理论力学n第六章 点的运动学
第六章点的运动和刚体的基本运动

例 题 6-1
解:取坐标轴 Ox 如图。由三角形相似关
L A
系,有
l
B
OM BM OL AB
h O
M x
即
x x vt h l
vt
x
从而求得 M 点的直线运动方程
x h vt hl
M 点的速度
v dx h v dt h l
而加速度 a = 0 ,即 M 点作匀速运动。
理论力学电子教程
理论力学电子教程
第六章 点的运动与刚体的基本运动
例 题 6-6
解:
已知销钉B的轨迹是圆弧DE,中心 在A点 , 半径是R。选滑道上O' 点作为 弧坐标的原点,并以O'D为正向。则B
+s ω O R -s E φ A
D
C B s
点在任一瞬时的弧坐标
s R
但是,由几何关系知 且 得
θ R O'
2 ,
dr dx dy dz v i j k dt dt dt dt
又 v vx i vy j vz k
理论力学电子教程
第六章 点的运动与刚体的基本运动
dx 故 vx dt
速度大小
dy vy dt
2 2
dz vz dt
2
v v x v y vz vx vy vz 方向 cos( v , i ) cos( v , k ) cos(v , j ) v v v
π sin 2π t ,将其代入上式, 8
π sin 2π t 40
s 2 R
这就是B点的自然形式的运动方程。
理论力学电子教程
第六章 点的运动与刚体的基本运动
理论力学教案-运动学

论力学--运动学运动学研究点和刚体运动的几何规律,即运动方程、轨迹、速度、加速度或角速度、角加速度等运动特征量。
第六章 点的运动学点的运动学是研究一般物体运动的基础,又具体独立的应用意义。
描述点的运动有矢径法、直角坐标法、自然法三种方法。
§6.1 矢量法一.矢量法表示点的运动方程设动点M 在空间作曲线运动,在参考坐标系上任取 某确定的点O 为坐标原点,则动点的位置可用原点至动 点的矢径r 表示。
当动点M 运动时,矢径r 的大小和方 向一般也随时间而改变,并且是时间的单值连续函数, 即)(t r r =上式称为用矢量表示的点的运动方程。
动点M 在运动过程中,其矢径r 的末端在空间 描绘出的曲线,称为动点M 的运动轨迹。
也称为矢径r 的矢端曲线。
二.矢量法表示点的速度)()(t t t r r r -+=∆∆平均速度tt t t t ∆∆∆∆)()(r r r υ-+== 瞬时速度dtd t t t rr υυ===→→∆∆∆∆00limlim 三.矢量法表示点的加速度 )()(t t t υυυ-+=∆∆ 平均加速度tt t t t ∆∆∆∆)()(υυυa -+==瞬时加速度2200lim lim dt d dt d t t t rυυa a ====→→∆∆∆∆结论:动点的速度等于它的矢径r 对时间的一阶导数,其加速度等于动点的速度对时间的一阶导数,也等于动点的矢径r 对时间的二阶导数。
§6.2 直角坐标法一.直角坐标表示动点的运动方程由于k j i r z y x ++=,当动点在轨迹上运动时,r 随时间而变化,则动点M 的坐标值x ,y 和z 随时间 而变化。
即⎪⎩⎪⎨⎧===)()()(321t f z t f y t f x消去方程中的参数t ,则得到动点运动的轨迹。
二.直角坐标表示动点的运动速度由于动点M 的矢径可表示为 k j i r z y x ++=,所以动点M 的速度可表示为 k j i r υdtdzdt dy dt dx dt d ++==将动点M 的速度写成投影形式,即k j i υz y x υυυ++=比较以上两式,可得dt dx x =υ,dt dy y =υ,dtdz z =υ 三.直角坐标表示动点运动的加速度动点M 的速度可表示为k j i r υdtdz dt dy dt dx dt d ++==,其加速度可表示为 k j i υa 222222dtzd dt y d dt x d dt d ++==将动点M 的加速度写成投影形式,即k j i a z y x a a a ++=比较以上两式,可得 22dt x d a x =,22dt y d a y =,22dt z d a z =结论:动点的速度在各坐标轴上的投影等于各对应的坐标对时间的一阶导数,动点的加速度在各坐标轴上的投影等于各对应的坐标对时间的二阶导数。
理论力学--运动学总结

