数值分析思考题[综合]

数值分析思考题[综合]
数值分析思考题[综合]

1、讨论绝对误差(限)、相对误差(限)与有效数字之间的关系。

2、相对误差在什么情况下可以用下式代替?

3、查阅何谓问题的“病态性”,并区分与“数值稳定性”的不同点。

4、 取

,计算

,不用计算而直接判断下列式子中哪

种计算效果最好?为什么?

(1)(3

3-,(2)(2

7-,(3)

(3

1

3+,(4)

)

6

11

,(5)99-5. 应用梯形公式

))()((2b f a f a

b T +-=

计算积分1

0x I e dx -=?的近似值,在整个计算过程中按四舍五入规则取五位小数。计算中产生的误差的主要原因是截断误差还是舍入误差?为什么?

6. 下列各数都是经过四舍五入得到的近似值,试指出他们有几位有效数字,并给出其绝对误差限与相对误差限。 (1) 1021.1*1=x ;(2) 031.0*2=x ;(3) 40.560*3=x 。

7. 下列公式如何计算才比较准确?

(1) 212

x e -,1x <<;(2)

12

1

N N

dx x ++?

,1>>N ;(3) ,1x >>。

8. 序列{}n y 满足递推关系1101n n y y -=-,12,,n =,若0141.y =≈,计算到10y 时误差有多大?这个计算过程数值稳定吗?

r

e x x

e x x *****

-==

141.≈)

6

1

1、怎样确定一个隔根区间?如何求解一个方程的全部实根?如:已知方程:1020()x f x e x =+-=在(),-∞+∞有实数根,用二分法求它的全部实根,要求误差满足210*k x x --<?若要求6*10k x x --<,需二分区

间多少次?

2、求解一个非线性方程的迭代法有哪些充分条件可以保障迭代序列收敛于方程的根?对方程3210()f x x x =--=,试构造两种不同的迭代法,且均收敛于方程在[]12,中的唯一根。

3、设0a >,应用牛顿法于方程30x a -=

确定常数,p q 和r 使得迭代法

2

125k k

k k qa ra x px x x +=++, 012,,

,

k =

4、对于不动点方程()x x ?=,()x ?满足映内性和压缩性是存在不动点的充分条件,他们也是必要条件吗?试证明:(1)函数21()x x ?=-在闭区间[]02,上不是映内的,但在其上有不动点;(2)函数

1()ln()x x e ?=+在任何区间[],a b 上都是压缩的,但没有不动点。

5、设*x 是方程0()f x =的根,且0*'()f x ≠,''()f x 在*x 的某个邻域上连续。试证明:Newton 迭代序列{}k x 满足

12122**()''()

lim ()

'()k k k k k x x f x x x f x -→∞---=-- 6. 设有方程1

12

sin x x =+。对于迭代法1112

()sin()k k k x x x ?+==+,试证:对

任何15.b ≥,迭代函数()x ?在闭区间[0.5,b]上满足映内性和压缩性。用所给方

x,使其有8位有效数字。法求方程的根*

数值分析思考题3

1、Gauss 消去法和LU 三角分解法解线性方程组的工作量相同吗?工作量为多少?平方根方法的工作量为多少?

2、求解一个线性方程的LU 分解法什么条件下可以保障成功?选主元的目的是什么?列主元和全主元Gauss 消去法求解线性方程组各有什么优点?

3、仅当系数矩阵是病态或者奇异的时候,不选主元的Gauss 消去法才会失败吗?系数矩阵是对称正定的线性方程组总是良态的吗?一个奇异的矩阵必没有LU 分解吗?一个非奇异对称的矩阵不是正定就没有Cholesky 分解吗?

4、奇异矩阵的范数一定为零吗?范数为零的矩阵一定为零矩阵吗?矩阵1-范数和2-范数,通常哪个更容易计算?为什么?构造一个条件数为1的非单位矩阵的方阵。

5、若n n A R ?∈是列严格对角占优的(对每一列j :1j n ≤≤,满足:

1

n

ij

jj i i j

a

a =≠<∑)

,证明A 有三角分解A LU =,且1ij l <,()i j >。 6、设[]12,,,T

n n x x x x R =∈,0j p >,1,2,,j n =,证明

*1n

j j j x p x ==∑

是n R 上的一种向量范数。

7、

证明矩阵范数的性质:22F A A A ≤≤

,2A ≤

若A 对

称时,122221

2

()n

F A λλλ=+++,其中i λ,1,2,,i n =为A 的特征值。 8、已知线性方程组

122.0002 1.999841.9998 2.00024x x ??????=??????????

?? (1)求系数矩阵的逆1

A -和条件数()Cond A ;

(2)若方程组右端有微小扰动()44210,210T

b δ--=?-?,不用求解方程

组,试利用解与系数扰动之间的关系式来估计解的相对变化率。 9.用三角分解法求解方程组

12346

2

1

1624101114151

0135x x x x -??????

??????-??????=??????

-??????

---??????.

10.用列主元消去法求解方程组

??

?

??=++-=-+-=+-615318153312321321321x x x x x x x x x .

11.用Cholesky 分解法求解方程组

??????????-=????????????????????--103422484548416321x x x .

数值分析思考题4

1、对给定的连续函数,构造等距节点上的Lagrange 插值多项式,节点数目越多,得到的插值多项式越接近被逼近的函数?同样的结论对三次样条插值函数成立吗?样条插值函数具有较好的稳定性吗?

2、数据量特别大时,你选择哪种方法?(1)Lagrange 插值多项式,(2)三次Hermite 插值函数,(3)三次样条插值函数,(4)最小二乘拟合。

3、何为高次插值的Runge 现象,应如何避免?

4、分段低次插值有何优缺点?如何估计误差?

5、已知函数()f x 的下列观测值:

利用Lagrange 或Newton 插值方法计算0175(.)f 的近似值。若另外测得一个新点:02082(.).f ≈,试估计用上述方法计算0175(.)f 的近似值的误差。

6、证明关于互异节点{}0n

i i x =的Lagrange 插值基函数{}0()n

i i l x =满足 (1)

1()n

i i l x =≡∑;

(2)0()n

j j i i i x l x x =≡∑,12,,

,j n =;

(3)0

0()()n

j

i

i i x x l x =-≡∑,12,,,j n =;

(4)00110001211,,

(),

,,,,

.

