二次根式易错题难题

合集下载

(易错题精选)初中数学二次根式难题汇编附解析

(易错题精选)初中数学二次根式难题汇编附解析

(易错题精选)初中数学二次根式难题汇编附解析一、选择题1.如果一个三角形的三边长分别为12、k、72,则化简21236k k-+﹣|2k﹣5|的结果是()A.﹣k﹣1 B.k+1 C.3k﹣11 D.11﹣3k【答案】D【解析】【分析】求出k的范围,化简二次根式得出|k-6|-|2k-5|,根据绝对值性质得出6-k-(2k-5),求出即可.【详解】∵一个三角形的三边长分别为12、k、72,∴72-12<k<12+72,∴3<k<4,21236k k-+-|2k-5|,=()26k--|2k-5|,=6-k-(2k-5),=-3k+11,=11-3k,故选D.【点睛】本题考查了绝对值,二次根式的性质,三角形的三边关系定理的应用,解此题的关键是去绝对值符号,题目比较典型,但是一道比较容易出错的题目.2.下列计算正确的是()A.+=B.﹣=﹣1 C.×=6 D.÷=3【答案】D【解析】【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【详解】解:A、B与不能合并,所以A、B选项错误;C、原式= ×=,所以C选项错误;D、原式==3,所以D选项正确.故选:D.【点睛】本题考查二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.3.下列各式计算正确的是( )A 1082==-= B .()()236==-⨯-=C 115236==+=D .54==- 【答案】D【解析】【分析】根据二次根式的性质对A 、C 、D 进行判断;根据二次根式的乘法法则对B 进行判断.【详解】解:A 、原式,所以A 选项错误;B 、原式,所以B 选项错误;C 、原式6,所以C 选项错误;D 、原式54==-,所以D 选项正确. 故选:D .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4.当3x =-时,二次根m 等于( )AB .2CD 【答案】B【解析】解:把x =﹣3代入二次根式得,原式=,依题意得:=.故选B .5.若代数式1x -在实数范围内有意义,则实数x 的取值范围是( ) A .1x ≠B .3x >-且1x ≠C .3x ≥-D .3x ≥-且1x ≠ 【答案】D【解析】【分析】根据二次根式和分式有意义的条件,被开方数大于等于0,分母不等于0,可得;x+3≥0,x-1≠0,解不等式就可以求解.【详解】∵代数式1x -在有意义, ∴x+3≥0,x-1≠0,解得:x≥-3且x≠1,故选D .【点睛】本题主要考查了分式和二次根式有意义的条件,关键是掌握:①分式有意义,分母不为0;②二次根式的被开方数是非负数.6.下列运算正确的是( )A .1233x x -=B .()326a aa ⋅-=-C .1)4=D .()422a a -=【答案】C【解析】【分析】 根据合并同类项,单项式相乘,平方差公式和幂的乘方法进行判断.【详解】解:A 、1233x x x -=,故本选项错误; B 、()325a a a ⋅-=-,故本选项错误;C 、1)514=-=,故本选项正确;D 、()422a a -=-,故本选项错误;故选:C .【点睛】本题考查的是实数的计算,熟练掌握合并同类项,单项式相乘,平方差公式和幂的乘方法是解题的关键.7.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】2a ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】2a .8.5130.5a 22a b -22x y +中,是最简二次根式的有( )A .2个B .3个C .4个D .5个 【答案】A【解析】 5 133 0.5a 2a ,不是最简二次根式; 22a b -b ,不是最简二次根式;22x y +是最简二次根式.共有2个最简二次根式.故选A.点睛:最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.9.下列计算错误的是( )A .2598a a a +=B .14772⨯=C .3223-=D .60523÷= 【答案】C【解析】【分析】 根据二次根式的运算法则逐项判断即可.【详解】解:A. 259538a a a a a +=+=,正确;B. 14727772⨯=⨯⨯=,正确;C. 32222-=,原式错误;D. 6051223÷==,正确;故选:C .【点睛】本题考查了二次根式的加减和乘除运算,熟练掌握运算法则是解题的关键.10.如图,数轴上的点可近似表示(4630-)6÷的值是( )A .点AB .点BC .点CD .点D【答案】A【解析】【分析】先化简原式得45-5545【详解】原式=45-由于25<<3,∴1<45-<2.故选:A .【点睛】本题考查实数与数轴、估算无理数的大小,解题的关键是掌握估算无理数大小的方法.11.有意义的x 的取值范围( ) A .x >2B .x≥2C .x >3D .x≥2且x≠3 【答案】D【解析】试题分析:分式有意义:分母不为0;二次根式有意义,被开方数是非负数. 根据题意,得20{30x x -≥-≠解得,x≥2且x≠3. 考点:(1)、二次根式有意义的条件;(2)、分式有意义的条件12.有意义,则x 的取值范围是( )A .1x >-B .0x ≥C .1x ≥-D .任意实数【答案】C【解析】【分析】a 必须是非负数,即a≥0,由此可确定被开方数中字母的取值范围.【详解】有意义,则10x +≥,故1x ≥-故选:C【点睛】考核知识点:二次根式有意义条件.理解二次根式定义是关键.13的值是一个整数,则正整数a 的最小值是( )A .1B .2C .3D .5【答案】B【解析】【分析】根据二次根式的乘法法则计算得到a 的最小值即可.【详解】∴正整数a 是最小值是2.故选B.【点睛】本题考查了二次根式的乘除法,二次根式的化简等知识,解题的关键是理解题意,灵活应用二次根式的乘法法则化简.14.计算201720192)2)的结果是( )A.B2 C.7 D.7- 【答案】C【解析】【分析】先利用积的乘方得到原式= 201722)2)]2)⋅,然后根据平方差公式和完全平方公式计算.【详解】解:原式=201722)2)]2)+⋅=2017(34)(34)-⋅-1(7=-⨯-7=故选:C .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.15.2a =-,那么( )A .2x <B .2x ≤C .2x >D .2x ≥【答案】B【解析】(0)0(0)(0)a a a a a a ><⎧⎪===⎨⎪-⎩,由此可知2-a≥0,解得a≤2.故选B点睛:此题主要考查了二次根式的性质,解题关键是明确被开方数的符号,然后根据性质(0)0(0)(0)a a a a a a ><⎧⎪===⎨⎪-⎩可求解.16.下列运算正确的是( )A .235a a a +=B .23241(2)()162a a a -÷=-C .1133a a-= D .2222)3441a a a ÷=-+【答案】D【解析】 试题分析:A .23a a +,无法计算,故此选项错误;B .()23262112824a a a a ⎛⎫⎛⎫-÷=-÷ ⎪ ⎪⎝⎭⎝⎭=432a -,故此选项错误; C .133a a -=,故此选项错误;D .()22223441a a a ÷=-+,正确.故选D .17.下列运算正确的是( )A =B 2÷=C .3=D .142=【答案】B【解析】【分析】根据二次根式的混合运算的相关知识即可解答.【详解】=,故错误;2÷=,正确;C. =D. 142故选B.【点睛】此题考查二次根式的性质与化简,解题关键在于掌握运算法则.18.有意义的条件是( )A .x>3B .x>-3C .x≥3D .x≥-3【答案】D【解析】【分析】根据二次根式被开方数大于等于0即可得出答案.【详解】根据被开方数大于等于0得,3x +有意义的条件是+30≥x解得:-3≥x故选:D 【点睛】本题主要考查二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.19.若x 2+在实数范围内有意义,则x 的取值范围在数轴上表示正确的是( ) A .B .C .D . 【答案】D【解析】【分析】根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.【详解】 2x +∴被开方数x+2为非负数,∴x+2≥0,解得:x≥-2.故答案选D.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.20.已知25523y x x =--,则2xy 的值为( ) A .15-B .15C .152-D .152 【答案】A【解析】试题解析:由25523y x x =--,得250{520x x -≥-≥, 解得 2.5{3x y ==-.2xy =2×2.5×(-3)=-15,故选A .。

(易错题精选)初中数学二次根式难题汇编及答案(1)

(易错题精选)初中数学二次根式难题汇编及答案(1)

