高考数学试题汇编抛物线
2023年新高考数学一轮复习9-5 抛物线(真题测试)含详解

专题9.5 抛物线(真题测试)一、单选题1.(2023·全国·高三专题练习)已知抛物线24y x =上一点M 到x 轴的距离是2,则点M 到焦点F 的距离为( )A B .2C .D .32.(2023·全国·高三专题练习)抛物线21:4E y x =的焦点到其准线的距离为( ) A .18B .14C .2D .43.(2022·全国·高考真题(文))设F 为抛物线2:4C y x =的焦点,点A 在C 上,点(3,0)B ,若AF BF =,则AB =( )A .2B .C .3D .4.(2021·全国·高考真题)抛物线22(0)y px p =>的焦点到直线1y x =+,则p =( )A .1B .2C .D .45.(2020·北京·高考真题)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线( ).A .经过点OB .经过点PC .平行于直线OPD .垂直于直线OP6.(2019·全国·高考真题(文))若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =( )A .2B .3C .4D .87.(山东·高考真题(文))已知抛物线22(0)y px p =>,过其焦点且斜率为1的直线交抛物线于 ,A B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( ) A .1x = B .1x =- C .2x =D .2x =-8.(2017·全国·高考真题(理))已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( ) A .16B .14C .12D .10二、多选题9.(2022·全国·高考真题)已知O 为坐标原点,点(1,1)A 在抛物线2:2(0)C x py p =>上,过点(0,1)B -的直线交C 于P ,Q 两点,则( ) A .C 的准线为1y =- B .直线AB 与C 相切 C .2|OP OQ OA ⋅>D .2||||||BP BQ BA ⋅>10.(2022·全国·高考真题)已知O 为坐标原点,过抛物线2:2(0)C y px p =>焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点(,0)M p ,若||||AF AM =,则( )A .直线AB 的斜率为B .||||OB OF =C .||4||AB OF >D .180OAM OBM ∠+∠<︒11.(2022·全国·高三专题练习)已知O 为坐标原点,抛物线E 的方程为214y x =,E 的焦点为F ,直线l 与E 交于A ,B 两点,且AB 的中点到x 轴的距离为2,则下列结论正确的是( )A .E 的准线方程为116y =- B .AB 的最大值为6C .若2AF FB =,则直线AB 的方程为1y x =+D .若OA OB ⊥,则AOB 面积的最小值为1612.(2023·全国·高三专题练习)已知抛物线Γ:()220x py p =>,过其准线上的点(),1T t -作的两条切线,切点分别为A ,B ,下列说法正确的是( ) A .2p =B .当1t =时,TA TB ⊥C .当1t =时,直线AB 的斜率为2D .TAB △面积的最小值为4三、填空题13.(2018·北京·高考真题(文))已知直线l 过点(1,0)且垂直于x 轴,若l 被抛物线24y ax =截得的线段长为4,则抛物线的焦点坐标为_________.14.(2023·全国·高三专题练习)已知抛物线C :26y x =的焦点为F ,A 为C 上一点且在第一象限,以F 为圆心,线段FA 的长度为半径的圆交C 的准线于M ,N 两点,且A ,F ,M 三点共线,则AF =______.15.(2020·山东·高考真题)已知抛物线的顶点在坐标原点,焦点F 与双曲线22221(0,0)x y a b a b-=>>的左焦点重合,若两曲线相交于M ,N 两点,且线段MN 的中点是点F ,则该双曲线的离心率等于______.16.(2021·北京·高考真题)已知抛物线24y x =的焦点为F ,点M 在抛物线上,MN 垂直x 轴与于点N .若6MF =,则点M 的横坐标为_______; MNF 的面积为_______.四、解答题17.(2017·北京·高考真题(理))已知抛物线C :y 2=2px 过点P (1,1).过点10,2⎛⎫⎪⎝⎭作直线l 与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP ,ON 交于点A ,B ,其中O 为原点. (1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)求证:A 为线段BM 的中点.18.(2019·全国·高考真题(理))已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若3AP PB =,求|AB |.19.(2019·北京·高考真题(理))已知抛物线C :x 2=−2py 经过点(2,−1). (Ⅰ)求抛物线C 的方程及其准线方程;(Ⅱ)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.20.(2022·全国·高考真题(理))设抛物线2:2(0)C y px p =>的焦点为F ,点(),0D p ,过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,3MF =. (1)求C 的方程;(2)设直线,MD ND 与C 的另一个交点分别为A ,B ,记直线,MN AB 的倾斜角分别为,αβ.当αβ-取得最大值时,求直线AB 的方程.21.(2020·全国·高考真题(理))已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.22.(2021·全国·高考真题(文))已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值.专题9.5 抛物线(真题测试)一、单选题1.(2023·全国·高三专题练习)已知抛物线24y x =上一点M 到x 轴的距离是2,则点M 到焦点F 的距离为( )A B .2C .D .3【答案】B【分析】有题意可知()1,2M ±,由焦点(1,0)F 则可求出点M 到焦点F 的距离. 【详解】M 到x 轴的距离是2,可得()1,2M ±,焦点(1,0)F 则点M 到焦点的距离为2. 故选:B.2.(2023·全国·高三专题练习)抛物线21:4E y x =的焦点到其准线的距离为( ) A .18B .14C .2D .43.(2022·全国·高考真题(文))设F 为抛物线2:4C y x =的焦点,点A 在C 上,点(3,0)B ,若AF BF =,则AB =( )A .2B .C .3D .故选:B4.(2021·全国·高考真题)抛物线22(0)y px p =>的焦点到直线1y x =+,则p =( ) A .1 B .2 C.D .45.(2020·北京·高考真题)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线( ).A .经过点OB .经过点PC .平行于直线OPD .垂直于直线OP【详解】如图所示:.故选:B.6.(2019·全国·高考真题(文))若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =( ) A .2B .3C .4D .87.(山东·高考真题(文))已知抛物线22(0)y px p =>,过其焦点且斜率为1的直线交抛物线于 ,A B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( ) A .1x = B .1x =- C .2x = D .2x=-8.(2017·全国·高考真题(理))已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( ) A .16 B .14C .12D .10二、多选题9.(2022·全国·高考真题)已知O 为坐标原点,点(1,1)A 在抛物线2:2(0)C x py p =>上,过点(0,1)B -的直线交C 于P ,Q 两点,则( ) A .C 的准线为1y =- B .直线AB 与C 相切 C .2|OP OQ OA ⋅> D .2||||||BP BQ BA ⋅>所以2212||||(1)||15BP BQ k x x k ⋅=+=+>,而2||5BA =,故D 正确.故选:BCD10.(2022·全国·高考真题)已知O 为坐标原点,过抛物线2:2(0)Cy px p =>焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点(,0)M p ,若||||AF AM =,则( ) A .直线AB 的斜率为B .||||OB OF =C .||4||AB OF >D .180OAM OBM ∠+∠<︒33选项;由0OA OB ⋅<,0MA MB ⋅<求得,易得(,0)2p F ,由AF AM =3(4p OA OB ⋅=又(4p MA MB ⋅=-又360AOB AMB OAM OBM ∠+∠+∠+∠=,则180OAM OBM ∠+∠<,D 正确. 故选:ACD.11.(2022·全国·高三专题练习)已知O 为坐标原点,抛物线E 的方程为214y x =,E 的焦点为F ,直线l 与E 交于A ,B 两点,且AB 的中点到x 轴的距离为2,则下列结论正确的是( )A .E 的准线方程为116y =- B .AB 的最大值为6C .若2AF FB =,则直线AB 的方程为1y x =+D .若OA OB ⊥,则AOB 面积的最小值为16 ,联立抛物线,由2AF FB =解出A 即可求出面积最小值,即可判断D 选项.【详解】由2AF FB =得直线设直线AB 的方程为4A B x x =-.由于2AF FB =,所以22x =±,所以2124A A y x ==,直线AB 的方程为),y OA ⊥所以AOB 面积的是小值为故选:BCD.12.(2023·全国·高三专题练习)已知抛物线Γ:()220x py p =>,过其准线上的点(),1T t -作的两条切线,切点分别为A ,B ,下列说法正确的是( ) A .2p =B .当1t =时,TA TB ⊥C .当1t =时,直线AB 的斜率为2D .TAB △面积的最小值为4220x y ,故AB k C ,切线方程TA :的方程为1xt y -=-三、填空题13.(2018·北京·高考真题(文))已知直线l过点(1,0)且垂直于x轴,若l被抛物线24y ax=截得的线段长为4,则抛物线的焦点坐标为_________.14.(2023·全国·高三专题练习)已知抛物线C:26=的焦点为F,y xA为C上一点且在第一象限,以F为圆心,线段FA的长度为半径的圆交C的准线于M,N两点,且A,F,M三点共线,则AF=______.【答案】6【分析】根据圆的几何性质以及抛物线的定义即可解出.故答案为:6.15.(2020·山东·高考真题)已知抛物线的顶点在坐标原点,焦点F与双曲线22221(0,0)x ya ba b-=>>的左焦点重合,若两曲线相交于M,N两点,且线段MN的中点是点F,则该双曲线的离心率等于______.M在抛物线上,所以M在双曲线上,22cb=-故答案为:16.(2021·北京·高考真题)已知抛物线24y x=的焦点为F,点M在抛物线上,MN垂直x轴与于点N.若6MF=,则点M的横坐标为_______;MNF的面积为_______.FMNS.【FMNS=故答案为:四、解答题17.(2017·北京·高考真题(理))已知抛物线C:y2=2px过点P(1,1).过点10,2⎛⎫⎪⎝⎭作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.(1)求抛物线C的方程,并求其焦点坐标和准线方程;(2)求证:A为线段BM的中点.故A 为线段BM 的中点.18.(2019·全国·高考真题(理))已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若3AP PB =,求|AB |. 利用3AP PB =可得y ()22,B x y 1252x x ∴+= 3AP PB = ∴则419AB =+⋅19.(2019·北京·高考真题(理))已知抛物线C :x 2=−2py 经过点(2,−1).(Ⅰ)求抛物线C的方程及其准线方程;(Ⅱ)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y=−1分别交直线OM,ON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点.D p,过F的直线交C于20.(2022·全国·高考真题(理))设抛物线2=>的焦点为F,点(),0:2(0)C y px pMF=.M,N两点.当直线MD垂直于x轴时,3(1)求C 的方程;(2)设直线,MD ND 与C 的另一个交点分别为A ,B ,记直线,MN AB 的倾斜角分别为,αβ.当αβ-取得最大值时,求直线AB 的方程.21.(2020·全国·高考真题(理))已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.)(),0F c ,的方程为x =21c=+,解得抛物线2C 的方程为24y cx =,联立24x c y cx=⎧⎨=⎩,43CD =即223c ac +01e <<,解得(2)[方法一由椭圆的第二定义知所以12-a22.(2021·全国·高考真题(文))已知抛物线2=>的焦点F到准线的距离为2.C y px p:2(0)(1)求C的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值. ,则(99PQ QF ==-)09,10y ,由P 在抛物线上可得Q 的轨迹方程为的斜率0025OQ y k x ==(1,0),9=PQ QF ,所以29(1)9x y =-=-,所以的斜率为244=y x t 方法四利用参数法,由题可设()24,4(0),(,)>P t t t Q x y ,求得x,y 关于t 的参数表达式,得到直线OQ 的斜率关于t 的表达式,结合使用基本不等式,求得直线OQ 斜率的最大值.。
高考数学专题《抛物线》习题含答案解析

专题9.5 抛物线1.(2020·全国高考真题(理))已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( ) A .2 B .3 C .6 D .9【答案】C 【解析】设抛物线的焦点为F ,由抛物线的定义知||122A p AF x =+=,即1292p=+,解得6p.故选:C.2.(2020·北京高三二模)焦点在x 轴的正半轴上,且焦点到准线的距离为4的抛物线的标准方程是( ) A .x 2=4y B .y 2=4x C .x 2=8y D .y 2=8x【答案】D 【解析】根据题意,要求抛物线的焦点在x 轴的正半轴上, 设其标准方程为22(0)y px p =>, 又由焦点到准线的距离为4,即p =4, 故要求抛物线的标准方程为y 2=8x , 故选:D.3.(全国高考真题)设F 为抛物线2:4C y x =的焦点,曲线()0ky k x=>与C 交于点P ,PF x ⊥轴,则k =( )A .12B .1C .32D .2【答案】D 【解析】由抛物线的性质可得(1,2)221kP y k ⇒==⇒=,故选D. 4.(2020·全国高考真题(文))设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为( ) A .1,04⎛⎫⎪⎝⎭B .1,02⎛⎫ ⎪⎝⎭C .(1,0)D .(2,0)练基础【答案】B 【解析】因为直线2x =与抛物线22(0)y px p =>交于,E D 两点,且OD OE ⊥, 根据抛物线的对称性可以确定4DOx EOx π∠=∠=,所以()2,2D ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2, 故选:B.5.(2019·四川高三月考(文))若抛物线22y px =的准线为圆2240x y x ++=的一条切线,则抛物线的方程为( ) A.216y x =- B.28y x =-C.216y x =D.24y x =【答案】C 【解析】∵抛物线22y px =的准线方程为x=2p-,垂直于x 轴. 而圆2240x y x ++=垂直于x 轴的一条切线为4x =-, 则42p=,即8p =. 故抛物线的方程为216y x =. 故选:C .6.(2019·北京高考真题(文))设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________. 【答案】(x -1)2+y 2=4. 【解析】抛物线y 2=4x 中,2p =4,p =2, 焦点F (1,0),准线l 的方程为x =-1, 以F 为圆心,且与l 相切的圆的方程为 (x -1)2+y 2=22,即为(x -1)2+y 2=4.7.(2019·山东高三月考(文))直线l 与抛物线22x y =相交于A ,B 两点,当AB 4=时,则弦AB 中点M 到x 轴距离的最小值为______. 【答案】32【解析】由题意,抛物线22x y =的焦点坐标为(0,12),根据抛物线的定义如图,所求d=111A B AF BF 113M 2222A B AB M ++--==≥= 故答案为:32. 8.