(),

n

j

i i i n

n j l x j n j n x x x =?=?==??=+-?

7、插值与拟合的相同点和不同点分别是什么?

8、写出n 次多项式拟合的一般形式,奇函数和偶函数的多项式拟合的一般形式。

9、超定(矛盾)线性方程组的最小二乘解有哪些情况?说明它与广义逆的关系。

1、简述一般插值型求积公式的积分原理。Newton-Cotes 求积公式为什么没有Gauss 型求积公式代数精度高?

2、梯形法与两个节点的Gauss 型方法哪个更精确?证明Simpson 方法的代数精度为3。

3、确定下列数值积分公式中的参数,使它有尽可能高的代数精度。 (1)101()()(0)()h

h f x dx A f h A f A f h --≈-++?;

(2)2

12341()(1)(2)'(1)'(2)f x dx w f w f w f w f ≈+++?。

4、将[]1,2四等分,使用复化的两点Gauss-Legendre 公式计算2

11

dx x

?的数值积分,误差不超过810-。 5、建立Gauss 型求积公式计算1

11220

()()A f x A f x ≈+?。

1、数值计算中迭代法与直接法的区别是什么?

2、详述你所知道的线性方程组的迭代法的收敛性定理。

3、详述你所知道的非线性方程(组)的迭代法以及收敛性结果。

4、举例说明解线性方程组的SOR 方法的最佳松弛因子与何种因素有关?

5、指出解非线性方程组的Newton 法的主要工作量所在。分别用Newton 法和Broyden 秩1校正方法求解如下方程组在()1,1,1T

点附近的根:

2

1232

12332312470,10110,1080.

x x x x x x x x ?---=?+--=??+-=?

1、判断如下命题是否正确:

(a) 对应于给定特征值的特征向量是唯一的;

(b) 每个n阶的方阵一定有n个线性无关的特征向量;

(c) 实矩阵的特征值一定是实的;

(d) 一个n阶方阵奇异的充分必要条件是:0是该矩阵的特征值;

(e) 任意的n阶的方阵,一定与某个对角矩阵相似;

(f) 如果两个n阶方阵的特征值相同,这两个矩阵一定相似;

(g) 一个n阶方阵的所有特征值都为0,这个矩阵一定是零矩阵;

2、下面各类的任意n阶矩阵,哪些矩阵的特征值一定可以用有限的代数运

算精确求解?

(a)实对称矩阵;(d)上三角矩阵;

(b)对角矩阵;(e)上Hessenberg矩阵;

(c)三对角矩阵;(f)没有重特征值的实矩阵。

3、对非奇异的矩阵,将下面各算法的复杂度由低到高排列出来:

(a)计算矩阵的所有特征值和特征向量;

(b)用列主元Gauss消去法计算矩阵的LU分解;

(c)计算矩阵的逆;

(d)回带求解系数矩阵为上三角的线性方程组。

4、求解特征值问题的条件数与求解线性方程组问题的条件数是否相同,两者分别是什么?实对称矩阵的特征值问题总是良态的吗?

1、一个算法局部误差和整体误差的区别是什么?如何定义常微分方程数值方法的阶?

2、显式方法和隐式方法的优缺点分别是什么?多步法中为什么还要使用单步法?

3、刚性问题的求解困难主要体现在哪儿?计算刚性问题的最简单的稳定方法是什么?

4、分别用欧拉向前法、欧拉向后法、改进的欧拉法、经典的四阶Runge-Kutta 法、四阶Adams 方法计算下列微分方程初值问题的解。

(1)3

,12

(1)0.4dy y x x dx x

y ?=-≤≤???=?

; (2)'109,'1011,y y z z y z =-+??=-? 满足(1)

1,(1)

1,y z =??=?,12x ≤≤。

数值分析思考题1

% 数值分析思考题1 1、讨论绝对误差(限)、相对误差(限)与有效数字之间的关系。 答:(1)绝对误差(限)与有效数字:将x 的近似值x * 表示成 x *=±10m ×(a 1×10﹣1+a 2×10﹣2+ …a n ×10﹣n +…+a k ×10﹣k +…),其中m 是整数,a 1≠0,a 1,a 2,…,a k 是0到9中的一个数字。若绝对误差,那么x *至少有n 个有效数字,即a 1,a 2,…,a n 为有效数字,而a n+1,…,a k ,…不一定是有效数字。因此,从有效数字可以算出近似数的绝对误差限;有效数字位数越多,其绝对误差限也越小。 (2)相对误差(限)与有效数字:将x 的近似值x * 表示成 x *=±10m ×(a 1×10﹣1+a 2×10﹣2+ …a n ×10﹣n +…+a k ×10﹣k +…),其中m 是整数,a 1≠0,a 1,a 2,…,a k 是0到9中的一个数字。若a k 是有效数字,那么相对误差不超过 ;反之,如果已知相对误差r ,且有 ,那么a k 必为有效数字。 2、相对误差在什么情况下可以用下式代替 ' 答:在实际计算时,由于真值常常是未知的,当较小时, r e x x e x x *****-==

通常用代替。 3、查阅何谓问题的“病态性”,并区分与“数值稳定性”的不同点。 答:(1)病态问题:对于数学问题本身,如果输入数据有微小变化,就会引起输出数据(即问题真解)的很大变化,这就是病态问题。 (2)不同点:数值稳定性是相对于算法而言的,算法的不同直接影响结果的不同;而病态性是数学问题本身性质所决定的,与算法无关,也就是说对病态问题,用任何算法(或方法)直接计算都将产生不稳定性。 4、 取 ,计算 ,下列方法中哪种最好为什么 (1)(3322-,(2)(2752-,(3)()31 322+,(4)()61 21,(5) 99702-答:(1)( 332-==; (2)(2752-==; , (3) ()31322+=; (4)()6121=; (5)99702-=; 由上面的计算可以看出,方法(3)最好,因为计算的误差最小。 2141.≈)6 21