(易错题精选)初中数学二次根式难题汇编及答案(1)一、选择题1.x 的取值范围是( )A .1x >-B .0x ≥C .1x ≥-D .任意实数【答案】C【解析】【分析】a 必须是非负数,即a≥0,由此可确定被开方数中字母的取值范围.【详解】有意义,则10x +≥,故1x ≥-故选:C【点睛】考核知识点:二次根式有意义条件.理解二次根式定义是关键.2.(的结果在( )之间.A .1和2B .2和3C .3和4D .4和5 【答案】B【解析】【分析】的范围,再求出答案即可.【详解】 (22==∵45<∴223<<(的结果在2和3之间故选:B【点睛】本题考查了无理数大小的估算,用有理数逼近无理数,求无理数的近似值.考查了二次根式的混合运算顺序,先乘方、再乘除、最后加减,有括号的先算括号里面的.3.下列式子正确的是( )A 6=±B C 3=- D 5=-【答案】C【解析】根据算术平方根、立方根的定义和性质求解即可.【详解】解:6=,故A错误.B错误.3=-,故C正确.D. 5=,故D错误.故选:C【点睛】此题主要考查算术平方根和立方根的定义及性质,熟练掌握概念是解题的关键.4.把(a b-根号外的因式移到根号内的结果为().A B C.D.【答案】C【解析】【分析】先判断出a-b的符号,然后解答即可.【详解】∵被开方数1b a≥-,分母0b a-≠,∴0b a->,∴0a b-<,∴原式(b a=--==故选C.【点睛】=|a|.也考查了二次根式的成立的条件以及二次根式的乘法.5.下列计算中,正确的是()A.=B1b=(a>0,b>0)C=D.=【解析】【分析】a≥0,b≥0a≥0,b >0)进行计算即可. 【详解】A 、B 1b (a >0,b >0),故原题计算正确;C ,故原题计算错误;D 32故选:B .【点睛】 此题主要考查了二次根式的乘除法,关键是掌握计算法则.6.x 的取值范围是( ) A .x≥76 B .x >76 C .x≤76 D . x <76【答案】B【解析】【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】∵67x -是被开方数,∴670x -≥,又∵分母不能为零,∴670x ->,解得,x >76; 故答案为:B.【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数,解题的关键是熟练掌握其意义的条件.7.下列计算结果正确的是()A3B±6CD.3+=【答案】A【解析】【分析】原式各项计算得到结果,即可做出判断.【详解】A、原式=|-3|=3,正确;B、原式=6,错误;C、原式不能合并,错误;D、原式不能合并,错误.故选A.【点睛】考查了实数的运算,熟练掌握运算法则是解本题的关键.8.下列运算正确的是()A B.1)2=3-1 C D5-3【答案】C【解析】【分析】根据二次根式的加减及乘除的法则分别计算各选项,然后与所给结果进行比较,从而可得出结果.【详解】解:≠,故本选项错误;1)2=3-,故本选项正确;= =4,故本选项错误.故选C.【点睛】本题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.9.如果0,0ab a b >+<,那么给出下列各式=;a =-;正确的是( ) A .①②B .②③C .①③D .①②③ 【答案】B【解析】【分析】由题意得0a <,0b <,然后根据二次根式的性质和乘法法则逐个判断即可.【详解】解:∵0ab >,0a b +<,∴0a <,0b <,无意义,故①错误;1==,故②正确;a a ====-,故③正确; 故选:B .【点睛】本题考查了二次根式的性质和乘法运算,熟练掌握运算法则是解题的关键.10.有意义,那么直角坐标系中 P(m,n)的位置在( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【解析】【分析】先根据二次根式与分式的性质求出m,n 的取值,即可判断P 点所在的象限.【详解】依题意的-m≥0,mn >0,解得m <0,n <0,故P(m,n)的位置在第三象限,故选C.【点睛】此题主要考查坐标所在象限,解题的关键是熟知二次根式与分式的性质.11.下列二次根式中是最简二次根式的是( )A B CD【解析】【分析】根据最简二次根式的定义(被开方数不含有能开的尽方的因式或因数,被开方数不含有分数),判断即可.【详解】解:A ,故本选项错误;BCD,故本选项错误. 故选:B .【点睛】 本题考查对最简二次根式的理解,能熟练地运用定义进行判断是解此题的关键.12.下列计算正确的是( )A 6=B =C .2=D 5=- 【答案】B【解析】【分析】根据二次根式的混合运算顺序和运算法则逐一计算可得.【详解】A ====C.=,此选项计算错误;5=,此选项计算错误;故选:B .【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.13.下列计算正确的是( )A .3=B =C .1=D 2=【解析】【分析】根据合并同类二次根式的法则及二次根式的乘除运算法则计算可得.【详解】A、=,错误;B=⨯=C、22D2==,正确;故选:D.【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握合并同类二次根式的法则及二次根式的乘除运算法则.14.2在哪两个整数之间()A.4和5 B.5和6 C.6和7 D.7和8【答案】C【解析】【分析】== 1.414222≈,即可解答.【详解】== 1.414222≈,∴2 6.242≈,即介于6和7,故选:C.【点睛】本题考查了二次根式的运算以及无理数的估算,解题的关键是掌握二次根式的运算法则以及 1.414≈.15.下列计算正确的是()A.=B=C.=D-=【答案】B【解析】【分析】根据二次根式的加减乘除运算法则逐一计算可得.【详解】A、-B 、,此选项正确; C、=(D 、= 故选B【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式混合运算顺序和运算法则.16.2a =-,那么( )A .2x <B .2x ≤C .2x >D .2x ≥【答案】B【解析】(0)0(0)(0)a a a a a a ><⎧⎪===⎨⎪-⎩,由此可知2-a≥0,解得a≤2.故选B点睛:此题主要考查了二次根式的性质,解题关键是明确被开方数的符号,然后根据性质(0)0(0)(0)a a a a a a ><⎧⎪===⎨⎪-⎩可求解.17.有意义的条件是( )A .x>3B .x>-3C .x≥3D .x≥-3【答案】D【解析】【分析】根据二次根式被开方数大于等于0即可得出答案.【详解】根据被开方数大于等于0有意义的条件是+30≥x解得:-3≥x故选:D【点睛】本题主要考查二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.18.若x2+在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.【答案】D【解析】【分析】根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.【详解】2x+∴被开方数x+2为非负数,∴x+2≥0,解得:x≥-2.故答案选D.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件. 19.下列运算正确的是()A235+=B2)﹣1=2 2C2(32)-3 2 D9±3【答案】B【解析】【分析】直接利用二次根式的性质分别化简得出答案.【详解】解:A23B、122)2-=,正确;C2(32)23-=D93,故此选项错误;故选:B.【点睛】此题主要考查了二次根式的加减以及二次根式的性质,正确掌握二次根式的性质是解题关键.20.下列各式中,不能化简的二次根式是()A B C D【答案】C【解析】【分析】A、B选项的被开方数中含有分母或小数;D选项的被开方数中含有能开得尽方的因数9;因此这三个选项都不是最简二次根式.所以只有C选项符合最简二次根式的要求.【详解】解:A=,被开方数含有分母,不是最简二次根式;B=,被开方数含有小数,不是最简二次根式;D=,被开方数含有能开得尽方的因数,不是最简二次根式;所以,这三个选项都不是最简二次根式.故选:C.【点睛】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.。

二次根式十大易错题(带答案)

二次根式十大易错题(带答案)

