单片机课程设计(温度控制直流电动机转速)
单片机课程设计题目及答案

题目1 智能电子钟(LCD 显示)题目2 电子时钟(LCD 显示)题目3 秒表题目4 定时闹钟题目5 音乐倒数计数器题目6 基于数字温度传感器的数字温度计题目7 基于热敏电阻的数字温度计题目8 十字路口交通灯控制题目9 波形发生器设计题目10 电容、电阻参数单片机测试系统的设计题目11 数字频率计题目12 8位竞赛抢答器的设计题目13 单词记忆测试器程序设计题目14 数字电压表设计题目15 可编程作息时间控制器设计题目16 节日彩灯控制器的设计题目17 双机之间的串行通信设计题目18 电子琴设计题目19 数字音乐盒的设计题目20 单片机控制步进电机题目21 单片机控制直流电动机题目1 智能电子钟(LCD 显示) 1. 设计要求 以AT89C51单片机为核心,制作一个LCD 显示的智能电子钟: (1) 计时:秒、分、时、天、周、月、年。
(2) 闰年自动判别。
(3) 五路定时输出,可任意关断(最大可到16路)。
(4) 时间、月、日交替显示。
(5) 自定任意时刻自动开/关屏。
(6) 计时精度:误差≤1秒/月(具有微调设置) (7) 键盘采用动态扫描方式查询。
所有的查询、设置功能均由功能键K1、K2完成。
2. 工作原理 本设计采用市场上流行的时钟芯片DS1302进行制作。
DS1302是DALLAS 公司推出的涓流充电时钟芯片,内含一个实时时钟/日历和31字节静态RAM ,可以通过串行接口与计算机进行通信,使得管脚数量减少。
实时时钟/日历电路能够计算2100年之前的秒、分、时、日、星期、月、年的,具有闰年调整的能力。
DS1302时钟芯片的主要功能特性:(1) 能计算2100年之前的年、月、日、星期、时、分、秒的信息;每月的天数和闰年的天数可自动调整;时钟可设置为24或12小时格式。
(2) 31B 的8位暂存数据存储RAM 。
(3) 串行I/O 口方式使得引脚数量最少。
(4) DS1302与单片机之间能简单地采用同步串行的方式进行通信,仅需3根线。
基于单片机的温度控制电机转速课程设计

目录1 引言 (2)2 设计要求 (2)2.1 设计目的 (2)2.2 基本要求 (3)3 方案设计 (3)3.1 温度传感器方案论证 (3)3.1.1 方案一 (3)3.1.2 方案二 (3)3.2 总体设计框图 (3)4 硬件设计 (4)4.1 单片机系统 (4)4.2 数字温度传感器模块 (5)4.2.1 DS18B20性能 (6)4.2.2 DS18B20外形及引脚说明 (6)4.2.3 DS18B20接线原理图 (6)4.2.4 DS18B20时序图 (6)4.2.5 数据处理 (8)4.3 L298电机驱动模块 (9)4.4 LCD显示电路模块 (9)5应用软件介绍 (10)5.1 Proteus仿软真件的介绍 (10)5.2 Keil软件 (11)6 软件设计 (10)6.1 主程序模块 (10)6.2 读温度值模块 (11)6.3 中断模块 (13)6.4 仿真模块 (14)7 源程序 (16)8 总结 (19)参考文献: (20)1 引言随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便是不可否定的,各种数字系统的应用也使人们的生活更加舒适。
数字化控制、智能控制为现代人的工作、生活、科研等方面带来方便。
其中温度控制电机转速就是利用单片机实现的典型实例。
测量温度时使用数字温度计,其与传统的温度计相比,具有读数方便、测温范围广、测温精确、功能多样话等优点。
其主要用于对测温要求准确度比较高的场所,或科研实验室使用,该设计使用STC89C51单片机作控制器,数字温度传感器DS18B20测量温度,单片机接受传感器输出,经处理用LCD实现温度值显示。
电机由L298电机驱动芯片控制,实现电机的正反转和加速减速.2 设计要求2.1设计目的设计一个基于温度的电动机转速控制电路,在相应的软件控制下可以完成要求的功能,即外部温度大于65C时,直流电动机在L298驱动下加速正转,温度大于75C全速正转,当外部温度小于0C时电动机加速反转,温度小于-10C时电动机全速反转。
课程设计--直流电机调速控制系统设计