(2021·沙湾县第一中学(文))设过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,且直线AB 的倾斜角为4π,则线段AB 的长是____,焦点F 到A ,B 两点的距离之积为_________.【答案】8 8 【分析】由题意可得直线AB 的方程为1y x =-,然后将直线方程与抛物线方程联立方程组,消去y 后,利用根与系数的关系,结合抛物线的定义可求得答案 【详解】解:由题意得(1,0)F ,则直线AB 的方程为1y x =-,设1122(,),(,)A x y B x y ,由241y x y x ⎧=⎨=-⎩,得2610x x -+=, 所以12126,1x x x x +==, 所以12628AB x x p =++=+=,因为11221,122=+=+=+=+p pAF x x BF x x , 所以()()1212121116118AF BF x x x x x x ⋅=+⋅+=+++=++=, 故答案为:8,89.(2021·全国高三专题练习)已知抛物线顶点在原点,焦点在坐标轴上,又知此抛物线上的一点(),3A m -到焦点F 的距离为5,则m 的值为__________;抛物线方程为__________. 【答案】答案见解析 答案见解析 【分析】由于抛物线的开口方向未定,根据点(),3A m -在抛物线上这一条件,抛物线开口向下,向左、向右均有可能,以此分类讨论,利用焦半径公式列方程可得p 的值,根据点(),3A m -在抛物线上可得m 的值. 【详解】根据点(),3A m -在抛物线上,可知抛物线开口向下,向左、向右均有可能, 当抛物线开口向下时,设抛物线方程为22x py =-(0p >), 此时准线方程为2py =,由抛物线定义知(3)52p --=,解得4p =.所以抛物线方程为28x y ,这时将(),3A m -代入方程得m =±当抛物线开口向左或向右时,可设抛物线方程为22y ax (0a ≠),从p a =知准线方程为2ax =-,由题意知()25232am am⎧+=⎪⎨⎪-=⎩,解此方程组得11192a m =⎧⎪⎨=⎪⎩,22192a m =-⎧⎪⎨=-⎪⎩,33912a m =⎧⎪⎨=⎪⎩,44912a m =-⎧⎪⎨=-⎪⎩,综合(1)、(2)得92m =,22y x =; 92m =-,22y x =-;12m =,218y x =; 12m =-,218y x =-;m =±28xy .故答案为:92,92-,12,12-,±22y x =,22y x =-,218y x =,218y x =-,28x y .10.(2019·广东高三月考(理))已知F 为抛物线2:4T x y =的焦点,直线:2l y kx =+与T 相交于,A B 两点.()1若1k =,求FA FB +的值;()2点(3,2)C --,若CFA CFB ∠=∠,求直线l 的方程.【答案】(1)10(2)3240x y +-= 【解析】(1)由题意,可得()0,1F ,设221212,,,44x x A x B x ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,联立方程组224y kx x y=+⎧⎨=⎩,整理得2480x kx --=,则124x x k +=,128x x =-,又由22121144x x FA FB +++=+()2121222104x x x x +-=+=.(2)由题意,知211,14x FA x ⎛⎫=- ⎪⎝⎭,222,14x FB x ⎛⎫=- ⎪⎝⎭,()3.3FC =--, 由CFA CFB ∠=∠,可得cos ,cos ,FA FC FB FC =又2114x FA =+,2214x FB =+,则FA FC FB FC FA FC FB FC =, 整理得()1212420x x x x ++-=,解得32k =-, 所以直线l 的方程为3240x y +-=.1.(2021·吉林长春市·高三(理))已知M 是抛物线24y x =上的一点,F 是抛物线的焦点,若以Fx 为始边,FM 为终边的角60xFM ∠=,则FM 等于( ) A .2 B C .D .4【答案】D 【分析】设点200,4y M y ⎛⎫ ⎪⎝⎭,取()1,0a =,可得1cos ,2FM a <>=,求出20y 的值,利用抛物线的定义可求练提升得FM 的值. 【详解】设点()00,M x y ,其中2004y x =,则()1,0F ,2001,4y FM y ⎛⎫=- ⎪⎝⎭,取()1,0a =,则211cos ,2y FM a FM a FM a-⋅<>===⋅⎛,可得4200340480y y -+=,因为20104y ->,可得204y >,解得2012y =,则20034y x ==,因此,014MF x=+=. 故选:D.2.(2017·全国高考真题(文))过抛物线2:4C y x =的焦点F 的直线交C 于点M (在x 轴上方),l 为C 的准线,点N 在l 上且MNl ⊥,则点M 到直线NF 的距离为()A. B. D.【答案】A 【解析】设直线l 与x 轴相交于点P ,与直线MN 相交于点Q ,(1,0)F ,设||||MN MF m ==,因为||2,30PF NQM =∠=,所以||4,||2QF QM m ==, 所以42m m +=,解得:4m =,设00(,)M x y ,由焦半径公式得:014x +=, 所以03x=,0y =,所以sin sin 42NP MNF NFP NF ∠=∠===,所以点M 到直线NF 的距离为||sin 4NM MNF ⋅∠=⋅=3.(2020·广西南宁三中其他(理))已知抛物线28C y x =:的焦点为F ,P 是抛物线C 的准线上的一点,且P 的纵坐标为正数,Q 是直线PF 与抛物线C 的一个交点,若PQ =,则直线PF 的方程为( )A .20x y --=B .20x y +-=C .20x y -+=D .20x y ++=【答案】B 【解析】过Q 点作QH PM ⊥于H ,因为PQ =,由抛物线的定义得PQ =,所以在Rt PQH ∆中,4PQH π∠=,所以4PFM π∠=,所以直线PF 的斜率为1k =-,所以直线PF 的方程为()()012y x -=--, 即20x y +-=, 故选B.4.(2020·浙江高三月考)如图,已知抛物线21:4C y x =和圆222:(1)1C x y -+=,直线l 经过1C 的焦点F ,自上而下依次交1C 和2C 于A ,B ,C ,D 四点,则AB CD ⋅的值为( )A .14B .12C .1D .2【答案】C 【解析】因为抛物线21:4C y x =的焦点为(1,0)F ,又直线l 经过1C 的焦点F ,设直线:(1)l y k x =-,由24(1)y x y k x ⎧=⎨=-⎩得2222(24)0k x k x k -++=, 设1122(,),(,)A x y B x y ,则121=x x由题意可得:1111=-=+-=AB AF BF x x , 同理2=CD x ,所以12cos01︒⋅=⋅⋅==AB CD AB CD x x . 故选C5.【多选题】(2022·全国高三专题练习)已知抛物线21:C y mx =与双曲线222:13y C x -=有相同的焦点,点()02,P y 在抛物线1C 上,则下列结论正确的有( )A .双曲线2C 的离心率为2B .双曲线2C 的渐近线为y x = C .8m =D .点P 到抛物线1C 的焦点的距离为4【答案】ACD 【分析】由双曲线方程写出离心率、渐近线及焦点,即可知A 、B 、C 的正误,根据所得抛物线方程求0y ,即知D 的正误. 【详解】双曲线2C 的离心率为2e ==,故A 正确;双曲线2C 的渐近线为y =,故B 错误; 由12,C C 有相同焦点,即24m=,即8m =,故C 正确; 抛物线28y x =焦点为()2,0,点()02,P y 在1C 上,则04y =±,故()2,4P 或()2,4P -,所以P 到1C 的焦点的距离为4,故D 正确. 故选:ACD .6.【多选题】(2021·海南鑫源高级中学)在下列四个命题中,真命题为( )A .当a 为任意实数时,直线(a -1)x -y +2a +1=0恒过定点P ,则过点P 且焦点在y 轴上的抛物线的标准方程是243x y =B .已知双曲线的右焦点为(5,0),一条渐近线方程为2x -y =0,则双曲线的标准方程为221205x y -= C .抛物线y =ax 2(a ≠0)的准线方程14y a=-D .已知双曲线2214x y m +=,其离心率()1,2e ∈,则m 的取值范围(-12,0)【答案】ACD 【分析】求出直线定点设出抛物方程即可判断A ;根据渐近线方程与焦点坐标求出,a b 即可判断B ;根据抛物线方程的准线方程公式即可判断C ;利用双曲线离心率公式即可判断D . 【详解】对A 选项,直线(a -1)x -y +2a +1=0恒过定点为()2,3P -,则过点P 且焦点在y 轴上的抛物线的标准方程设为22x py =,将点()2,3P -代入可得23p =,所以243x y =,故A 正确;对B 选项,知5,2bc a==,又22225a b c +==,解得225,20a b ==,所以双曲线的标准方程为221520x y -=,故B 错; 对C 选项,得21x y a =,所以准线方程14y a=-,正确;对D 选项,化双曲线方程为2214x y m-=-,所以()1,2e =,解得()12,0m ∈-,故正确.故选:ACD7.(2021·全国高二课时练习)已知点M 为抛物线2:2(0)C y px p =>上一点,若点M 到两定点(,)A p p ,,02p F ⎛⎫⎪⎝⎭的距离之和最小,则点M 的坐标为______.【答案】,2p p ⎛⎫⎪⎝⎭【分析】过点M 作抛物线准线的垂线,垂足为B ,根据抛物线的定义可得||||MF MB =, 易知当A ,B ,M 三点共线时||MB MA +取得最小值且为||AB ,进而可得结果. 【详解】过点M 作抛物线准线的垂线,垂足为B ,由抛物线的定义,知点M 到焦点,02p F ⎛⎫⎪⎝⎭的距离与点M 到准线的距离相等,即||||MF MB =,所以||||||||MF MA MB MA +=+, 易知当A ,B ,M 三点共线时,||MB MA +取得最小值, 所以min 3(||||)||2p MF MA AB +==,此时点M 的坐标为,2p p ⎛⎫⎪⎝⎭. 故答案为:2p p ⎛⎫⎪⎝⎭,8.(2021·全国高二课时练习)抛物线()220y px p =>的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足120AFB ∠=︒,过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则MN AB的最大值为______.【分析】设=AF a ,=BF b ,根据中位线定理以及抛物线定义可得()12MN a b =+,在AFB △中,由余弦定理以及基本不等式可得)AB a b ≥+,即可求得MN AB 的最大值.【详解】设=AF a ,=BF b ,作AQ 垂直抛物线的准线于点Q ,BP 垂直抛物线的准线于点P .由抛物线的定义,知AF AQ =,BF BP =.由余弦定理得()2222222cos120AB a b ab a b ab a b ab =+=︒=++=+-.又22a b ab +⎛⎫≤ ⎪⎝⎭,∴()()()()22221344a b ab a b a b a b +-≥+-+=+,当且仅当a b =时,等号成立,∴)AB a b ≥+,∴()1a b MN AB +≤=MN AB9.(2020·山东济南外国语学校高三月考)抛物线C :22y x =的焦点坐标是________;经过点()4,1P 的直线l 与抛物线C 相交于A ,B 两点,且点P 恰为AB 的中点,F 为抛物线的焦点,则AF BF +=________.【答案】1,02⎛⎫⎪⎝⎭9【解析】抛物线C :22y x =的焦点1,02F ⎛⎫⎪⎝⎭. 过A 作AM ⊥准线交准线于M ,过B 作BN ⊥准线交准线于N ,过P 作PK ⊥准线交准线 于K ,则由抛物线的定义可得AM BN AF BF +=+. 再根据P 为线段AB 的中点,119(||||)||4222AM BN PK +==+=, ∴9AF BF +=,故答案为:焦点坐标是1,02⎛⎫ ⎪⎝⎭,9AF BF +=.10.(2019·四川高考模拟(文))抛物线C :()220x py p =>的焦点为F ,抛物线过点(),1P p .(Ⅰ)求抛物线C 的标准方程与其准线l 的方程;(Ⅱ)过F 点作直线与抛物线C 交于A ,B 两点,过A ,B 分别作抛物线的切线,证明两条切线的交点在抛物线C 的准线l 上.【答案】(Ⅰ)抛物线的标准方程为24x y =,准线l 的方程为1y =-;(Ⅱ)详见解析. 【解析】(Ⅰ)由221p p =⨯,得2p =,所以抛物线的标准方程为24x y =,准线l 的方程为1y =-.(Ⅱ)根据题意直线AB 的斜率一定存在,又焦点()0,1F ,设过F 点的直线方程为1y kx =+,联立241x yy kx ⎧=⎨=+⎩,得,2440x kx --=. 设()11,A x y ,()22,B x y ,则124x x k +=,124x x =-.∴()22221212122168x x x x x x k +=+-=+.由214y x =得,1'2y x =,过A ,B 的抛物线的切线方程分别为 ()()1112221212y y x x x y y x x x ⎧-=-⎪⎪⎨⎪-=-⎪⎩, 即21122211241124y x x x y x x x ⎧=-⎪⎪⎨⎪=-⎪⎩,两式相加,得()()2212121148y x x x x x =+-+,化简,得()221y kx k =-+,即()21y k x k =--, 所以,两条切线交于点()2,1k -,该点显然在抛物线C 的准线l :1y =-上.1.(2021·全国高考真题)抛物线22(0)y px p =>的焦点到直线1y x =+,则p =( ) A .1 B .2 C .D .4【答案】B 【分析】首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得p 的值. 【详解】抛物线的焦点坐标为,02p ⎛⎫ ⎪⎝⎭,其到直线10x y -+=的距离:d == 解得:2p =(6p =-舍去). 故选:B.2.(2021·天津高考真题)已知双曲线22221(0,0)x y a b a b-=>>的右焦点与抛物线22(0)y px p =>的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C 、D 两点,若|CD AB .则双曲线的离心率为( ) A B C .2D .3练真题【答案】A 【分析】设公共焦点为(),0c ,进而可得准线为x c =-,代入双曲线及渐近线方程,结合线段长度比值可得2212a c =,再由双曲线离心率公式即可得解. 【详解】设双曲线22221(0,0)x y a b a b-=>>与抛物线22(0)y px p =>的公共焦点为(),0c ,则抛物线22(0)y px p =>的准线为x c =-,令x c =-,则22221c ya b-=,解得2b y a =±,所以22b AB a =, 又因为双曲线的渐近线方程为b y x a =±,所以2bcCD a=,所以2bc a c ,所以222212a cbc =-=,所以双曲线的离心率ce a== 故选:A.3.(2020·北京高考真题)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线( ). A .经过点O B .经过点P C .平行于直线OP D .垂直于直线OP【答案】B 【解析】如图所示:.因为线段FQ 的垂直平分线上的点到,F Q 的距离相等,又点P 在抛物线上,根据定义可知,PQ PF =,所以线段FQ 的垂直平分线经过点P .故选:B.4.(2021·全国高考真题)已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 的准线方程为______. 【答案】32x =-【分析】先用坐标表示P Q ,,再根据向量垂直坐标表示列方程,解得p ,即得结果. 【详解】抛物线C :22y px = (0p >)的焦点,02p F ⎛⎫⎪⎝⎭,∵P 为C 上一点,PF 与x 轴垂直, 所以P 的横坐标为2p,代入抛物线方程求得P 的纵坐标为p ±, 不妨设(,)2pP p ,因为Q 为x 轴上一点,且PQ OP ⊥,所以Q 在F 的右侧, 又||6FQ =, (6,0),(6,)2pQ PQ p ∴+∴=- 因为PQ OP ⊥,所以PQ OP ⋅=2602pp ⨯-=, 0,3p p >∴=,所以C 的准线方程为32x =-故答案为:32x =-.5.的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________.【答案】163【解析】∵抛物线的方程为24y x =,∴抛物线的焦点F 坐标为(1,0)F ,又∵直线AB 过焦点F AB 的方程为:1)y x =- 代入抛物线方程消去y 并化简得231030x x -+=, 解法一:解得121,33x x ==所以12116||||3|33AB x x =-=-= 解法二:10036640∆=-=> 设1122(,),(,)A x y B x y ,则12103x x +=, 过,A B 分别作准线1x =-的垂线,设垂足分别为,C D 如图所示.12||||||||||11AB AF BF AC BD x x =+=+=+++1216+2=3x x =+故答案为:1636.(2020·浙江省高考真题)如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于M (B ,M 不同于A ).(Ⅰ)若116=p ,求抛物线2C 的焦点坐标; (Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.【答案】(Ⅰ)1(,0)32;【解析】 (Ⅰ)当116=p 时,2C 的方程为218y x =,故抛物线2C 的焦点坐标为1(,0)32;(Ⅱ)设()()()112200,,,,,,:A x y B x y M x y I x y m λ=+,由()22222222220x y y my m x y mλλλ⎧+=⇒+++-=⎨=+⎩, 1200022222,,222m m my y y x y m λλλλλλ--∴+===+=+++, 由M 在抛物线上,所以()222222244222m pm mp λλλλλ=⇒=+++, 又22222()220y pxy p y m y p y pm x y mλλλ⎧=⇒=+⇒--=⎨=+⎩, 012y y p λ∴+=,2101022x x y m y m p m λλλ∴+=+++=+,2122222mx p m λλ∴=+-+.由2222142,?22x y x px y px ⎧+=⎪⇒+=⎨⎪=⎩即2420x px +-=12x p ⇒==-222221822228162p p p m p p p λλλλλ+⇒-=+⋅=++≥+,18p ≥,21160p ≤,p ≤ 所以,p,此时A . 法2:设直线:(0,0)l x my t m t =+≠≠,()00,A x y .将直线l 的方程代入椭圆221:12x C y +=得:()2222220m y mty t +++-=,所以点M 的纵坐标为22M mty m =-+.将直线l 的方程代入抛物线22:2C y px =得:2220y pmy pt --=,所以02M y y pt =-,解得()2022p m y m+=,因此()220222p m xm+=,由220012x y +=解得22212242160m m p m m ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,所以当m t ==p .。