二次根式十大经典易错题1. 下列说法正确有 个. (1)2(2)若236a =,则6a =±(34=±(4的平方根是10±. (5(6)2a 的算术平方根a .(76=,则6a =. (8)2a -没有平方根. (9)若两个数平方后相等,则这两个数也一定相等.(10)如果两个非负数相等,那么他们各自的算术平方根也相等.2. 下列二次根式中,最简二次根式的个数是( )A .1个B .2个C .3个D .4个3. 实数a ,b ,c 在数轴上的对应点如图所示,化简2c b a a -++的值是( )A .c b --B .b c -C .)(2c b a +-D .c b a ++24.(0)=a >( ) A . B .C .D .5. 已知a ,b 满足11a ab ++=,则ab =________.6. 已知非零实数a ,b 满足a b a b a 24)3(2422=+-+++-,则a b +=________.7. 计算:23)3412(22---÷-.( ) A . B . C . D .ab a 2-ab ab -a ab 2-b b a 2-2-232-32+-322--8. 计算:40282015)32()347(+-的结果为( )A .1B .32+C .347-D .9. 已知0xy >,化简二次根式 )ABC. D.10. 已知2a b +=-,12ab =347+1. 【解析】(2)(10)正确【答案】22. 【解析】此题的关键是看二次根式的被开方数是否满足最简二次根式的两个条166x x -=0.5中的13是分数,它们都不满足条件1中有能开得尽方的因式2b中有能开得尽方的因数22,()22x -,它们都不满足条件2;满足最简二次根式的两个条件.. 点评:要牢记最简二次根式的两个条件,判断时只须看被开方数,注意当被开方数是多项式时要先分解因式,找一找有没有能开得尽方得因式和因数,特别要分清2a 和2b ,但2a 和2b 不是2a +2b 的因式. 【答案】B 3. 【答案】B 4. 【答案】D 5. 【答案】-1 6. 【答案】1 7. 【答案】A 8. 【答案】C9.【解析】解题的关键是确定被开放式字母的符号.由题可知20x >,且20,0yy x-≥∴≤,又0xy >,0x ∴<,∴原式=. 【答案】D10. 【解析】∵102ab =>,∴a b ,同号,又∵2a b +=-,∴00a b <<,,2===【答案】。

专题6二次根式易错题疑难题综合拓展题及2022中考真题集训(解析版)

专题6二次根式易错题疑难题综合拓展题及2022中考真题集训(解析版)