数值分析课后题答案

数值分析 第二章 2.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。 解: 0120121200102021101201220211,1,2, ()0,()3,()4;()()1 ()(1)(2)()()2()()1 ()(1)(2) ()()6 ()()1 ()(1)(1) ()()3 x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------= =-+-- 则二次拉格朗日插值多项式为 2 20 ()()k k k L x y l x ==∑ 0223()4() 14 (1)(2)(1)(1)23 537623 l x l x x x x x x x =-+=---+ -+= +- 6.设,0,1,,j x j n =L 为互异节点,求证: (1) 0()n k k j j j x l x x =≡∑ (0,1,,);k n =L (2)0 ()()0n k j j j x x l x =-≡∑ (0,1,,);k n =L 证明 (1) 令()k f x x = 若插值节点为,0,1,,j x j n =L ,则函数()f x 的n 次插值多项式为0 ()()n k n j j j L x x l x == ∑。 插值余项为(1)1() ()()()()(1)! n n n n f R x f x L x x n ξω++=-= + 又,k n ≤Q

(1)()0 ()0 n n f R x ξ+∴=∴= 0()n k k j j j x l x x =∴=∑ (0,1,,);k n =L 0 000 (2)()() (())()()(()) n k j j j n n j i k i k j j j i n n i k i i k j j i j x x l x C x x l x C x x l x =-==-==-=-=-∑∑∑∑∑ 0i n ≤≤Q 又 由上题结论可知 ()n k i j j j x l x x ==∑ ()()0 n i k i i k i k C x x x x -=∴=-=-=∑原式 ∴得证。 7设[]2 (),f x C a b ∈且()()0,f a f b ==求证: 21 max ()()max ().8 a x b a x b f x b a f x ≤≤≤≤''≤- 解:令01,x a x b ==,以此为插值节点,则线性插值多项式为 10 101010 ()() ()x x x x L x f x f x x x x x --=+-- =() () x b x a f a f b a b x a --=+-- 1()()0()0 f a f b L x ==∴=Q 又 插值余项为1011 ()()()()()()2 R x f x L x f x x x x x ''=-= -- 011 ()()()()2 f x f x x x x x ''∴= --

数值分析-第一章-学习小结

数值分析 第1章绪论 --------学习小结 一、本章学习体会 通过本章的学习,让我初窥数学的又一个新领域。数值分析这门课,与我之前所学联系紧密,区别却也很大。在本章中,我学到的是对数据误差计算,对误差的分析,以及关于向量和矩阵的范数的相关内容。 误差的计算方法很多,对于不同的数据需要使用不同的方法,或直接计算,或用泰勒公式。而对于二元函数的误差计算亦有其独自的方法。无论是什么方法,其目的都是为了能够通过误差的计算,发现有效数字、计算方法等对误差的影响。 而对误差的分析,则是通过对大量数据进行分析,从而选择出相对适合的算法,尽可能减少误差。如果能够找到一个好的算法,不仅能够减少计算误差,同时也可以减少计算次数,提高计算效率。 对于向量和矩阵的范数,我是第一次接触,而且其概念略微抽象。因此学起来较为吃力,仅仅知道它是向量与矩阵“大小”的度量。故对这部分内容的困惑也相对较多。 本章的困惑主要有两方面。一方面是如何能够寻找一个可靠而高效的算法。虽然知道算法选择的原则,但对于很多未接触的问题,真正寻找一个好的算法还是很困难。另一方面困惑来源于范数,不明白范数的意义和用途究竟算什么。希望通过以后的学习能够渐渐解开自己的疑惑。 二、本章知识梳理

2.1 数值分析的研究对象 方法的构造 研究对象 求解过程的理论分析 数值分析是计算数学的一个重要分支,研究各种数学问题的数值解法,包括方法的构造和求解过程的理论分析。它致力于研究如何用数值计算的方法求解各种基本数学问题以及在求解过程中出现的收敛性,数值稳定性和误差估计等内容。 2.2误差知识与算法知识 2.2.1误差来源 误差按来源分为模型误差、观测误差、截断误差、舍入误差与传播误差五种。其中模型误差与观测误差属于建模过程中产生的误差,而截断误差、舍入误差与传播误差属于研究数值方法过程中产生的误差。 2.2.2绝对误差、相对误差与有效数字 1.(1)绝对误差e指的是精确值与近似值的差值。 绝对误差:

数值分析第二章复习与思考题

第二章复习与思考题 1.什么是拉格朗日插值基函数?它们是如何构造的?有何重要性质? 答:若n 次多项式()),,1,0(n j x l j =在1+n 个节点n x x x <<< 10上满足条件 (),,,1,0,, ,0, ,1n k j j k j k x l k j =?? ?≠== 则称这1+n 个n 次多项式()()()x l x l x l n ,,,10 为节点n x x x ,,,10 上的n 次拉格朗日插值基函数. 以()x l k 为例,由()x l k 所满足的条件以及()x l k 为n 次多项式,可设 ()()()()()n k k k x x x x x x x x A x l ----=+- 110, 其中A 为常数,利用()1=k k x l 得 ()()()()n k k k k k k x x x x x x x x A ----=+- 1101, 故 ()()()() n k k k k k k x x x x x x x x A ----= +- 1101 , 即 ()()()()()()()()∏ ≠=+-+---=--------=n k j j j k j n k k k k k k n k k k x x x x x x x x x x x x x x x x x x x x x l 0110110)( . 对于()),,1,0(n i x l i =,有 ()n k x x l x n i k i k i ,,1,00 ==∑=,特别当0=k 时,有 ()∑==n i i x l 0 1. 2.什么是牛顿基函数?它与单项式基{ }n x x ,,,1 有何不同? 答:称()()()(){ }10100,,,,1------n x x x x x x x x x x 为节点n x x x ,,,10 上的牛顿基函数,利用牛顿基函数,节点n x x x ,,,10 上的n 次牛顿插值多项式()x P n 可以表示为 ()()()()10010---++-+=n n n x x x x a x x a a x P 其中[]n k x x x f a k k ,,1,0,,,,10 ==.与拉格朗日插值多项式不同,牛顿插值基函数在增加节点时可以通过递推逐步得到高次的插值多项式,例如 ()()()()k k k k x x x x a x P x P --+=++ 011,