课程设计--直流电机调速控制系统设计指导教师评定成绩:审定成绩:**********课程设计报告设计题目:直流电机调速控制系统设计学校:********************学生姓名:**********专业:********************班级:***********学号:**************指导教师:*****************8设计时间:2013 年12 月目录引言 (3)一、直流电动机的工作原理 (4)二、直流电动机的结构 (5)三、直流电动机的分类 (6)四、电动机的机械特性 (7)五、他励直流电动机起动 (10)六、他励直流电动机的调速方法 (11)七、PWM调制电路 (14)八、H桥驱动电路 (14)九、直流电动机调速控制系统设计 (15)十、心得体会 (22)附录参考文献 (23)课程设计任务书 (23)引言现代工业生产中,电动机是主要的驱动设备,目前在直流电动机拖动系统中已大量采用晶闸管(即可控硅)装置向电动机供电的KZ—D拖动系统,取代了笨重的发电动一电动机的F—D系统,又伴随着电子技术的高度发展,促使直流电机调速逐步从模拟化向数字化转变,特别是单片机技术的应用,使直流电机调速技术又进入到一个新的阶段,智能化、高可靠性已成为它发展的趋势。
直流电机调速基本原理是比较简单的(相对于交流电机),只要改变电机的电压就可以改变转速了。
改变电压的方法很多,最常见的一种PWM脉宽调制,调节电机的输入占空比就可以控制电机的平均电压,控制转速。
PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80年代以前一直未能实现。
直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM控制技术才真正得到应用。
随着电力电子技术、微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论、非线性系统控制思想的应用,PWM控制技术获得了空前的发展,到目前为止,已经出现了多种PWM控制技术。
单片机原理课程设计

三、任务
1. 根据单片机资源分配和使用,制定出设计方案; 2. 说明设计原理、画出设计电路图 3. 软件设计整体流程图 4. 画出各模块的设计图 5. 调试分析: 系统调试中碰到的问题和解决方法 6. 写出设计报告 具体要求见下页
目
录
一、概述 二、设计原理 三、设计要求 1、系统要求及功能模块 2、设计思想 四、设计方案 1、系统硬件电路图 2、系统软件总流程图 3、各功能模块程序流程图 五、系统检测与调试 1、硬件电路调试 2、软件各功能模块的调试 3、总调试 六、总结 收获、体会、经验、教训、建议。 附:系统总程序清单(必须加注释) 注:手写程序,不允许打印
例如:要产生200HZ的音频信号,在P1.0口接入喇叭,利用子 程序延时,当R3为1时,延时时间约为10us,R3中存放延时常 数。
对200HZ音频,其周期为:1/200秒,即5ms
当P1.4的高电平或低电平的持续时间为2.5ms,即 R3的时间常数取 2500/20=125(7DH)时,就能发出 200HZ的音调。改变延时常数就可改变音调。 乐曲中,每一音符对应着确定的频率。
1)利用4×4矩阵键盘作为用户输入接口,输入运 算数据,6位数码管作为运算数据或计算结果显示,运 算结果不超过6位整数,运算包括加、减、乘、除。 2)准备阶段6只数码管循环轮流显示P(跑马),当 按下中断键,启动系统开始工作,4个数码管闪烁显示 “START”,
提示:定义矩阵键盘16个按键分别为0-9、.(小数点) 、+ 、、× 、÷ 、=,程序循环执行键盘扫描和显示,根据按下键 的不同类型分别进入不同的处理分支中,根据按下的是等号键 还是运算符键决定是否输入第二个操作数,再根据保存的运算 符进行计算,显示结果,如果采用A和B运算后结果存入A,还 可以进行连算。
温控直流电机系统设计

毕业论文(设计)
设计题目:温控直流电机系统设计
系部:电子工程系
班级:应用电子专业
学号:20121575
姓名:敖旭
指导教师:李纯
成绩:
二0一四年十二月
毕业设计任务书
一、毕业设计题目:温控直流电机系统设计
二、选题背景:
随着计算机、微电子技术的发展以及新型电力电子功率器件的不断涌现,电动机的控制策略也发生了深刻的变化。选此课题,主要让学生掌握直流电动机的控制技术,同时采用温度控制实现电机的自动化。
1.2