2024高考数学专项一题打天下之抛物线(共25问)

2024高考数学专项一题打天下之抛物线(共25问)一题打天下之抛物线(共25问)题干:已知动圆过定点(4,0),且在y轴上截得的弦长为8考点1:求标准方程(1)求动圆圆心的轨迹C的方程;考点2:抛物线的定义(1)已知点F(2,0),若P为轨迹C的点,且PF=4,求P的坐标(注意通径)(2)已知点F(2,0),若P为轨迹C的点,且P到y轴的距离为4,求PF(3)抛物线具有如下光学性质:从焦点发出的光线经过抛物线上的一点反射后,反射光线平行于抛物线的对称轴,生活中的探照灯就是利用这个原理设计的,已知F是轨迹C的焦点,从F发出的光线经C上的点M反射后经过点(6,42),求FM(4)已知点F(2,0),点P为轨迹C上第一象限内的一点,作PM垂直于直线l:x=-2,交直线l于M,若PF的斜率为3,求MF答案8(5)M为轨迹C上的点,且FM的延长线交y轴于N,若M为FN的中点,求FN的长(答案6)(6)已知P为直线l:x=-2上的一点,作PA⏊PF交y轴负半轴于A点,连接AF交轨迹C于B点,若PB⎳x轴,求FA的长(答案6,斜边上的中线为斜边的一半)(7)已知点F (2,0),直线l 过点F 且与轨迹C 交于P 、Q 两点,且若PF =3FQ ,求直线l的方程(三种方法)(8)若轨迹C 的焦点为F ,准线为l ,M 是l 上一点,N 是直线MF 与C 的一个交点,若FM =4FN ,求|NF |的长考点3:抛物线中的最值问题(1)若点P 是轨迹C 上的一个动点,求点P 到点(3,0)的距离的最小值(2)已知点F (2,0),T (3,4),P 是轨迹C 上的一动点,求PF +PT 的最小值(3)已知P 是轨迹C 上的一动点,求点P 到直线y =x +4和y 轴的距离之和的最小值(4)若点P 是轨迹C 上的一个动点,点Q 是圆(x -3)2+y 2=1的动点,则求PQ 的最小值(5)点P 是轨迹C 上的一个动点,求点P 到直线y =x +4的距离的最小值考点3:直线与抛物线的位置关系(1)过点(-2,0)的直线与轨迹C 只有一个公共点,求此直线方程(2)已知点F (2,0),直线l 过点F 且与轨迹C 交于P 、Q 两点,且PQ =16,求直线l 的方程(3)已知点F (2,0),直线y =x -1交轨迹C 交于P 、Q 两点,求PQ 的中点坐标(4)已知点F (2,0),斜率为2的直线l 与轨迹C 的交点为A ,B ,与x 轴的交点为P ,若AP =2PB ,求△ABF 的周长和面积(5)已知点F (2,0),求证:命题“如果直线l 过点F 且与轨迹C 交于P 、Q 两点,那么OP •OQ =-12恒成立”是真命题(6)写出(4)中命题的逆命题,判断它是真命题还是假命题,并说明理由。
2022年高考数学一轮复习专题 专题41 抛物线基础巩固检测题(解析版)

专题41 抛物线基础巩固检测题(解析版)一、单选题1.过抛物线24y x =的焦点F 的直线交抛物线于A B 、两点,若F 是线段AB 的中点,则AB =( ) A .1 B .2C .3D .4【答案】D 【分析】依据题意可知线段AB 为抛物线的通径可得结果. 【详解】由题可知:线段AB 为抛物线的通径 所以AB 4= 故选:D2.P 为抛物线22(0)y px p =>上一点,点P 到抛物线准线和对称轴的距离分别为10和6,则p =( ) A .2 B .4C .4或9D .2或18【答案】D 【分析】由抛物线22(0)y px p =>可得准线l 的方程为:2px =-,设点(,)P x y ,再由点P 到抛物线准线和对称轴的距离分别为10和6,可得102px +=,6y =±,再与抛物线方程22(0)y px p =>,联立解方程组,即可求解. 【详解】解:由题意可得:抛物线22(0)y px p =>的准线l 的方程为:2p x =-设点(,)P x y ,又因点P 到抛物线准线和对称轴的距离分别为10和6,所以有210262p x y y px⎧+=⎪⎪=±⎨⎪=⎪⎩,解得118x p =⎧⎨=⎩或92x p =⎧⎨=⎩,即p 的值分别为18或2. 故选:D. 【点睛】本题考查了抛物线的标准方程及其性质,考查理解辨析能力及运算求解能力,属于基础题.3.已知抛物线方程为24x y =,则该抛物线的焦点坐标为( ) A .(0,1)- B .1,016⎛-⎫⎪⎝⎭C .1,016⎛⎫⎪⎝⎭D .(0,1)【答案】D 【分析】根据抛物线方程求出2p =,即可得抛物线的焦点坐标. 【详解】由抛物线方程24x y =可知24p =,所以2p =,又抛物线的焦点在y 轴正半轴上,所以该抛物线的焦点坐标为(0,1). 故选:D4.已知抛物线2:2(0)C x py p =>的焦点在直线10x y +-=上,又经过抛物线C 的焦点且倾斜角为60︒的直线交抛物线C 于A 、B 两点,则||AB =( ) A .12 B .14C .16D .18【答案】C 【分析】直线10x y +-=与y 轴的交点就是抛物线的焦点,从而可求出抛物线方程,然后将倾斜角为60︒的直线方程与抛物线方程联立成方程组,消去x ,整理后利用根与系数的关系可得1214y y +=,从而再利用抛物线的定义可求出||AB 【详解】解:因为直线10x y +-=与y 轴的交点为(0,1),所以抛物线2:2(0)C x py p =>的焦点坐标为(0,1),设(0,1)F ,抛物线方程为24x y =,所以过焦点且倾斜角为60︒的直线方程为1y =+,设1122(,),(,)A x y B x y ,由241x y y ⎧=⎪⎨=+⎪⎩,得21410y y -+=, 所以1214y y +=,所以12||14216AB y y p =++=+=, 故选:C 5.抛物线2y x 的准线方程是( )A .14y =-B .12yC .14x =-D .12x =-【答案】A 【分析】利用抛物线准线方程定义求解即可. 【详解】抛物线的准线方程为2x y =,焦点在y 轴上,21p ∴=,即12p =,124p ∴=, ∴准线方程是124p y =-=-. 故选:A.6.顶点在原点,关于y 轴对称,并且经过点M (-4,5)的抛物线方程为( )A .y 2=165x B .y 2=-165x C .x 2=165yD .x 2=-165y【答案】C 【分析】由题意设方程为x 2=2py (p >0),点M (-4,5)代入计算即可. 【详解】由题设知,抛物线开口向上,设方程为x 2=2py (p >0),将(-4,5)代入得8,5p =所以,抛物线方程为2165x y =. 故选:C .7.已知抛物线C :()220y px p =>的焦点为F ,直线()2y k x =+与抛物线C 交于点()1,2A ,B ,则FB =( ) A .3B .4C .5D .6【答案】C 【分析】通过A 点的坐标算出p ,再根据点,A B 以及点()2,0-三点共线算出B 点坐标,再利用焦半径公式即可. 【详解】由点()1,2A 在抛物线C 上得2p =,设2,4t B t ⎛⎫⎪⎝⎭,由直线过定点()2,0-得()()221224tk t==----,解得4t =(舍去2),()4,4B 所以452pFB =+= 故选:C.8.已知平面α和两条异面直线,a b 满足,a b αα⊂⊥,平面α内的动点M 到两条直线,a b 的距离相等,则点M 的轨迹是( ) A .两条直线 B .椭圆C .双曲线D .抛物线【答案】D 【分析】利用抛物线的定义即可得出选项. 【详解】b α⊥,垂足设为F ,则平面α内的动点M 到定直线a 与到F 的距离相等, 满足抛物线的定义. 故选:D9.已知A 为抛物线C :22x py =(0p >)上一点,点A 到C 的焦点的距离为6,到x 轴的距离为4,则p =( ) A .2 B .3C .4D .6【答案】C 【分析】利用抛物线的定义建立方程即可得到答案. 【详解】设抛物线的焦点为F ,由抛物线的定义知||62A pAF y =+=, 所以642p=+,解得4p =. 故选:C.10.已知()()1,0,2,0A B -为ABC ∆的两个顶点,点C 在抛物线28x y =上,且到焦点的距离为16,则ABC ∆的面积为( ) A .12 B .18C .21D .24【答案】C 【分析】根据抛物线的定义知,得到0216y +=,求得0y 的值,利用三角形的面积公式,即可求解. 【详解】由题意,点C 在抛物线28x y =上,设()00,C x y , 又由抛物线28x y =的准线方程为2y =-根据抛物线的定义知,抛物线上的点到焦点的距离等于到准线的距离, 即0216y +=,解得014y =, 所以()01121142122ABC S AB y ∆=⨯⋅=⨯+⨯=. 故选:C.11.已知抛物线24y x =,过其焦点F 的直线l 交抛物线于()11,A x y ,()22,B x y 两点,若1x ,3,2x 三个数构成等差数列,则线段AB 的长为( ) A .9 B .8C .7D .6【答案】B 【分析】先求出抛物线的焦点坐标,再利用抛物线的定义以及等差数列的性质,即可求解. 【详解】由题意,抛物线24y x =,可得其焦点坐标为(1,0)F , 根据抛物线的定义,可得1212222p pAB AF BF x x x x =+=+++=++, 又由1x ,3,2x 三个数构成等差数列,所以126x x +=,所以628AB =+=. 故答案为:8.12.已知抛物线21:2(0)C x py p =>的焦点为F ,点A 在抛物线1C 上,且4||3AF =,抛物线22:8C y px =的焦点为F ',若点A 的纵坐标为12,则FF '=( )A .2B .4C D .4【答案】B 【分析】根据焦半径公式计算12p =,然后代入写出点F 和F '的坐标,利用两点距离公式求解. 【详解】因为4||3AF =,所以13224p +=,解得12p =.所以22121:,:4,0,4C x y C y x F ⎛⎫== ⎪⎝⎭,(1,0)F ',所以4FF '==. 故选:B二、填空题13.若抛物线C 顶点在原点,焦点在y 轴上,且过点(2,1),则C 的标准方程是___________. 【答案】24x y = 【分析】利用待定系数法求出抛物线方程即可; 【详解】解:因为抛物线C 顶点在原点,焦点在y 轴上,故设抛物线方程为2x my =,又抛物线过点(2,1),所以22m =,即4m =,所以抛物线方程为24x y = 故答案为:24x y =14.在平面直角坐标系xOy 中,抛物线22x y =的焦点到准线的距离为__________. 【答案】1 【分析】求出抛物线22x y =的焦点坐标与准线方程,从而可得答案. 【详解】由22x y =可得1p =,抛物线22x y =的焦点坐标为10,2⎛⎫ ⎪⎝⎭,准线方程为12y, 所以抛物线22x y =的焦点到准线的距离为11122⎛⎫--= ⎪⎝⎭, 故答案为:1.15.若点(2021,)P t 在抛物线24y x =上,点F 为该抛物线的焦点,则PF 的值为_______. 【答案】2022 【分析】由抛物线的方程求出抛物线的准线方程,根据抛物线的定义可得PF 等于点(2021,)P t 到准线的距离即可求解. 【详解】由24y x =可得其焦点()1,0F ,准线为1x =-, 因为点(2021,)P t 在抛物线24y x =上,所以点(2021,)P t 到焦点的距离等于到准线1x =-的距离, 所以()202112022PF =--=, 故答案为:2022.16.人们已经证明,抛物线有一条重要性质:从焦点发出的光线,经过抛物线上的一点反射后,反射光线平行于抛物线的轴,探照灯、手电筒就是利用这个原理设计的.已知抛物线()220y px p =>的焦点为F ,从点F 出发的光线经抛物线上第一象限内的一点P 反射后的光线所在直线方程为y =,若入射光线FP 的斜率为方程为______. 【答案】22y x = 【分析】利用已知条件求出P 的坐标,然后求解p 即可得到抛物线方程.【详解】从点F 出发的光线第一象限内抛物线上一点P 反射后的光线所在直线方程为y可得P (1p,入射光线FP的斜率为2p =-p =1或p =﹣2(舍去),所以抛物线方程为:y 2=2x . 故答案为:y 2=2x 【点睛】方法点睛:求抛物线的标准方程,常用待定系数法,先定式(确定抛物线的形式),后定量.三、解答题17.分别求符合下列条件的抛物线的标准方程. (1)经过点(-3,-1);(2)焦点为直线3x-4y-12=0与坐标轴的交点. 【答案】(1)y 2=-13x 或x 2=-9y ;(2)x 2=-12y 或y 2=16x. 【分析】(1)设出抛物线方程,根据点()3,1--求得抛物线方程. (2)求得焦点坐标,由此求得p ,进而求得抛物线方程. 【详解】(1)因为点(-3,-1)在第三象限,所以设所求抛物线的标准方程为y 2=-2px (p>0)或x 2=-2py (p>0).若抛物线的标准方程为y 2=-2px (p>0),则由(-1)2=-2p ×(-3),解得p=16; 若抛物线的标准方程为x 2=-2py (p>0),则由(-3)2=-2p ×(-1),解得p=92. 故所求抛物线的标准方程为y 2=-13x 或x 2=-9y. (2)对于直线方程3x-4y-12=0,令x=0,得y=-3;令y=0,得x=4;所以抛物线的焦点为(0,-3)或(4,0).当焦点为(0,-3)时2p ,=3,所以p=6,此时抛物线的标准方程为x 2=-12y ;当焦点为(4,0)时,2p=4,所以p=8,此时抛物线的标准方程为y 2=16x. 故所求抛物线的标准方程为x 2=-12y 或y 2=16x.18.已知抛物线2:2(0)C y px p =>的准线与x 轴交于点()1,0M -. (1)求抛物线C 的方程;(2)若过点M 的直线l 与抛物线C 相切,求直线l 的方程. 【答案】(1)24y x =;(2)10x y -+=或10x y ++= 【分析】(1)利用准线方程2px =-求解 (2)设出直线方程,与抛物线方程联立,利用0∆=求解. 【详解】(1)2:2(0)C y px p =>的准线2px =-过()1,0M - 故12p-=-,则2p = 抛物线方程为24y x = (2)设切线方程为1x my =- 与抛物线方程联立有2440y my -+=()24160m ∆=-=故1m =±故直线l 的方程为:10x y -+=或10x y ++= 【点睛】求抛物线的切线方程的方法:方法一:将抛物线转化为二次函数,然后利用导数求解切线方程,这在开口朝上的抛物线中经常用到。
专题21 抛物线(学生版)-【挑战压轴题】备战2022年高考数学高分必刷必过题(全国通用版)

