人教版高数必修一第13讲:函数与方程(教师版)

合集下载

新人教A版高中数学(必修1)3.1《函数与方程》教案2篇

新人教A版高中数学(必修1)3.1《函数与方程》教案2篇

“方程的根与函数的零点”教学设计(1)一、内容和内容解析本节课是在学生学习了《基本初等函数(Ⅰ)》的基础上,学习函数与方程的第一课时,本节课中通过对二次函数图象的绘制、分析,得到零点的概念,从而进一步探索函数零点存在性的判定,这些活动就是想让学生在了解初等函数的基础上,利用计算机描绘函数的图象,通过对函数与方程的探究,对函数有进一步的认识,解决方程根的存在性问题,为下一节《用二分法求方程的近似解》做准备.从教材编写的顺序来看,《方程的根与函数的零点》是必修1第三章《函数的应用》一章的开始,其目的是使学生学会用二分法求方程近似解的方法,从中体会函数与方程之间的联系.利用函数模型解决问题,作为一条主线贯穿了全章的始终,而方程的根与函数的零点的关系、用二分法求方程的近似解,是在建立和运用函数模型的大背景下展开的.方程的根与函数的零点的关系、用二分法求方程的近似解中均蕴涵了“函数与方程的思想”和“数形结合的思想”,建立和运用函数模型中蕴含的“数学建模思想”,是本章渗透的主要数学思想.从知识的应用价值来看,通过在函数与方程的联系中体验数学中的转化思想的意义和价值,体验函数是描述宏观世界变化规律的基本数学模型,体会符号化、模型化的思想,体验从系统的角度去思考局部问题的思想.基于上述分析,确定本节的教学重点是:了解函数零点的概念,体会方程的根与函数零点之间的联系,掌握函数零点存在性的判断.二、目标和目标解析1.通过对二次函数图象的描绘,了解函数零点的概念,渗透由具体到抽象思想,领会函数零点与相应方程实数根之间的关系,2.零点知识是陈述性知识,关键不在于学生提出这个概念。

而是理解提出零点概念的作用,沟通函数与方程的关系。

3.通过对现实问题的分析,体会用函数系统的角度去思考方程的思想,使学生理解动与静的辨证关系.掌握函数零点存在性的判断.4.在函数与方程的联系中体验数形结合思想和转化思想的意义和价值,发展学生对变量数学的认识,体会函数知识的核心作用.三、教学问题诊断分析1.零点概念的认识.零点的概念是在分析了众多图象的基础上,由图象与轴的位置关系得到的一个形象的概念,学生可能会设法画出图象找到所有任意函数的可能存在的所有零点,但是并不是所有函数的图象都能具体的描绘出,所以在概念的接受上有一点的障碍.2.零点存在性的判断.正因为f(a)·f(b)<0且图象在区间[a,b]上连续不断,是函数f(x)在区间[a,b]上有零点的充分而非必要条件,容易引起思维的混乱就是很自然的事了.3.零点(或零点个数)的确定.学生会作二次函数的图象,但是要作出一般的函数图象(或图象的交点)就比较困难,而在这一节课最重要的恰恰就是利用函数图象来研究函数的零点问题.这样就在零点(或零点个数)的确定上给学生带来一定的困难.基于上述分析,确定本节课的教学难点是:准确认识零点的概念,在合情推理中让学生体会到判定定理的充分非必要性,能利用适当的方法判断零点的存在或确定零点.四、教学支持条件分析考虑到学生的知识水平和理解能力,教师可借助计算机工具和构建现实生活中的模型,从激励学生探究入手,讲练结合,直观演示能使教学更富趣味性和生动性.通过让学生观察、讨论、辨析、画图,亲身实践,在函数与方程的联系中体验数形结合思想、转化思想的意义和价值,发展学生对变量数学的认识,体会函数知识的核心作用.五、教学过程设计(一)引入课题问题引入:求方程3x2+6 x-1=0的实数根。

人教A版高中数学必修一《函数与方程》PPT (1)