数值分析第一章思考题

《数值分析》第一章思考题 1.算法这一概念,数学上是如何描述的? 答:算法的概念:算法是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。 算法在数学上的主要描述方式有:自然语言、结构化流程图、伪代码和PAD图 2.数值分析中计算误差有哪些?举列说明截断误差来源。 答:在数值分析中的计算误差主要有: (1)模型误差(2)观测误差(3)截断误差(4)舍入误差 求解数学模型所用的数值方法通常是一种近似方法,因近似方法产生的误差称为截断误差或者方法误差。例如在函数的泰勒展开式,我们在实际的计算时只能截取有限项代数和计算。 3.浮点数由哪两部分组成?指出各部分重点。 答:浮点数主要由:尾数+阶数两部分组成的。 在机器中表示一个浮点数时,一是要给出尾数,用定点小数形式表示,尾数部分给出有效数字的位数,决定了浮点数的表示精度。二是要给出阶码,用整数形式表示,阶码指明小数点在数据中的位置,决定了浮点数的表示范围。 4.有效数字的概念是如何抽象而来的,简单给予叙述。 答:有效数字是一个数据在保证最小误差的情况下,取的一个能够在计算中发挥其有效作用的近似值。有效数字的作用在于,最大精度地去发挥这个数值在计算中的作用,而又不会对计算结果造成太大影响,使计算过程简化。 5.何谓秦九韶算法,秦九韶算法有何优点? 答:秦九韶算法是一种多项式简化算法,将一元n次多项式的求值问题转化为n 个一次式的算法,大大简化了计算过程,对于一个n次多项式,至多做n次乘法和n次加法。。 6.在数值计算中,会发生大数吃小数现象,试对这一现象做解释 答:一个绝对值很大的数和一个绝对值很小的数直接相加时,很可能发生所谓“大数吃小数”的现象,从而影响计算结果的可靠性,这主要是计算机表示的数的位数是有限的这一客观事实引起的。 例如在12位浮点数计算机中进行浮点数相加,系统只保留前12位作为有效数字,小的那个数化成浮点数中的有效数字被舍去,出现大数吃小数的现象,对计算结果造成了影响。

matlab与数值分析作业

数值分析作业(1) 1:思考题(判断是否正确并阐述理由) (a)一个问题的病态性如何,与求解它的算法有关系。 (b)无论问题是否病态,好的算法都会得到它好的近似解。 (c)计算中使用更高的精度,可以改善问题的病态性。 (d)用一个稳定的算法计算一个良态问题,一定会得到他好的近似解。 (e)浮点数在整个数轴上是均匀分布。 (f)浮点数的加法满足结合律。 (g)浮点数的加法满足交换律。 (h)浮点数构成有效集合。 (i)用一个收敛的算法计算一个良态问题,一定得到它好的近似解。√2: 解释下面Matlab程序的输出结果 t=0.1; n=1:10; e=n/10-n*t 3:对二次代数方程的求解问题 20 ++= ax bx c 有两种等价的一元二次方程求解公式

2224b x a c x b ac -±==- 对 a=1,b=-100000000,c=1,应采用哪种算法? 4:函数sin x 的幂级数展开为: 357 sin 3!5!7! x x x x x =-+-+ 利用该公式的Matlab 程序为 function y=powersin(x) % powersin. Power series for sin(x) % powersin(x) tries to compute sin(x)from a power series s=0; t=x; n=1; while s+t~=s; s=s+t; t=-x^2/((n+1)*(n+2))*t n=n+2; end

(a ) 解释上述程序的终止准则; (b ) 对于x=/2π、x=11/2π、x =21/2π,计算的精度是多少?分别需 要计算多少项? 5:指数函数的幂级数展开 2312!3!x x x e x =+++ + 根据该展开式,编写Matlab 程序计算指数函数的值,并分析计算结果(重点分析0x <的计算结果)。

第五章习题解答_数值分析

第五章习题解答 1、给出数据点:0134 19156 i i x y =?? =? (1)用012,,x x x 构造二次Lagrange 插值多项式2()L x ,并计算15.x =的近似值215(.)L 。 (2)用123,,x x x 构造二次Newton 插值多项式2()N x ,并计算15.x =的近似值215(.)N 。 (3)用事后误差估计方法估计215(.)L 、215(.)N 的误差。 解: (1)利用012013,,x x x ===,0121915,,y y y ===作Lagrange 插值函数 2 20 2 1303011915 01031013303152933 ()()()()()() ()()()()()()()() i i i x x x x x x L x l x y x x =------== ?+?+?-------++= ∑ 代入可得2151175(.).L =。 (2)利用 134,,x x x ===,9156,,y y y ===构造如下差商表: 229314134196()()()()()N x x x x x x =+-+---=-+- 代入可得215135(.).N =。 (3)用事后误差估计的方法可得误差为 ()()()02222 03-x 150 x x x -=117513506563-04.()()()(..).x f L R L x N x x x --≈= -≈- ()()()3222203-154 x x -=1175135-1.0938-04 .()()()(..)x x f N R x L x N x x x --≈=-≈- 2、设Lagrange 插值基函数是 0012()(,,,,)n j i j i j j i x x l x i n x x =≠-==-∏ 试证明:①对x ?,有 1()n i i l x ==∑ ②00110001211()()(,,,)()()n k i i i n n k l x k n x x x k n =?=?==??-=+? ∑ 其中01,,,n x x x 为互异的插值节点。 证明: ①由Lagrange 插值多项式的误差表达式10 1()()()()()!n n i i f R x x x n ξ+==-+∏知,对于函数1()f x =进行

郑州大学数值分析重点考察内容及各章习题

《数值分析》 重点考察内容及各章作业答案 学院: 学号: 姓名:

重点考察内容 基本概念(收敛阶,收敛条件,收敛区域等), 简单欧拉法。 第一章基础 掌握:误差的种类,截断误差,舍入误差的来源,有效数字的判断。 了解:误差限,算法及要注意的问题。 第二章插值 掌握:Hermite插值,牛顿插值,差商计算,插值误差估计。 了解:Lagrange插值 第三章数据拟合 掌握:给出几个点求线性拟合曲线。 了解:最小二乘原理 第四章数值积分微分 掌握:梯形公式,Simpson公式,代数精度,Gauss积分,带权Gauss积分公式推导,复化梯形公式推导及算法。 了解:数值微分,积分余项 第五章直接法 掌握:LU分解求线性方程组,运算量 了解:Gauss消去法,LDL,追赶法 第六章迭代法 掌握:Jacobi,Gauss-Seidel迭代格式构造,敛散性分析,向量、矩阵的范数、谱半径 了解:SOR迭代 第七章Nolinear迭代法 掌握:牛顿迭代格式构造,简单迭代法构造、敛散性分析,收敛阶。 了解:二分法,弦截法 第八章ODE解法 掌握:Euler公式构造、收敛阶。 了解:梯形Euler公式、收敛阶,改进Euler公式 题目类型:填空,计算,证明综合题

