调节直流电动机转速的方法

合集下载

直流电动机有哪几种调速方法各有哪些特点答:直流电动机有三种

直流电动机有哪几种调速方法各有哪些特点答:直流电动机有三种

直流电动机有哪几种调速方法?各有哪些特点?答:直流电动机有三种调速方法:1)调节电枢供电电压U ;2)减弱励磁磁通Φ;3)改变电枢回路电阻R 。

特点:对于要求在一定范围内无极平滑调速的系统来说,以调节电枢供电电压的方式为最好。

改变电阻只能有级调速;减弱磁通虽然能够平滑调速,但调速范围不大,往往只是配合调压方案,在基速(额定转速)以上作小范围的弱磁升速。

晶闸管—电动机系统当电流断续时机械特性的显著特点是什么?答:电流断续时的电压、电流波形图(Ⅰ10P 、Ⅱ 12P )(三相零式为例)。

断续时,0d u 波形本身与反电势E 有关,因而就与转速n 有关,而不是像电流连续时那样只由控制角α决定的常值。

机械特性呈严重的非线性,有两个显著的特点:第一个特点是当电流略有增加时,电动机的转速会下降很多,即机械特性变软。

当晶闸管导通时,整流电压波形与相电压完全一致,是电源正弦电压的一部分。

当电流断续后,晶闸管都不导通,负载端的电压波形就是反电势波形。

电流波形是一串脉冲波,其间距为︒120,脉冲电流的底部很窄。

由于整流电流平均值d I 与电流波形包围的面积成正比,如果电流波形的底部很窄,为了产生一定的d I ,各相电流峰值必须加大,因为RE u i d d -=,而整流输出的瞬时电压d u 的大小由交流电源决定,不能改变。

也就是说应使E 下降很多即转速下降很多,才能产生一定的d I ,这就是电流断续时机械特性变软的原因。

第二个特点是理想空载转速0n 升高。

因为理想空载时0=d I ,所以2m a x 02U u E d ==,所以0n 升高。

简述直流PWM 变换器电路的基本结构。

答:直流 PWM 变换器基本结构如图所示,包括 IGBT 和续流二极管。

三相交流电经过整流滤波后送往直流 PWM 变换器,通过改变直流 PWM 变换器中 IGBT 的控制脉冲占空比来调节直流 PWM 变换器输出电压大小,二极管起续流作用。

Ug0Ton T t 直流PWM 变换器基本结构直流PWM 变换器输出电压的特征是什么?答:频率一定、宽度可调的脉动直流电压。

《直流电机调速》课件

《直流电机调速》课件

直流电机调速的分类
直流电机调速可以分为线性调速和PWM调速两种方式。线性调速是通过改变电 机的输入电压或电流来实现调速的,而PWM调速则是通过改变电机输入电压的 占空比来实现调速的。
PWM调速具有更高的调速精度和更小的电机发热量,因此在许多应用中得到了 广泛的应用。
02
直流电机调速的方法
改变电枢电压调速
总结词
通过改变电枢两端的电压,可以调节直流电机的转速。
详细描述
当电枢两端电压增加时,电机转速相应增加;反之,当电压减小时,电机转速 相应降低。这种方法调速范围广,但需要可调直流电源,控制电路相对复杂。
改变励磁电流调速
总结词
通过改变励磁绕组的电流,可以调节 直流电机的磁场强度,进而调节电机 转速。
详细描述
02
直流电机调速是一种常见的电机 调速方式,具有调速范围广、调 速线性度好、动态响应快等优点 。
直流电机调速的原理
直流电机调速的原理基于直流电机的电磁转矩与电枢电流成 正比的特性。通过改变电枢电流的大小,可以改变电机的输 出转矩,从而调节电机的转速。
另外,直流电机还具有电枢反电动势,它与电枢电流的大小 成正比。改变电机的输入电压或电流,可以改变电机的输入 功率,进一步调节电机的转速。
控制复杂度较高
直流电机调速系统的控制算法相对复 杂,需要专业的技术人员进行维护和 调试。
05
直流电机调速的发展趋势
高性能直流电机调速系统的研究
总结词
随着工业自动化水平的提高,对直流电机调 速系统的性能要求也越来越高,高性能直流 电机调速系统的研究成为重要的发展趋势。
详细描述
为了满足高精度、高动态响应的调速需求, 研究者们不断探索新的控制算法和优化策略 ,以提高直流电机调速系统的调节精度、稳 定性和动态响应能力。