专题21抛物线(解答题压轴题)1.(2021·全国高三模拟预测)在平面直角坐标系xOy 中,抛物线E :()220y px p =>上一点00(4,)(0)S y y >到焦点F 的距离5SF =.不经过点S 的直线l 与E 交于A ,B .(1)求抛物线E 的标准方程;(2)若直线AS ,BS 的斜率之和为2,证明:直线l 过定点.2.(2021·全国高三月考(理))已知直线l 过原点O ,且与圆A 交于M ,N 两点,4MN =,圆A 与直线2y =-相切,OA 与直线l 垂直,记圆心A 的轨迹为曲线C .(1)求C 的方程;(2)过直线1y =-上任一点P 作C 的两条切线,切点分别为1Q ,2Q ,证明:①直线12Q Q 过定点;②12PQ PQ ⊥.3.(2021·安徽高三开学考试(理))已知中心在坐标原点O ,焦点在x 轴上,离心率为2的椭圆C 过点1)2.(1)求C 的标准方程;(2)是否存在不过原点O 的直线:l y kx m =+与C 交于,P Q 两点,使得直线OP 、PQ 、OQ 的斜率成等比数列、若存在,求k 的值及m 的取值范围;若不存在,请说明理由.4.(2021·全国高三专题练习)如图,已知抛物线()2:20C y px p =>的焦点为()1,0F ,D 为x 轴上位于F 右侧的点,点A 为抛物线C 在第一象限上的一点,且AF DF =,分别延长线段AF 、AD 交抛物线C 于M 、N .(1)若AM MN ⊥,求直线AF 的斜率;(2)求三角形AMN 面积的最小值.5.(2021·全国高三月考(理))已知抛物线()220x py p =>上一点()02,P y 到其焦点F 的距离为2,过点(),0T t ()0t >作两条斜率为1k ,2k 的直线1l ,2l 分别与该抛物线交于A ,B 与C ,D 两点,且120k k +=,FAB FCD S S =△△.(Ⅰ)求抛物线的方程;(Ⅱ)求实数t 的取值范围.6.(2021·浙江瑞安中学高三模拟预测)已知抛物线()21:20C y px p =>和右焦点为F 的椭圆222:143x y C +=.如图,过椭圆2C 左顶点T 的直线交抛物线1C 于,A B 两点,且2AB TA =.连接AF 交2C 于两点,M N ,交1C 于另一点C ,连BC ,Q 为BC 的中点,TQ交AC 于D .(1)证明:点A 的横坐标为定值;(2)记CDT ∆,QMN ∆的面积分别为1S ,2S ,若12512S S =,求抛物线的方程.7.(2021·全国高三专题练习(理))已知抛物线()2:20C x py p =>的焦点为F ,且F 与圆22:(4)1M x y ++=上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,,PA PB 是C 的两条切线,,A B 是切点,求PAB ∆面积的最大值.8.(2021·浙江省杭州第二中学高三模拟预测)已知抛物线()2:20C y px p =>经过点(2,,P 是圆()22:11M x y ++=上一点,PA 、PB 都是C 的切线.(1)求抛物线C 的方程及其准线方程;(2)求PAB ∆的面积的最大值.9.(2021·广东汕头·高三三模)已知圆()22:21C x y +-=与定直线:1l y =-,且动圆M 与圆C 外切并与直线l 相切.(1)求动圆圆心M 的轨迹E 的方程;(2)已知点P 是直线1:2l y =-上一个动点,过点P 作轨迹E 的两条切线,切点分别为A 、B .①求证:直线AB 过定点;②求证:PCA PCB ∠=∠.10.(2021·河南郑州·高三三模(理))已知抛物线2:4C x y =和圆()22:11E x y ++=,过抛物线上一点()00,P x y ,作圆E 的两条切线,分别与x 轴交于,A B 两点.(1)若切线PB 与抛物线C 也相切,求直线PB 的斜率;(2)若02y ≥,求PAB ∆面积的最小值.11.(2021·浙江高三三模)如图,已知抛物线C :214y x =,点()()000,1A x y y ≥为抛物线上一点,过点A 的圆G 与y 轴相切于点()0,M t ,且与抛物线C 在点A 处有相同切线,8OM NO =,过点N 的直线l 交抛物线于点E ,F ,直线AE ,AF 的斜率分别为1k ,2k ,满足120k k +=.(1)求抛物线C 的焦点坐标和准线方程;(2)求点A 到直线l 的距离的最小值.12.(2021·四川泸州·高三三模(理))从抛物线24y x =上各点向x 轴作垂线段,记垂线段中点的轨迹为曲线P .(1)求曲线P 的方程,并说明曲线P 是什么曲线;(2)过点()2,0M 的直线l 交曲线P 于两点A 、B ,线段AB 的垂直平分线交曲线P 于两点C 、D ,探究是否存在直线l 使A 、B 、C 、D 四点共圆?若能,请求出圆的方程;若不能,请说明理由.13.(2021·浙江高三期末)如图,已知抛物线21:C x y =在点A 处的切线l 与椭圆222:12x C y +=相交,过点A 作l 的垂线交抛物线1C 于另一点B ,直线OB (O 为直角坐标原点)与l 相交于点D ,记()11,A x y 、()22,B x y ,且1>0x .(1)求12x x -的最小值;(2)求DODB的取值范围.14.(2021·河北沧州·高三二模)已知(2,0)M -,(2,0)N ,动点P 满足:直线PM 与直线PN 的斜率之积为常数14-,设动点P 的轨迹为曲线1C .抛物线22:2(0)C x py p =>与1C 在第一象限的交点为A ,过点A 作直线l 交曲线1C 于点B 交抛物线2C 于点E (点,B E 不同于点A ).(1)求曲线1C 的方程.(2)是否存在不过原点的直线l ,使点E 为线段AB 的中点?若存在,求出p 的最大值;若不存在,请说明理由.15.(2021·湖南长沙·高三模拟预测)已知抛物线()2:20C x py p =>的焦点为F ,点(),1m 在抛物线C 上,该点到原点的距离与到C 的准线的距离相等.(1)求抛物线C 的方程;(2)过焦点F 的直线l 与抛物线C 交于A ,B 两点,且与以焦点F 为圆心2为半径的圆交于M ,N 两点,点B ,N 在y 轴右侧.①证明:当直线l 与x 轴不平行时,AM BN≠②过点A ,B 分别作抛物线C 的切线1l ,2l ,1l 与2l 相交于点D ,求DAM △与DBN 的面积之积的取值范围.16.(2021·浙江高三专题练习)已知椭圆22:14x T y +=,抛物线2:2M y px =的焦点是F ,且动点()1,G t -在其准线上.(1)当点G 在椭圆T 上时,求GF 的值;(2)如图,过点G 的直线1l 与椭圆T 交于,P Q 两点,与抛物线M 交于,A B 两点,且G 是线段PQ 的中点,过点F 的直线2l 交抛物线M 于,C D 两点.若//AC BD ,求2l 的斜率k 的取值范围.17.(2021·河南高三月考(理))已知抛物线()2:20C x py p =>的焦点为F ,且点F 与圆()22:41M x y ++=171.(1)求p ;(2)已知直线:4l y kx =+与C 相交于A ,B 两点,过点B 作平行于y 轴的直线BD 交直线:4l y '=-于点D .问:直线AD 是否过y 轴上的一定点?若过定点,求出该定点的坐标;若不过定点,试说明理由.18.(2021·上海市实验学校高三月考)已知直线2y x =与抛物线:Γ()220y px p =>交于1G ,2G 两点,且125G G ,过椭圆221:143x y C +=的右顶点Q 的直线l 交于抛物线Γ于A ,B 两点.(1)求抛物线Γ的方程;(2)若射线OA ,OB 分别与椭圆1C 交于点D ,E ,点O 为原点,ODE ,OAB 的面积分别为1S ,2S ,问是否存在直线l 使213S S =?若存在求出直线l 的方程,若不存在,请说明理由;(3)若P 为2x =-上一点,PA ,PB 与x 轴相交于M ,N 两点,问M ,N 两点的横坐标的乘积M N x x ⋅是否为定值?如果是定值,求出该定值,否则说明理由.19.(2021·全国高三专题练习)在平面直角坐标系xOy 中,原点为O ,抛物线C 的方程为24x y =,线段AB 是抛物线C 的一条动弦.(1)求抛物线C 的准线方程;(2)求=4OA OB ⋅-,求证:直线AB 恒过定点;(3)过抛物线的焦点F 作互相垂直的两条直线1l 、2l ,1l 与抛物线交于P 、Q 两点,2l 与抛物线交于C 、D 两点,M 、N 分别是线段PQ 、CD 的中点,求FMN 面积的最小值.20.(2021·浙江高三模拟预测)已知点F 为抛物线C :214y x =的焦点,点()0,4D ,点A 为抛物线C 上的动点,直线l :y t =截以AD 为直径的圆所得的弦长为定值.(1)求t 的值;(2)如图,直线l 交y 轴于点E ,抛物线C 上的点B 满足AB 的中垂线过点D 且直线AB 不与x 轴平行,求ABE 的面积的最大值.。
抛物线【九大题型】(举一反三)(新高考专用)(解析版)—2025年高考数学一轮复习

抛物线【九大题型】专练【题型1 抛物线的定义及其应用】........................................................................................................................3【题型2 抛物线的标准方程】................................................................................................................................5【题型3 抛物线的焦点坐标及准线方程】............................................................................................................6【题型4 抛物线的轨迹方程】................................................................................................................................7【题型5 抛物线上的点到定点的距离及最值】....................................................................................................9【题型6 抛物线上的点到定点和焦点距离的和、差最值】..............................................................................11【题型7 抛物线的焦半径公式】..........................................................................................................................14【题型8 抛物线的几何性质】..............................................................................................................................16【题型9 抛物线中的三角形(四边形)面积问题】 (18)1、抛物线【知识点1 抛物线及其性质】1.抛物线的定义(1)定义:平面内与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫作抛物线.点F叫作抛物线的焦点,直线l叫作抛物线的准线.(2)集合语言表示设点M(x,y)是抛物线上任意一点,点M到直线l的距离为d,则抛物线就是点的集合P={M||MF|=d}.2.抛物线的标准方程与几何性质(0,0)(0,0)3.抛物线与椭圆、双曲线几何性质的差异抛物线与椭圆、双曲线几何性质的差异:①它们都是轴对称图形,但椭圆和双曲线又是中心对称图形;②顶点个数不同,椭圆有4个顶点,双曲线有2个顶点,抛物线只有1个顶点;③焦点个数不同,椭圆和双曲线各有2个焦点,抛物线只有1个焦点;④离心率取值范围不同,椭圆的离心率范围是0<e<1,双曲线的离心率范围是e>1,抛物线的离心率是e=1;⑤椭圆和双曲线都有两条准线,而抛物线只有一条准线;⑥椭圆是封闭式曲线,双曲线和抛物线都是非封闭式曲线.【知识点2 抛物线标准方程的求解方法】1.抛物线标准方程的求解待定系数法:求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p,只需一个条件就可以确定抛物线的标准方程.【知识点3 抛物线的焦半径公式】1.焦半径公式设抛物线上一点P的坐标为,焦点为F.(1)抛物线:;(2)抛物线:(3)抛物线:;(4)抛物线:.注:在使用焦半径公式时,首先要明确抛物线的标准方程的形式,不同的标准方程对应于不同的焦半径公式.【知识点4 与抛物线有关的最值问题的解题策略】1.与抛物线有关的最值问题的两个转化策略(1)转化策略一:将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”“三角形两边之和大于第三边”,使问题得以解决.(2)转化策略二:将抛物线上的点到焦点的距离转化为到准线的距离,利用“与直线上所有点的连线中垂线段最短”原理解决.【方法技巧与总结】1.通径:过焦点与对称轴垂直的弦长等于2p.2.抛物线P,也称为抛物线的焦半径.【题型1 抛物线的定义及其应用】【例1】(2024·贵州贵阳·二模)抛物线y2=4x上一点M与焦点间的距离是10,则M到x轴的距离是()A.4B.6C.7D.9【解题思路】借助抛物线定义计算即可得.【解答过程】抛物线y2=4x的准线为x=―1,由抛物线定义可得x M+1=10,故x M=10―1=9,则|y M|===6,即M到x轴的距离为6.故选:B.【变式1-1】(2024·河北·模拟预测)已知点P为平面内一动点,设甲:P的运动轨迹为抛物线,乙:P到平面内一定点的距离与到平面内一定直线的距离相等,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【解题思路】根据已知条件,结合充分条件、必要条件的定义,即可求解.【解答过程】解:当直线经过定点时,点的轨迹是过定点且垂直于该直线的另一条直线,当直线不经过该定点时,点的轨迹为抛物线,故甲是乙的充分条件但不是必要条件.故选:A.【变式1-2】(2024·北京大兴·三模)已知抛物线y2=4x的焦点为F,过F且斜率为―1的直线与直线x=―1交于点A,点M在抛物线上,且满足|MA|=|MF|,则|MF|=()A.1B C.2D.【解题思路】由题意先求出过F且斜率为―1的直线方程,进而可求出点A,接着结合点M在抛物线上且|MA|=|MF|可求出x M,从而根据焦半径公式|MF|=x M+1即可得解.【解答过程】由题意可得F(1,0),故过F且斜率为―1的直线方程为y=―(x―1)=―x+1,令x=―1⇒y=2,则由题A(―1,2),因为|MA|=|MF|,所以MA垂直于直线x=―1,故y M=2,又M 在抛物线上,所以由22=4x M ⇒x M =1,所以|MF |=x M +1=2.故选:C.【变式1-3】(2024·福建莆田·模拟预测)若抛物线C 的焦点到准线的距离为3,且C 的开口朝左,则C 的标准方程为( )A .y 2=―6xB .y 2=6xC .y 2=―3xD .y 2=3x【解题思路】根据开口设抛物线标准方程,利用p 的几何意义即可求出.【解答过程】依题意可设C 的标准方程为y 2=―2px(p >0),因为C 的焦点到准线的距离为3,所以p =3,所以C 的标准方程为y 2=―6x .故选:A.【题型2 抛物线的标准方程】【例2】(2024·山东菏泽·模拟预测)已知点A (a,2)为抛物线x 2=2py (p >0)上一点,且点A 到抛物线的焦点F 的距离为3,则p =( )A .12B .1C .2D .4【解题思路】由题意,根据抛物线的性质,抛物线x 2=2py (p >0),则抛物线焦点为F 0,M (x 1,y 1)为 抛物线上一点,有|MF |=y 1+p 2,可得|AF |=2+p2=3,解得p =2.【解答过程】因为抛物线为x 2=2py (p >0),则其焦点在y 轴正半轴 上,焦点坐标为由于点A (a,2)为抛物线x 2=2py ,(p >0)为上一点,且点A 到抛物线的焦点F 的距离为3, 所以点A 到抛物线的焦点F 的距离为|AF |=2+p2=3,解得p =2,故选:C.【变式2-1】(2024·陕西安康·模拟预测)过点(2,―3),且焦点在y 轴上的抛物线的标准方程是( )A .x 2=―3yB .x 2=―43yC .x 2=―23yD .x 2=―4y【解题思路】利用待定系数法,设出抛物线方程,把点代入求解即可.【解答过程】设抛物线的标准方程为x 2=ay (a ≠0),将点点(2,―3)代入,得22=―3a,解得a=―43,所以抛物线的标准方程是x2=―43y.故选:B.【变式2-2】(2024·新疆·三模)已知抛物线y2=2px(p>0)上任意一点到焦点F的距离比到y轴的距离大1,则抛物线的标准方程为()A.y2=x B.y2=2x C.y2=4x D.y2=8x【解题思路】根据抛物线的定义求解.【解答过程】由题意抛物线y2=2px(p>0)上任意一点到焦点F的距离与它到直线x=―1的距离相,因此―p2=―1,p=2,抛物线方程为y2=4x.故选:C.【变式2-3】(2024·宁夏石嘴山·三模)如图,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于两点A、B,交其准线于C,AE与准线垂直且垂足为E,若|BC|=2|BF|,|AE|=3,则此抛物线的方程为()A.y2=3x2B.y2=9xC.y2=9x2D.y2=3x【解题思路】过点A,B作准线的垂线,设|BF|=a,得到|AC|=3+3a,结合抛物线的定义,求得a=1,再由BD//FG,列出方程求得p的值,即可求解.【解答过程】如图所示,分别过点B作准线的垂线,垂足为D,设|BF|=a,则|BC|=2|BF|=2a,由抛物线的定义得|BD|=|BF|=a,在直角△BCD中,可得sin∠BCD=|BD||BC|=12,所以∠BCD=30∘,在直角△ACE中,因为|AE|=3,可得|AC|=3+3a,由|AC |=2|AE |,所以3+3a =6,解得a =1,因为BD //FG ,所以1p =2a3a ,解得p =32,所以抛物线方程为y 2=3x .故选:C.【题型3 抛物线的焦点坐标及准线方程】【例3】(2024·内蒙古赤峰·二模)已知抛物线C 的方程为 x =―116y 2, 则此抛物线的焦点坐标为( )A .(-4,0)B .