第一章 误差 1. 科学计算中的误差来源有4个,分别是________,________,________,________。 2. 用Taylor 展开近似计算函数000()()'()()f x f x f x x x ≈+-,这里产生是什么误差? 3. 0.7499作 3 4 的近似值,是______位有效数字,65.380是舍入得到的近似值,有____几位有效数字,相对误差限为_______. 0.0032581是四舍五入得到的近似值,有_______位有效数字. 4. 改变下列表达式,使计算结果比较精确: (1)11,||1121x x x x --++ (2 ||1x (3) 1cos ,0,|| 1.x x x x -≠ (4)sin sin ,αβαβ-≈ 5. 采用下列各式计算61)时,哪个计算效果最好?并说明理由。 (1) (2 )99-3 )6 (3-(4 6. 已知近似数*x 有4位有效数字,求其相对误差限。 上机实验题: 1、利用Taylor 展开公式计算0! k x k x e k ∞ ==∑,编一段小程序,上机用单精度计算x e 的函数 值. 分别取x =1,5,10,20,-1,-5,-10,-15,-20,观察所得结果是否合理,如不合理请分析原因并给出解决方法. 2、已知定积分1 ,0,1,2,,206 n n x I dx n x ==+? ,有如下的递推关系 111 110 0(6)61666 n n n n n x x x x I dx dx I x x n ---+-===++-? ? 可建立两种等价的计算公式 (1) 1016,0.154n n I I I n -= -=取; (2) 12011),0.6n n I nI I n -=-=(取

数值分析作业思考题汇总

¥ 数值分析思考题1 1、讨论绝对误差(限)、相对误差(限)与有效数字之间的关系。 2、相对误差在什么情况下可以用下式代替 3、查阅何谓问题的“病态性”,并区分与“数值稳定性”的不同点。 4、取 ,计算 ,下列方法中哪种最好为什么(1)(3 3-,(2)(2 7-,(3) ()3 1 3+ ,(4) ()6 1 1 ,(5)99- , 数值实验 数值实验综述:线性代数方程组的解法是一切科学计算的基础与核心问题。求解方法大致可分为直接法和迭代法两大类。直接法——指在没有舍入误差的情况下经过有限次运算可求得方程组的精确解的方法,因此也称为精确法。当系数矩阵是方的、稠密的、无任何特殊结构的中小规模线性方程组时,Gauss消去法是目前最基本和常用的方法。如若系数矩阵具有某种特殊形式,则为了尽可能地减少计算量与存储量,需采用其他专门的方法来求解。 Gauss消去等同于矩阵的三角分解,但它存在潜在的不稳定性,故需要选主元素。对正定对称矩阵,采用平方根方法无需选主元。方程组的性态与方程组的条件数有关,对于病态的方程组必须采用特殊的方法进行求解。 数值计算方法上机题目1 1、实验1. 病态问题 实验目的: 算法有“优”与“劣”之分,问题也有“好”和“坏”之别。所谓坏问题就是问题本身的解对数据变化的比较敏感,反之属于好问题。希望读者通过本实验对此有一个初步的体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 $ r e x x e x x ** * ** - == 141 . ≈)61

数值分析思考题[综合]

1、讨论绝对误差(限)、相对误差(限)与有效数字之间的关系。 2、相对误差在什么情况下可以用下式代替? 3、查阅何谓问题的“病态性”,并区分与“数值稳定性”的不同点。 4、 取 ,计算 ,不用计算而直接判断下列式子中哪 种计算效果最好?为什么? (1)(3 3-,(2)(2 7-,(3) (3 1 3+,(4) ) 6 11 ,(5)99-5. 应用梯形公式 ))()((2b f a f a b T +-= 计算积分1 0x I e dx -=?的近似值,在整个计算过程中按四舍五入规则取五位小数。计算中产生的误差的主要原因是截断误差还是舍入误差?为什么? 6. 下列各数都是经过四舍五入得到的近似值,试指出他们有几位有效数字,并给出其绝对误差限与相对误差限。 (1) 1021.1*1=x ;(2) 031.0*2=x ;(3) 40.560*3=x 。 7. 下列公式如何计算才比较准确? (1) 212 x e -,1x <<;(2) 12 1 N N dx x ++? ,1>>N ;(3) ,1x >>。 8. 序列{}n y 满足递推关系1101n n y y -=-,12,,n =,若0141.y =≈,计算到10y 时误差有多大?这个计算过程数值稳定吗? r e x x e x x ***** -== 141.≈) 6 1

1、怎样确定一个隔根区间?如何求解一个方程的全部实根?如:已知方程:1020()x f x e x =+-=在(),-∞+∞有实数根,用二分法求它的全部实根,要求误差满足210*k x x --<?若要求6*10k x x --<,需二分区 间多少次? 2、求解一个非线性方程的迭代法有哪些充分条件可以保障迭代序列收敛于方程的根?对方程3210()f x x x =--=,试构造两种不同的迭代法,且均收敛于方程在[]12,中的唯一根。 3、设0a >,应用牛顿法于方程30x a -= 确定常数,p q 和r 使得迭代法 2 125k k k k qa ra x px x x +=++, 012,, , k = 4、对于不动点方程()x x ?=,()x ?满足映内性和压缩性是存在不动点的充分条件,他们也是必要条件吗?试证明:(1)函数21()x x ?=-在闭区间[]02,上不是映内的,但在其上有不动点;(2)函数 1()ln()x x e ?=+在任何区间[],a b 上都是压缩的,但没有不动点。 5、设*x 是方程0()f x =的根,且0*'()f x ≠,''()f x 在*x 的某个邻域上连续。试证明:Newton 迭代序列{}k x 满足 12122**()''() lim () '()k k k k k x x f x x x f x -→∞---=-- 6. 设有方程1 12 sin x x =+。对于迭代法1112 ()sin()k k k x x x ?+==+,试证:对 任何15.b ≥,迭代函数()x ?在闭区间[0.5,b]上满足映内性和压缩性。用所给方