国内外温度控制系统的市场发展情况:温度控制系统在国内各行各业的应用虽然已经十分广泛,但从生产的温度控制器来讲,总体发展水平仍然不高,同日本、美国、德国等先进国家相比有着较大差距。目前,我国在这方面总体技术水平处于20世纪80年代中后期水平,成熟产品主要以“点位”控制及常规的PID控制器为主。它只能适应一般温度系统控制,难于控制滞后、复杂、时变温度系统控制。而适应于较高控制场合的智能化、自适应控制仪表,国内技术还不十分成熟,形成商品化并在仪表控制参数的自整定方面,国外已有较多的成熟产品。但由于国外技术保密及我国开发工作的滞后,还没有开发出性能可靠的自整定软件。控制参数大多靠人工经验及现场调试确定。国外温度控制系统发展迅速,并在智能化、自适应、参数自整定等方面取得成果。日本、美国、德国、瑞典等技术领先,都生产出了一批商品化的、性能优异的温度控制器及仪器仪表,并在各行业广泛应用。它们主要具有如下的特点:一是适应于大惯性、大滞后等复杂温度控制系统的控制;二是能够适应于受控系统数学模型难以建立的温度控制系统的控制;三是能够适应于受控系统过程复杂、参数时变的温度控制系统的控制;四是温度控制系统普遍采用自适应控制、自校正控制、模糊控制、人工智能等理论及计算机技术,运用先进的算法,适应的范围广泛;五是温控器普遍具有参数自整定功能。借助计算机软件技术,温控器具有对控制对象控制参数及特性进行自动整定的功能。有的还具有自学习功能,能够根据历史经验及控制对象的变化情况,自动调整相关控制参数,以保证控制效果的最优化;六是具有控制精度高、抗干扰力强、鲁棒性好的特点。
基于单片机的直流电机调速系统的课程设计

一、总体设计概述本设计基于8051单片机为主控芯片,霍尔元件为测速元件, L298N为直流伺服电机的驱动芯片,利用 PWM调速方式控制直流电机转动的速度,同时可通过矩阵键盘控制电机的启动、加速、减速、反转、制动等操作,并由LCD显示速度的变化值。
二、直流电机调速原理根据直流电动机根据励磁方式不同,分为自励和它励两种类型,其机械特性曲线有所不同。
但是对于直流电动机的转速,总满足下式:式中U——电压;Ra——励磁绕组本身的内阻;——每极磁通(wb );Ce——电势常数;Ct——转矩常数。
由上式可知,直流电机的速度控制既可以采用电枢控制法也可以采用磁场控制法。
磁场控制法控制磁通,其控制功率虽然较小,但是低速时受到磁场和磁极饱和的限制,高速时受到换向火花和换向器结构强度的限制,而且由于励磁线圈电感较大,动态响应较差,所以在工业生产过程中常用的方法是电枢控制法。
电枢控制法在励磁电压不变的情况下,把控制电压信号加到电机的电枢上来控制电机的转速。
传统的改变电压方法是在电枢回路中串连一个电阻,通过调节电阻改变电枢电压,达到调速的目的,这种方法效率低,平滑度差,由于串联电阻上要消耗电功率,因而经济效益低,而且转速越慢,能耗越大。
随着电力电子的发展,出现了许多新的电枢电压控制法。
如:由交流电源供电,使用晶闸管整流器进行相控调压;脉宽调制(PWM)调压等。
调压调速法具有平滑度高、能耗低、精度高等优点,在工业生产中广泛使用,其中PWM应用更广泛。
脉宽调速利用一个固定的频率来控制电源的接通或断开,并通过改变一个周期内“接通”和“断开”时间的长短,即改变直流电机电枢上的电压的“占空比”来改变平均电.压的大小,从而控制电动机的转速,因此,PWM又被称为“开关驱动装置”。
如果电机始终接通电源是,电机转速最大为Vmax,占空比为D=t1/t,则电机的平均转速:Vd=Vmax*D,可见只要改变占空比D,就可以调整电机的速度。
平均转速Vd与占空比的函数曲线近似为直线。
基于单片机的直流电机PWM调速控制系统的设计

基于单片机的直流电机PWM调速控制系统的设计第一章:前言1.1前言:直流电机的定义:将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能(直流发电机)的旋转电机。
近年来,随着科技的进步,直流电机得到了越来越广泛的应用,直流具有优良的调速特性,调速平滑,方便,调速范围广,过载能力强,能承受频繁的冲击负载,可实现频繁的无极快速起动、制动和反转,需要满足生产过程自动化系统各种不同的特殊要求,从而对直流电机提出了较高的要求,改变电枢回路电阻调速、改变电压调速等技术已远远不能满足现代科技的要求,这是通过PWM方式控制直流电机调速的方法就应运而生。
采取传统的调速系统主要有以下的缺陷:模拟电路容易随时间飘移,会产生一些不必要的热损耗,以及对噪声敏感等。
而用PWM技术后,避免上述的缺点,实现了数字式控制模拟信号,可以大幅度减低成本和功耗。
并且PWM调速系统开关频率较高,仅靠电枢电感的滤波作用就可以获得平滑的直流电流,低速特性好;同时,开关频率高,快响应特性好,动态抗干扰能力强,可获很宽的频带;开关元件只需工作在开关状态,主电路损耗小,装置的效率高,具有节约空间、经济好等特点。