直流调速原理

直流调速原理

直流调速原理直流调速是指通过改变直流电机的电压、电流或者电机的磁通量来实现电机的转速调节。

直流电机是一种常见的电动机,广泛应用于工业生产、交通运输、家用电器等领域。

直流调速原理是通过改变电机的输入电压、电流或者磁通量来控制电机的转速,以满足不同工况下的需求。

直流调速的原理主要包括电压调速、电流调速和磁通量调速三种方式。

电压调速是通过改变电机的输入电压来控制电机的转速,电流调速是通过改变电机的输入电流来实现调速,而磁通量调速则是通过改变电机的磁通量来控制电机的转速。

这三种方式可以单独使用,也可以组合使用,以实现更精确的调速效果。

在直流调速系统中,控制电机的转速需要通过调节电机的输入电压、电流或者磁通量来实现。

其中,电压调速是最常见的一种方式。

通过改变电机的输入电压,可以改变电机的转矩和转速,从而实现对电机的调速。

电流调速则是通过改变电机的输入电流来实现调速,通过控制电机的电流大小,可以改变电机的输出转矩和转速。

而磁通量调速则是通过改变电机的磁通量来控制电机的转速,通过改变电机的磁场强度,可以改变电机的输出转矩和转速。

直流调速系统通常由控制器、功率电子器件和电机三部分组成。

控制器用于接收输入信号,并根据设定的转速要求来控制功率电子器件的开关,从而改变电机的输入电压、电流或者磁通量。

功率电子器件则用于实现对电机的电压、电流或者磁通量的调节,通常包括可控硅、晶闸管、IGBT等。

电机作为被控对象,根据控制器和功率电子器件的控制信号来实现对转速的调节。

在实际应用中,直流调速系统通常需要考虑到电机的动态特性、负载变化、系统稳定性等因素。

为了实现更精确的调速效果,通常需要采用闭环控制方式,即通过反馈电机的转速、电流等信息,来实时调节控制器的输出信号,以实现对电机的精确控制。

闭环控制系统通常包括传感器、编码器等用于反馈电机状态信息的装置,以及用于处理反馈信号并调节控制器输出的控制算法。

总的来说,直流调速原理是通过改变电机的输入电压、电流或者磁通量来实现对电机转速的调节。

直流电动机的PWM调压调速原理

直流电动机的PWM调压调速原理

直流电动机的PWM调压调速原理
直流电动机的PWM调压调速是指通过调节脉宽调制(PWM)信号的占空比,控制直流电动机的电压和转速。

其原理是利用数字信号的高低电平与时间的对应关系,通过高电平和低电平的时间比例来控制脉冲信号的平均值,从而实现对电动机的调压和调速。

具体来说,PWM调压调速主要包括以下几个步骤:
1.信号发生器:使用微控制器或其他信号发生器产生一个固定频率的方波信号,通常频率为几千赫兹到几十千赫兹。

这个信号称为PWM基准信号。

2.调制器:通过控制占空比,将PWM基准信号转换为调制后的PWM信号。

占空比是指高电平持续的时间与一个周期的比值。

例如,占空比为50%的PWM信号表示高电平和低电平持续时间相等。

调制器可以是硬件电路或者软件控制的。

3.电压调节:将调制后的PWM信号经过滤波器平滑输出,形成电压调节信号。

滤波器通常使用低通滤波器,将PWM信号的高频成分滤除,得到平均电压。

4.转速控制:通过调节占空比,改变PWM信号的高电平时间,从而改变直流电动机的平均电压。

占空比越大,输出电压就越高;占空比越小,输出电压就越低。