第一章复习与思考题

第一章复习与思考题 1. 什么是数值分析?它与数学科学和计算机的关系如何? 答:数值分析也称计算数学,是数学科学的一个分支,主要研究的是用计算机求解各种数学问题的数值计算方法及其理论与软件实现. 数值分析以数学问题为研究对象,但它并不像纯数学那样只研究数学本身的理论,而是把理论与计算紧密结合,着重研究数学问题的数值方法及其理论. 2. 何谓算法?如何判断数值算法的优劣? 答:一个数值问题的算法是指按规定顺序执行一个或多个完整的进程,通过算法将输入元变换成输出元. 一个面向计算机,有可靠理论分析且计算复杂性好的算法就是一个好算法. 因此判断一个算法的优劣应从算法的可靠性、准确性、时间复杂性和空间复杂性几个方面考虑. 3. 列出科学计算中误差的三个来源,并说出截断误差与舍入误差的区别. 答:用计算机解决实际问题首先要建立数学模型,它是对被描述的实际问题进行抽象、简化而得到的,因而是近似的,数学模型与实际问题之间出现的误差叫做模型误差. 在数学模型中往往还有一些根据观测得到的物理量,如温度、长度等,这些参量显然也包含误差,这种由观测产生的误差称为观测误差. 当数学模型不能得到精确解时,通常要用数值方法求它的近似解,其近似解和精确解之间的误差称为截断误差或方法误差.

有了求解数学问题的计算公式以后,用计算机做数值计算时,由于计算机字长有限,原始数据在计算机上表示时会产生误差,计算过程又可能产生新的误差,这种误差称为舍入误差. 截断误差和舍入误差是两个不同的概念,截断误差是由所采用的数值方法而产生的,因而也称方法误差,舍入误差是由数值计算而产生的. 4. 什么是绝对误差与相对误差?什么是近似数的有效数字?它与绝对误差和相对误差有何关系? 答:设 为准确值, 为 的一个近似值,称 为近似值 的绝对误差,简称误差. 近似值的误差 与准确值 的比值 称为近似值 的相对误差,记作 . 通常我们无法知道误差的准确值,只能根据测量工具或计算情况估计出误差绝对值的一个上界 ,

数值分析第二章思考题

第二章思考题 1.画出残差校正法的程序框图 2.查阅目前解决病态线性方程组的方法有哪些,并计较其优劣。 答:对病态线性方程组的求解可采用一下方法求解: (1)采用高精度的算术运算。采用双精度,可改善和减轻病态矩阵的影响。 (2)平衡方法。当A 的元素的数量级差别很大时,采用行平衡或列平衡的方法可降低A 的条件数。 (3)残差矫正法。设A 非奇异且Cond (A )不特别大,方程组Ax=b 病态但不特别严重,这时可用残差矫正法求解Ax=b 。 (4)残量迭代法。残量迭代法是在用Gauss 消去法求出方程组AX b =的近似解后,进行以下的计算: PA LU =. 然后,重复迭代: b AX γ=- LY P γ= UZ Y = X X Z =+

其中,PA LU =,X ,Y 和Z 用t 位有效数字计算,b AX -用2t 位有效数字生成。 残量迭代法的计算量比较少,在机器上非常容易执行,而且计算精度也比较高,但是它不是对所有的病态方程组都适用,当()10t Cond A ≥时,其计算结果就不够准确。 (5)加权迭代改善法。 加权迭代改善法是对方程组AX b =构造一个迭代过程:()()()1k k A I X b X λλ++=+ ,其中0λ≠为一常数,I 为与A 同阶的单位方阵,0,1,2,k = 为迭代次数,()0X 为解的初始值,()k X 是第k 次迭代后求得的近似解。只要λ取得合适,A I λ+的逆矩阵()1 A I λ-+便存在。 加权迭代改善法不必选主元且保持原系数矩阵的稀疏性,通过加权因子λ的选取来改善矩阵的条件数,得到了比较好的计算结果,但是由于加权因子λ的选取也使得加权迭代改善法的应用受到了限制。 (6)误差转移法。误差转移法是基于即使方程组的计算解的精度不高,也可获得相对较小的余量这一特点而设计的。 设方程组AX b =的计算解为x τ,既然b Ax τ=对误差很大的解x τ也能比较准确的成立,因而,如果求解r x cy *=其中,c 为n n ?阶非奇异矩阵,则即使计算解r y 的误差比较大,得到比较准确的x *。, 在这种解法中,问题的病态性固然会导致解的巨大误差,但这种误差直接反映在r y 上,对x *的影响则小得多,因为主要的误差已经从原来的x *转移到中间量r y 上了。 误差转移法的原理及实现都十分简捷,仅运用了常规的行列均衡

数值分析最佳习题(含答案)

第一章 绪论 姓名 学号 班级 习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。 1 若误差限为5105.0-?,那么近似数有几位有效数字(有效数字的计算) 解:2*103400.0-?=x ,325*102 1102 1---?=?≤-x x 故具有3位有效数字。 2 14159.3=π具有4位有效数字的近似值是多少(有效数字的计算) 解:10314159.0?= π,欲使其近似值*π具有4位有效数字,必需 41*102 1 -?≤-ππ,3*3102 1102 1--?+≤≤?-πππ,即14209.314109.3*≤≤π 3 已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +, b a ?有几位有效数字(有效数字的计算) 解:3*1021 -?≤-a a ,2*102 1-?≤-b b ,而1811.2=+b a ,1766.1=?b a 2123****102 1 10211021)()(---?≤?+?≤ -+-≤+-+b b a a b a b a 故b a +至少具有2位有效数字。 2123*****102 1 0065.01022031.1102978.0)()(---?≤=?+?≤ -+-≤-b b a a a b b a ab