随着我国经济和文化事业的发展,在很多场合,都要求有直流电机PWM调速系统来进行调速,诸如汽车行业中的各种风扇、刮水器、喷水泵、熄火器、反视镜、宾馆中的自动门、自动门锁、自动窗帘、自动给水系统、柔巾机、导弹、火炮、人造卫星、宇宙飞船、舰艇、飞机、坦克、火箭、雷达、战车等场合。
1.2本设计任务:任务: 单片机为控制核心的直流电机PWM调速控制系统设计的主要内容以及技术参数:功能主要包括:1)直流电机的正转;2)直流电机的反转;3)直流电机的加速;4)直流电机的减速;5)直流电机的转速在数码管上显示;6)直流电机的启动;7)直流电机的停止;第二章:总体设计方案总体设计方案的硬件部分详细框图如图一所示。
示数码管显PWM单片机按键控制电机驱动基于单片机的直流电机PWM调速控制系统的设计键盘向单片机输入相应控制指令,由单片机通过P1.0与P1.1其中一口输出与转速相应的PWM脉冲,另一口输出低电平,经过信号放大、光耦传递,驱动H型桥式电动机控制电路,实现电动机转向与转速的控制。
直流电机转速控制实验报告

计算机控制技术综合性设计实验实验课程:直流电机转速控制实验设计报告学生姓名:学生姓名:学生姓名:学生姓名:指导教师:牛国臣实验时间:年月日直流电机转速控制实验设计报告一、实验目的:1.掌握电机的工作原理。
2.掌握直流电机驱动控制技术。
3.掌握增量式编码器位置反馈原理。
4.熟悉单片机硬件电路设计及编程。
5.实现直流电机的转速控制。
二、实验内容:已知某一直流永磁有刷伺服电机参数如下:设计直流电机转速控制系统。
要求:表1 直流伺服电机参数1.分析并建立电机的数学模型,分别得出在连续控制系统和离散控制系统中对应的传递函数;2.基于MATLAB软件对直流电机进行仿真,并通过PID控制器的参数整定对直流电机进行闭环控制,3.设计直流电机控制硬件电路,主要包括主控模块、电机驱动模块、编码器反馈模块、通信模块、电源模块、显示模块等。
4.对各模块进行单元调试,设计数字PID控制器,并基于A VR单片机编制程序,进行系统联调。
5.最终完成直流电机控制硬件平台的设计、搭建及软件调试,要求有速度设置、显示功能,速度控制误差在1%以内,具有与上位机通讯的接口,能通过上位机方便进行参数设置、速度控制等操作。
三、 实验步骤:1、建立电机的数学模型,得出控制统的传递函数;由直流电机得来的三个方程:n k dt di Li R s u E m m ++=)( i k T M m =f L m T dtdw J T T ++= 、 进行拉式变换得:)()()()(s n k s LSI s I R s U E m m ++=)(s I k T M m =f L m T s JS T T +Ω+=)(带入数据在进行z 变换得: 521039.19252.01394.0459.1)(-⨯+-+=z z z z G 2、.基于MATLAB 软件对直流电机进行仿真(1)连续系统阶跃响应程序为:>> num=[1]num =1>> den=[0.0000000542,0.00061,0.0468]den =0.0000 0.0006 0.0468>> G=tf(num,den)Transfer function:1----------------------------------5.42e-008 s^2 + 0.00061 s + 0.0468>> step(G)>> Gz=c2d(G,0.01,'zoh')Transfer function:11.43 z + 0.06868-----------------z^2 - 0.4618 zSampling time: 0.01>> step(Gz)阶跃响应曲线如图1所示:图1 阶跃响应曲线(2)离散系统的单位阶跃响应程序如下:>> num=[52.756.913];>> den=[1 -0.8009 0.0005123];>> sys=[num,den,0.001];>> dstep(num,den,100)离散系统的阶跃响应曲线如图2所示(T=1ms):图2 离散系统的阶跃响应曲线(3)PID参数整定1)设D(z)=错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温度控制电机转速学院:机电学院班级:机电111学号:201100384110姓名:刘爱华1 引言直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。
从控制的角度来看,直流调速还是交流拖动系统的基础。
早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。