人教A版高中数学必修一《函数与方程》PPT (1)
解+:(+11与)1由与x条轴x件轴的,的抛交交点物点分线分别f(别在x)=在区区间x2+间(-(2-1m,01x),和+0)和(21m,(21+),2)1
与内内,x轴,如的如图交图(1)点(所1)分所示示别,,得在得区间(-1,0)和(1,2)内,
f0f=0=2m2+m+1<10<,0,
得ff-1ff=-11==41m=42+m>20+2>,<020,<,0,
题号
1 2 3 4 5
答案
(1.25, 1.5)
1 2
,
1 3
3
a1
(-2,0)
主页
题 型 一 判断函数在给定区间上零点的存在性
【例 1】判断下列函数在给定区间上是否存在零点. (1) f(x)=x2-3x-18,x∈[1,8]; (2) f(x)=log2(x+2)-x,x∈[1,3].
解: ∵ ∴ 故(1方)fff∵∴故∵∴故∵∴故方f((((法181xfff)))ffffff法)fff= ·=(((((((((二f=(((181181181(xxx一)))))))))818)))==··===·=x)ff==f=22<2((--(-8881188180xxx)))2222,2233<<22----<32----× ×-00x0,,3333-,3333183××××××xx- -x1---818181811,------88111==88x81111,,11∈8888,-288====2xx==[x>2∈∈1--22∈00,-2228<,[[2>>]2211[0存>210000,,,8800,<<,,8在]]<,00存存]0,,存零,在在在点零零零.点点点... 令令ff((xx))==00,,得得xx22--33xx--1188==00,,xx∈∈[[11,,88]].. ∴∴((xx--66))((xx++33))==00,,∵∵xx==66∈∈[[11,,88]],,xx==--33∉∉[[11,,88]],,

2020-2021学年高中数学新教材必修第一册(人A教版)课件:3.1.1 函数的概念

2020-2021学年高中数学新教材必修第一册(人A教版)课件:3.1.1 函数的概念

2.实数集 R 的区间表示
实数集 R 可以用区间表示为_(_-__∞__,_+_,∞“) ∞”读作“无穷大”;
“-∞”读作“负无穷大”;“+∞”读作“正无穷大”.
3.无穷大的几何表示
定义

符号
数轴表示
{x|x≥a} _[_a_,_+ __∞__)
{x|x>a} _(_a_,_+__∞__)
{x|x≤b} _(_-_∞ __,__b_]
要点三 同一函数 如果两个函数的定义域相同,并且对应关系完全一致,即相同的 自变量对应的函数值也相同,那么这两个函数是同一个函数.
[教材答疑]
1.教材 P60 思考 根据问题 1 的条件,我们不能判断列车以 350 km/h 运行半小时后的情况, 所以上述说法不正确.显然,其原因是没有关注到 t 的变化范围. 2.教材 P63 思考 反比例函数 y=kx(k≠0)的定义域为{x|x≠0},对应关系为“倒数的 k 倍”, 值域为{y|y≠0}.反比例函数用函数定义叙述为:对于非空数集 A={x|x≠0} 中的任意一个 x 值,按照对应关系 f“倒数的 k(k≠0)倍”,在集合 B={y|y≠0} 中都有唯一确定的数kx和它对应,那么此时 f:A→B 就是集合 A 到集合 B 的一 个函数,记作 f(x)=kx(k≠0),x∈A.
(1)求 f(2)+f12,f(3)+f13的值; (2)求 f(2)+f12+f(3)+f13+…+f(2 021)+f2 0121的值.
解析:(1)∵f(x)=1+x2x2,
∴f(2)+f12=1+2222+1+12122 2=1,f(3)+f13=1+3232+1+13132 2=1. (2)由(1)知 f(2)+f12=1,f(3)+f13=1,又 f(4)+f14=1,…, f(2 021)+f2 0121=1, ∴f(2)+f12+f(3)+f13+…+f(2 021)+f2 0121=2 020.