故b a ?至少具有2位有效数字。 4 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差(误差的计算) 解:已知δ=-* *x x x ,则误差为 δ=-= -* **ln ln x x x x x 则相对误差为 * * ** * * ln ln 1ln ln ln x x x x x x x x δ = -= - 5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=, 已知cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v 2π=的绝对误差 限与相对误差限。(误差限的计算) 解:*2******2),(),(h h r r r h r r h v r h v -+-≤-ππ 绝对误差限为 πππ252.051.02052)5,20(),(2=??+????≤-v r h v 相对误差限为 %420 1 20525) 5,20() 5,20(),(2 ==??≤ -ππv v r h v 6 设x 的相对误差为%a ,求n x y =的相对误差。(函数误差的计算) 解:%* *a x x x =-, )%(* **** *na x x x n x x x y y y n n n =-≤-= - 7计算球的体积,为了使体积的相对误差限为%1,问度量半径r 时允许的相对误差限为多大(函数误差的计算)

数值分析第二章小结

第2章线性方程组的解法 --------学习小结 一、本章学习体会 通过本章知识的学习我首先了解到求解线性方程组的方法可分为两类:直接法和迭代法。计算机虽然运行速度很快,但面对运算量超级多的问题,计算机还是需要很长的时间进行运算,所以,确定快捷精确的求解线性方程组的方法是非常必要的。 本章分为四个小节,其中前两节Gauss消去法和直接三角分解法因为由之前《线性代数》学习的一定功底,学习起来还较为简单,加之王老师可是的讲解与习题测试,对这一部分有了较好的掌握。第三节矩阵的条件数与病态方程组,我 Ax 的系数矩阵A与左端向量b的元素往往是通首先了解到的是线性方程组b 过观测或计算而得到,因而会带有误差。即使原始数据是精确的,但存放到计算机后由于受字长的限制也会变为近似值。所以当A和b有微小变化时,即使求解过程精确进行,所得的解相对于原方程组也可能会产生很大的相对误差。对于本节的学习掌握的不是很好,虽然在课后习题中对课堂知识有了一定的巩固,但整体感觉没有很好的掌握它。第四节的迭代法,初次接触迭代法,了解到迭代法就是构造一个无线的向量序列,使他的极限是方程组的解向量。迭代法应考虑收敛性与精度控制的问题。三种迭代方法的基本思想我已经掌握了,但是在matlab 的编程中还存在很大的问题。 在本节的学习中我认为我最大的问题还是程序的编写。通过这段时间的练习,虽然掌握了一些编写方法和技巧。相比于第一章是对其的应用熟练了不少,但在程序编写上还存在很多问题。希望在以后的学习中能尽快熟练掌握它,充分发挥它强大的作用。 二、本章知识梳理 2.1、Gauss消去法(次重点) Gauss消去法基本思想:由消元和回代两个过程组成。 a(k=1,2,```,n-1)均不为零的充分必要条件定理顺序Gauss消去法的前n-1个主元素)(k kk 是方程组的系数矩阵A的前n-1个顺序主子式

数值分析思考题答案

: 数值分析课程思考题 1.叙述拉格朗日插值法的设计思想。 Lagrange插值是把函数y=f(x)用代数多项式pn(x)代替,构造出一组n次差值基函数;将待求得n次多项式插值函数pn(x)改写成另一种表示方式,再利用插值条件确定其中的待定函数,从而求出插值多项式。 2.函数插值问题的提出以及插值法发展的脉络。 问题的提出:实际问题中常遇到这样的函数y=f(x),其在某个区间[a,b]上是存在的。但是,通过观察或测量或试验只能得到在[a,b]区间上有限个离散点x0,x1,…,xn上的函数值y=f(xi),(i=0,…,n)或者f(x)函数表达式是已知的,但却很复杂而不便于计算希望用一个简单的函数描述它。 发展脉络:在工程中用的多的是多项式插值和分段多项式插值。在多项式插值中,首先谈到的是Lagrange插值,其成功地用构造插值基函数的方法解决了求n次多项式插值函数的问题,但是其高次插值基函数计算复杂,且次数增加后,插值多项式需要重新计算,所以在此基础上提出Newton插值,它是另一种构造插值多项式的方法,与Lagrange插值相比,具有承袭性和易于变动节点的特点。如果对插值函数,不仅要求他在节点处与函数同值,还要求它与函数有相同的一阶,二阶甚至更高阶的导数值,这就提出了Hermite插值,它是利用未知函数f(x)在插值节点上的函数值及导数值来构造插值多项式的。为了提高精度,加密节点时把节点分成若干段,分段用低次多项式近似函数,由此提出了分段多项式插值。最后,由于许多工程中对插值函数的光滑性有较高的要求,就产生了样条插值。 3.描述数值积分算法发展和完善的脉络。 数值积分主要采用插值多项式来代替函数构造插值型求积公式。通常采用Lagrange插值。如果取等距节点,则得到Newton-Cotes公式,其中,当n=1时,得到梯形公式;当n=2时,得到Simpson公式;当n=4时,得到Cotes公式。由于高次Newton-Cotes公式的求积系数有正有负,将产生很大的计算误差,引起计算不稳定,所以受分段插值的启发,对数值积分也采用分段求积,导出复化求积公式; 其中,在小区间上用梯形公式求和的称为复化梯形公式,用Simpson公式求和的成为复化Simpson公式,用Cotes公式求和的称为Cotes公式。但由于步长的选取是个问题,所以,导出逐次分半法来计算。而由于有些函数在x=0的值无法求出,为

数值分析课后习题答案

第一章 题12 给定节点01x =-,11x =,23x =,34x =,试分别对下列函数导出拉格朗日插值余项: (1) (1) 3 ()432f x x x =-+ (2) (2) 4 3 ()2f x x x =- 解 (1)(4) ()0f x =, 由拉格朗日插值余项得(4)0123() ()()()()()()0 4!f f x p x x x x x x x x x ξ-=----=; (2)(4) ()4!f x = 由拉格朗日插值余项得 01234! ()()()()()() 4! f x p x x x x x x x x x -= ----(1)(1)(3)(4)x x x x =+---. 题15 证明:对于()f x 以0x ,1x 为节点的一次插值多项式()p x ,插值误差 012 10()()()max () 8x x x x x f x p x f x ≤≤-''-≤. 证 由拉格朗日插值余项得 01() ()()()()2!f f x p x x x x x ξ''-= --,其中01x x ξ≤≤, 01 0101max ()()()()()()()() 2!2!x x x f x f f x p x x x x x x x x x ξ≤≤''''-=--≤-- 01210()max () 8x x x x x f x ≤≤-''≤. 题22 采用下列方法构造满足条件(0)(0)0p p '==,(1)(1)1p p '==的插值多项式 ()p x : (1) (1) 用待定系数法; (2) (2) 利用承袭性,先考察插值条件(0)(0)0p p '==,(1)1p =的插值多项式 ()p x . 解 (1)有四个插值条件,故设230123()p x a a x a x a x =+++,2 123()23p x a a x a x '=++, 代入得方程组001231123010231 a a a a a a a a a =? ?+++=?? =? ?++=? 解之,得01230 021 a a a a =??=?? =??=-?