随着单片机技术的不断进步,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的稳定性能。
采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工作效率。
2 设计任务与要求2.1 设计任务温度控制直流电动机转速 2.2 设计要求(1)、使用A T89C51单片机为核心,使用4位集成式数码管显示当前温度,温度传感器使用DS18B20,使用L298驱动直流电动机。
(2)、用4位集成式数码管显示当前温度,当温度在C 045≥时,直流电动机在L298驱动下加速正转,温度在C 075≥全速正转;当温度C 010≤时,直流电动机加速反转,温度C 00≤时,直流电动机全速反转;温度C C 045~10之间时,直流电动机停止转动。
(3)、控制程序在Keil 软件中编写,编译,整个控制电路在Proteus 仿真软件中连接调示。
3 本课程设计的意义直流电动机作为一种高效率速度控制电动机引人注目、但市场的知名度还小高。
许多用户在设备用电动机的选择上经常出现不合理的现象。
比如为了实现设备的功能、当变频器控制的异步电动机满足不了要求时就盲目的选用昂贵的伺服电动机、其中有些情况完全可以用价格较低的直流电动机来实现。
采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工作效率,可以实现复杂的控制,控制灵活性和适应性好,无零点漂移,控制精密高,可提供人机界面,多机联网工作。
采用智能功率电路驱动比传统的分立功率器件组成的驱动体积小,功能强;减少了电路元器件数量,提高了系统的可靠性;控制电路哈尔功率电路集成在一起,使监控更容易实现;集成化使电路的连线减少,减少了布线电容和电感以及信号传输的延时,增加了系统抗干扰的能力;集成化使系统成本大大降低。
4 应用软件介绍4.1 Proteus仿真软件Proteus是一款Labcenter出品的电路分析实物仿真系统,可仿真各种电路和IC,并支持单片机,元件库齐全,使用方便,是不可多得的专业的单片机软件仿真系统。
该软件的特点:(1)全部满足我们提出的单片机软件仿真系统的标准,并在同类产品中具有明显的优势。
(2)具有模拟电路仿真、数字电路仿真、单片机及其外围电路组成的系统的仿真、RS一232动态仿真、1 C调试器、SPI调试器、键盘和LCD系统仿真的功能;有各种虚拟仪器,如示波器、逻辑分析仪、信号发生器等。
③目前支持的单片机类型有:68000系列、8051系列、AVR系列、PIC12系列、PIC16系列、PIC18系列、Z80系列、HC11系列以及各种外围芯片。
④支持大量的存储器和外围芯片。
总之该软件是一款集单片机和SPICE分析于一身的仿真软件,功能极其强大,可仿真51、AVR、PIC。
4.2 Keil软件Keil C51是美国Keil Software公司出品的51系列兼容单片机C语言软件开发系统,与汇编相比,C语言在功能上、结构性、可读性、可维护性上有明显的优势,因而易学易用。
用过汇编语言后再使用C来开发,体会更加深刻。
Keil C51软件提供丰富的库函数和功能强大的集成开发调试工具,全Windows界面。
另外重要的一点,只要看一下编译后生成的汇编代码,就能体会到Keil C51生成的目标代码效率非常之高,多数语句生成的汇编代码很紧凑,容易理解。
在开发大型软件时更能体现高级语言的优势。
5 keil软件编写5.1 BS18B20温度采集5.1.1温度采集初始化void dsreset(void){uint i;DS=1;i++;DS=0;i=103;while(i>0)i--;DS=1;i=4;while(i>0)i--;DS=1;}5.1.2写命令控制温度传感器void tmpwritebyte(uchar dat) {uint i;uchar j;bit testb;for(j=1;j<=8;j++){testb=dat&0x01;dat=dat>>1;if(testb) //write 1{DS=0;i++;i++;DS=1;i=8;while(i>0)i--;}else{DS=0;i=8;while(i>0)i--;//write 0 DS=1;i++;i++;}}}5.1.3读数据赋值给datbit tmpreadbit(void){uint i;bit dat;DS=1;DS=0;i++;i++;DS=1;i++;dat=DS;i=8;while(i>0)i--;return (dat);}uchar tmpread(void){uchar