函数与方程、不等式之间的关系教案-高一上学期数学人教B版(2019)必修第一册

函数与方程、不等式之间的关系教案-高一上学期数学人教B版(2019)必修第一册

函数与方程、不等式之间的关系【第1课时】【教学目标】【核心素养】1.理解函数零点的概念以及函数的零点与方程的根之间的关系.(难点)2.会求函数的零点.(重点)3.掌握函数与方程、不等式之间的关系,并会用函数零点法求不等式的解集.(重点、难点)1.借助函数零点概念的理解,培养数学抽象的素养.2.通过函数与方程、不等式之间的关系的学习,提升逻辑推理的素养.3.利用零点法求不等式的解集,培养数学运算的素养.【教学过程】一、新知初探1.函数的零点(1)函数零点的概念:一般地,如果函数y=f(x)在实数α处的函数值等于零,即f(α)=0,则称实数α为函数y=f(x)的零点.(2)三者之间的关系:函数f(x)的零点⇔函数f(x)的图像与x轴有交点⇔方程f(x)=0有实数根.2.二次函数的零点及其与对应方程、不等式的关系(1)ax2+bx+c=0(a≠0)的解是函数f(x)=ax2+bx+c的零点.(2)ax2+bx+c>0(a≠0)的解集是使f(x)=ax2+bx+c的函数值为正数的自变量x的取值集合;ax2+bx+c<0(a≠0)的解集是使f(x)=ax2+bx+c 的函数值为负数的自变量x的取值集合.3.图像法解一元二次不等式的步骤(1)解一元二次不等式对应的一元二次方程;(2)求出其对应的二次函数的零点;(3)画出二次函数的图像;(4)结合图像写出一元二次不等式的解集.二、初试身手1.函数y=1+1x的零点是()A.(-1,0)B.x=-1 C.x=1 D.x=0 答案:B解析:令1+1x=0解得x=-1,故选B.2.根据表格中的数据,可以断定方程e x-(x+2)=0(e≈2.72)的一个x -1012 3e x0.3712.727.4020.12x+21234 5A.(-1,0)B.(0,1)C.(1,2)D.(2,3)答案:C解析:令f(x)=e x-(x+2),则f(-1)=0.37-1<0,f(0)=1-2<0,f(1)=2.72-3<0,f(2)=7.40-4=3.40>0.由于f(1)·f(2)<0,∴方程e x-(x+2)=0的一个根在(1,2)内.3.若f(x)=-x2+mx-1的函数值有正值,则m的取值范围是()A.m<-2或m>2 B.-2<m<2C.m≠±2D.1<m<3答案:A解析:∵f(x)=-x2+mx-1有正值,∴Δ=m2-4>0,∴m>2或m<-2.4.不等式1+x1-x≥0的解集为________.答案:[-1,1)解析:原不等式等价于(x+1)(x-1)≤0,且x-1≠0,∴-1≤x<1.三、合作探究类型1:函数的零点及求法例1:求函数f(x)=x3-7x+6的零点.解:令f(x)=0,即x3-7x+6=0,∴(x3-x)-(6x-6)=0,∴x(x-1)(x+1)-6(x-1)=(x-1)·(x2+x-6)=(x-1)(x-2)(x+3)=0,解得x1=1,x2=2,x3=-3,∴函数f(x)=x3-7x+6的零点是1,2,-3.规律方法求函数y=f(x)的零点通常有两种方法:一是令y=0,根据解方程f(x)=0的根求得函数的零点;二是画出函数y=f(x)的图像,图像与x轴的交点的横坐标即为函数的零点.跟踪训练1.如图所示是一个二次函数y=f(x)的图像.(1)写出这个二次函数的零点;(2)试比较f(-4)·f(-1),f(0)·f(2)与0的大小关系.解:(1)由图像可知,函数f(x)的两个零点分别是-3,1.(2)根据图像可知,f(-4)·f(-1)<0,f(0)·f(2)<0.类型2:二次函数的零点及其与对应方程、不等式的关系例2:利用函数求下列不等式的解集:(1)x2-5x-6>0;(2)(2-x)(x+3)<0;(3)4(2x2-2x+1)>x(4-x).解:(1)方程x2-5x-6=0的两根为x1=-1,x2=6.结合二次函数y=x2-5x-6的图像知,原不等式的解集为(-∞,-1)∪(6,+∞).(2)原不等式可化为(x-2)(x+3)>0.方程(x-2)(x+3)=0的两根为x1=2,x2=-3.结合二次函数y=(x-2)(x+3)的图像知,原不等式的解集为(-∞,-3)∪(2,+∞).(3)由原不等式得8x 2-8x +4>4x -x 2,即9x 2-12x +4>0.解方程9x 2-12x +4=0,解得x 1=x 2=23.结合二次函数y =9x 2-12x +4的图像知,原不等式的解集为⎝ ⎛⎭⎪⎫-∞,23∪⎝ ⎛⎭⎪⎫23,+∞. 规律方法利用函数求不等式解集的基本步骤1.把一元二次不等式化成一般形式,并把a 的符号化为正;2.计算其对应一元二次方程的根的判别式Δ;3.求其对应一元二次方程的根;4.写出解集大于取两边,小于取中间. 跟踪训练2.利用函数求下列不等式的解集:(1)2x 2+7x +3>0;(2)-x 2+8x -3>0;(3)x 2-4x -5<0;(4)-4x 2+18x -814>0.解:(1)对于方程2x 2+7x +3=0,因为Δ=72-4×2×3=25>0,所以方程2x 2+7x +3=0有两个不相等的实数根,x 1=-3,x 2=-12.