专题6 二次根式易错题疑难题综合拓展题及2022中考真题集训类型一 易错题:教材易错易混题集训易错点1 考虑问题不全面典例1(2021春•+x 的取值范围是( )A .x >﹣2B .x ≥3C .x ≥3且x ≠﹣2D .x ≥﹣2思路引领:根据二次根式有意义的条件即可求出答案.解:由题意可知:x ―3≥0x +2>0,解得:x ≥3,故选:B .总结提升:本题考查二次根式以有意义的条件,解题的关键是正确理解二次根式的条件,本题属于基础题型.变式训练1.(2019•x 应满足的条件是( )A .x ≠3B .x ≤―13C .x ≥―13且x ≠3D .x >―13且x ≠3思路引领:根据二次根式有意义的条件,分式有意义的条件列出不等式,解不等式即可.解:由题意得,1+3x ≥0,x ﹣3≠0,解得,x ≥―13且x ≠3,故选:C .总结提升:本题考查的是二次根式有意义的条件,分式有意义的条件,掌握二次根式的被开方数是非负数、分式分母不为0是解题的关键.易错点2 (0)a a =³时,忽略a ≥0典例2(2022春•乐陵市期末)先阅读材料,然后回答问题.(1经过思考,小张解决这个问题的过程如下:===在上述化简过程中,第 ④ 步出现了错误,化简的正确结果为 (2思路引领:(1|a |即可进行判断;(2)把被开方数化成完全平方的形式,然后利用二次根式的性质即可化简求解.解:(1)在化简过程中④故答案是:④―(2)原式====总结提升:本题考查了二次根式的化简求值,正确把被开方数化成完全平方的形式是本题的关键.变式训练1= .思路引领:根据二次根式的性质和完全平方公式化简即可.===―1,―1.总结提升:本题考查了二次根式的性质和化简,熟练掌握二次根式的性质是解题的关键.2.对于题目:“化简并求值:1a+a =15”,甲、乙两人的解答不同.甲的解答是:1a 1a +1a ―a =2a―a =495,乙的解答是:1a 1a +a ―1a =a =15.阅读后你认为谁的解答是错误的?为什么?思路引领:已知二次根式具有双重非负性,即被开方数为非负数,二次根式的值为非负数,已知a =15,故可得1a ―a =5―15>01a―a ,再对待求式进行化简求值即可解答题目.解:乙错误,理由如下:1a +=1a +=1a +|1a―a |.∵a =15,∴1a―a =5―15=245>0,∴|1a ―a |=1a―a ,1a +1a +1a ―a =2a ―a =495.故乙的解答是错误的.总结提升:本题考查分式的化简求值,正确进行计算是解题关键.易错点3 忽视二次根式的隐含条件典例3阅读下列解答过程,判断是否正确.如果正确,请说明理由;如果不正确,请写出正确的解答过程.已知a ―a (a ﹣1思路引领:先根据二次根式有意义的条件求出a 的取值范围,再进行化简.解:不正确,∵﹣a 3>0,∴a <0,―=﹣=(﹣a+1总结提升:本题考查了二次根式有意义的条件,二次根式的化简是解题的关键.变式训练1.(2022秋•长安区期中)求代数式a+a=﹣2022.下面是小芳和小亮的解题过程,都是把含有字母式子先开方再进行运算的方法,请认真思考、理解解答过程,回答下列问题.小芳:解:原式=a=a+1﹣a=1小亮:解:原式=a=a+a﹣1=﹣4045(1) 的解法是错误的;(2)求代数式a a=4―思路引领:(1)根据题意得到a﹣1<0,根据二次根式的性质计算即可;(2)根据二次根式的性质把原式化简,代入计算即可.解:(1)∵a=﹣2022,∴a﹣1=﹣2022﹣1=﹣2023<0,1﹣a,∴小亮的解法是错误的,故答案为:小亮;(2)∵a=4∴a﹣3=4――3=1―0,3﹣a,则a=a=a+2(3﹣a)=6﹣a,当a=4―6﹣(4―2+总结提升:=|a|是解题的关键.易错点4 成立的条件是a≥0,b≥0典例4(2022春•⋅x的取值范围是( )A.x≥1B.x≥0C.0≤x≤1D.x为任意实数思路引领:根据二次根式有意义的条件列不等式组求解.解:由题意可得x≥0x―1≥0,解得:x≥1,故选:A.总结提升:a≥0)是解题关键.变式训练1.(2021春•―(x x的取值范围是( )A.x≥﹣1B.x≥﹣2C.x≤﹣1D.﹣2≤x≤﹣1思路引领:根据二次根式化简与有意义的条件,即可求得:x+1≤0x+2≥0,解此不等式组即可求得答案.=―(x+1∴x+1≤0 x+2≥0,解得:﹣2≤x≤﹣1.故选:D.总结提升:此题考查了二次根式化简与有意义的条件.此题比较简单,注意掌握二次根式有意义的条件.易错点5 运用想当然的运算法则典例5(2021秋•÷解:原式=―①=②=(2―③=④(1)老师认为小明的解法有错,请你指出小明从第 步开始出错的;(2)请你给出正确的解题过程.思路引领:根据二次根式的运算法则即可求出答案.解:(1)③,故答案为:③.(2)原式==―=总结提升:本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则.变式训练1.(2022春•―=4.他的解答过程是否有错误?如果有错误,请写出正确的解答过程.思路引领:根据二次根式的加减法的法则进行分析即可.解:有错误,==总结提升:本题主要考查二次根式的加减法,解答的关键是对二次根式的加减法的法则的掌握.易错点6 误用乘法公式典例6(2022秋•金水区校级期中)计算:下面是李明同学在解答某个题目时的计算过程,请认真阅读并完成相应任务.222+22+2……第一步=10……第三步任务一:填空:以上步骤中,从第 步开始出现错误,这一步错误的原因是 ;任务二:请写出正确的计算过程;任务三:除纠正上述错误外,请你根据平时的学习经验,就二次根式运算时还需注意的事项给其他同学提一条建议.思路引领:任务一:利用完全平方公式进行计算即可解答;任务二:先计算二次根式的乘法,再算加减,即可解答;任务三:根据在进行二次根式运算时,结果必须化成最简二次根式,即可解答.解:任务一:填空:以上步骤中,从第一步开始出现错误,这一步错误的原因是完全平方公式运用错误,故答案为:一,完全平方公式运用错误;任务二:222+2﹣[2﹣+2]=5﹣(6﹣+5)=5﹣5=任务三:在进行二次根式运算时,结果必须化成最简二次根式.总结提升:本题考查了二次根式的混合运算,熟练掌握完全平方公式是解题的关键.易错点7 运用运算律出现符号错误典例7(2022秋•迎泽区校级月考)下面是小明同学进行实数运算的过程,认真阅读并完成相应的任务:×+1)︸①×︸②第一步―10+2……第二步―8……第三步任务一:以上化简步骤中第一步中:标①的运算依据是 ;标②的运算依据是 (运算律).任务二:第 步开始出现错误,错误原因是 ,该式运算后的正确结果是 .思路引领:利用二次根式的性质、二次根式的加减法法则、除法法则计算可得结论.解:任务一、①由②的运算依据是乘法的分配律;故答案为:二次根式的性质.乘法的分配律;任务二、从第二步开始出现错误.×+1)×1―10﹣2―12,故答案为:任务一:二次根式的性质;乘法的分配律.任务二:①12.总结提升:本题考查了二次根式的混合运算,掌握二次根式的性质及运算法则是解决本题的关键.变式训练1.(2022春•12(的过程,请认真阅读并完成相应的任务.―12(―12(2第一步―12×―12×第二步第三步第四步=―第五步任务一:小明同学的解答过程从第 步开始出现错误,这一步错误的原因是  .任务二:请你写出正确的计算过程.思路引领:先计算二次根式的乘法,再算加减,即可解答.解:(1)任务一:小明同学的解答过程从第二步开始出现错误,这一步错误的原因是去括号后,括号内第二项没有变号,故答案为:二;去括号后,括号内第二项没有变号;(2―12(―12(2总结提升:本题考查了二次根式的混合运算,准确熟练地进行计算是解题的关键.易错点8 滥用运算律典例8(2021秋•迎泽区校级月考)下面是小倩同学进行实数运算的过程,认真阅读并完成相应的任务:÷1 )第一步1⋯第二步+2第三步+2﹣10…第四步―8…第五步任务一:以上化简步骤中第一步化简的依据是 .任务二:第 二 步开始出现错误,该式运算后的正确结果是 .思路引领:利用二次根式的性质、二次根式的加减法法则、除法法则计算可得结论.故答案为:二次根式的性质.任务二、从第二步开始出现错误.÷1)÷1)=2+4++52总结提升:本题考查了二次根式的混合运算,掌握二次根式的性质及运算法则是解决本题的关键.类型二疑难题:常考疑难问题突破疑难点1 二次根式非负性的应用1.已知实数a 满足|2019﹣a |+a ,求a ﹣20192的值.思路引领:首先由二次根式有意义的条件来去绝对值,得到a ﹣2019a ,由此得到a ﹣20192=2019.解:∵a ﹣2019≥0,∴a >2019.∴由|2019﹣a |+=a 得到a ﹣2019+a ,整理,得a ﹣2019=20192.∴a ﹣20192=2019.总结提升:a ≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.疑难点2 整体思想在二次根式中的应用2.(2018春•禹州市期中)已知a =+1,b ―1(a b +b a―1)的值思路引领:先由a 、b 的值计算出ab 、a +b 的值,再代入到原式=•a 2b 2abab a 2得.解:∵a =1,b =―1,∴a +b =ab 1)1)=2,则原式=•a 2b 2ab ab=总结提升:本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则及完全平方公式.3.(1)已知x =x 2﹣2x +5的值;(2)若a =2b =2,求a思路引领:(1)先把x 2﹣2x +5化简,再代入求值;(2)先把a―解:(1)由x 2+1,∴x 2﹣2x +5+1)2﹣2+1)+5=―2+5=7;(2=a =ab a b,当a =2+b =2―原式=总结提升:先化简再代入,应该是求值题的一般步骤;不化简,直接代入,虽然能求出结果,但往往导致繁琐的运算.疑难点3 判断求知问题4.(2019春•西湖区校级期中)王老师为了解学生掌握二次根式知识的情况,出了这样一道题:“根据所给”粗心的黎明同学把式子看错了,他根据条件得到2”思路引领:2,继而求出答案.解:45﹣x 2﹣(35﹣x 2)=10,2,5.总结提升:本题考查二次根式的乘除法运算,难度不大,关键是平方差公式的运用.类型三 综合拓展题:思维能力专项特训专题1 二次根式性质的应用1.(2022秋•+|2a ﹣b +1|=0,则(b ﹣a )2022=( )A .﹣1B .1C .52022D .﹣52022思路引领:因为算术平方根具有非负性,在实数范围内,任意一个数的绝对值都是非负数,若+|2a ﹣b +1|=0,则a +b +5=0,2a ﹣b +1=0,联立组成方程组,解出a 和b 的值即可解答.|2a ﹣b +1|=0,∴a+b+5=02a―b+1=0,解得a=―2 b=―3,∴(b﹣a)2022=(﹣3+2)2022=(﹣1)2022=1.故选:B.总结提升:本题考查了非负数的性质以及解二元一次方程组,根据几个非负数的和等于0,则每一个算式都等于0列出关于a、b的方程是解题的关键.2.已知x、y为实数,且y=+12,求5x﹣3y的值.