5.转速反馈:为了实现闭环控制,通常需要通过传感器获取直流电动机的转速,并将转速信息反馈给调速控制器。

调速控制器会根据反馈信号与设定的转速进行比较,调节占空比控制电动机的转速。

总结起来,PWM调压调速原理就是通过调节PWM信号的占空比控制直流电动机的电压和转速。

通过改变占空比,可以改变PWM信号的高电平时间,从而改变电动机的平均电压和转速。

同时,结合转速反馈,可以实现封闭环控制,使电动机的转速能够与设定值保持一致。

直流电动机调速方法有

直流电动机调速方法有

直流电动机调速方法有
直流电动机的调速方法主要有以下几种:
1. 变电压调速法:通过改变直流电机的输入电压来调整电机的转速。

增大输入电压可以提高电机的转速,减小输入电压可以降低电机的转速。

2. 变电流调速法:通过改变电机的励磁电流来调整电机的转速。

增大励磁电流可以提高电机的转速,减小励磁电流可以降低电机的转速。

3. 变极数调速法:通过改变电枢绕组和励磁绕组的并联组合方式来调整电机的转速。

增加并联绕组的极数可以提高电机的转速,减小并联绕组的极数可以降低电机的转速。

4. 变电阻调速法:通过改变电枢绕组或励磁绕组的电阻来调整电机的转速。

增大电阻可以降低电机的转速,减小电阻可以提高电机的转速。

5. 变频调速法:通过改变电机所接受的频率来调整电机的转速。

提高频率可以提高电机的转速,降低频率可以降低电机的转速。

这些调速方法可以单独应用,也可以结合使用,以实现更精确的电机转速调节。

简述直流电动机的调速方法。

简述直流电动机的调速方法。

简述直流电动机的调速方法。

直流电动机是一种无刷直流电机,其工作原理基于电枢的旋转,其调速方法
主要有以下几种:
1. 电阻调速:将直流电动机接入电阻器中,通过改变电阻的大小来控制电动机的转速。

这种方法的优点是调速范围宽,但缺点是调速效率低,而且电阻器易损坏。

2. 电容调速:在直流电动机的转轴上加装电容,通过改变电容的大小来控制电动机的转速。

这种方法的优点是调速效率高,但缺点是需要较大的电容,而且容易引起电动机故障。

3. 串激调速:在直流电动机的转轴上串联一个电阻和一个电感,通过改变它们的相对大小来控制电动机的转速。

这种方法的优点是调速范围宽,但缺点是需要复杂的电路,而且容易引起电动机故障。

4. 反相调速:在直流电动机的转轴上加装一个电容器和一个电阻,通过改变它们的相对大小来控制电动机的转速。

这种方法的优点是调速效率高,但缺点是需要较大的电容器,而且容易引起电动机故障。

除了以上几种调速方法外,还有一些其他的方法,例如脉冲调速、积分调速等。

这些方法在实际应用中要根据具体情况选择使用。

直流电动机的调速方法的选择应该考虑到调速范围、调速效率、电动机的性能和稳定性等因素。

在实际应用中,需要根据具体的情况和要求选择合适的调速方法。

直流电动机的调速

直流电动机的调速

一概述随着电力电子器件的发展,大功率变流技术前进到一个以弱电为控制,强电为输出的新时代。

直流电机调速系统由于它在技术性能与经济指标上具有优越性,实施技术上也比较成熟,因此在冶金、机械、矿山、铁道、纺织、化工、造纸及发电设备等行业都得到了广泛的应用,已成为工业自动控制领域一个及其重要的组成部分。