数值分析思考题1

数值分析思考题1 1、讨论绝对误差(限)、相对误差(限)与有效数字之间的关系。 答:(1)绝对误差(限)与有效数字:将x 的近似值x *表示成 x *=±10m ×(a 1×10﹣1+a 2×10﹣2+ …a n ×10﹣n +…+a k ×10﹣k +…),其中m 是整数,a 1≠0,a 1,a 2,…,a k 是0到9中的一个数字。若绝对误差e ,那么x *至少有n 个有效数字,即a 1,a 2,…,a n 为有效数字,而a n+1,…,a k ,…不一定是有效数字。因此,从有效数字可以算出近似数的绝对误差限;有效数字位数越多,其绝对误差限也越小。 (2)相对误差(限)与有效数字:将x 的近似值x *表示成 x *=±10m ×(a 1×10﹣1+a 2×10﹣2+ …a n ×10﹣n +…+a k ×10﹣ k +…),其中m 是整数,a 1≠0,a 1,a 2,…,a k 是0到9中的一个数字。若a k 是有效数字,那么相对误差不超过 ;反之,如果已知相对误差r ,且有,那么a k 必为有效数字。 2、相对误差在什么情况下可以用下式代替 答:在实际计算时,由于真值常常是未知的,当较小时,通常用代替。 3、查阅何谓问题的“病态性”,并区分与“数值稳定性”的不同点。 r e x x e x x *****-==

- 答:(1)病态问题:对于数学问题本身,如果输入数据有微小变化,就会引起输出数据(即问题真解)的很大变化,这就是病态问题。 (2)不同点:数值稳定性是相对于算法而言的,算法的不同直接影响结果的不同;而病态性是数学问题本身性质所决定的,与算法无关,也就是说对病态问题,用任何算法(或方法)直接计算都将产生不稳定性。 4、 取 ,计算 ,下列方法中哪种最好为什么 (1)(33-,(2)(27-,(3)()31 3+,(4)()61 1,(5) 99-答:(1)(33-==; (2)(27-==; (3) ()3 13+=; (4)()611+=; (5)99-=; 由上面的计算可以看出,方法(3)最好,因为计算的 误差最小。 , 141.≈)61

数值分析课程第五版课后习题答案(李庆扬等)

第一章 绪论(12) 1、设0>x ,x 的相对误差为δ,求x ln 的误差。 [解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=* ****1)()(ln )(ln x x x x x , 相对误差为* * ** ln ln ) (ln )(ln x x x x r δ εε= = 。 2、设x 的相对误差为2%,求n x 的相对误差。 [解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而n x 的误差为n n x x n x n x x n x x x ** 1 *** %2%2) ()()()(ln * ?=='=-=εε, 相对误差为%2) () (ln )(ln *** n x x x n r == εε。 3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字: 1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5 ?=x 。 [解]1021.1*1 =x 有5位有效数字;0031.0* 2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56* 4 =x 有5位有效数字;0.17*5?=x 有2位有效数字。 4、利用公式(3.3)求下列各近似值的误差限,其中* 4*3*2*1,,,x x x x 均为第3题所给 的数。 (1)* 4*2*1x x x ++; [解]3 334* 4*2*11** *4*2*1*1005.1102 1 10211021)()()()()(----=?=?+?+?=++=? ??? ????=++∑x x x x x f x x x e n k k k εεεε; (2)* 3*2 *1x x x ;

数值分析思考题

数值分析重点考察内容 第一章: 基本概念 第二章: Gauss消去法,Lu分解法 第三章: 题型:具体题+证明,误差分析 三个主要迭代法,条件误差估计,范数的小证明 第四章: 掌握三种插值方法:拉格朗日,牛顿,厄尔米特,误差简单证明,构造复合函数 第五章: 最小二乘法计算 第六章: 梯形公式,辛普森(抛物线)公式,高斯公式三个重要公式,误差分析。 高斯求积公式的构造 第七章: 几种常用的迭代格式构造,收敛性证明。 第九章: 基本概念(收敛阶,收敛条件,收敛区域等), 简单欧拉法。

第一章 误差 1. 科学计算中的误差来源有4个,分别是________,________,________,________。 2. 用Taylor 展开近似计算函数000()()'()()f x f x f x x x ≈+-,这里产生是什么误差? 3. 0.7499作34 的近似值,是______位有效数字,65.380是舍入得到的近似值,有____几位有效数字,相对误差限为_______. 0.0032581是四舍五入得到的近似值,有_______位有效数字. 4. 改变下列表达式,使计算结果比较精确: (1) 11,||1121x x x x --++ (2) ||1x (3) 1cos ,0,|| 1.x x x x -≠ (4) sin sin ,αβαβ-≈ 5. 采用下列各式计算61)时,哪个计算效果最好?并说明理由。 (1) (2) 99-(3) 6(3- (4 6. 已知近似数*x 有4位有效数字,求其相对误差限。 上机实验题: 1、利用Taylor 展开公式计算 0!k x k x e k ∞ ==∑,编一段小程序,上机用单精度计算x e 的函数 值. 分别取 x =1,5,10,20,-1,-5,-10,-15,-20,观察所得结果是否合理,如不合理请分析原因并给出解决方法. 2、已知定积分10,0,1,2,,206 n n x I dx n x ==+? ,有如下的递推关系 1111100(6)61666 n n n n n x x x x I dx dx I x x n ---+-===++-?? 可建立两种等价的计算公式 (1) 1016,0.154n n I I I n -=-=取; (2) 12011),0.6n n I nI I n -=-=(取 来计算123419,,,,,I I I I I ,编程比较哪种计算的数值结果好,并给出理论分析。

相关文档
最新文档