思路引领:根据二次根式有意义的条件列出不等式,求出x、y的值,计算即可.解:由题意得,3x﹣4≥0,4﹣3x≥0,解得,x=4 3,∴y=1 2,则5x﹣3y=5×43―3×12=316.总结提升:本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.3.(2022春•大连月考)已知实数a在数轴上的对应点位置如图,则化简|a―1|―( )A.2a﹣3B.﹣1C.1D.3﹣2a思路引领:根据数轴上a点的位置,判断出(a﹣1)和(a﹣2)的符号,再根据非负数的性质进行化简.解:由图知:1<a<2,∴a﹣1>0,a﹣2<0,原式=a﹣1﹣[﹣(a﹣2)]=a﹣1+(a﹣2)=2a﹣3.故选:A.总结提升:此题主要考查了二次根式的性质与化简,正确得出a﹣1>0,a﹣2<0是解题关键.4.当x+6有最小值,最小值为多少?思路引领:≥0,可以得出最小值.0,∴当x =―12时,6有最小值,最小值为6.总结提升:本题考查了算术平方根.解题的关键是掌握算术平方根的非负性.5.(2019秋•渠县校级期中)已知x 、y 、a 满足:+=x 、y 、a 的三条线段组成的三角形的面积.思路引领:直接利用二次根式的性质得出x +y =8,进而得出:3x ―y ―a =0x ―2y +a +3=0x +y =8,进而得出答案.解:根据二次根式的意义,得x +y ―8≥08―x ―y ≥0,解得:x +y =8,0,根据非负数得:3x ―y ―a =0x ―2y +a +3=0x +y =8,解得:x =3y =5a =4,∴可以组成直角三角形,面积为:12×3×4=6.总结提升:此题主要考查了二次根式的应用,正确应用二次根式的性质是解题关键.专题2 二次根式大小比较方法1 平方法1.(2022•思路引领:++解:2=202=∴20+故答案为:<.总结提升:(1)此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.(2)解答此题的关键是比较出两个数的平方的大小关系.方法2 分子有理化法2.认真阅读下列解答过程:比较2―解:∵2―(2―1,=1,又20即22的大小关系.思路引领:认真阅读题目,然后依据题目所给的方法进行比较即可.―2=21,2>0,<1.2.总结提升:1,―2=1是解题的关键.方法3 作商法3.利用作商法比较大小思路引领:根据作商比较法,看最后的比值与1的大小关系,从而可以解答本题.=×=1,总结提升:本题考查分母有理化、实数大小的比较,解题的关键是明确作商法比较大小的方法.方法四定义法4思路引领:根据非负数的性质和有理数大小的比较方法即可得到结论.解:∵5﹣a≥0,∴a≤5,∴a﹣6<0,00,总结提升:本题考查的是实数的大小比较,要善于借助一个中间数作桥梁是解决问题的关键.专题3 二次根式的运算5.(2019秋•皇姑区校级月考)计算:(1)(2)―÷(3)(1―――1)2.(4―11)―20180――2|.思路引领:(1)直接化简二次根式进而合并即可;(2)直接利用二次根式的混合运算法则进而得出答案;(3)直接利用二次根式的混合运算法则计算进而得出答案;(4)直接利用负整数指数幂的性质以及零指数幂的性质分别化简进而得出答案.解:(1)原式=+=(2)原式=(=﹣1;(3)原式=+―(12+1﹣=――=﹣―(4)原式=3――1﹣2=总结提升:此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.专题4 二次根式的求值6.(2022秋•宁德期中)已知:x =y =(1)填空:|x ﹣y |= ;(2)求代数式x 2+y 2﹣2xy 的值.思路引领:(1)根据二次根式的减法运算法则计算即可.(2)将代数式转化为(x ﹣y )2,再分别求出x ﹣y 和xy 的值,进而可得答案.解:(1)|x ﹣y |=||=+=故答案为:(2)x 2+y 2﹣5xy =(x ﹣y )2,∵x ﹣y =∴(x ﹣y )2﹣3xy =2=8.即代数式x 2+y 2﹣2xy 的值为8.总结提升:本题考查二次根式的化简求值,熟练掌握运算法则是解答本题的关键.7.(2020春•川汇区期末)计算题:已知x +1x x ―1x 的值.思路引领:根据平方差公式计算;∵x +1x∴(x +1x)22,∴x 2+2+1x 2=5,∴x 2﹣2+1x 2=5﹣4,∴(x ―1x)2=1,∴x―1x=±1.总结提升:本题考查的是分式的化简求值、二次根式的乘法,熟记平方差公式、完全平方公式是解题的关键.8.(2017秋•昌江区校级期末)已知正数m、n满足m4n=3,求值:思路引领:由m4n=3得出2﹣2﹣3=0,―13,代入计算即可.解:∵m4n=3,2+(2﹣23=0,2﹣2+3=0,1)+―3)=0,―1+=3,∴原式=3232012=12015.总结提升:本题主要考查二次根式的混合运算,解题的关键是熟练掌握完全平方公式的运用及二次根式性质.类型四中考真题:精选2022中考真题过关1.(2022•内蒙古)实数a1+|a﹣1|的化简结果是( )A.1B.2C.2a D.1﹣2a思路引领:根据数轴得:0<a<1,得到a>0,a﹣1<0=|a|和绝对值的性质化简即可.解:根据数轴得:0<a<1,∴a>0,a﹣1<0,∴原式=|a|+1+1﹣a=a+1+1﹣a=2.故选:B.总结提升:=|a|是解题的关键.2.(2022•安顺)估计(A.4和5之间B.5和6之间C.6和7之间D.7和8之间思路引领:直接利用二次根式的性质结合估算无理数的大小方法得出答案.解:原式=2∵34,∴5<2+6,故选:B.总结提升:此题主要考查了二次根式的混合运算,估算无理数的大小,正确估算无理数是解题关键.3.(2022•x的取值范围是( )A.x>2B.x<2C.x≤2D.x≥2思路引领:根据二次根式有意义的条件:被开方数是非负数即可得出答案.解:∵3x﹣6≥0,∴x≥2,故选:D.总结提升:本题考查了二次根式有意义的条件,掌握二次根式有意义的条件:被开方数是非负数是解题的关键.4.(2022•广州)代数式1有意义时,x应满足的条件为( )A.x≠﹣1B.x>﹣1C.x<﹣1D.x≤﹣1思路引领:直接利用二次根式有意义的条件、分式有意义的条件分析得出答案.解:代数式1有意义时,x+1>0,解得:x>﹣1.故选:B.总结提升:此题主要考查了二次根式有意义的条件以及分式有意义的条件,正确掌握相关定义是解题关键.5.(2022•聊城)射击时,子弹射出枪口时的速度可用公式v=a为子弹的加速度,s 为枪筒的长.如果a=5×105m/s2,s=0.64m,那么子弹射出枪口时的速度(用科学记数法表示)为( )A.0.4×103m/s B.0.8×103m/s C.4×102m/s D.8×102m/s思路引领:把a=5×105m/s2,s=0.64m代入公式v=解:v=8×102(m/s),故选:D.总结提升:此题主要考查了二次根式的性质与化简以及科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.(2022•x﹣2在实数范围内有意义,则x的取值范围是( )A.x>﹣1B.x≥﹣1C.x≥﹣1且x≠0D.x≤﹣1且x≠0思路引领:根据二次根式的被开方数是非负数,a﹣p=1a p(a≠0)即可得出答案.解:∵x+1≥0,x≠0,∴x≥﹣1且x≠0,故选:C.总结提升:本题考查了二次根式有意义的条件,负整数指数幂,掌握二次根式的被开方数是非负数,a﹣p=1a p(a≠0)是解题的关键.7.(2022•荆州)若3―a,小数部分为b,则代数式(2+)•b的值是 .思路引领:3―a、b的值,代入所求式子计算即可.解:∵12,∴1<3―2,∵若3―a,小数部分为b,∴a=1,b=31=2∴(2+)•b=(2+(2―2,故答案为:2.总结提升:本题考查了估算无理数的大小的应用,解题的关键是求出a、b的值.8.(2022•随州)已知m为正整数,=m有最小值3×7=21.设n1的整数,则n的最小值为 ,最大值为 .思路引领:n最小为31越小,300 n越小,则n=2时,即可求解.∴n最小为3,1的整数,越小,300n越小,则n 越大,2时,300n=4,∴n =75,故答案为:3;75.总结提升:本题考查二次根式的乘除法,二次根式的性质与化简,解题的关键是读懂题意,根据关键词“大于”,“整数”进行求解.9.(2022•遂宁)实数a 、b 在数轴上的位置如图所示,化简|a +1|― .思路引领:根据数轴可得:﹣1<a <0,1<b <2,然后即可得到a +1>0,b ﹣1>0,a ﹣b <0,从而可以将所求式子化简.解:由数轴可得,﹣1<a <0,1<b <2,∴a +1>0,b ﹣1>0,a ﹣b <0,∴|a +1|=a +1﹣(b ﹣1)+(b ﹣a )=a +1﹣b +1+b ﹣a=2,故答案为:2.总结提升:本题考查二次根式的性质与化简、实数与数轴,解答本题的关键是明确题意,利用数形结合的思想解答.10.(2022•内蒙古)已知x ,y 是实数,且满足y+18,则的值是 .思路引领:根据负数没有平方根求出x 的值,进而求出y 的值,代入计算即可求出值.解:∵y =18,∴x ﹣2≥0,2﹣x ≥0,∴x =2,y =18,则原式==12,故答案为:12总结提升:此题考查了二次根式的化简求值,熟练掌握运算法则是解本题的关键.11.(2022•济宁)已知a =2+b =2―a 2b +ab 2的值.思路引领:利用因式分解,进行计算即可解答.解:∵a =2b =2∴a 2b +ab 2=ab (a +b )=(2+(2(2+2―=(4﹣5)×4=﹣1×4=﹣4.总结提升:本题考查了二次根式的混合运算,代数式求值,熟练掌握因式分解是解题的关键.12.(2022•河池)计算:|﹣3﹣1―(π﹣5)0.思路引领:先去绝对值,计算负整数指数幂,零指数幂和二次根式乘法,再合并即可.解:原式=―13―1=23.总结提升:本题考查实数的混合运算,解题的关键是掌握实数相关运算的法则.13.(2022•泰州)(1×(2)按要求填空:小王计算2x x 24―1x 2的过程如下:解:2x x 24―1x 2=2x (x 2)(x 2)―1x 2⋯⋯第一步=2x (x 2)(x 2)―x 2(x 2)(x 2)⋯⋯第二步=2x x2(x2)(x2)⋯⋯第三步=x2(x2)(x2)⋯⋯第四步=1x2.……第五步小王计算的第一步是 (填“整式乘法”或“因式分解”),计算过程的第 步出现错误.直接写出正确的计算结果是 .思路引领:(1)原式利用二次根式乘法法则计算,合并即可得到结果;(2)观察解题的过程,分析第一步变形的依据,找出出错的步骤,计算出正确的结果即可.解:(1)原式===(2)2xx24―1x2=2x(x2)(x2)―1x2=2x(x2)(x2)―x2(x2)(x2)=2x(x2) (x2)(x2)=2x x2 (x2)(x2)=x2(x2)(x2)=1x2,小王计算的第一步是因式分解,计算过程的第三步出现错误.直接写出正确的计算结果是1x2.故答案为:因式分解,三,1x2.总结提升:此题考查了二次根式的混合运算,因式分解﹣运用公式法,以及分式的加减法,熟练掌握运算法则是解本题的关键.。