又因为二次函数y =2x 2+7x +3的图像开口向上,所以原不等式的解集为(-∞,-3)∪⎝ ⎛⎭⎪⎫-12,+∞. (2)对于方程-x 2+8x -3=0,因为Δ=82-4×(-1)×(-3)=52>0, 所以方程-x 2+8x -3=0有两个不相等的实数根,x 1=4-13,x 2=4+13. 又因为二次函数y =-x 2+8x -3的图像开口向下,所以原不等式的解集为(4-13,4+13).(3)原不等式可化为(x -5)(x +1)<0,所以原不等式的解集为(-1,5).(4)原不等式可化为⎝ ⎛⎭⎪⎫2x -922<0, 所以原不等式的解集为∅.类型3:用函数零点法求一元高次不等式的解集例3:求函数f(x)=(x-1)(x-2)(x+3)的零点,并作出函数图像的示意图,写出不等式f(x)≥0和f(x)<0的解集.解:函数的零点为-3,1,2.x (-∞,-3)(-3,1)(1,2)(2,+∞)f(x)-+-+由此可以画出此函数的示意图如图.由图可知,f(x)≥0的解集为[-3,1]∪[2,+∞),f(x)<0的解集为(-∞,-3)∪(1,2).规律方法解题步骤:1.求出零点;2.拆分定义域;3.判断符号;4.写出解集.注意判断符号的方法,将最高项的系数化为正数,最右边的区间内为正,然后往左依次负正相间.跟踪训练3.求函数f(x)=(1-x)(x-2)(x+2)的零点,并作出函数图像的示意图,写出不等式f(x)≥0和f(x)<0的解集.解:函数的零点为-2,1,2.x (-∞,-2)(-2,1)(1,2)(2,+∞)f(x)+-+-由此可以画出此函数的示意图如图.由图可知,f(x)≥0的解集为(-∞,-2]∪[1,2],f(x)<0的解集为(-2,1)∪(2,+∞).四、课堂小结1.方程f(x)=g(x)的根是函数f(x)与g(x)的图像交点的横坐标,也是函数y=f(x)-g(x)的图像与x轴交点的横坐标.2.二次函数的零点及其与对应方程、不等式的关系(1)ax2+bx+c=0(a≠0)的解是函数f(x)=ax2+bx+c的零点.(2)ax2+bx+c>0(a≠0)的解集是使f(x)=ax2+bx+c的函数值为正数的自变量x的取值集合;ax2+bx+c<0(a≠0)的解集是f(x)=ax2+bx+c的函数值为负数的自变量x的取值集合.3.图像法解一元二次不等式的步骤(1)解一元二次不等式对应的一元二次方程;(2)求出其对应的二次函数的零点;(3)画出二次函数的图像;(4)结合图像写出一元二次不等式的解集.五、当堂达标1.下列图像表示的函数中没有零点的是()答案:A解析:B,C,D的图像均与x轴有交点,故函数均有零点,A的图像与x 轴没有交点,故函数没有零点.2.方程5x2-7x-1=0的根所在的区间是()A.(-1,0)B.(1,2)C.一个根在(-1,0)上,另一个根在(1,2)上D.一个根在(0,1)上,另一个根在(-2,-1)上答案:C解析:∵f(-1)·f(0)<0,f(1)·f(2)<0,∴选C.3.函数f(x)=x-1x零点的个数是()A.0 B.1 C.2 D.3答案:C解析:令x-1x=0,即x2-1=0,∴x=±1.∴f(x)=x-1x的零点有两个.4.函数f(x)=(x2-1)(x+2)2(x2-2x-3)的零点个数是________.答案:4解析:f(x)=(x+1)(x-1)(x+2)2(x-3)(x+1)=(x+1)2(x-1)(x+2)2(x-3).可知零点为±1,-2,3,共4个.【第2课时】【教学目标】【核心素养】1.掌握函数零点的存在性定理,并会判断函数零点的个数.(重点)2.了解二分法是求方程近似解的常用方法,掌握二分法是求函数零点近似解的步骤.(难点)3.理解函数与方程之间的联系,并能用函数与方程思想分析问题、解决问题.(重点、难点)1.通过存在性定理的学习,培养逻辑推理的素养.2.通过二分法的学习,提升数据分析,数学建模的学科素养.3.理解函数与方程之间的联系,提升数学抽象的学科素养.【教学过程】一、新知初探1.函数零点的存在性定理如果函数y=f(x)在区间[a,b]上的图像是连续不断的,并且f(a)f(b)<0(即在区间两个端点处的函数值异号),则函数y=f(x)在区间[a,b]中至少有一个零点,即∃x0∈[a,b],f(x0)=0.2.二分法的定义(1)二分法的条件:函数y=f(x)在区间[a,b]上连续不断且f(a)f(b)<0.(2)二分法的过程:通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法,称为二分法.由函数的零点与相应方程根的关系,也可以用二分法求方程的近似解.3.用二分法求函数零点近似值的步骤给定精确度ε,用二分法求函数f (x )在[a ,b ]上的零点近似值的步骤是:第一步:检查|b -a |<2ε是否成立,如果成立,取x 1=a +b 2,计算结束;如果不成立,转到第二步.第二步:计算区间[a ,b ]的中点a +b 2对应的函数值,若f ⎝ ⎛⎭⎪⎫a +b 2=0,取x 1=a +b 2,计算结束;若f ⎝ ⎛⎭⎪⎫a +b 2≠0,转到第三步. 第三步 若f (a )f ⎝ ⎛⎭⎪⎫a +b 2<0,将a +b 2的值赋给b ⎝ ⎛⎭⎪⎫用a +b 2→b 表示,下同,回到第一步;若f ⎝ ⎛⎭⎪⎫a +b 2f (b )<0,将a +b 2的值赋给a ,回到第一步. 二、初试身手1.