速度瞬心位置的确定总结
瞬时平动
几点注意 1、基点法是速度分析的基本方法;
2、速度投影法 应用起来简单,但必须知道待求速度 点的方位,致命的弱点—是不能求图形的角速度 2、当平面几何简单时,分析速度可采用瞬心法; 瞬心法既可以求某点的速度,也可以求刚体运动 的角速度; 4、确定速度瞬心的速度是该点的绝对运动速度; 5、具体分析时三种方法灵活运用;
(1)刚体的基本运动 平动
v A vB
aA aB
各点的轨迹相同;
可简化为一个点的运动。
定轴转动
v R
a R
an R 2
轮系的传动比:
1 n1 R1 Z 2 i12 2 n2 R2 Z1
各处不打滑时: 接触点有相同的线速度和相同的切向加速度。
(2)刚体的平面运动 1. 定义 任一点到某固定平面的距离保持不变。
B点的加速度分析
D
C
a a 2 a a 2 ae 2 ar 2
n
aa 2 ae 2
O1
30°
ar 2
B
aa 2cos60 aa2cos30 ae 2
n
aa 2
1
30° O2
n
A
a a2 O2 B 2
n 2 aa2 O2 B2
ae2 657mm/ s
2
三、刚体的运动
va=v
vCA
动点:滑块C 动系:固结于AE
u=vA
vr
vC' A
ωAE
分析三种运动
牵连运动:刚体的平面运动
牵连转动
va ( vA vCA ) vr
va cos vCA v A sin
理论力学重难点及相应题解

运动学部分:一、点的运动学重点难点分析1.重点:点的运动的基本概念(速度与加速度,切向加速度和法向加速度的物理意义等);选择坐标系,建立运动方程,求速度、加速度。
求点的运动轨迹。
2.难点:运动方程的建立。
解题指导:1.第一类问题(求导):建立运动方程然后求导。
若已知点的运动轨迹,且方程易于写出时,一般用自然法,否则用直角坐标法。
根据点的运动性质选取相应的坐标系,对于自然法要确定坐标原点和正向。
不管用哪种方法,注意将点置于一般位置,而不能置于特殊位置。
根据运动条件和几何关系把点的坐标表示为与时间有关的几何参数的函数,即可得点的运动方程。
2.第二类问题(积分):由加速度和初始条件求运动方程,即积分并确定积分常数。
二、刚体的简单运动重点难点分析:1.重点:刚体平移、定轴转动基本概念;刚体运动方程,刚体上任一点的速度和加速度。
2.难点:曲线平移。
解题指导:首先正确判断刚体运动的性质。
其后的分析与点的运动分析一样分两类问题进行。
建立刚体运动方程时,应将刚体置于一般位置。
三、点的合成运动(重要)重点难点分析:1.重点:动点和动系的选择;三种运动的分析。
速度合成与加速度合成定理的运用。
2.难点:动点和动系的选择。
解题指导:1.动点的选择、动系的确定和三种运动的分析常常是同时进行的,不可能按顺序完全分开。
2.常见的运动学问题中动点和动系的选择大致可分以下五类:(1)两个(或多个)不坟大小的物体独立运动,(如飞机、海上的船舶等)对该类问题,可根据情况任选一个物体为动点,而将动系建立在另一个物体上。
由于不考虑物体的大小,因此动系(刚体)与物体(点)只在一个点上连接,可视为铰接,建立的是平移动坐标系。
(2)一个小物体(点)相对一个大物体(刚体)运动,此时选小物体为动点,动系建立在大物体上。
(3)两个物体通过接触而产生运动关系。
其中一个物体的接触只发生在一个点上,而另一个物体的接触只发生在一条线上。
选动点为前一物体的接触点,动系则建立在后一物体上。
38理论力学第六章点的运动学PPT课件