(完整word版)二次根式易错题难题

(完整word版)二次根式易错题难题
二次根式易错题难题
1、当a时,有意义
2、计算:
3、计算:
4、计算:(a>0,b〉0,c〉0)
5、计算:==
6、
7、

2006个3 2006个4
8、
9、观察以下各式:
利用以上规律计算:
10、已知
一、选择题
11、若 有意义,则( )
A、B、C、D、
12、化简的结果是( )
A、0 B、2a-4 C、4 D、4-2a
13、能使等式成立的条件是( )
A、x≥0 B、x≥3 C、x〉3 D、x〉3或x〈0
14、下列各式中,是最简二次根式的是( )ቤተ መጻሕፍቲ ባይዱ
A、 B、 C、 D、
15、已知,那么的值是( )
A、1 B、-1 C、±1 D、4
16、如果,则a和b的关系是()
A、a≤bB、a〈bC、a≥bD、a>b
17、已知xy>0,化简二次根式的正确结果为()
27、①已知;②已知x=
求x2—4x—6的值
28、已知Rt△ABC中,∠ACB=90°,AC=2 cm,
BC= cm,求AB上的高CD长度
29、计算:
30、已知,求①;②的值
A、B、C、D、
18、如图,Rt△AMC中,∠C=90°,
∠AMC=30°,AM∥BN,MN=2cm,
BC=1cm,则AC的长度为()
A、2 cmB、3cm
C、3.2cmD、
19、下列说法正确的个数是()
①2的平方根是;②是同类二次根式;③
互为倒数;④
A、1 B、2 C、3 D、4
20、下列四个算式,其中一定成立的是()
①;②;③

二次根式易错题汇编及答案解析

二次根式易错题汇编及答案解析
故选:C.
【点睛】
此题考查了二次根式的性质,熟练掌握这一性质是解题的关键.
4.若代数式 在实数范围内有意义,则实数 的取值范围是( )
A. B. 且 C. D. 且
【答案】D
【解析】
【分析】
根据二次根式和分式有意义的条件,被开方数大于等于0,分母不等于0,可得;x+3≥0,x-1≠0,解不等式就可以求解.
17.下列二次根式是最简二次根式的是()
A. B. C. D.
【答案】D
【解析】
【分析】
检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.
【详解】
A、被开方数含分母,故A不符合题意;
B、被开方数含开的尽的因数,故B不符合题意;
C、被开方数是小数,故C不符合题意;
D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D符合题意.
【详解】
A、 与 的被开方数不同,所以它们不是同类二次根式;故本选项错误;
B、 与 的被开方数不同,所以它们不是同类二次根式;故本选项错误;
C、 与 的被开方数相同,所以它们是同类二次根式;故本选项正确;
D、 是三次根式;故本选项错误.
故选:C.
【点睛】
本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.
【详解】
解:A、 =2 ,故本选项错误;
B、 是最简根式,故本选项正确;
C、 = ,故本选项错误;
D、 = ,故本选项错误.
故选:B.
【点睛】
本题考查对最简二次根式的理解,能熟练地运用定义进行判断是解此题的关键.
12.下列计算正确的是
A. B. C. D.

二次根式易错题汇编附答案

二次根式易错题汇编附答案
【详解】
解:∵二次根式 在实数范围内有意义,
∴a+2≥0,解得a≥-2.
故选B.
【点睛】
本题是一道关于二次根式定义的题目,应熟练掌握二次根式有意义的条件;
4.把 根号外的因式移到根号内的结果为().
A. B. C. D.
【答案】C
【解析】
【分析】
先判断出a-b的符号,然后解答即可.
【详解】
∵被开方数 ,分母 ,∴ ,∴ ,∴原式 .
二次根式易错题汇编附答案
一、选择题
1.下列二次根式: 、 、 、 、 中,是最简二次根式的有( )
A.2个B.3个C.4个D.5个
【答案】A
【解析】
试题解析: ,是最简二次根式;
= ,不是最简二次根式;
= ,不是最简二次根式;
=2|a| ,不是最简二次根式;
,是最简二次根式.
共有2个最简二次根式.故选A.
【详解】
由题意得

解得:x≥2,
故选B.
【点睛】
本题考查了二次根式有意义的条件,分式有意义的条件,熟练掌握相关知识是解题的关键.
8.如果 ,那么()
A. B. C. D.x为一切实数
【答案】B
【解析】
∵ ,
∴x≥0,x-6≥0,
∴ .
故选B.
9.计算 的结果在()之间.
A.1和2B.2和3C.3和4D.4和5
故选C.
【点睛】
本题考查了二次根式的性质与化简: |a|.也考查了二次根式的成立的条件以及二次根式的乘法.
5.计算 的结果为()
A.±3B.-3C.3D.9
【答案】C
【解析】
【分析】
根据 =|a|进行计算即可.