―14,C .(-2,0)D .―12,【解题思路】由抛物线的几何性质求解.【解答过程】依题意得:y 2=―16x ,则此抛物线的焦点坐标为:―4,0,故选:A.【变式3-1】(2024·黑龙江大庆·模拟预测)已知抛物线C:y =6x 2,则C 的准线方程为( )A .y =―32B .y =32C .y =―124D .y =124【解题思路】根据抛物线的准线方程直接得出结果.【解答过程】抛物线C :y =6x 2的标准方程为x 2=16y ,所以其准线方程为y =―124.故选:C.【变式3-2】(2024·河南·三模)抛物线y 2=―28x 的焦点坐标为( )A .(0,―14)B .(0,―7)C .(―14,0)D .(―7,0)【解题思路】根据抛物线的标准方程直接得出结果.【解答过程】∵2p =28,∴p =14,∴抛物线y 2=―28x 的焦点坐标为(―7,0).故选:D.【变式3-3】(2024·福建厦门·模拟预测)若抛物线y 2=mx 的准线经过双曲线x 2―y 2=2的右焦点,则m的值为()A.―4B.4C.―8D.8【解题思路】根据题意,分别求得双曲线的右焦点以及抛物线的准线方程,代入计算,即可得到结果.【解答过程】因为双曲线x2―y2=2的右焦点为(2,0),又抛物线y2=mx的准线方程为x=―m4,则―m4=2,即m=―8.故选:C.【题型4 抛物线的轨迹方程】【例4】(2024·湖南衡阳·三模)已知点F(2,0),动圆P过点F,且与x=―2相切,记动圆圆心P点的轨迹为曲线Γ,则曲线Γ的方程为()A.y2=2x B.y2=4x C.y2=8x D.y2=12x【解题思路】分析题意,利用抛物线的定义判断曲线是抛物线,再求解轨迹方程即可.【解答过程】由题意知,点P到点F的距离和它到直线x=―2的距离相等,所以点P的轨迹是以(2,0)为焦点的抛物线,所以Γ的方程为y2=8x,故C正确.故选:C.【变式4-1】(23-24高二上·北京延庆·期末)到定点F(1,0)的距离比到y轴的距离大1的动点且动点不在x轴的负半轴的轨迹方程是()A.y2=8x B.y2=C.y2=2x D.y2=x【解题思路】根据抛物线的定义即可得解.【解答过程】因为动点到定点F(1,0)的距离比到y轴的距离大1,所以动点到定点F(1,0)的距离等于到x=―1的距离,所以动点的轨迹是以F(1,0)为焦点,x=―1为准线的抛物线,所以动点的轨迹方程是y2=4x.故选:B.【变式4-2】(23-24高二上·重庆·期末)已知点P(x,y)=|x+1|,则点P的轨迹为()A.椭圆B.双曲线C.抛物线D.圆【解题思路】根据已知条件及抛物线的定义即可求解.P(x,y)到点(1,0)的距离;|x+1|表示点P(x,y)到直线x=―1的距离.=|x+1|,所以点P(x,y)到点(1,0)的距离等于点P(x,y)到直线x=―1的距离,所以P的轨迹为抛物线.故选:C.【变式4-3】(23-24高二上·宁夏石嘴山·阶段练习)一个动圆与定圆F:(x+2)2+y2=1相内切,且与定直线l:x=3相切,则此动圆的圆心M的轨迹方程是( )A.y2=8x B.y2=4x C.y2=―4x D.y2=―8x【解题思路】先利用圆与圆的位置关系,直线与圆的位置关系找到动点M的几何条件,再根据抛物线的定义确定动点M的轨迹,最后利用抛物线的标准方程写出轨迹方程.【解答过程】设动圆M的半径为r,依题意:|MF|=r―1,点M到定直线x=2的距离为d=r―1,所以动点M到定点F(―2,0)的距离等于到定直线x=2的距离,即M的轨迹为以F为焦点,x=2所以此动圆的圆心M的轨迹方程是y2=―8x.故选:D.【题型5 抛物线上的点到定点的距离及最值】【例5】(2024·全国·模拟预测)已知A是抛物线C:y2=4x上的点,N(4,0),则|AN|的最小值为()A.2B.C.4D.【解题思路】由抛物线的方程,利用二次函数的性质求最值【解答过程】设,t,则|AN|===≥当且仅当t=±故选:D.【变式5-1】(2024高三·全国·专题练习)已知P是抛物线y2=2x上的点,Q是圆(x―5)2+y2=1上的点,则|PQ |的最小值是( )A .2B .C .D .3【解题思路】将问题转化为求|PC|的最小值,根据两点之间的距离公式,求得|PC|的最小值再减去半径即可.【解答过程】如图,抛物线上点P (x,y )到圆心C (5,0)的距离为|PC |,|CP |≤|CQ |+|PQ |,因此|PQ |≥|CP |―1,当|CP |最小时,|PQ |=|CP |―1最小,而|CP |2=(x ―5)2+y 2=―52+y 2=2―82+9,当y =±|CP |min =3,因此|PQ |的最小值是2.故选:A.【变式5-2】(2024·湖南益阳·三模)已知M 是抛物线y²=4x 上一点,圆C 1:(x ―1)2+(y ―2)2=1关于直线y =x ―1对称的圆为C 2,N 是圆C 2上的一点,则|MN |的最小值为( )A .1B ―1C―1D .37【解题思路】根据对称性求出圆C 2的方程,设y 0,求出|MC 2|的最小值,即可求出|MN |的最小值.【解答过程】圆C 1:(x ―1)2+(y ―2)2=1圆心为C 1(1,2),半径r =1,设C 2(a,b ),=―1―1=0,解得a =3b =0,则C 2(3,0),所以圆C2 :(x ―3)2+y 2=1,设y 0,则|MC 2|==所以当y 20=4,即y 0=±2时,|MC 2|min=所以|MN |的最小值是―1.故选:A.【变式5-3】(2024·黑龙江齐齐哈尔·二模)已知抛物线C:y2=8x的焦点为F,M为C上的动点,N为圆A:x2+ y2+2x+8y+16=0上的动点,设点M到y轴的距离为d,则|MN|+d的最小值为()A.1B C D.2【解题思路】作出图形,过点M作ME垂直于抛物线的准线,垂足为点E,利用抛物线的定义可知d=|MF|―2,分析可知,当且仅当N、M为线段AF分别与圆A、抛物线C的交点时,|MN|+d取最小值,即可得解.【解答过程】根据已知得到F(2,0),圆A:(x+1)2+(y+4)2=1,所以A(―1,―4),圆A的半径为1,抛物线C的准线为l:x=―2,过点M作ME⊥l,垂足为点E,则|ME|=d+2,由抛物线的定义可得d+2=|ME|=|MF|,所以,|MN|+d=|MN|+|MF|―2≥|AM|+|MF|―1―2≥|AF|―1―2=1―2=2.当且仅当N、M为线段AF分别与圆A、抛物线C的交点时,两个等号成立,因此,|MN|+d的最小值为3.故选:D.【题型6 抛物线上的点到定点和焦点距离的和、差最值】【例6】(2024·四川成都·模拟预测)设点A(2,3),动点P在抛物线C:y2=4x上,记P到直线x=―2的距离为d,则|AP|+d的最小值为()A.1B.3C1D【解题思路】根据抛物线的定义,P到焦点F的距离等于P到准线的距离,可得d=|PF|+1,从而转化为求|AP|+|PF|+1的值,当A,P,F三点共线时,d=|PF|+1取得最小值,即可求解.【解答过程】由题意可得,抛物线C的焦点F(1,0),准线方程为x=―1,由抛物线的定义可得d=|PF|+1,所以|AP|+d=|AP|+|PF|+1,因为|AP|+|PF|≥|AF|==所以|AP|+d=|AP|+|PF|+1≥+1.当且仅当A,P,F三点共线时取等号,所以|AP|+d+1.故选:D.【变式6-1】(2024·湖南常德·一模)已知抛物线方程为:y2=16x,焦点为F.圆的方程为(x―5)2+(y―1)2 =1,设P为抛物线上的点,Q|PF|+|PQ|的最小值为()A.6B.7C.8D.9【解题思路】根据抛物线定义将点到焦点的距离转化为点到直线的距离,即|PF|=|PN|,从而得到|PF|+ |PQ|=|PN|+|PQ|,P、Q、N三点共线时和最小;再由Q在圆上,|QN|min=|MN|―r得到最小值.【解答过程】由抛物线方程为y2=16x,得到焦点F(4,0),准线方程为x=―4,过点P做准线的垂线,垂足为N,因为点P在抛物线上,所以|PF|=|PN|,所以|PF|+|PQ|=|PN|+|PQ|,当Q点固定不动时,P、Q、N三点共线,即QN垂直于准线时和最小,又因为Q在圆上运动,由圆的方程为(x―5)2+(y―1)2=1得圆心M(5,1),半径r=1,所以|QN|min=|MN|―r=8,故选:C.【变式6-2】(2024·全国·模拟预测)在直角坐标系xOy中,已知点F(1,0),E(―2,0),M(2,2),动点P满足线段PE的中点在曲线y2=2x+2上,则|PM|+|PF|的最小值为()A.2B.3C.4D.5【解题思路】设P(x,y),由题意求出P的轨迹方程,继而结合抛物线定义将|PM|+|PF|的最小值转化为M 到直线l的距离,即可求得答案.【解答过程】设P(x,y),则PE y2=2x+2,可得y2=4x,故动点P的轨迹是以F为焦点,直线l:x=―1为准线的抛物线,由于22<4×2,故M(2,2)在抛物线y2=4x内部,过点P作PQ⊥l,垂足为Q,则|PM|+|PF|=|PM|+|PQ|,(抛物线的定义),故当且仅当M,P,Q三点共线时,|PM|+|PQ|最小,即|PM|+|PF|最小,最小值为点M到直线l的距离,所以(|PM|+|PF|)min=2―(―1)=3,故选:B.【变式6-3】(2024·陕西西安·一模)设P为抛物线C:y2=4x上的动点,A(2,6)关于P的对称点为B,记P到直线x=―1、x=―4的距离分别d1、d2,则d1+d2+|AB|的最小值为()A B.C+3D.+3【解题思路】根据题意得到d1+d2+|AB|=2d1+3+2|PA|=2(d1+|PA|)+3,再利用抛物线的定义结合三角不等式求解.【解答过程】抛物线C:y2=4x的焦点为F(1,0),准线方程为x=―1,如图,因为d 2=d 1+3,且A (2,6)关于P 的对称点为B ,所以|PA |=|PB |,所以d 1+d 2+|AB |=2d 1+3+2|PA |=2(d 1+|PA |)+3 =2(|PF |+|PA |)+3≥2|AF |+3 ==.当P 在线段AF 与抛物线的交点时,d 1+d 1+|AB |取得最小值,且最小值为.故选:D.【题型7 抛物线的焦半径公式】【例7】(2024·青海西宁·一模)已知F 是抛物线C:x 2=4y 的焦点,点M 在C 上,且M 的纵坐标为3,则|MF |=( )A .B .C .4D .6【解题思路】利用抛物线的标准方程和抛物线的焦半径公式即可求解.【解答过程】由x 2=4y ,得2p =4,解得p =2.所以抛物线C:x 2=4y 的焦点坐标为F (0,1),准线方程为y =―1,又因为M 的纵坐标为3,点M 在C 上,所以|MF |=y M +p2=3+22=4.故选:C.【变式7-1】(2024·河南·模拟预测)已知抛物线C:y 2=2px (p >0)上的点(m,2)到原点的距离为为F ,准线l 与x 轴的交点为M ,过C 上一点P 作PQ ⊥l 于Q ,若∠FPQ =2π3,则|PF |=( )A .13B .12C D .23【解题思路】根据点(m,2)到原点的距离为再设点P 坐标,利用抛物线的定义和等腰三角形的性质列出方程即可求解.【解答过程】因为点(m,2)到原点的距离为所以m 2+22=8,解得m =2,(负值舍),将点(2,2)代入抛物线方程y 2=2px (p >0),得4=4p ,所以p =1,所以C:y 2=2x,F(12,0),l:x =―12.由于抛物线关于x 轴对称,不妨设,因为|PQ|=|PF|=x +12,∠FPQ =2π3,所以△PQF 为等腰三角形,∠PQF =π6,所以|QF|=+12),所以|QF|==+12),解得x =16或x =―12(舍),所以|PF |=16+12=23.故选:D.【变式7-2】(2024·新疆·三模)已知抛物线C :y 2=x 的焦点为F ,在抛物线C 上存在四个点P ,M ,Q ,N ,若弦PQ 与弦MN 的交点恰好为F ,且PQ ⊥MN ,则1|PQ |+1|MN |=( )A B .1C D .2【解题思路】由抛物线的方程可得焦点F 的坐标,应用抛物线焦点弦性质|PF |=p1―cos θ,|QF |=p1+cos θ,|MF |=p1+sin θ,|NF |=p1―sin θ,结合三角的恒等变换的化简可得1|PQ |+1|MN |=12p ,即可求解.【解答过程】由抛物线C:y 2=x 得2p =1,则p =12,F(14,0),不妨设PQ 的倾斜角为θ0<θ<则由|PF |cos θ+p =|PF |,p ―|QF |cos θ=|QF |,得|PF |=p 1―cos θ,|QF |=p1+cos θ,所以|MF |==p1+sin θ,|NF |==p1―sin θ,得|PQ |=|PF |+|QF |=p1―cos θ+p1+cos θ=2psin 2θ,|MN |==2pcos 2θ,所以1|PQ |+1|MN |=12p =1.故选:B.【变式7-3】(2024·北京西城·三模)点F 抛物线y 2=2x 的焦点,A ,B ,C 为抛物线上三点,若FA +FB +FC =0,则|FA |+|FB |+|FC |=( )A .2B .C .3D .【解题思路】设A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),根据抛物线方程求出焦点坐标和准线方程,再由FA +FB +FC =0可得F 为△ABC 的重心,从而可求出x 1+x 2+x 3,再根据抛物线的定义可求得结果.【解答过程】设A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),由y 2=2x ,得p =1,所以F(12,0),准线方程为x =―12,因为FA +FB +FC =0,所以F 为△ABC 的重心,所以x 1+x 2+x 33=12,所以x 1+x 2+x 3=32,所以|FA |+|FB |+|FC |=x 1+12+x 2+12+x 3+12=x 1+x 2+x 3+32=32+32=3,故选:C.【题型8 抛物线的几何性质】【例8】(2024·重庆·模拟预测)A,B 是抛物线y 2=2px(p >0)上的不同两点,点F 是抛物线的焦点,且△OAB 的重心恰为F ,若|AF|=5,则p =( )A .1B .2C .3D .4【解题思路】根据重心可得x 1+x 2=3p 2y 1=―y 2,结合对称性可得x 1=3p4,再根据抛物线的定义运算求解.【解答过程】设A (x 1,y 1),B (x 2,y 2),因为△OAB 的重心恰为F=p2=0,解得x 1+x 2=3p2y 1=―y 2,由y 1=―y 2可知A,B 关于x 轴对称,即x 1=x 2,则x 1+x 2=2x 1=3p2,即x 1=3p 4,又因为|AF |=x 1+p2=5p 4=5,解得p =4.故选:D.【变式8-1】(23-24高二下·福建厦门·期末)等边三角形的一个顶点位于原点,另外两个顶点在抛物线y 2=2x 上,则这个等边三角形的边长为( )A .2B .C .4D.【解题思路】正三角形的另外两个顶点关于x 轴对称,设另外两个顶点坐标分别是A ),B―a),把顶点代入抛物线方程化简即可求解.【解答过程】设正三角形得边长为2a ,由图可知正三角形的另外两个顶点关于x 轴对称,可设另外两个顶点坐标分别是A),B―a ),把顶点代入抛物线方程得a 2=解得a =所以正三角形的边长为故选:D.【变式8-2】(23-24高三下·北京·阶段练习)设抛物线C 的焦点为F ,点E 是C 的准线与C 的对称轴的交点,点P 在C 上,若∠PEF =30°,则sin ∠PFE =( )A B C D 【解题思路】先设P(x 0,y 0),根据图形分别表示出tan ∠ P EF 和sin ∠ P FE 即可得解.【解答过程】由于抛物线的对称性,不妨设抛物线为C:y 2=2px(p >0),则其焦点为F(p2,0),点E 是C 的准线与C 的对称轴的交点,其坐标为E(―p2,0),点P 在C 上,设为P(x 0,y 0),若∠ P EF =30∘,则tan ∠ P EF =|y 0|x 0+p 2=且|PF|=x 0+p 2,则sin ∠ P FE =sin (π―∠ P FE )=|y 0||PF|=故选:B.【变式8-3】(23-24高二下·重庆·阶段练习)已知x 轴上一定点A (a,0)(a >0),和抛物线y 2=2px (p >0)上的一动点M ,若|AM |≥a 恒成立,则实数a 的取值范围为( )A .B .(0,p ]C .D .(0,2p ]【解题思路】设M (x 0,y 0) (x 0≥0),表示出|AM |,依题意可得x 20―(2a ―2p )x 0≥0恒成立,分x 0=0和x 0>0两种情况讨论,当x0>0时x0≥2a―2p恒成立,即可得到2a―2p≤0,从而求出a的取值范围.【解答过程】设M(x0,y0)(x0≥0),则y20=2px0,所以|AM|====因为|AM|≥a恒成立,所以x20―(2a―2p)x0+a2≥a2恒成立,所以x20―(2a―2p)x0≥0恒成立,当x0=0时显然恒成立,当x0>0时x0≥2a―2p恒成立,所以2a―2p≤0,则a≤p,又a>0,所以0<a≤p,即实数a的取值范围为(0,p].故选:B.【题型9 抛物线中的三角形(四边形)面积问题】【例9】(2024·江西新余·二模)已知点Q(2,―2)在抛物线C:y2=2px上,F为抛物线的焦点,则△OQF (O为坐标原点)的面积是()A.12B.1C.2D.4【解题思路】将点Q代入抛物线C的方程,即可求解p,再结合抛物线的公式,即可求解【解答过程】∵点Q(2,―2)在抛物线C:y2=2px上,F为抛物线C的焦点,∴4=4p,解得p=1,故抛物线C的方程为y2=2x,F(12,0),则△OQF的面积S△OQF=12×12×2=12.故选:A.【变式9-1】(23-24高二上·广东广州·期末)已知抛物线C:y2=2px(p>0)的焦点为F,直线l与C相交于A、B两点,与y轴相交于点E.