一.运动方程,轨迹
当点M运动时,矢径r随时间而 变化,并且是时间的单值函数:
rrt —以矢量表示的 点的运动方程
矢端曲线:动点M在运动过程中,矢 径r的末端绘出的一条连续曲线。——动点M的运动轨迹
二.点的速度
dr v
r
dt
方向:沿着矢径r的矢端曲线的切线 方向,且与此点的运动方向一致。
大小:速度矢的模,表明点运动的快慢。 4
1.弧坐标的运动方程
动点M在轨迹上位置的确定: 动点M在轨迹上的位置
由弧长确定,视弧长S为代数 量,称其为动点M在轨迹上 的弧坐标。
s= f (t)
12
2.自然轴系
以点M 为原点,以切线、 主法线、副法线为坐标轴组 成的正交坐标系称为动点M 的自然坐标系,这三个轴称 为自然轴。
,n,b,分别为切线、主法
线和副法线的单位向量。
—与弧坐标的正向一致
n —指向曲线内凹一侧
b —与 , n构成右手系
b n
[注]:自然坐标系是沿曲 线而变动的游动坐标系13 。
6-3 自然法
3、曲率(1/ :)
定义——曲线切线的转角对弧长 一阶导数的绝对值。表示曲线的 弯曲程度。
1
d
lim | |
t0 S dS
14
1
引言
运动学的基本概念:
①运动学::研究物体在空间位置随时间变化的几何性质的 科学,不考虑运动的原因。
②运动学研究目的: ①建立机械运动的描述方法 ②建立运动量之间的关系
③运动是相对的 :参考体(物);参考系;静系;动系。
④运动分类 1)点的运动 2)刚体的运动
2
第六章 点的运动学
3
6-1 矢量法
理论力学第六章 点的合成运动 [同济大学]
![理论力学第六章 点的合成运动 [同济大学]](https://img.taocdn.com/s3/m/63fd0a4dbe1e650e53ea9909.png)
解: 从例6-2已知得: 1 =
vr r 3 , 2
ω 4
O
解: 从上例已知得: 1 =
r
M
ω 4
va
A
aaτ =0 ,
3 , 4
aan=2r aen=
ωr 8
x’
2
ac 21vr 2 r
va
30°
3 1 1/ s2 8
2
动点取A,
va v A
ar
dvr d 2 x ' ' d 2 y ' ' d 2 z ' ' 2 r 2 j 2 k dt dt dt dt
dx ' di ' dy ' dj' dz ' dk ' dt dt dt dt dt dt
ar ω vr
a a ae a r ac; ac= 2vr
ve
a n a ae a rn a rτ
矢量
1.瞬时状态; 2.可解两个未知量 (大小,方向)。
例6-5 曲柄滑道机构,OA=01A=r=10cm, =30°,=4, 求: 转到30°时直杆的加速度a。 va vr 动点取A; 绝对:圆周; ve 解:相对:圆周;牵连:直线。 [速度] =
a a ae a r ac; aa a an ae aen ar arn ac;
例6-8 曲柄绕O转动,並通过滑块M带动滑槽绕O′摆动, ’ y 求摆动到30°时的角加速度1。
例6-9 将例6-8滑槽改变为图示牛头刨床机构,MA=2r, 求:刨床刨刀的速度,加速度。
vr
dv e dω dr r ω dt dt dt α r ω v e ω v r ae ω v r
理论力学-点的运动学

求该瞬时动点A的 x ,y , x , y ,
y v
30 0
A
0 v 10 cos 30 ( m/s 解: x x
0 y v 10 sin 30 ( m/s) y
o
v v v
x y z
a
x y z
x
x y z
18
2.速度:
v M v r
ds v dt
_
r
0
S M* +
`
r*
19
3
点的切向加速度和法向加速度
dv a a a n dt
n
M
+
dv a dt
v an n
2
20
自然轴系
21
例:已知图示瞬时动点A的速度和加速度,其中
2 :v ,设动点的坐标为x , y 10 m/s, a 10 m/s
z
r o
x
M
y
一、矢量法
1、运动方程
r r(t)
2、速度
3、加速度
dr v r dt 2 d v dr a 2 v r d t d t
8
二、直角坐标法
x x (t) 1、运动方程 y y (t) r x i y j z k z z(t)
0??za??yrx15三自然坐标法1运动方程tss?xyzoms0r2曲线的几何性质?曲率curvaturesks??????0limmtt??smm??mtk1???曲率半径radiuscurvaturemtt极限位置的平面称为密切面osculatingplane已知点的运动轨迹16mtt极限位置的平面称为密切面面osculatingplane17bn??????法面ms?密切面切线b副法线主法线nbn??自然轴系trihedralaxesonacurve1
006理论力学-点的运动学