二次根式单元 易错题难题测试题

二次根式单元 易错题难题测试题

二次根式单元 易错题难题测试题一、选择题1.若2a <,化简()223a --=( ) A .5a - B .5a - C .1a - D .1a -- 2.下列运算中,正确的是 ( ) A .53-23=3B .22×32=6C .33÷3=3D .23+32=55 3.下列计算正确的是( )A .325+=B .1233-=C .326D .1234÷=4.下列计算正确的是( )A .42=±B .()233-=-C .()255-=D .()233-=-5.下列计算正确的是( )A .2+3=5B .8=42C .32﹣2=3D .23⋅=66.已知实数a 在数轴上的位置如图所示,则化简2||(-1)a a +的结果为( )A .1B .﹣1C .1﹣2aD .2a ﹣17.下列二次根式是最简二次根式的是( )A .12B .3C .0.01D .128.下列二次根式中,是最简二次根式的是( )A .12B .0.1C .12D .21a +9.下列各式计算正确的是( )A .532-=B .1236⨯=C .3232+=D .222()-=-10.若ab <0,则代数式可化简为( )A .aB .aC .﹣aD .﹣a11.下列计算正确的是( )A .366=±B .422222÷=C .83266-=D .•a b ab =(a≥0,b≥0) 12.若a 、b 、c 为有理数,且等式成立,则2a +999b +1001c 的值是( )A .1999B .2000C .2001D .不能确定二、填空题13.比较实数的大小:(1)5?-______3- ;(2)51 4-_______12 14.化简322+=___________.15.设a ﹣b=2+3,b ﹣c=2﹣3,则a 2+b 2+c 2﹣ab ﹣ac ﹣bc=_____.16.已知a ,b 是正整数,若有序数对(a ,b )使得112()a b +的值也是整数,则称(a ,b )是112()a b +的一个“理想数对”,如(1,4)使得112()a b+=3,所以(1,4)是112()a b +的一个“理想数对”.请写出112()a b+其他所有的“理想数对”: __________.17.将1、2、3、6按右侧方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(9,4)表示的两数之积是______.18.已知整数x ,y 满足20172019y x x =+--,则y =__________. 19.已知x 51-,y 51+,则x 2+xy +y 2的值为______. 20.函数y =42x x --中,自变量x 的取值范围是____________. 三、解答题21.计算(1)2213113a a a a a a +--+-+-; (2)已知a 、b 26a ++2b =0.求a 、b 的值(3)已知abc =1,求111a b c ab a bc b ac c ++++++++的值【答案】(1)22223a a a ----;(2)a =-3,b ;(3)1. 【分析】 (1)先将式子进行变形得到()()113113a a a a a a +--+-+-,此时可以将其化简为1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭,然后根据异分母的加减法法则进行化简即可;(2)根据二次根式及绝对值的非负性得到2a +6=0,b =0,从而可求出a 、b ; (3)根据abc =1先将所求代数式转化:11b ab ab bc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,然后再进行分式的加减计算即可. 【详解】解:(1)原式=()()113113a a a a a a +--+-+- =1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭ =1113a a --+- =()()()()3113a a a a -++-+- =22223a a a ----;(20b =,∴2a +6=0,b =0,∴a =-3,b ;(3)∵abc =1, ∴11b ab ab bc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++, ∴原式=1111a ab ab a ab a ab a ++++++++ =11a ab ab a ++++ =1.【点睛】本题考查了分式的化简求值和二次根式、绝对值的非负性,分式中一些特殊求值题并非一味的化简,代入,求值,熟练掌握转化、整体思想等解题技巧是解答这类题目的关键.22.)÷)(a ≠b ). 【答案】【解析】试题分析:先计算括号内的,然后把除法转化为乘法,约分即可得出结论.试题解析:解:原式=()()a b a b --+-23.小明在解决问题:已知2a 2﹣8a+1的值,他是这样分析与解的: ∵=2 ∴a ﹣2=∴(a ﹣2)2=3,a 2﹣4a+4=3∴a 2﹣4a=﹣1∴2a 2﹣8a+1=2(a 2﹣4a )+1=2×(﹣1)+1=﹣1请你根据小明的分析过程,解决如下问题:(1(2)若,求4a2﹣8a+1的值.【答案】(1)9;(2)5.【解析】试题分析:(1)此式必须在把分母有理化后才能实现化简,即各分式分子分母同乘以一个因式,使得1===. (2)先对a 1 ,若就接着代入求解,计算量偏大.模仿小明做法,可先计算2(1)a - 的值,就能较为简单地算出结果;也可对这个二次三项式进行配方,再代入求值.后两种方法都比直接代入计算量小很多.解:(1)原式=1)+++⋯(2)∵1a ===,解法一:∵22(1)11)2a -=-= ,∴2212a a -+= ,即221a a -=∴原式=24(2)14115a a -+=⨯+=解法二∴ 原式=24(211)1a a -+-+24(1)3a =--211)3=--4235=⨯-=点睛:(1得22=-=-a b ,去掉根号,实现分母有理化.(2)当已知量为根式时,求这类二次三项式的值,直接代入求值,计算量偏大,若能巧妙利用完全平方公式或者配方法,计算要简便得多.24.先化简,再求值:(()69x x x x --+,其中1x =.【答案】化简得6x+6,代入得【分析】根据整式的运算公式进行化简即可求解.【详解】(()69x x x x +--+=22369x x x --++=6x+6把1x =代入原式=61)【点睛】此题主要考查实数的运算,解题的关键熟知整式的运算法则.25.(1)已知a 2+b 2=6,ab =1,求a ﹣b 的值;(2)已知b =,求a 2+b 2的值.【答案】(1)±2;(2)2. 【分析】(1)先根据完全平方公式进行变形,再代入求出即可;(2)先分母有理化,再根据完全平方公式和平方差公式即可求解.【详解】(1)由a 2+b 2=6,ab=1,得a 2+b 2-2ab=4,(a-b )2=4,a-b=±2.(2)a ===12b ===,2222()22312a b a b ab +=+-=-=-=⎝⎭【点睛】本题考查了分母有理化、完全平方公式的应用,能灵活运用公式进行变形是解此题的关键.26.计算(1))(12112-⨯--⎝⎭(2)已知:11,22x y ==,求22x xy y ++的值. 【答案】(1)28-;(2)17.【分析】(1)先利用完全平方公式和平方差公式计算二次根式的乘法、负指数幂运算,再计算二次根式的加减法即可得;(2)先求出x y +和xy 的值,再利用完全平方公式进行化简求值即可得.【详解】(1)原式()((221312⎡⎤=⨯+--⎢⎥⎣⎦,(()1475452=⨯+---230=+28=-;(2)(1119,22x y ==,1122x y ∴+=+=, ()11119112224xy =⨯=⨯-=, 则()222x xy y x y xy ++=+-, 22=-,192=-,17=.【点睛】本题考查了二次根式的混合运算、完全平方公式和平方差公式等知识点,熟练掌握二次根式的运算法则是解题关键.27.2020(1)-【答案】1【分析】先计算乘方,再化简二次根式求解即可.【详解】2020(1)-=1=1.【点睛】本题考查了二次根式的混合运算,先把二次根式化为最简二次根式,再合并即可.28.先化简,再求值:221()a b a b a b b a -÷-+-,其中a =2b =- 【答案】1a b -+,12-. 【分析】先把分式进行化简,得到最简分式,然后把a 、b 的值代入计算,即可得到答案.【详解】 解:原式1()()a b a b a a b a b b a b b --=⨯-⨯+-+ ()()a b a b a b b a b -=--++ ()b b b a =-+1a b=-+,当a =2b = 原式12==-. 【点睛】本题考查了二次根式的混合运算,分式的化简求值,分式的混合运算,解题的关键是熟练掌握运算法则进行解题.29.计算:(1)-(2)【答案】(1)21【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)先利用二次根式的乘除法则运算,再合并即可.【详解】解:(1)原式==(2)原式3+21==.【点睛】本题考查二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质.30.已知长方形的长a =b =. (1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较其与长方形周长的大小关系.【答案】(1)2)长方形的周长大.【解析】试题分析:(1)代入周长计算公式解决问题;(2)求得长方形的面积,开方得出正方形的边长,进一步求得周长比较即可. 试题解析:(1)()11222223a b ⎛+=⨯=⨯⨯⨯=⨯= ⎝∴长方形的周长为 .(2)11 4.23=⨯⨯=正方形的面积也为4. 2.=周长为:428.⨯=8.>∴长方形的周长大于正方形的周长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】||a =,然后再根据a 的范围去掉绝对值后即可求解.【详解】|2|=-a ,且2a <,∴|2|2=-=-+a a ,原式|2|3231=--=-+-=--a a a ,故选:D . 【点睛】||a =这个公式是解决本题的关键.2.C解析:C【分析】根据二次根式的加减法对A 、D 进行判断;根据二次根式的乘法法则对B 进行判断;根据二次根式的除法法则对C 进行判断.【详解】A 、A 选项错误;B 、×=12,所以B 选项错误;C 、3,所以C 选项正确;D 、,不能合并,所以D 选项错误;故选:C .【点睛】本题考查了二次根式的混合运算,正确掌握运算法则是解题关键.3.B解析:B【解析】解:A ;B ==;C =;D 2===.故选项错误. 故选B .4.C解析:C【分析】直接利用二次根式的性质分别求解,即可得出答案.【详解】解:A ,故A 选项错误;B ,故B 选项错误;C 选项:2=5,故C 选项正确;D 选项:2=3,故D 选项错误,故选:C .【点睛】此题主要考查了二次根式的性质,正确求解二次根式是解题的关键.5.D解析:D【解析】解:A A 错误;B ==,所以B 错误;C .=C 错误;D ==D 正确.故选D . 6.A解析:A【分析】先由点a 在数轴上的位置确定a 的取值范围及a-1的符号,再代入原式进行化简即可【详解】由数轴可知0<a <1,所以,||1a a a =+-=1,选A .【点睛】此题考查二次根式的性质与化简,实数与数轴,解题关键在于确定a的大小7.B解析:B【分析】直接利用最简二次根式的定义分析得出答案.【详解】解:ABC0.1,故此选项错误;D2故选:A.【点睛】此题主要考查了最简二次根式的定义,正确把握定义是解题关键.8.D解析:D【分析】最简二次根式的被开方数中不含能开得尽方的因数或因式,其中小数要转化为分数,分数中分母不可以是二次根式,注意这几点即可得出答案.【详解】ABC,不是最简二次根式,故本选项不符合题意;2D故选:D.【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式,最简二次根式必须满足两个条件:被开方数中不含能开得尽方的因数或因式;被开方数的因数是整数,因式是整式,本题属于基础题型.9.B解析:B【分析】根据二次根式的加减法对A、C进行判断;根据二次根式的乘法法则对B进行判断;根据2a a =对D 进行判断 . 【详解】 解:A 、5与3 不能合并,所以A 选项错误;B 、1236⨯=,正确,所以B 选项正确;C 、3与2不能合并,所以C 选项错误;D 、2222-=--=()(),所以D 选项错误.故选:B .【点睛】本题考查了二次根式的混合运算,解题的关键是掌握二次根式的加减计算法则.10.C解析:C【解析】【分析】二次根式有意义,就隐含条件b <0,由ab <0,先判断出a 、b 的符号,再进行化简即可.【详解】解:若ab <0,且代数式有意义; 故由b >0,a <0;则代数式故选:C .【点睛】本题主要考查二次根式的化简方法与运用:当a >0时,,当a <0时,,当a=0时,. 11.D解析:D【解析】试题分析:根据算术平方根的意义,可知366=,故A 不正确;根据二次根式的除法,可直接得到42222÷=,故B 不正确;根据同类二次根式的性质,可知C 不正确;根据二次根式的性质·a b ab =(a≥0,b≥0)可知D 正确.故选:D 12.B解析:B【解析】因=,所以a =0,b =1,c =1,即可得2a +999b +1001c =999+1001=2000,故选B. 点睛:本题考查了二次根式的性质与化简,将复合二次根式根据完全平方公式化简并比较系数是解题的关键.二、填空题13.【分析】(1)根据两个负数比较大小、绝对值大的反而小比较即可;(2)先求出两数的差,再根据差的正负比较即可.【详解】(1)(2)∵∴∴故答案为:,.解析:<<【分析】(1)根据两个负数比较大小、绝对值大的反而小比较即可;(2)先求出两数的差,再根据差的正负比较即可.【详解】(1)<12=∵3=<<1 2故答案为:<,<.【点睛】本题考查了实数的大小比较,能熟记实数的大小比较法则的内容是解此题的关键.14.+1【分析】先将用完全平方式表示,再根据进行化简即可.【详解】因为,所以,故答案为:.【点睛】本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二+1【分析】先将3+,()()()0000a a a a a a ⎧>⎪===⎨⎪-<⎩进行化简即可.【详解】因为(2231211+=+=+=+,11===故答案为:1.【点睛】本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二次根式利用完全平方公式分解. 15.15【解析】根据题意,由a ﹣b=2+,b ﹣c=2﹣,两式相加得,得到a ﹣c=4,然后根据配方法,把式子各项变为:a2+b2+c2﹣ab ﹣bc ﹣ac=====15.故答案为:15.解析:15【解析】根据题意,由a﹣b﹣c=2,两式相加得,得到a ﹣c=4,然后根据配方法,把式子各项变为:a 2+b 2+c 2﹣ab ﹣bc ﹣ac=2222222222a b c ab ac bc ++﹣﹣﹣=2222222222a ab b b bc c a ac c +++++﹣﹣﹣=222()()()2a b b c a c -+-+-=222(2(242++=15. 故答案为:15.16.(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9)【解析】试题解析:当a=1,=1,要使为整数,=1或时,分别为4和3,得出(1,4)和(1,1)是的“理想数对”,解析:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9)【解析】试题解析:当a =1,要使或12时,分别为4和3,得出(1,4)和(1,1)是的“理想数对”,当a =412,要使+或12时,分别为3和2,得出(4,1)和(4,4)是的“理想数对”,当a =913,要使16时,=1,得出(9,36)是的“理想数对”,当a =1614,要使14时,=1,得出(16,16)是的“理想数对”,当a =3616,要使13时,=1,得出(36,9)是的“理想数对”, 即其他所有的“理想数对”:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9).故答案为:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9). 17.【解析】试题解析:(5,4)表示第5排从左向右第4个数是:,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1,第9排是奇数排,最中间的也就是这排的第5个数是1,那么第解析:【解析】试题解析:(5,4)表示第5排从左向右第4,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1,第9排是奇数排,最中间的也就是这排的第5个数是1,那么第4,∴(5,4)与(9,4)故答案为18.2018【解析】试题解析:,令,,显然,∴,∴,∵与奇偶数相同,∴,∴,∴.故答案为:2018.解析:2018【解析】 试题解析:y ===令a =b = 显然0a b >≥,∴224036a b -=,∴()()4036a b a b +-=,∵()a b +与()-a b 奇偶数相同,∴20182a b a b +=⎧⎨-=⎩, ∴10101008a b =⎧⎨=⎩, ∴2018y a b =+=.故答案为:2018.19.4【详解】根据完全平方公式可得:原式=-xy==5-1=4.解析:4【详解】根据完全平方公式可得:原式=2()x y +-xy=251515151)222=5-1=4. 20.x≤4且x≠2【分析】根据被开方数是非负数、分母不能为零,可得答案.【详解】解:由y=,得4-x≥0且x-2≠0.解得x≤4且x≠2.【点睛】 本题考查了函数自变量的取值范围,利用被开方解析:x≤4且x≠2【分析】根据被开方数是非负数、分母不能为零,可得答案.【详解】解:由,得4-x≥0且x-2≠0. 解得x≤4且x≠2.【点睛】本题考查了函数自变量的取值范围,利用被开方数是非负数、分母不能为零得出4-x≥0且x-2≠0是解题关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式易错题难题
1、当
时,
有意义 2、计算:
3、计算:
4、计算:
(a >0,b >0,c >0)
5、计算: = =
6、
7、