一般工业生产中大量应用各种交直流电动机。

直流电动机有良好的调速性能,三相交流桥式全控整流是目前在各种整流电路中应用最为广泛的电力电子电路,在运用到在直流电机调速时可以采用这种电路。

三相交流桥式全空整流最初用途是传动控制,但目前应用的新领域是各种直流电源设计。

前者是三相交流桥式全控整流电路的传统领域,后者则是它当前和未来发展的新领域。

而高频、大功率、高可靠性开关电源是当今电源变换技术发展的重要方向之一。

从我国的实际情况来看很好地采用三相桥式全控整流给直流电机调速仍然有很广泛的应用市场。

这对改善我国科技现状水平,提高经济效益将起着重要作用,所以研究三相桥是全控整流直流调速系统有着深远的意义,它不仅能够大大改善各种机车的调速系统,为其提高安全、快速、低损耗的调速装置,在解决目前国际各国所面临的能源无谓的消耗起到立竿见影的效果。

二设计的总体思路2.1 直流电动机的调速方法采用改变电动机端电压调速的方法。

当额定励磁保持不变,理想空载转速n随U减小而减小,各特性线斜率不变,由此可实现额定转速以下大范围平滑调速,并且在整个调速范围内机械特性硬度不变。

变电压调速要有可调的直流电源,根据供电电源的种类分两种情况:一是采用可控变流装置,将交流电转变为可调的直流电。

二是采用直流斩波器,在具有恒定直流供电电源的地方,实现脉冲调压调速由于工矿企业中大多为交流电源,因此前一种情况应用最广。

晶闸管变流装置输出的直流脉动电压U加在电抗器L和电动d机电枢两端,L起滤波作用以及保持电流连续。

改变晶闸管触发电路的移相控制电压U,就可改变触发脉冲的控制角。

直流电动机的调速方法

直流电动机的调速方法

直流电动机的调速方法
直流电动机是一种常见的电动机类型,可通过多种方法进行调速。

下面将介绍几种常用的直流电动机调速方法。

1. 电阻调速法:
通过改变外接电阻来改变电动机的终端电压,进而控制其转速。

调速范围相对较小,不适用于大功率电机。

2. 变磁调速法:
通过改变电动机的磁场强度来改变转矩和转速。

涉及到控制
电动机的励磁电流和电枢电流,调速范围较大。

3. 反电动势调速法:
利用电动机内部产生的反电动势,通过控制电源电压或电动
机的励磁电流来调节电机转速。

调速范围较大,但需要使用复杂的控制装置。

4. PWM调速法:
利用脉冲宽度调制技术,通过改变电源给电动机的占空比来
调节电机转速。

调速范围广,控制简单,效果较好。

5. 使用可变频率变电压供电系统:
通过改变电源的频率和电压来改变电机的转速。

调速范围广,但需要较复杂的电力电子设备。

以上是几种常见的直流电动机调速方法,不同的方法适用于不
同的场景和需求。

在实际应用中,需要根据具体情况选择合适的调速方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

调节直流电动机转速的方法
(1)调节电枢供电电压;
(2)减弱励磁磁通;
(3)改变电枢回路电阻。

抑制电流脉动的措施:
(1)增加整流电路相数,或采用多重化技术;
(2)设置电感量足够大的平波电抗器。

2.1.2 直流PWM变换器-电动机系统
1、与V-M系统相比,直流PWM变换器-电动机系统的优越性:
1)主电路简单,所需电力电子器件少
2)开关工作频率高,电流容易连续,谐波少,电机损耗及发热都较小
3)低速性能好,稳速精度高,调速范围宽
4)若与快速响应的电机配合,则系统频带宽,动态响应快,动态抗干扰能力强
5)电力电子器件工作在开关状态,导通损耗小,当开关频率适当时,开关损耗也不大,装置效率高
6)直流电源采用不可控整流时,电网功率因数比相控整流器高
2.反馈控制规律
(1)比例控制的反馈控制系统是被调量有静差的控制系统(2)反馈控制系统的作用是:抵抗扰动, 服从给定
(3)系统的精度依赖于给定和反馈检测的精度。

相关文档
最新文档