x = (BC+ CM) cosϕ = (l + a) cosωt y = AMsinϕ = (l − a) sinωt
9
这就是动点M的运动方程。从运动方程中消去时间t,即得轨 迹方程
x2 y2 + =1 2 2 (l + a) (l − a) 可见,动点M的轨迹为一椭圆,其长轴与x轴重合,短轴与y 轴重合。当M点在BC段上时,椭圆的长轴将与y轴重合,短轴 将与x轴重合。 x M点的速度在坐标轴上的投影为
1
引
言
运动学的一些基本概念 是研究物体在空间位置随时间变化的几何性质的科学。 ① 运动学 (包括轨迹、速度、加速度等),而不考虑运动的原因。 ② 运动学研究的对象 ③ 运动学学习目的 ① 建立机械运动的描述方法 ② 建立运动量之间的关系 为后续课打基础及直接运用于工程实际。
④ 运动是相对的 ( relativity ) :参考体(物);参考系; 静系;动系。 瞬时、 ⑤ 瞬时、时间间隔 (⋅)t (⋅− − − ⋅)∆t = t 2 − t1 ⑥ 运动分类 1)点的运动; 2)刚体的运动
dx = −ω (l + a ) sin ωt vx = dt dy vy = = ω (l − a ) cos ωt dt
10
速度的大小为
2 2 v = vx + vy =ω (l + a)2 sin2 ωt + (l − a)2 cos2 ωt =ω l 2 + a2 − 2alcos2ωt
速度的方向余弦为
12
§6-3 平面极坐标法
• 平面极坐标系 • 位置坐标(r , • 轨道方程 •
ϑ)
r = r (t ),
r j
r
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 点的运动学
6-1 图示曲线规尺的各杆,长为OA=AB=200mm ,CD=DE=AC=AE=50mm 。
如杆OA 以等角速度s rad /5
π
ω=
绕O 轴转动,并且当运动开始时,杆OA 水平向右。
求尺上点D
的运动方程和轨迹。
解:
1. 取D 点为研究对象,坐标如图,
2. 由图,t πϕ2.0=,故点D 的运动方程为
t
y t x D D ππ2.0sin 1002.0cos 200==
3. 消去时间t ,得点D 的轨迹方程:
1100
2002
222
=+D
D y
x
6-2套管
A 由绕过定滑轮
B 的绳索牵引而沿导轨上升,滑轮中心到导轨的距离为l ,如图所示。
设绳索以等速0v 拉下,忽略滑轮尺寸。
求套管A 的速度和加速度与距离x 的关系式。
解:
1. 取套筒A 为研究对象,坐标如图,
2. 设0=t 时,绳上C 点位于B 处,在瞬时t ,
到达图示位置,则
=++=+t v l x BC AB 02
2常量
3. 将上式对时间求导,得套筒A 的速度和
加速度为
3
2
20220
,x
l v dt dv
a l x x
v dt dx v -==+-==
负号表示v, a 的实际方向与x 轴方向相反。
6-3 如图所示,OA 和O 1B 两杆分别绕O ,O 1轴转动,用十字形滑块D 将两杆连接。
在运动过程中,两杆保持相交成直角。
已知:OO 1=a ;kt =ϕ,其中k 为常数。
求滑块D
题6-1图
题6-2图
的速度和相对OA 的速度。
解:
1. 取套筒D 为研究对象,
2. 点D 的轨迹是圆弧,运动方程和速度为
ak s
akt R s ==== D v
,θ
3. 点D 在
x O '轴向的坐标和速度为
kt
ak x kt a x D D sin v ,cos D -='='='
D v
和D v '的方向如图所示。
6-4 小环M 由作平移的丁字形杆ABC 带动,沿着图示曲线轨道运动。
设杆ABC 以速度
v =常数向左运动,曲线方程为y 2=2px 。
求环M 的速度和加速度的大小(写成杆的位移x 的函数)
解:1.取M 点为研究对象,
2.将px y 22
=对时间求导数,
并注意==v x 常量,0=x
,得:,y
x p y = 则:x
p
v y x v M
212
2
+=+= ,
x p x v y
y x p y a M
2422
-=-==。