材料准备本实验所需的仪器与材料包括:信号发生器、示波器、电缆、电阻、电容等。
3.2 实验过程首先,通过信号发生器产生一个带宽有限的模拟信号。
然后,将该模拟信号通过电缆连接到示波器上进行观测。
在示波器上观测到的信号即为模拟信号的采样结果。
3.3 实验结果分析通过观察示波器上的信号波形,可以发现,采样后的信号与原始模拟信号非常接近,几乎无法区分。
这表明,抽样定理的预测是正确的,通过足够高的采样频率,可以准确地还原原始信号。
4. 实验讨论4.1 抽样频率的选择根据抽样定理,为了准确还原原始信号,采样频率至少要大于信号带宽的两倍。
实际应用中,为了保证信号的完整性和准确性,通常会选择更高的采样频率。
4.2 抽样定理在通信系统中的应用抽样定理在通信系统中有着广泛的应用。
例如,在数字音频和视频的传输中,通过抽样定理可以将模拟音频和视频信号转换为数字信号,从而实现高质量的传输和存储。
5. 实验结论通过本实验的研究和实践,我们验证了抽样定理的正确性,并得出以下结论:(1)抽样定理是通信原理中一个重要的理论基础,通过足够高的采样频率,可以准确地还原原始信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西安邮电大学
《通信原理》软件仿真实验报告
实验名称:低通型采样定理
院系:通信与信息工程学院
专业班级:通工1009
学生姓名:梁镇彬
学号:03101292
02
(班内序号)
指导教师:张明远
报告日期:2012年10月12日
●实验目的:
1、掌握低通型采样定理;
2、掌握理想采样、自然采样和瞬时采样的特点;
3*、掌握混叠失真和孔径失真。
●知识要点:
1、低通型采样定理;
2、理想采样及其特点;
3、自然采样及其特点;
4、瞬时采样及其特点;
5*、混叠失真及孔径失真。
●仿真要求:
●
建议时间参数:No. of Samples =4096;Sample Rate = 20000Hz
1、记录理想采样时信源、样值序列和恢复信号的波形和频谱;
信源为截止频率200Hz的低通型信号;
δ,偏移量为0.05);
其中图符0为信号源(单位冲激信号即()t
图符1为截止频率200Hz,极点个数为6的模拟低通滤波器;
图符2为采样器,采样频率2000Hz;
图符3为保持电路,Hold Value = Zero,Gain = 1;
图符4为截止频率250Hz,极点个数为5的模拟低通滤波器;
频谱选择|FFT|;
理想采样时:
信源的波形与频谱:
样值序列的波形与频谱:
恢复信号的波形与频谱:
2*、自行调整参数,观测并记录混叠失真;
3、记录自然采样时样值序列和恢复信号的波形和频谱;
用于采样的矩形脉冲序列幅度1V,频率2000Hz;
脉宽0.00025s(占空比50%);
自然采样:
样值序列的波形与频谱:
恢复信号的波形与频谱:
4*、调整矩形脉冲序列的占空比,观测并记录样值序列波形和频谱的变化;自然采样改变占空比40%:
5、记录瞬时采样时样值序列和恢复信号的波形和频谱;
保持电路Hold Value = Last Sample,增益Gain = 1;
采样时样值序列的波形与频谱:
恢复信号的波形与频谱:
改变占空比:10%
采样时样值序列的波形与频谱:
6*、自行调整参数,观测并记录孔径失真。
实验报告要求:
1、记录理想采样时的波形和频谱,并分析其特点;
理想采样时的波形与原波形一样,频谱也与原波形一致。
2*、记录并分析混叠失真;
3、记录自然采样时的波形和频谱,并分析其特点;
自然采样时的波形是与矩形脉冲相乘,但还是呈原波形的形状,只是中间有了间隔;而频谱形状会出现某段的频谱衰减或消失。
4*、记录并分析采样脉冲占空比对自然采样波形和频谱的影响;
占空比越大,自然采样出来的波形中间的间隔就越小,频谱波形逐级衰减。
5、记录瞬时采样时的波形和频谱,并分析其特点;
瞬时采样的波形与自然采样的波形比较像,但与自然采样不同的是波形的顶部不是与原波形一样,而是水平直线;频谱的顶部形状也会有变化,也会出现衰减和消失的现象。
6*、记录并分析孔径失真。
实验成绩评定一览表
系统设计与模块布局
系统设计合理,模块布局合理,线迹美观清楚
系统设计合理,模块布局较合理,线迹清楚
系统设计、模块布局较合理,线迹较清楚
系统设计基本合理,模块布局较合理,线迹较清楚系统设计不够合理,模块布局较合理,线迹较清楚
参数设置与仿真波形
参数设置合理,仿真波形丰富、准确
参数设置合理,仿真波形较丰富、较准确参数设置较合理,仿真波形较丰富
参数设置较合理,仿真波形无缺失、无重大错误参数设置较合理,仿真波形有缺失
参数设置不够合理,仿真波形有缺失或重大错误
实验分析
实验分析全面、准确、表达流畅
实验分析较全面、基本无误、表述清楚实验分析基本正确、个别地方表述不清实验分析无原则性错误、表述不清楚
实验分析有缺失或存在严重错误
实验成绩。