i,j,dat;dat=0;for(i=1;i<=8;i++){j=tmpreadbit();dat=(j<<7)|(dat>>1); }return(dat);}5.1.4数据处理即判断温度正负uint tmp() {float tt;uchar a,b,b1;dsreset();delay(1);tmpwritebyte(0xcc);tmpwritebyte(0xbe);a=tmpread();b=tmpread();temp=b;b1=b;temp<<=8;temp=temp|a;if(b1<8){flag+=1;tt=temp*0.0625;temp=tt*10+0.5;dis_buf[0]=0;}else{flag-=1;temp=~temp;temp=temp+1;tt=temp*0.0625;temp=tt*10+0.5;dis_buf[0]=0x40;}return temp;}5.2 数码管显示采集的温度5.2.1将采集后转化的温度对数组赋值void display(uint temp){uchar A1,A2,A3;A1=temp/100;A2=temp%100/10;A3=temp%10;t=A1*10+A2;dis_buf[3] = table[A3];dis_buf[2] = table1[A2];dis_buf[1] = table[A1];}5.2.2用定时器T1调用温度采集函数进行温度采集void timer1() interrupt 3{TH1=(65536-20000)/256;TL1=(65536-20000)%256;tmpchange();display(tmp());}5.2.3用定时器T0将处理后的温度用数码管显示void timer0() interrupt 1{TH0 = (65536-500)/256;TL0 = (65536-500)%256;P2=0xff;P0=dis_buf[dis_index];P2=dis_digit;dis_digit = _crol_(dis_digit,1);dis_index++;dis_index &= 0x07;}5.3 判断电机旋转情况if(flag==1){flag=0;if(t>=75)Turn_z();elseif(t>=45)Turn_zj();elseif(t>10)Turn_t();elseTurn_fj();}elseif(flag==-1){flag=0;Turn_f();}6 Proteus仿真6.1 Proteus中各元件的元件图6.1.1 AT89C51截图6.1.2 L298截图6.1.3 DS18B20截图6.1.4直流电动机截图6.1.5晶体管截图6.2 芯片功能控制6.2.1 Lm298芯片ENA为IN1、IN2 的控制使能端,本次设计用OUT1 、OUT2作为输出控制直流电机转动。
由于正反转换相时会产生饭香电压为保护LM298用图中二极管来起到保护作用。
6.2.2 DS18B20时序图即简介VCC接+5V、GND接地。
DQ为总线接单片机P1.6口DS18B20初始化DS18B20写入DS18B20读出6.3 Proteus仿真电路仿真图(未运行状态)温度大于75温度大于45小于75温度大于10小于457 结论通过该课程设计,我掌握了编译程序的原理以及步骤,还有编译程序工作的基本过程及其各阶段的基本任务,熟悉了编译程序总流程框图,构造工具及其相关的技术。
课本上的知识是机械的,抽象的。
在本次课程设计,我有很大的收获,这不仅仅是理论知识上的完善,而且实践能力和动手能力有了质的飞跃!设计中,我自感知识的缺陷,不断的上网查阅资料,翻阅各类相关书籍,自己动手,自己设计,让我的思维逻辑更加清晰。
在操作中,靠这次设计我基本掌握了单片机编程,将理论变为实际开了一个好头。
在这次课程设计过程中,我发现了自己综合应用能力的欠缺。
以后,我会更加重视用软件编程,应用单片机处理好更多的电路。
参考文献[1]辜承林,陈乔夫. 电机学.华中科技大学出版社.2010[2]徐玮. C51单片机高效入门. 机械工业出版社.2007[3]吴金戌. 沈庆阳,等.8051单片机实践与应用[M].清华大学出版社[4]苏家健. 曹柏荣,等.单片机原理及应用技术[M].高等教育出版社[5]肖兰. 马爱芳.电机与拖动[M].中国水利水电出版社[6]胡汉才. 单片机原理及其接口技术[M]。
北京:清华大学出版社[7]孙虎章. 自动控制系统[M]。
北京:中央广播电视大学出版社[8]杨兴姚. 电动机调速的原理及系统[M]。
北京:水利电力出版社。