已知|AF|=5,|BF|=3,若△AEF的面积是△BEF面积的2倍,则抛物线C的方程为()A .y 2=2xB .y 2=4xC .y 2=6xD .y 2=8x【解题思路】过A,B 分别作C 的准线的垂线交y 轴于点M,N ,根据抛物线定义可得|AM |=5―p2,|BN |=3―p 2,再由S △AEF S △BEF=|AE ||BE |=|AM ||BN |即可求参数p ,进而可得抛物线方程.【解答过程】如图,过A,B 分别作C 的准线的垂线交y 轴于点M,N ,则AM //BN ,故|AE ||BE |=|AM ||BN |,因为C 的准线为x =―p2,所以|AM |=|AF |―p2=5―p2,|BN |=|BF |―p2=3―p2,所以S △AEFS △BEF=12|EF ||AE |sin ∠AEF 12|EF ||BE |sin ∠BEF =|AE ||BE |=|AM ||BN |=5―p 23―p 2=2,解得p =2,故抛物线C 的方程为y 2=4x .故选:B.【变式9-2】(23-24高二上·广东广州·期末)设F 为抛物线y 2=4x 的焦点,A,B,C 为该抛物线上不同的三点,且FA +FB +FC =0,O 为坐标原点,若△OFA 、△OFB 、△OFC 的面积分别为S 1、S 2、S 3,则S 21+S 22+S 23=( )A .3B .4C .5D .6【解题思路】设点A,B,C 的坐标,再表示出△OFA,△OFB,△OFC 的面积,借助向量等式即可求得答案.【解答过程】设点A,B,C 的坐标分别为(x 1,y 1),(x 2,y 2),(x 3,y 3),而抛物线的焦点F(1,0),|OF|=1,FA =(x 1―1,y 1),FB =(x 2―1,y 2),FC =(x 3―1,y 3),由FA +FB +FC =0,得x 1+x 2+x 3=3,于是S 1=12|y 1|,S 2=12|y 2|,S 3=12|y 3|,所以S 21+S 22+S 23=14(y 21+y 22+y 23)=x 1+x 2+x 3=3.故选:A.【变式9-3】(23-24高二·全国·课后作业)已知抛物线C:y2=8x,点P为抛物线上任意一点,过点P向圆D:x2+y2―4x+3=0作切线,切点分别为A,B,则四边形PADB的面积的最小值为()A.1B.2C D【解题思路】由题意圆的圆心与抛物线的焦点重合,可得连接PD,则S四边形PADB=2S Rt△PAD=|PA|,而|PA|=|PD|最小时,四边形PADB的面积最小,再抛物线的定义转化为点P到抛物线的准线的距离的最小值,结合抛物线的性质可求得结果【解答过程】如图,连接PD,圆D:(x―2)2+y2=1,该圆的圆心与抛物线的焦点重合,半径为1,则S四边形PADB=2S Rt△PAD=|PA|.又|PA|=PADB的面积最小时,|PD|最小.过点P向抛物线的准线x=―2作垂线,垂足为E,则|PD|=|PE|,当点P与坐标原点重合时,|PE|最小,此时|PE|=2.==故S四边形PADBmin故选:C.一、单选题1.(2024·江西·模拟预测)若抛物线x 2=8y 上一点(x 0,y 0)到焦点的距离是该点到x 轴距离的2倍.则y 0=( )A .12B .1C .32D .2【解题思路】根据抛物线的方程,结合抛物线的标准方程,得到抛物线的焦点和准线,利用抛物线的定义,得到抛物线上的点(x 0,y 0)到焦点的距离,根据题意得到关于y 0的方程,求解即可.【解答过程】已知拋物线的方程为x 2=8y ,可得p =4.所以焦点为F (0,2),准线为l :y =―2.抛物线上一点A (x 0,y 0)到焦点F 的距离等于到准线l 的距离,即|AF |=y 0+2,又∵A 到x 轴的距离为y 0,由已知得y 0+2=2y 0,解得y 0=2.故选:D .2.(2024·四川·模拟预测)已知抛物线C:x 2=8y 的焦点为F,P 是抛物线C 上的一点,O 为坐标原点,|OP |=4|PF |=( )A .4B .6C .8D .10【解题思路】求出抛物线焦点和准线方程,设P (m,n )(m ≥0),结合|OP |=n =4,由焦半径公式得到答案.【解答过程】抛物线C:x 2=8y 的焦点为F (0,2),准线方程为y =―2,设P (m,n )(m ≥0)=,解得n =4或n =―12(舍去),则|PF |=n +2=6.故选:B .3.(23-24高二下·甘肃白银·期中)若圆C 与x 轴相切且与圆x 2+y 2=4外切,则圆C 的圆心的轨迹方程为( )A .x 2=4y +4B .x 2=―4y +4C .x 2=4|y |+4D .x 2=4y ―4【解题思路】设圆心坐标为(x,y )=2+|y |,化简整理即可得解.【解答过程】设圆心坐标为(x,y)=2+|y|,化简得x2=4|y|+4,即圆C的圆心的轨迹方程为x2=4|y|+4.故选:C.4.(2024·北京海淀·三模)已知抛物线y2=4x的焦点为F、点M在抛物线上,MN垂直y轴于点N,若|MF|=6,则△MNF的面积为()A.8B.C.D.【解题思路】确定抛物线的焦点和准线,根据|MF|=6得到M.【解答过程】因为抛物线y2=4x的焦点为F(1,0),准线方程为x=―1,所以|MF|=x M+1=6,故x M=5,不妨设M在第一象限,故M×(5―0)×=所以S△MNF=12故选:C.5.(2024·西藏林芝·模拟预测)已知抛物线y2=8x上一点P到准线的距离为d1,到直线l:4x―3y+12=0的距离为d2,则d1+d2的最小值为()A.1B.2C.3D.4【解题思路】点P到直线l:4x―3y+12=0的距离为|PA|,到准线l1:x=―2的距离为|PB|,利用抛物线的定义得|PF|=|PB|,当A,P和F共线时,点P到直线l:4x―3y+12=0和准线l1:x=―2的距离之和的最小,由点到直线的距离公式求得答案.【解答过程】由抛物线y2=8x知,焦点F(2,0),准线方程为l:x=―2,根据题意作图如下;点P到直线l:4x―3y+12=0的距离为|PA|,到准线l1:x=―2的距离为|PB|,由抛物线的定义知:|PB|=|PF|,所以点P到直线l:4x―3y+12=0和准线l1:x=―2的距离之和为|PF|+|PA|,=4,且点F(2,0)到直线l:4x―3y+12=0的距离为d=|8―0+12|5所以d1+d2的最小值为4.故选:D.6.(2024·四川雅安·三模)已知过圆锥曲线的焦点且与焦点所在的对称轴垂直的弦被称为该圆锥曲线的通径,清代数学家明安图在《割圆密率捷法》中,也称圆的直径为通径.已知圆(x―2)2+(y+1)2=4的一条直径与拋物线x2=2py(p>0)的通径恰好构成一个正方形的一组邻边,则p=()B.1C.2D.4A.12【解题思路】根据圆的通径的上端点就是抛物线通径的上右端点,可得抛物线x2=2py(p>0)经过点(2,1),从而可得答案.【解答过程】因为圆(x―2)2+(y+1)2=4的一条直径与抛物线x2=2py(p>0)的通径恰好构成一个正方形的一组邻边,而抛物线x2=2py(p>0)的通径与y轴垂直,所以圆(x―2)2+(y+1)2=4的这条直径与x轴垂直,且圆的直径的上端点就是抛物线通径的右端点,因为圆(x―2)2+(y+1)2=4的圆心为(2,―1),半径为2,所以该圆与x轴垂直的直径的上端点为(2,1),即抛物线x2=2py(p>0)经过点(2,1),则4=2p,即p=2.故选:C.7.(2024·山西运城·三模)已知抛物线C:y 2=4x 的焦点为F ,动点M 在C 上,点B 与点A (1,―2)关于直线l:y =x ―1对称,则|MF ||MB |的最小值为( )AB .12CD .13【解题思路】根据对称性可得B(―1,0),即点B 为C 的准线与x 轴的交点,作MM ′垂直于C 的准线于点M ′,结合抛物线的定义可知|MF ||MB |=|MM ′||MB |= cos θ(∠MBF =θ),结合图象可得当直线MB 与C 相切时,cos θ最小,求出切线的斜率即可得答案.【解答过程】依题意,F(1,0),A(1,―2),设B(m,n)=―1m+12―1,解得m =―1n =0,即B(―1,0),点B 为C 的准线与x 轴的交点,由抛物线的对称性,不妨设点M 位于第一象限,作MM ′垂直于C 的准线于点M ′,设∠MBF =θ,θ∈ (0,π2),由抛物线的定义得|MM ′|=|MF |,于是|MF ||MB |=|MM ′||MB |= cos θ,当直线MB 与C 相切时,θ最大,cos θ最小,|MF||MB|取得最小值,此时直线BM 的斜率为正,设切线MB 的方程为x =my ―1(m >0),由x =my ―1y 2=4x消去x 得y 2―4my +4=0,则Δ=16m 2―16=0,得m =1,直线MB 的斜率为1,倾斜角为π4,于是θmax =π4,(cos θ)min =,所以|MF||MB|的最小值为故选:A.8.(2024·江西九江·二模)已知抛物线C:y 2=2px 过点A (1,2),F 为C 的焦点,点P 为C 上一点,O 为坐标原点,则( )A .C 的准线方程为x =―2B .△AFO 的面积为1C .不存在点P ,使得点P 到C 的焦点的距离为2D .存在点P ,使得△POF 为等边三角形【解题思路】求解抛物线方程,得到准线方程,判断A ;求解三角形的面积判断B ;利用|PF|=2.判断C ;判断P 的位置,推出三角形的形状,判断D .【解答过程】由题意抛物线C:y 2=2px 过点A(1,2),可得p =2,所以抛物线方程为C:y 2=4x ,所以准线方程为x =―1,A 错误;可以计算S △AFO =12×1×2=1,B 正确;当P(1,2)时,点P 到C 的焦点的距离为2,C 错误;△POF 为等边三角形,可知P 的横坐标为:12,当x =12时,纵坐标为:则12×=≠则△POF 为等腰三角形,不是等边三角形,故等边三角形的点P 不存在,所以D 错误.故选:B .二、多选题9.(2024·湖南长沙·二模)已知抛物线C 与抛物线y 2=4x 关于y 轴对称,则下列说法正确的是( )A .抛物线C 的焦点坐标是(―1,0)B .抛物线C 关于y 轴对称C .抛物线C 的准线方程为x =1D .抛物线C 的焦点到准线的距离为4【解题思路】依题意可得抛物线C 的方程为y 2=―4x ,即可得到其焦点坐标与准线方程,再根据抛物线的性。
高考数学复习(47) 抛物线

高考数学复习(47) 抛物线1.抛物线y =2x 2的准线方程为________. 解析:因为x 2=12y ,所以2p =12,p =14,所以准线方程为y =-18.答案:y =-182.(2018·扬州期末)若抛物线y 2=2px(p>0)的焦点也是双曲线x 2-y 2=8的一个焦点,则p =________. 解析:抛物线y 2=2px 的焦点为⎝ ⎛⎭⎪⎫p 2,0,双曲线x 2-y 2=8的右焦点为(4,0),故p 2=4,即p =8.答案:83.已知AB 是抛物线y 2=2x 的一条焦点弦,AB =4,则AB 中点C 的横坐标是________.解析:设A(x 1,y 1),B(x 2,y 2),则AB =x 1+x 2+p =4,又p =1,所以x 1+x 2=3,所以点C 的横坐标是x 1+x 22=32. 答案:324.(2018·前黄中学检测)已知抛物线y 2=2px(p >0)的准线经过点(-1,1),则该抛物线焦点坐标为________.解析:由于抛物线y 2=2px(p >0)的准线方程为x =-p 2,由题意得-p 2=-1,p =2,所以焦点坐标为()1,0. 答案:()1,05.已知点P 在抛物线y 2=4x 上,且点P 到y 轴的距离与其到焦点的距离之比为12,则点P 到x 轴的距离为________.解析:设点P 的坐标为(x P ,y P ),抛物线y 2=4x 的准线方程为x =-1,根据抛物线的定义,点P 到焦点的距离等于点P 到准线的距离,故x Px P --=12,解得x P =1,所以y 2P =4,所以|y P |=2. 答案:26.一个顶点在原点,另外两点在抛物线y 2=2x 上的正三角形的面积为________. 解析:如图,根据对称性:A ,B 关于x 轴对称,故∠AOx =30°.直线OA 的方程y =33x ,代入y 2=2x , 得x 2-6x =0, 解得x =0或x =6. 即得A 的坐标为(6,23).所以AB =43,正三角形OAB 的面积为12×43×6=12 3.答案:12 3二保高考,全练题型做到高考达标1.抛物线y =4ax 2(a≠0)的焦点坐标是________.解析:将y =4ax 2(a≠0)化为标准方程得x 2=14a y(a≠0),所以焦点坐标为⎝ ⎛⎭⎪⎫0,116a .答案:⎝ ⎛⎭⎪⎫0,116a2.过抛物线x 2=-12y 的焦点F 作直线垂直于y 轴,交抛物线于A ,B 两点,O 为抛物线的顶点,则△OAB 的面积是________.解析:由题意F(0,-3),将y =-3代入抛物线方程得x =±6,所以AB =12,所以S △OAB =12×12×3=18.答案:183.已知过抛物线y 2=2px(p>0)的焦点F 且倾斜角为60°的直线l 与抛物线在第一、四象限分别交于A ,B 两点,则AFBF=________.解析:设A(x 1,y 1),B(x 2,y 2),由题意知AB 所在的直线方程为y =3⎝ ⎛⎭⎪⎫x -p 2, 联立⎩⎨⎧y 2=2px ,=3⎝ ⎛⎭⎪⎫x -p 2得x 2-5p 3x +p24=0,解得x 1=3p 2,x 2=p6,所以AF BF =32p +p 2p 2+p6=3.答案:34.已知抛物线y 2=2px(p>0)上一点M 到焦点F 的距离等于2p ,则直线MF 的斜率为________. 解析:由题意F ⎝ ⎛⎭⎪⎫p 2,0,设M(x ,y),由抛物线的定义可知x +p 2=2p ,故x =32p ,由于M 在抛物线上,所以y 2=2p·32p =3p 2,得y =±3p.当M ⎝ ⎛⎭⎪⎫32p ,3p 时,k MF =3p -032p -p 2=3;当M ⎝ ⎛⎭⎪⎫32p ,-3p 时,k MF =-3p -032p -p 2=-3,所以k MF =± 3.答案:± 35.已知抛物线y 2=2x 的弦AB 的中点的横坐标为32,则AB 的最大值为________.解析:设A(x 1,y 1),B(x 2,y 2),则x 1+x 2=3,由抛物线的定义可知,AF +BF =x 1+x 2+1=4,由图可知AF +BF≥AB,AB≤4,当且仅当直线AB 过焦点F 时,AB 取得最大值4.答案:46.抛物线x 2=2py(p >0)的焦点为F ,其准线与双曲线x 23-y23=1相交于A ,B 两点,若△ABF 为等边三角形,则p =________.解析:在等边三角形ABF 中,AB 边上的高为p ,AB 2=33p ,所以B ⎝ ⎛⎭⎪⎫±33p ,-p 2. 又因为点B 在双曲线上, 故p 233-p243=1,解得p =6. 答案:67.(2018·无锡调研)过点P(-2,0)的直线与抛物线C :y 2=4x 相交于A ,B 两点,且PA =12AB ,则点A 到抛物线C 的焦点的距离为________.解析:设A(x 1,y 1),B(x 2,y 2),分别过点A ,B 作直线x =-2的垂线,垂足分别为D ,E(图略),因为PA =12AB ,所以{ 1+=x 2+2,1=y 2,又{ y 21=4x 1,22=4x 2,得x 1=23,则点A 到抛物线C 的焦点的距离为1+23=53.答案:538.抛物线y 2=2px(p>0)的焦点为F ,O 为坐标原点,M 为抛物线上一点,且MF =4OF ,△MFO 的面积为43,则抛物线的方程为________.解析:设M(x ,y),因为OF =p 2,MF =4OF ,所以MF =2p ,由抛物线定义知x +p 2=2p ,所以x =32p ,所以y =±3p.又△MFO 的面积为43,所以12×p2×3p =43,解得p =4(p =-4舍去).所以抛物线的方程为y 2=8x.答案:y 2=8x9.已知抛物线y 2=2x 的焦点为F ,点P 是抛物线上的动点,点A(3,2),求PA +PF 的最小值,并求取最小值时点P 的坐标.解:将x =3代入抛物线方程y 2=2x ,得y =± 6. 因为6>2,所以A 在抛物线内部.设抛物线上的点P 到准线l :x =-12的距离为d ,由定义知PA +PF =PA +d.当PA ⊥l 时,PA +d 最小,最小值为72,即PA +PF 的最小值为72,此时P 点纵坐标为2,代入y 2=2x ,得x =2,所以点P 的坐标为(2,2).10.(2018·扬州中学检测)在平面直角坐标系xOy 中,直线l 与抛物线y 2=4x 相交于A ,B 两点. (1)如果直线l 过抛物线的焦点,求OA ―→·OB ―→的值;(2)如果OA ―→·OB ―→=-4,证明直线l 必过一定点,并求出该定点. 解:(1)由题意:抛物线焦点为(1,0), 设l :x =ty +1,代入抛物线y 2=4x , 消去x ,得y 2-4ty -4=0,设A(x 1,y 1),B(x 2,y 2),则y 1+y 2=4t ,y 1y 2=-4, 所以OA ―→·OB ―→=x 1x 2+y 1y 2=(ty 1+1)(ty 2+1)+y 1y 2 =t 2y 1y 2+t(y 1+y 2)+1+y 1y 2=-4t 2+4t 2+1-4=-3. (2)证明:设l :x =ty +b ,代入抛物线y 2=4x ,消去x ,得 y 2-4ty -4b =0,设A(x 1,y 1),B(x 2,y 2), 则y 1+y 2=4t ,y 1y 2=-4b ,所以OA ―→·OB ―→=x 1x 2+y 1y 2=(ty 1+b)(ty 2+b)+y 1y 2=t 2y 1y 2+bt(y 1+y 2)+b 2+y 1y 2=-4bt 2+4bt 2+b 2-4b =b 2-4b. 