下列函数不宜用二分法求零点的是( )A .f (x )=x 3-1B .f (x )=ln x +3C .f (x )=x 2+22x +2D .f (x )=-x 2+4x -1 答案:C解析:因为f (x )=x 2+22x +2=(x +2)2≥0,不存在小于0的函数值,所以不能用二分法求零点.2.若函数f (x )在区间[a ,b ]上为单调函数,且图像是连续不断的曲线,则下列说法中正确的是( )A .函数f (x )在区间[a ,b ]上不可能有零点B .函数f (x )在区间[a ,b ]上一定有零点C .若函数f (x )在区间[a ,b ]上有零点,则必有f (a )·f (b )<0D .若函数f (x )在区间[a ,b ]上没有零点,则必有f (a )·f (b )>0 答案:D解析:函数f (x )在区间[a ,b ]上为单调函数,如果f (a )·f (b )<0,可知函数在(a ,b )上有一个零点,如果f (a )·f (b )>0,可知函数在[a ,b ]上没有零点,所以函数f (x )在区间[a ,b ]上可能没有零点,也可能有零点,所以A 不正确;函数f (x )在区间[a ,b ]上可能有零点,也可能没有零点;所以B 不正确; 若函数f (x )在区间[a ,b ]上有零点,则可能f (a )·f (b )<0,也可能f (a )·f (b )=0所以C 不正确;若函数f(x)在区间[a,b]上没有零点,则必有f(a)·f(b)>0,正确;故选D.]3.用“二分法”可求近似解,对于精确度ε说法正确的是()A.ε越大,零点的精确度越高B.ε越大,零点的精确度越低C.重复计算次数就是εD.重复计算次数与ε无关答案:B解析:依“二分法”的具体步骤可知,ε越大,零点的精确度越低.4.若函数f(x)的图像是连续不断的,且f(0)>0,f(1)·f(2)·f(4)<0,则下列命题正确的是________.①函数f(x)在区间(0,1)内有零点;②函数f(x)在区间(1,2)内有零点;③函数f(x)在区间(0,2)内有零点;④函数f(x)在区间(0,4)内有零点.答案:④解析:∵f(0)>0,而由f(1)·f(2)·f(4)<0,知f(1),f(2),f(4)中至少有一个小于0.∴(0,4)上有零点.三、合作探究类型1:判断函数零点所在的区间例1:求证:方程x4-4x-2=0在区间[-1,2]内至少有两个实数解.证明:设f(x)=x4-4x-2,其图像是连续曲线.因为f(-1)=3>0,f(0)=-2<0,f(2)=6>0,所以方程在(-1,0),(0,2)内都有实数解.从而证明该方程在给定的区间内至少有两个实数解.规律方法一般而言,判断函数零点所在区间的方法是将区间端点代入函数求出函数的值,进行符号判断即可得出结论.此类问题的难点往往是函数值符号的判断,可运用函数的有关性质进行判断.跟踪训练1.若函数y=f(x)在区间[a,b]上的图像为连续不断的一条曲线,则下列说法正确的是()A.若f(a)f(b)>0,则不存在实数c∈(a,b)使得f(c)=0B.若f(a)f(b)<0,则存在且只存在一个实数c∈(a,b)使得f(c)=0C.若f(a)f(b)>0,则有可能存在实数c∈(a,b)使得f(c)=0D.若f(a)f(b)<0,则有可能不存在实数c∈(a,b)使得f(c)=0 答案:C解析:对于A选项,可能存在,如y=x2;对于B选项,必存在但不一定唯一,选项D一定存在.类型2:对二分法概念的理解例2:下列图像与x轴均有交点,其中不能用二分法求函数零点的是()答案:B解析:利用二分法求函数的零点必须满足零点两侧函数值异号,在选项B 中,不满足零点两侧函数值异号,不能用二分法求零点.由于A、C、D中零点的两侧函数值异号,故可采用二分法求零点.规律方法二分法是求一般函数的零点的一种通法,使用二分法的前提条件是:函数零点的存在性.对“函数在区间[a,b]上连续”的理解如下:不管函数在整个定义域内是否连续,只要找得到包含零点的区间上函数图像是连续的即可.跟踪训练2.如图是函数f(x)的图像,它与x轴有4个不同的公共点.给出下列四个区间,不能用二分法求出函数f(x)的零点近似值的是()A.(-2.1,-1)B.(1.9,2.3)C.(4.1,5)D.(5,6.1)答案:B解析:只有B 中的区间所含零点是不变号零点. 类型3:用二分法求函数零点例3:求函数f (x )=x 2-5的负零点.(精确度为0.1) 解:由于f (-2)=-1<0,f (-3)=4>0, 故取区间(-3,-2)作为计算的初始区间, 区间 中点的值 中点函数近似值 (-3,-2) -2.5 1.25 (-2.5,-2) -2.25 0.0625 (-2.25,-2) -2.125 -0.4844 (-2.25,-2.125) -2.1875-0.2148 (-2.25,-2.1875)-2.21875-0.0771由于|-2.25-(-2.1875)|=0.0625<0.1, 所以函数的一个近似负零点可取-2.25. 规律方法利用二分法求函数零点应关注三点1.要选好计算的初始区间,这个区间既要包含函数的零点,又要使其长度尽量小.2.用列表法往往能比较清晰地表达函数零点所在的区间.3.根据给定的精确度,及时检验所得区间长度是否达到要求,以决定是停止计算还是继续计算.跟踪训练3.证明函数f (x )=2x +3x -6在区间[1,2]内有唯一零点,并求出这个零点(精确度为0.1).