2006个3 2006个4
8、 9、观察以下各式: 利用以上规律计算: 10、已知
一、选择题
11、若32+x 有意义,则 ( ) A 、 B 、 C 、 D 、 12、化简 的结果是 ( )
A 、0
B 、2a -4
C 、4
D 、4-2a 13、能使等式 成立的条件是
( )
A 、x ≥0
B 、x ≥3
C 、x >3
D 、x >3或x <0 14、下列各式中,是最简二次根式的是 ( )
A 、
x
8 B 、b a 25 C 、2294b a + D 、
15、已知 ,那么 的值是 ( )
A 、1
B 、-1
C 、±1
D 、4
16、如果 ,则
a 和
b 的关系是 ( )
A 、a ≤b
B 、a <b
C 、a ≥b
D 、a >b
17、已知xy >0,化简二次根式 的正确结果为 ( )
A 、
B 、
C 、
D 、 18、如图,Rt △AMC 中,∠C=90°, ∠AMC=30°,AM ∥BN ,MN=2 cm , BC=1cm ,则AC 的长度为 ( ) A 、2
3cm B 、3cm
C 、
D 、
19、下列说法正确的个数是 ( ) ①2的平方根是 ;② 是同类二次根式; ③
互为倒数;④ A 、1 B 、2 C 、3 D 、4
20、下列四个算式,其中一定成立的是 ( )
① ; ② ; ③ ④
A 、①②③④
B 、①②③
C 、①③
D 、① 三、解答题 21、求 有意义的条件(5分) 22、已知 =
a
-1()
=
2232)(=
c b a 2
382)(=
+=
+=
+222222444333443343,,=
+22444333 =
+-2006
2005
)
12()
12(()
=
+⎪⎭⎫
⎝⎛++++++++120062005200613412311
21
2
3
-
≥x 23-≤x 32
-
≥x 32-≤x 2
)2(2-+-a a 3
3
-=
-x x
x x 2
y 5
1
=+x
x x
x 1-121
22-=+-⋅-b ab a b a 2
x
y x -
y
y
-y
-y
--3
M
A
N
B
C
cm
323a a 2.05与21
212+-与3223--的绝对值是1
122
2+=+a a )(a
a =2

(0>⋅=ab b a ab 11)1)(1(-⋅+=-+x x x x 1
1
+-x x 2
1
4422-+-+-=
x x x y
求3x +4y 的值 23、化简625①
- ②627-
24、在实数范围内将下列各式因式分解
① ② ③ ④
25、已知实数a 满足 ,求
a -20052的值
26设长方形的长与宽分别为a 、b ,面积为S
①已知 ;②已知S= cm 2,b = cm,求 a
27、①已知 ; ②已知x = 求x 2
-4x -6的值
28、已知Rt △ABC 中,∠ACB=90°,AC=2
2cm ,
BC=
10
cm ,求AB 上的高CD 长度
29、计算:
30、已知 ,求① ;② 的值
3
322+-x x 7
52-x 4
4-x 4
4+x a
a a =-+-2006200572
50
S
cm b cm a ,求,1022==C
A
B D
()()()()1
2112313130
2
-+
-+---+。

相关文档
最新文档