令b 2-4b =-4,得b 2-4b +4=0,解得b =2. 所以直线l 过定点(2,0).三上台阶,自主选做志在冲刺名校1.已知抛物线C :x 2=2py(p >0),P ,Q 是C 上任意两点,点M(0,-1)满足MP ―→·MQ ―→≥0,则p 的取值范围是________.解析:过M 点作抛物线的两条切线, 设切线方程为y =kx -1,切点坐标为A(x 0,y 0),B(-x 0,y 0), 由y =x 22p ,得y′=1px ,则⎩⎪⎨⎪⎧x 20=2py 0,y 0=kx 0-1,x 0p =k ,解得k =±2p. 因为MP ―→·MQ ―→≥0恒成立,所以∠AMB≤90°,即∠A MO≤45°,所以|k|≥tan 45°=1,即 2p≥1, 解得p≤2,由p >0,则0<p≤2, 所以p 的取值范围为(0,2]. 答案:(0,2]2.过抛物线x 2=4y 的焦点F 作直线AB ,CD 与抛物线交于A ,B ,C ,D 四点,且AB ⊥CD ,则FA ―→·FB ―→+FC ―→·FD ―→的最大值等于________.解析:依题意可得,FA ―→·FB ―→=-(|FA ―→|·|FB ―→|). 又因为|FA ―→|=y A +1,|FB ―→|=y B +1, 所以FA ―→·FB ―→=-(y A y B +y A +y B +1). 设直线AB 的方程为y =kx +1(k≠0), 联立x 2=4y ,可得x 2-4kx -4=0, 所以x A +x B =4k ,x A x B =-4. 所以y A y B =1,y A +y B =4k 2+2. 所以FA ―→·FB ―→=-(4k 2+4). 同理FC ―→·FD ―→=-⎝ ⎛⎭⎪⎫4k 2+4.所以FA ―→·FB ―→+FC ―→·FD ―→=-⎝ ⎛⎭⎪⎫4k 2+4k 2+8≤-16.当且仅当k =±1时等号成立. 答案:-163.如图所示,抛物线关于x 轴对称,它的顶点在坐标原点,点P(1,2),A(x 1,y 1),B(x 2,y 2)均在抛物线上.(1)写出该抛物线的方程及其准线方程.(2)当PA 与PB 的斜率存在且倾斜角互补时,求y 1+y 2的值及直线AB 的斜率.解:(1)由已知条件,可设抛物线的方程为y 2=2px(p>0). 因为点P(1,2)在抛物线上, 所以22=2p×1, 解得p =2.故所求抛物线的方程是y 2=4x ,准线方程是x =-1. (2)设直线PA 的斜率为k PA ,直线PB 的斜率为k PB . 则k PA =y 1-2x 1-1(x 1≠1),k PB =y 2-2x 2-1(x 2≠1),因为PA 与PB 的斜率存在且倾斜角互补, 所以k PA =-k PB .由A(x 1,y 1),B(x 2,y 2)均在抛物线上,得⎩⎪⎨⎪⎧y 21=4x 1, ①y 22=4x 2, ②所以y 1-214y 21-1=-y 2-214y 22-1,所以y 1+2=-(y 2+2). 所以y 1+y 2=-4.由①-②得,y 21-y 22=4(x 1-x 2), 所以k AB =y 1-y 2x 1-x 2=4y 1+y 2=-1(x 1≠x 2).。
人教版高考数学试题:抛物线及其标准方程

抛物线的几何性质(1)一. 选择题(共5小题,每小题5分,共25分)1.顶点在原点,坐标轴为对称轴的抛物线,过点(-2,3),则它的方程是 ( B ) A.y x 292-=或x y 342= B. y x 292-=或y x 342= C. y x 342= D. y x 292-= 2.以x 轴为对称轴,抛物线通径的长为8,顶点在坐标原点的抛物线的方程是 ( C ) A.x y 82= B. x y 82-= C. x y 82=或x y 82-= D. y x 82=或y x 82-=3.抛物线x 2=-4y 的通径为AB ,O 为抛物线的顶点,则 ( D )A.通径长为8,△AOB 的面积为4B.通径长为-4,△AOB 的面积为2C.通径长为4,△AOB 的面积为4D.通径长为4,△AOB 的面积为24.已知直线y =kx -k 及抛物线px y 22=(p >0),则 ( C )A.直线与抛物线有一个公共点B.直线与抛物线有两个公共点C.直线与抛物线有一个或两个公共点D.直线与抛物线可能没有公共点5.等腰直角三角形AOB 内接于抛物线px y 22= (p >0),O 为抛物线的顶点,OA ⊥OB ,则△AOB 的面积是 ( B )A.8p 2B.4p 2C. 2p 2D.p 2二、填空题(共4小题,每小题5分,共20分)6.边长为1的等边三角形AOB ,O 为原点,AB ⊥x 轴,以O 为顶点且过A 、B 的抛物线方7.已知点(x ,y )在抛物线x y 42=上,则32122+-=y x z 8.若抛物线px y 22=(p >0)上横坐标为6的点到焦点的距离为8,则焦点到准线的距离为9.已知A (6,2),在抛物线上求一点|QA|+|QF|最小。
三、解答题(共3小题,15+20+20,共55分)10.设M 是抛物线px y 22= (p >0)上的任一点,F 是它的焦点,求证:以FM 为直径的圆 和y 轴相切.证明:作AA1⊥l 于A1,BB1⊥l 于B1,M 为AB 的中点,作MM1⊥l 于M1,则由抛物线的定义可知:|AA1|=|AF|,|BB1|=|BF|.又在直角梯形BB1A1A 中故以AB 为直径的圆,必与抛物线的准线相切.11.过定点A (-2,-1)倾斜角为45°的直线与抛物线2ax y =交于B 、C ,且|BC|是|AB|、|AC|的等比中项,求抛物线方程.答案:y =x212.已知抛物线C 的准线为x =43,对称轴上有一点坐标为(6,2),C 与直线l :y =x -1相交所得弦的长为32,求抛物线方程.解:由题意,可设C 的方程为(y -2)2=2a (x -x 0),顶点为(x 0,2).∵准线方程为x =43, ∴x 0-43=2a ,即a =2x 0-23. 代入C 的方程,并与l 方程联立,消去x ,得y 2-(4x 0+1)y +477020+-x x =0. 于是27364)(02122121-=-+=-x y y y y y y .∵直线l 的斜率为1,倾斜角为45°,弦长为32, ∴345sin 2321=︒=-y y 即21,1,3273600===-a x x ∴抛物线方程为(y -2)2=x -1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三节 抛物线高考试题考点一 抛物线的定义和标准方程1.(2010年陕西卷,理8)已知抛物线y 2=2px(p>0)的准线与圆x 2+y 2-6x-7=0相切,则p 的值为( )(A)12(B)1 (C)2 (D)4解析:圆x 2+y 2-6x-7=0化为标准方程为(x-3)2+y 2=16,∴圆心为(3,0),半径是4, 抛物线y 2=2px(p>0)的准线是x=-2p , ∴3+2p=4, 又p>0,解得p=2.故选C. 答案:C2.(2011年辽宁卷,理3)已知F 是抛物线y 2=x 的焦点,A,B 是该抛物线上的两点,|AF|+|BF|=3,则线段AB 的中点到y 轴的距离为( ) (A)34(B)1(C)54(D)74解析:∵|AF|+|BF|=x A +x B +12=3,∴x A +x B =52. ∴线段AB 的中点到y 轴的距离为2A Bx x +=54.故选C.故选C. 答案:C3.(2012年四川卷,理8)已知抛物线关于x 轴对称,它的顶点在坐标原点O,并且经过点M(2,y 0).若点M 到该抛物线焦点的距离为3,则|OM|等于( )(C)4 解析:由题意设抛物线方程为y 2=2px(p>0),则M 到焦点的距离为x M +2p =2+2p=3,∴p=2,∴y 2=4x.∴2y =4×2,∴故选B.答案:B4.(2010年上海卷,理3)动点P 到点F(2,0)的距离与它到直线x+2=0的距离相等,则点P 的轨迹方程是 .解析:由抛物线的定义知,点P 的轨迹是以F 为焦点,定直线x+2=0为准线的抛物线,故其标准方程为y 2=8x. 答案:y 2=8x5.(2012年陕西卷,理13)如图所示是抛物线形拱桥,当水面在l 时,拱顶离水面2 m,水面宽4 m.水位下降 1 m 后,水面宽 m.解析:建立如图所示的平面直角坐标系,设抛物线方程为x 2=-2py(p>0),则A(2,-2),将其坐标代入 x 2=-2py,得p=1.∴x 2=-2y.当水面下降1 m,得D(x 0,-3)(x 0>0), 将其坐标代入x 2=-2y 得20x =6,∴x 0∴水面宽答案6.(2010年浙江卷,理13)设抛物线y 2=2px(p>0)的焦点为F,点A(0,2),若线段FA 的中点B 在抛物线上,则B 到抛物线准线的距离为 .解析:由已知得B 点的纵坐标为1,横坐标为4p ,即B ,14p ⎛⎫ ⎪⎝⎭,将其代入y 2=2px 得1=2p ×4p ,解得则B点到准线的距离为2p +4p =34.答案考点二 抛物线的几何性质及其应用1.(2011年四川卷,理10)在抛物线y=x 2+ax-5(a ≠0)上取横坐标为x 1=-4,x 2=2的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆5x 2+5y 2=36相切,则抛物线顶点的坐标为( )(A)(-2,-9)(B)(0,-5)(C)(2,-9) (D)(1,-6)解析:当x 1=-4时,y 1=11-4a;当x 2=2时,y 2=2a-1,所以割线的斜率k=1142142a a --+--=a-2.设直线与抛物线的切点横坐标为x 0,由y ′=2x+a 得切线斜率为2x 0+a,∴2x 0+a=a-2,∴x 0=-1. ∴直线与抛物线的切点坐标为(-1,-a-4),切线方程为y+a+4=(a-2)(x+1), 即(a-2)x-y-6=0.圆5x 2+5y 2=36的圆心到切线的距离.=即(a-2)2+1=5. 又a ≠0,∴a=4,此时y=x 2+4x-5=(x+2)2-9,顶点坐标为(-2,-9).故选A.答案:A2.(2009年四川卷,理9)已知直线l 1:4x-3y+6=0和直线l 2:x=-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )(A)2 (B)3 (C)115(D)3716解析:如图所示,动点P 到l 2:x=-1的距离可转化为点P 到点F 的距离.由图可知,距离和的最小值即F 到直线l 1的距离=2.故选A.答案:A3.(2009年福建卷,理13)过抛物线y 2=2px(p>0)的焦点F 作倾斜角为45°的直线交抛物线于A 、B 两点,若线段AB 的长为8,则p= .解析:∵F 02p ⎛⎫ ⎪⎝⎭,,∴设AB:y=x-2p ,与y 2=2px 联立,得x 2-3px+24p =0.∴x A +x B =3p. ∴|AB|=x A +x B +p=4p=8,得p=2. 答案:24.(2010年大纲全国卷Ⅱ,理15)已知抛物线C:y 2=2px(p>0)的准线为l,过M(1,0)的直线与l相交于点A,与C 的一个交点为B,若AM =MB ,则p= .解析:如图所示,由AB知∠α=60°, 又AM =MB , ∴M 为AB 的中点.过点B 作BP 垂直准线l 于点P, 则∠ABP=60°,∴∠BAP=30°. ∴|BP|=12|AB|=|BM|, ∴M 为焦点,即2p=1,∴p=2. 答案:2考点三 直线与抛物线位置关系1.(2013年大纲全国卷,理11)已知抛物线C:y 2=8x 与点M(-2,2),过C 的焦点且斜率为k 的直线与C 交于A 、B 两点,若MA ·MB =0,则k 等于( )(A)12(B)2解析:法一 设直线方程为y=k(x-2),A(x 1,y 1)、B(x 2,y 2),由()22,8,y k x y x ⎧=-⎪⎨=⎪⎩ 得k 2x 2-4(k 2+2)x+4k 2=0,∴x 1+x 2=()2242k k+,x 1x 2=4,由MA ·MB =0, 得(x 1+2,y 1-2)·(x 2+2,y 2-2)=(x 1+2)(x 2+2)+[k(x 1-2)-2][k(x 2-2)-2]=0, 代入整理得k 2-4k+4=0,解得k=2.故选D.法二 如图所示,设F 为焦点,取AB 中点P, 过A 、B 分别作准线的垂线,垂足分别为G 、H, 连接MF,MP,由MA ·MB =0, 知MA ⊥MB, 则|MP|=12|AB|=12(|AG|+|BH|),所以MP 为直角梯形BHGA 的中位线, 所以MP ∥AG ∥BH, 所以∠GAM=∠AMP=∠MAP, 又|AG|=|AF|, |AM|=|AM|, 所以△AMG ≌△AMF, 所以∠AFM=∠AGM=90°, 则MF ⊥AB,所以k=-1MFk =2.答案:D2.(2010年辽宁卷,理7)设抛物线y 2=8x 的焦点为F,准线为l,P 为抛物线上一点,PA ⊥l,A 为垂足,如果直线AF 的斜率为那么|PF|等于( )(B)8(D)16解析:如图所示,直线AF 的方程为与准线方程x=-2联立得设P(x 0代入抛物线y 2=8x,得8x 0=48,∴x 0=6, ∴|PF|=x 0+2=8,选B. 答案:B3.(2012年安徽卷,理9)过抛物线y 2=4x 的焦点F 的直线交该抛物线于A,B 两点,O 为坐标原点.若|AF|=3,则△AOB 的面积为( )解析:如图所示,由题意知,抛物线的焦点F 的坐标为(1,0), 又|AF|=3,由抛物线定义知:点A 到准线x=-1的距离为3,∴点A 的横坐标为2. 将x=2代入y 2=4x 得y 2=8,由图知点A 的纵坐标∴∴直线AF 的方程为联立直线与抛物线的方程)21,4,y x y x ⎧=-⎪⎨=⎪⎩解之得1,2x y ⎧=⎪⎨⎪=⎩或2,x y =⎧⎪⎨=⎪⎩由图知B 1,2⎛ ⎝,∴S △AOB =12|OF|·|y A -y B |=12×1×32故选C.答案:C4.(2009年天津卷,理9)设抛物线y 2=2x 的焦点为F,过点,0)的直线与抛物线相交于A,B 两点,与抛物线的准线相交于点C,|BF|=2,则△BCF 与△ACF 的面积之比BCFCFS S △△A 等于( ) (A)45(B)23(C)47(D)12解析:如图所示,设过点,0)的直线方程为),代入y 2=2x 并整理,得k 2x 2k 2+2)x+3k 2=0,设A(x 1,y 1),B(x 2,y 2),则x 1+x 2,x 1x 2=3,因为|BF|=2,所以|BB ′|=2, ∴x 2=2-12=32, 从而x 1=23x =2. 设点F 到直线AC 的距离为d, 则BCFCFS S △△A =1212BC d AC d⋅⋅=BC BB AC AA '='=2122+=45.故选A. 答案:A5.(2009年大纲全国卷Ⅱ,理9)已知直线y=k(x+2)(k>0)与抛物线C:y 2=8x 相交于A 、B 两点,F 为C 的焦点,若|FA|=2|FB|,则k 等于( )(A)13(C)23解析:将y=k(x+2)代入y 2=8x,得 k 2x 2+(4k 2-8)x+4k 2=0.设交点的横坐标分别为x A ,x B , 则x A +x B =28k -4,①x A ·x B =4.又|FA|=x A +2,|FB|=x B +2, |FA|=2|FB|, ∴2x B +4=x A +2. ∴x A =2x B +2.② ∴将②代入①得x B =283k -2,x A =2163k -4+2=2163k -2.故x A ·x B =228162233k k ⎛⎫⎛⎫--⎪⎪⎝⎭⎝⎭=4. 解之得k 2=89.而k>0,∴,满足Δ>0.故选D.答案:D6.(2013年安徽卷,理13)已知直线y=a 交抛物线y=x 2于A,B 两点.若该抛物线上存在点C,使得∠ACB 为直角,则a 的取值范围为 .解析:设直线y=a 与y 轴交于点M,抛物线y=x 2上要存在C 点,使得∠ACB 为直角,只要以|AB|为直径的圆与抛物线y=x 2有交点即可,也就是使|AM|≤|MO|,a(a>0),所以a ≥1.答案:[1,+∞)7.(2012年重庆卷,理14)过抛物线y 2=2x 的焦点F 作直线交抛物线于A,B 两点,若|AB|=2512,|AF|<|BF|,则|AF|= .解析:由于y 2=2x 的焦点坐标为1,02⎛⎫ ⎪⎝⎭,设AB 所在直线的方程为y=k 12x ⎛⎫- ⎪⎝⎭,A(x 1,y 1),B(x 2,y 2),x 1<x 2,将y=k 12x ⎛⎫- ⎪⎝⎭代入y 2=2x,得k 2212x ⎛⎫- ⎪⎝⎭=2x,∴k 2x 2-(k 2+2)x+24k =0.∴x 1x 2=14. 而x 1+x 2+p=x 1+x 2+1=2512, ∴x 1+x 2=1312. ∴x 1=13,x 2=34.∴|AF|=x 1+2p =13+12=56. 答案:568.(2010年重庆卷,理14)已知以F 为焦点的抛物线y 2=4x 上的两点A 、B 满足AF =3FB ,则弦AB 的中点到准线的距离为 .解析:F 的坐标为(1,0). 设A(x 1,y 1),B(x 2,y 2), ∵AF =3FB ,∴(1-x 1,-y 1)=3(x 2-1,y 2), ∴1-x 1=3x 2-3,且-y 1=3y 2, 即x 1+3x 2=4,y 1=-3y 2. 设直线AB 的方程为y=k(x-1), AB 中点为P(x 0,y 0).由()24,1,y x y k x ⎧=⎪⎨=-⎪⎩得ky 2-4y-4k=0. ∴y 1y 2=-4.∴21y =12, 22y =43. ∴x 1=3,x 2=13.∴x 0=122x x +=53. ∴中点P 到准线x=-1的距离d=53-(-1)= 83. 答案:839.(2012年辽宁卷,理15)已知P,Q 为抛物线x 2=2y 上两点,点P,Q 的横坐标分别为4,-2,过P,Q 分别作抛物线的切线,两切线交于点A,则点A 的纵坐标为 .