解:由于f (1)=-1<0,f (2)=4>0,又函数f (x )在[1,2]内是增函数,所以函数在区间[1,2]内有唯一零点,不妨设为x 0,则x 0∈[1,2].下面用二分(a ,b ) (a ,b )的中点f (a ) f (b ) f ⎝⎛⎭⎪⎫a +b 2 (1,2)1.5f (1)<0f (2)>0f (1.5)>0(1,1.5) 1.25 f (1)<0 f (1.5)>0 f (1.25)>0 (1,1.25) 1.125f (1)<0 f (1.25)>0f (1.125)<0 (1.125,1.25)1.1875 f (1.125)<0f (1.25)>0f (1.1875)<0因为|1.1875-1.25|=0.0625<0.1,所以函数f (x )=2x +3x -6的精确度为0.1的近似零点可取为1.25.类型4:用二分法求方程的近似解例4:用二分法求方程2x 3+3x -3=0的一个正实数近似解(精确度为0.1). 解:令f (x )=2x 3+3x -3,经计算,f (0)=-3<0,f (1)=2>0,f (0)·f (1)<0, 所以函数f (x )在(0,1)内存在零点, 即方程2x 3+3x -3=0在(0,1)内有解.取(0,1)的中点0.5,经计算f (0.5)<0,又f (1)>0, 所以方程2x 3+3x -3=0在(0.5,1)内有解. (a ,b ) 中点c f (a ) f (b ) f ⎝⎛⎭⎪⎫a +b 2 (0,1) 0.5 f (0)<0 f (1)>0 f (0.5)<0 (0.5,1) 0.75 f (0.5)<0 f (1)>0 f (0.75)>0 (0.5,0.75) 0.625 f (0.5)<0 f (0.75)>0 f (0.625)<0 (0.625,0.75) 0.6875f (0.625)<0f (0.75)>0f (0.6875)<0(0.6875,0.75)|0.6875-0.75|=0.0625<0.1由于|0.6875-0.75|=0.0625<0.1,所以0.75可作为方程的一个正实数近似解.规律方法用二分法求方程的近似解应明确两点(1)根据函数的零点与相应方程的解的关系,求函数的零点与求相应方程的解是等价的.求方程f (x )=0的近似解,即按照用二分法求函数零点近似值的步骤求解.(2)对于求形如f (x )=g (x )的方程的近似解,可以通过移项转化成求形如F(x)=f(x)-g(x)=0的方程的近似解,然后按照用二分法求函数零点近似值的步骤求解.跟踪训练4.求方程x2=2x+1的一个近似解.(精确度0.1)解:设f(x)=x2-2x-1.∵f(2)=-1<0,f(3)=2>0.∴在区间(2,3)内,方程x2-2x-1=0有一解,记为x0.取2与3的平均数2.5,∵f(2.5)=0.25>0,∴2<x0<2.5;再取2与2.5的平均数2.25,∵f(2.25)=-0.4375<0,∴2.25<x0<2.5;如此继续下去,有f(2.375)<0,f(2.5)>0⇒x0∈(2.375,2.5);f(2.375)<0,f(2.4375)>0⇒x0∈(2.375,2.4375).∵|2.375-2.4375|=0.0625<0.1,∴方程x2=2x+1的一个精确度为0.1的近似解可取为2.4375.四、课堂小结1.二分法就是通过不断地将所选区间一分为二,使区间的两个端点逐步逼近零点,直至找到零点附近足够小的区间,根据所要求的精确度,用此区间的某个数值近似地表示真正的零点.2.并非所有函数都可以用二分法求其零点,只有满足:(1)在区间[a,b]上连续不断;(2)f(a)·f(b)<0,上述两条的函数方可采用二分法求得零点的近似值.五、当堂达标1.函数y=-x2+8x-16在区间[3,5]上()A.没有零点B.有一个零点C.有两个零点D.有无数个零点答案:B解析:令-x2+8x-16=0,得x=4,故函数y=-x2+8x-16在[3,5]上有一个零点.2.用二分法求函数f (x )=x 3+x 2-2x -2的一个正零点的近似值(精确到0.1)时,依次计算得到如下数据:f (1)=-2,f (1.5)=0.625,f (1.25)≈-0.984,f (1.375)≈-0.260,关于下一步的说法正确的是( )A .已经达到精确度的要求,可以取1.4作为近似值B .已经达到精确度的要求,可以取1.375作为近似C .没有达到精确度的要求,应该接着计算f (1.4375)D .没有达到精确度的要求,应该接着计算f (1.3125) 答案:C解析:由二分法知,方程x 3+x 2-2x -2=0的根在区间(1.375,1.5),没有达到精确度的要求,应该接着计算f (1.4375).故选C .3.函数图像与x 轴均有交点,但不宜用二分法求交点横坐标的是( )答案:B4.用二分法求函数零点,函数的零点总位于区间[a n ,b n ]上,当|a n -b n |<ε时,函数的近似零点a n +b n2与真正零点的误差不超过A .εB .12εC .2εD .14ε 答案:B解析:根据用“二分法”求函数近似零点的步骤知,当|a n -b n |<ε时,区间[a n ,b n ]的中点x n =12(a n +b n )就是函数的近似零点,这时计算终止,从而函数的近似零点与真正零点的误差不超过12ε.故选B .。

高中数学(必修1)第1章13函数的奇偶性

高中数学(必修1)第1章13函数的奇偶性

高中数学第二章《函数》第三节函数的奇偶性(第一课时)讲课稿德阳市中江城北中学 姚志华教材:人教版全日制普通高级中学教科书(必修)数学第一册(上)一:情景设置提出问题:同学们,上一节我们学习了的函数的单调性,大家还记得我们是用什么方式来研究的吗?学生回答(众):数形结合教师分析:对,我们是“利用函数的图象来理解函数的性质”,是先从函数的图象看出“随着自变量的增大函数值随之增大或减小”,然后利用函数解析式(从数的角度)进行研究。

这一节我们继续学习函数的另一个性质。

请大家请观察一下站在你们面前的老师具有怎样的数学特征? 把老师画下来是个“轴对称图形”,左耳与右耳是对称的,左眼与右眼是对称的,左手与手耳是对称的,这是我们初中学过的对称图形知识,那么大家还记得什么叫轴对称图形?什么叫中心对称图形?学生回答:沿着一条直线对折后的两部分能够完全重合的图形叫轴对称图形。

图形围绕某一个点旋转1800得到的图形与原图形重合的图形叫中心对称图形。

大自然的物质结构是用对称语言写成的,生活中的对称图案、对称符号丰富多彩,十分美丽(演示4个图形)。

教师分析:这一章我们学习的是函数,函数的图象也是一种图形,当函数的图像也是轴对称图形或中心对称图形时,我们又如何利用函数的解析式来刻画函数图象的几何特征呢?二:基本知识(一)偶函数概念教师提问:请大家观察函数y=x 2与函数y=|x|-2的图像有什么特征?大家能否用对称的观点来研究函数的图象呢?(1)反映在形:函数图像是轴对称图形,对称轴是y 轴。