解析:y=12x 2,y ′=x, 由题意P(4,8),k 1=y ′|x=4=4, 切线为y=4x-8, Q(-2,2),k 2=y ′|x=-2=-2, 切线为y=-2x-2.由48,22y x y x =-⎧⎨=--⎩得A(1,-4). 答案:-410.(2012年北京卷,理12)在直角坐标系xOy 中,直线l 过抛物线y 2=4x 的焦点F,且与该抛物线相交于A,B 两点,其中点A 在x 轴上方,若直线l 的倾斜角为60°,则△OAF 的面积为 .解析:∵抛物线y 2=4x,∴焦点F 的坐标为(1,0). 又∵直线l 倾斜角为60°,, ∴直线方程为(x-1).联立方程)21,4,y x y x ⎧-⎪⎨=⎪⎩解得111,3x y ⎧=⎪⎪⎨⎪=⎪⎩或223,x y =⎧⎪⎨=⎪⎩由已知得A 的坐标为),∴S △OAF =12|OF|·|y A |=12×1×答案11.(2012年新课标全国卷,理20)设抛物线C:x 2=2py(p>0)的焦点为F,准线为l,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B,D 两点.(1)若∠BFD=90°,△ABD 的面积为求p 的值及圆F 的方程;(2)若A,B,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m,n 距离的比值.解:(1)由已知可得△BFD 为等腰直角三角形,|BD|=2p,圆F 的半径又点A 到l 的距离而S △ABD ∴12|BD|·即12×2p ∴p=-2(舍去)或p=2, ∴圆F 的方程为x 2+(y-1)2=8.(2)∵A 、B 、F 三点在同一直线m 上,所以AB 为圆F 的直径,∠ADB=90°. 又由抛物线定义知|AD|=|FA|=12|AB|,∴∠ABD=30°,m 的斜率为,当m ,可设n 方程为x+b.代入x 2=2py 得x 2px-2pb=0, 由于n 与C 只有一个公共点,故Δ=43p 2+8pb=0 ∴b=-6p , 又∵m 的截距b 1=2p ,1b b=3, ∴坐标原点到m 、n 距离的比值为3.当m 的斜率为,由图形对称性知,坐标原点到m 、n 的距离之比仍为3. 12.(2013年广东卷,理20)已知抛物线C 的顶点为原点,其焦点F(0,c)(c>0)到直线l:x-y-2=0的距离为设P 为直线l 上的点,过点P 作抛物线C 的两条切线PA,PB,其中A,B 为切点. (1)求抛物线C 的方程;(2)当点P(x 0,y 0)为直线l 上的定点时,求直线AB 的方程; (3)当点P 在直线l 上移动时,求|AF|·|BF|的最小值. 解:(1)依题意,设抛物线C 的方程为x 2=4cy,结合c>0,解得c=1.所以抛物线C 的方程为x 2=4y.(2)抛物线C 的方程为x 2=4y,即y=14x 2,求导得y ′=12x. 设A(x 1,y 1),B(x 2,y 2)(其中y 1=214x ,y 2=224x ),则切线PA,PB 的斜率分别为12x 1,12x 2. 所以切线PA 的方程为y-y 1=12x (x-x 1), 即y=12x x-212x +y 1,即x 1x-2y-2y 1=0. 同理,可得切线PB 的方程为x 2x-2y-2y 2=0. 因为切线PA,PB 均过点P(x 0,y 0), 所以x 1x 0-2y 0-2y 1=0,x 2x 0-2y 0-2y 2=0.所以(x 1,y 1),(x 2,y 2)为方程x 0x-2y 0-2y=0的两组解. 所以直线AB 的方程为x 0x-2y 0-2y=0. (3)由抛物线定义可知|AF|=y 1+1,|BF|=y 2+1, 所以|AF|·|BF|=(y 1+1)(y 2+1)=y 1y 2+(y 1+y 2)+1. 联立方程002220,4,x x y y x y --=⎧⎪⎨=⎪⎩消去x 整理得y 2+(2y 0-20x )y+20y =0,由根与系数的关系可得y 1+y 2=20x -2y 0,y 1y 2=20y , 所以|AF|·|BF|=y 1y 2+(y 1+y 2)+1=20y +20x -2y 0+1. 又点P(x 0,y 0)在直线l 上,所以x 0=y 0+2. 所以20y +20x -2y 0+1=220y +2y 0+5=2(y 0+12)2+92. 所以当y 0=-12时,|AF|·|BF|取得最小值,且最小值为92. 13.(2013年湖南卷,理21)过抛物线E:x 2=2py(p>0)的焦点F 作斜率分别为k 1,k 2的两条不同直线l 1,l 2,且k 1+k 2=2,l 1与E 相交于点A,B,l 2与E 相交于点C,D,以AB,CD 为直径的圆M,圆N(M,N 为圆心)的公共弦所在直线记为l.(1)若k 1>0,k 2>0,证明:FM ·FN <2p 2;(2)若点M 到直线l求抛物线E 的方程. 解:(1)由题意知,抛物线E 的焦点为F 02p ⎛⎫⎪⎝⎭,,直线l 1的方程为y=k 1x+2p . 由12,22p Y k x x py ⎧=+⎪⎨⎪=⎩得x 2-2pk 1x-p 2=0.设A,B 两点的坐标分别为(x 1,y 1),(x 2,y 2), 则x 1,x 2是上述方程的两个实数根,从而x 1+x 2=2pk 1, y 1+y 2=k 1(x 1+x 2)+p=2p 21k +p. 所以点M 的坐标为(pk 1,p 21k +2p), FM =(pk 1,p 21k ).同理可得点N 的坐标为(pk 2,p 22k +2p ), FN =(pk 2,p 22k ),于是FM ·FN =p 2(k 1k 2+21k 22k ).因为k 1+k 2=2,k 1>0,k 2>0,k 1≠k 2,所以0<k 1k 2<122k k +⎛⎫ ⎪⎝⎭2=1.故FM ·FN <p 2(1+12)=2p 2.(2)由抛物线的定义得|FA|=y 1+2p , |FB|=y 2+2p , 所以|AB|=y 1+y 2+p=2p 21k +2p, 从而圆M 的半径r 1=p 21k +p. 故圆M 的方程为(x-pk 1)2+(y-p 21k -2p )2=(p 21k +p)2, 化简得x 2+y 2-2pk 1x-p(221k +1)y-34p 2=0. 同理可得圆N 的方程为x 2+y 2-2pk 2x-p(222k +1)y-34p 2=0. 于是圆M,圆N 的公共弦所在直线l 的方程为(k 2-k 1)x+(22k -21k )y=0. 又k 2-k 1≠0,k 1+k 2=2, 则l 的方程为x+2y=0. 因为p>0,所以点M 到直线l 的距离为2117248p k ⎡⎤⎛⎫++⎢⎥⎪⎝⎭.故当k 1=-14时, d由题设解得p=8.故所求的抛物线E 的方程为x 2=16y.14.(2013年陕西卷,理20)已知动圆过定点A(4,0),且在y 轴上截得弦MN 的长为8. (1)求动圆圆心的轨迹C 的方程;(2)已知点B(-1,0),设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P,Q,若x 轴是∠PBQ 的角平分线,证明直线l 过定点.(1)解:如图所示,设动圆圆心O 1(x,y),由题意,|O 1A|=|O 1M|, 当O 1不在y 轴上时, 过O 1作O 1H ⊥MN 交MN 于H, 则H 是MN 的中点,∴|O 1又|O 1化简得y 2=8x(x ≠0).又当O 1在y 轴上时,O 1与O 重合,点O 1的坐标(0,0)也满足方程y 2=8x,∴动圆圆心的轨迹C 的方程为y 2=8x.(2)证明:由题意,设直线l 的方程为y=kx+b(k ≠0), P(x 1,y 1),Q(x 2,y 2),将y=kx+b 代入y 2=8x 中,得k 2x 2+(2bk-8)x+b 2=0,其中Δ=-32kb+64>0. 由根与系数的关系得,x 1+x 2=282bkk -,① x 1x 2=22b k,②因为x 轴是∠PBQ 的角平分线, 所以111y x +=-221yx +,即y 1(x 2+1)+y 2(x 1+1)=0, (kx 1+b)(x 2+1)+(kx 2+b)(x 1+1)=0, 2kx 1x 2+(b+k)(x 1+x 2)+2b=0,③ 将①②代入③,得2kb 2+(k+b)(8-2bk)+2k 2b=0,∴k=-b,此时Δ>0, ∴直线l 的方程为y=k(x-1), ∴直线l 过定点(1,0).15. (2013年辽宁卷,理20)如图,抛物线C 1:x 2=4y,C 2:x 2=-2py(p>0).点M(x 0,y 0)在抛物线C 2上,过M 作C 1的切线,切点A,B(M 为原点O 时,A,B 重合于O).当x 0,切线MA 的斜率为-12.(1)求p 的值;(2)当M 在C 2上运动时,求线段AB 中点N 的轨迹方程(A,B 重合于O 时,中点为O). 解:(1)因为抛物线C 1:x 2=4y 上任意一点(x,y)的切线斜率为y ′=2x ,且切线MA 的斜率为-12,所以A 点坐标为(-1,14),故切线MA 的方程为y=-12(x+1)+ 14.因为点0)在切线MA 及抛物线C 2上,于是y 0=-1214,①y 0=-(212p.② 由①②得p=2.(2)设N(x,y),A(x 1,214x ),B(x 2,224x ),x 1≠x 2,由N 为线段AB 中点知x=122x x +,③y=22128x x +.④切线MA,MB 的方程为 y=12x (x-x 1)+ 214x .⑤ y=22x (x-x 2)+ 224x .⑥ 由⑤⑥得MA,MB 的交点M(x 0,y 0)的坐标为 x 0=122x x +,y 0=124x x. 因为点M(x 0,y 0)在C 2上,即20x =-4y 0, 所以x 1x 2=-22126x x +.⑦由③④⑦得x2=43y,x≠0.当x1=x2时,A,B重合于原点O,AB中点N为O,坐标满足x2=43 y.因此线段AB中点N的轨迹方程为x2=43y.模拟试题考点一抛物线的定义和标准方程及其应用1.(2013福建厦门高三上质检)已知F是抛物线y2=4x的焦点,P是圆x2+y2-8x-8y+31=0上的动点,则|FP|的最小值是( )(A)3 (B)4 (C)5 (D)6解析:圆x2+y2-8x-8y+31=0的圆心C坐标为(4,4),半径为1,∵|PF|≥|CF|-1,∴当P、C、F三点共线时,|PF|取到最小值,由y2=4x知F(1,0),∴|PF|min故选B.答案:B2.(2013山东潍坊一模)已知抛物线y2=2px(p>0)的焦点F与双曲线24x-25y=1的右焦点重合,抛物线的准线与x轴的交点为K,点A在抛物线上且则A点的横坐标为( )(D)4解析:由24x-25y=1得c2=4+5=9.∴双曲线右焦点为(3,0),∴抛物线焦点坐标为(3,0),抛物线方程为y2=12x.设d为点A(x0,y0)到准线的距离,由抛物线定义知d=|AF|=x0+3,由题意得|y0|=x0+3,代入抛物线方程得(x0+3)2=12x0,解得x0=3.故选B.答案:B考点二抛物线几何性质的应用1.(2013云南师大附中高三高考适应性月考卷)在直角坐标系xOy中,有一定点A(2,1),若线段OA的垂直平分线过抛物线y2=2px(p>0)的焦点,则该抛物线的准线方程是.解析:线段OA的斜率k=12,中点坐标为11,2⎛⎫⎪⎝⎭.所以线段OA 的垂直平分线的方程是y-12=-2(x-1),令y=0得到x=54. 即抛物线的焦点为5,04⎛⎫⎪⎝⎭. 所以该抛物线的准线方程为x=-54. 答案:x=-542.(2013云南省昆明一中高三第二次高中新课程双基检测)已知点A(4,4)在抛物线y 2=px(p>0)上,该抛物线的焦点为F,过点A 作直线l:x=-4p的垂线,垂足为M,则∠MAF 的平分线所在直线的方程为 .解析:点A 在抛物线上,所以16=4p,所以p=4,所以抛物线的焦点为F(1,0),准线方程为x=-1,垂足M(-1,4),由抛物线的定义得|AF|=|AM|,所以∠MAF 的平分线所在的直线就是线段MF 的垂直平分线,k MF =4011---=-2,所以∠MAF 的平分线所在的直线方程为y-4=12(x-4),即x-2y+4=0.答案:x-2y+4=0考点三 直线与抛物线的位置关系1.(2013河南郑州高三第一次质量预测)已知抛物线x 2=4y 上有一条长为6的动弦AB,则AB 中点到x 轴的最短距离为( ) (A)34(B)32(C)1 (D)2解析:易知,AB 的斜率存在,设AB 方程为y=kx+b. 由2,4y kx b x y=+⎧⎨=⎩得x 2-4kx-4b=0.设A(x 1,y 1),B(x 2,y 2), 则x 1,x 2是上述方程的两个根, ∴x 1+x 2=4k,x 1·x 2=-4b,又|AB|=6,化简得b=()2941k +-k 2, 设AB 中点为M(x 0,y 0),则y 0=122y y +=122kx b kx b +++=()122k x x ++b=2k 2+()2941k +-k 2=k 2+()2941k +=(k 2+1)+ ()2941k +-1 ≥2×32-1=2.当且仅当k 2+1=()2941k +, 即k 2=12时,y 0取到最小值2.故选D.答案:D2.(2013北京市东城区高三上学期期末)已知抛物线y 2=2px(p>0)的焦点F 与双曲线22179x y -=的右焦点重合,抛物线的准线与x 轴的交点为K,点A 在抛物线上且则△AFK 的面积为( ) (A)4 (B)8 (C)16(D)32解析:双曲线的右焦点为(4,0),抛物线的焦点为02p ⎛⎫⎪⎝⎭,,所以2p=4,即p=8. 所以抛物线方程为y 2=16x,焦点F(4,0), 准线方程为x=-4, 即K(-4,0),设A(x,y),由于 ∴|y|=x+4, 又y 2=16x,∴(x+4)2=16x,即x=4.∴A(4,±8), S △AFK =12×8×|y|=32.故选D. 答案:D3.(2013北京海淀高三上期末)已知E(2,2)是抛物线C:y 2=2px 上一点,经过点(2,0)的直线l 与抛物线C 交于A,B 两点(不同于点E),直线EA,EB 分别交直线x=-2于点M,N. (1)求抛物线方程及其焦点坐标; (2)已知O 为原点,求证:∠MON 为定值. 解:(1)∵点E(2,2)在抛物线y 2=2px 上,∴4=2p ×2,∴p=1.∴抛物线方程为y 2=2x,焦点坐标为1,02⎛⎫⎪⎝⎭. (2)显然,直线l 斜率存在,且不为0. 设l 斜率为k,则l 方程为y=k(x-2).由()22,2.y k x y x ⎧=-⎪⎨=⎪⎩ 得ky 2-2y-4k=0,设A 211,2y y ⎛⎫ ⎪⎝⎭,B 222,2y y ⎛⎫⎪⎝⎭. 则y 1+y 2=2k,y 1·y 2=-4. ∵k EA =121222y y --=121242y y --=122y +. ∴EA 方程为y-2=122y +(x-2). 令x=-2,得y=2-182y +=11242y y -+. ∴M 11242,2y y ⎛⎫-- ⎪+⎝⎭.同理可求得N 22242,2y y ⎛⎫-- ⎪+⎝⎭. ∴OM ·ON =11242,2y y ⎛⎫-- ⎪+⎝⎭·22242,2y y ⎛⎫-- ⎪+⎝⎭=4+()()()()1212242422y y y y --++ =4+()()12121212481624y y y y y y y y -+++++=0∴OM ⊥ON .即∠MON=90°, ∴∠MON 为定值.综合检测1.(2012东北三校第二次联考)若抛物线y 2=2px(p>0)上一点P 到焦点和抛物线的对称轴的距离分别为10和6,则p 的值为( ) (A)2 (B)18 (C)2或18 (D)4或16解析:设P(x 0,y 0),则0020010,26,2,p x y y px ⎧+=⎪⎪=⎨⎪=⎪⎩∴36=2p 102p ⎛⎫-⎪⎝⎭,即p 2-20p+36=0. 解得p=2或18.故选C. 答案:C2.(2012洛阳二模)已知抛物线y 2=4x 的焦点为F,过F 的直线与该抛物线相交于A(x 1,y 1)、B(x 2,y 2)两点,则21y +22y 的最小值是( )(A)4 (B)8 (C)12(D)16解析:抛物线的准线方程为x=-1, ∴|AF|=x 1+1,|BF|=x 2+1, ∴21y +22y =4x 1+4x 2=4(|AF|+|BF|)-8=4|AB|-8. ∵|AB|的最小值为4(当AB ⊥x 轴时取得), ∴21y +22y 的最小值为8.故选B. 答案:B3.(2012陕西五校联考)设动点P(x,y)(x ≥0)到定点F 1,02⎛⎫⎪⎝⎭的距离比到y 轴的距离大12.记点P 的轨迹为曲线C.(1)求点P 的轨迹方程;(2)设圆M 过A(1,0),且圆心M 在P 的轨迹上,BD 是圆M 在y 轴上截得的弦,当M 运动时弦长BD 是否为定值?说明理由; (3)过F 1,02⎛⎫⎪⎝⎭作互相垂直的两直线交曲线C 于G 、H 、R 、S,求四边形GRHS 面积的最小值.解:(1)由题意知,所求动点P(x,y)的轨迹为以F 1,02⎛⎫⎪⎝⎭为焦点,直线l:x=-12为准线的抛物线,其方程为y 2=2x.(2)是定值.解法如下:设圆心M 2,2a a ⎛⎫⎪⎝⎭, 半径圆的方程为222a x ⎛⎫- ⎪⎝⎭+(y-a)2=a 2+2212a ⎛⎫- ⎪⎝⎭,令x=0,得B(0,1+a),D(0,-1+a), ∴BD=2,即弦长BD 为定值.(3)设过F 的直线GH 的方程为y=k 12x ⎛⎫-⎪⎝⎭,G(x 1,y 1),H(x 2,y 2), 由21,22,y k x y x ⎧⎛⎫=-⎪ ⎪⎝⎭⎨⎪=⎩得k 2x 2-(k 2+2)x+24k =0,∴x 1+x 2=1+22k ,x 1x 2=14, ∴=2+22k , 同理得|RS|=2+2k 2. S 四边形GRHS =21222k ⎛⎫+ ⎪⎝⎭(2+2k 2)=22212k k ⎛⎫++ ⎪⎝⎭≥8(当且仅当k=±1时取等号). ∴四边形GRHS 面积的最小值为8.。