即若点(x ,f (x ))是函数y=x 2图像上的任意一点,则它关于y 轴的对称点(-x ,f (-x ))也在函数y=x 2的图像上,这样的函数称之为偶函数。

(2)反映在数上:对于函数y=x 2有x … -3 -2 -1 0 1 2 3 … f (x )=x 2…94 1 0 149…对于函数y=|x|-2有x … -3 -2 -1 0 1 2 3 … f (x )=|x|-2… -112 1 0 -1 …f (-21)=(-21)2=(21)2=f (21);……(不完全归纳法),这里的数是取之不完的,因此与函数单调性一样,利用字母x 代替。

人教版高中数学必修一教学案-函数及其表示方法

人教版高中数学必修一教学案-函数及其表示方法

人教版高中数学必修一教学案年级:高二上课次数:学员姓名:辅导科目:数学学科教师:课题课型授课日期及时段函数及其表示方法□预习课□同步课■复习课□习题课教学内容函数及其表示方法【要点梳理】要点一、函数的概念1.函数的定义设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.要点诠释:(1)A、B集合的非空性;(2)对应关系的存在性、唯一性、确定性;(3)A中元素的无剩余性;(4)B中元素的可剩余性。

2.构成函数的三要素:定义域、对应关系和值域①构成函数的三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全—致,即称这两个函数相等(或为同一函数);②两个函数相等当且仅当它们的定义域和对应关系完全—致,而与表示自变量和函数值的字母无关.3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.区间表示:{x|a<x<b}=(a,b);{x|a≤x≤b}=[a,b];{x|a<x≤b}=(a,b];{x|a≤x<b}=[a,b);{x|x≤b}=(-∞,b];{x|a≤x}=[a,+∞).要点二、函数的表示法1.函数的三种表示方法:解析法:用数学表达式表示两个变量之间的对应关系.优点:简明,给自变量求函数值.图象法:用图象表示两个变量之间的对应关系.优点:直观形象,反应变化趋势.列表法:列出表格来表示两个变量之间的对应关系.优点:不需计算就可看出函数值.2.分段函数:分段函数的解析式不能写成几个不同的方程,而应写函数几种不同的表达式并用个左大括号括起来,并分别注明各部分的自变量的取值情况.要点三、映射与函数1.映射定义:设A、B是两个非空集合,如果按照某个对应法则f,对于集合A中的任何一个元素,在集合B中都有唯一的元素和它对应,这样的对应叫做从A到B的映射;记为f:A→B.象与原象:如果给定一个从集合A到集合B的映射,那么A中的元素a对应的B中的元素b叫做a的象,a 叫做b的原象.要点诠释:(1)A中的每一个元素都有象,且唯一;(2)B中的元素未必有原象,即使有,也未必唯一;(3)a的象记为f(a).2.函数与映射的区别与联系:设A、B是两个非空数集,若f:A→B是从集合A到集合B的映射,这个映射叫做从集合A到集合B的函数,记为y=f(x).要点诠释:(1)函数一定是映射,映射不一定是函数;(2)函数三要素:定义域、值域、对应法则;(3)B中的元素未必有原象,即使有原象,也未必唯一;(4)原象集合=定义域,值域=象集合.3.函数定义域的求法(1)确定函数定义域的原则①当函数是以解析式的形式给出时,其定义域就是使函数解析式有意义的自变量的取值的集合.具体地讲,就是考虑分母不为零,偶次根号的被开方数、式大于或等于零,零次幂的底数不为零以及我们在后面学习时碰到的所有有意义的限制条件.②当函数是由实际问题给出时,其定义域不仅要考虑使其解析式有意义,还要有实际意义.③当函数用表格给出时,函数的定义域是指表格中实数x的集合。

高中数学人教版必修1函数与方程 课件PPT

高中数学人教版必修1函数与方程 课件PPT

思考5:如果函数y=f(x)在区间[a,b]上 的图象是间断的,上述原理适应吗?
思考6:如果函数y=f(x)在区间[a,b]上 的图象是连续不断的一条曲线,那么当 f(a)·f(b)>0时,函数y=f(x)在区间 (a,b)内一定没有零点吗?
理论迁移
例1 求函数f(x)=lnx+2x -6零点的个数.
3.1 函数与方程 3.1.1 方程的根与函数的零点 第一课时 方程的根与函数的零点
问题提出
t
p


1 2

5730
1.对于数学关系式:2x-1=0与y=2x-1 它们的含义分别如何?
2.方程 2x-1=0的根与函数y=2x-1的图 象有什么关系?
3.我们如何对方程f(x)=0的根与函数 y=f(x)的图象的关系作进一步阐述?
思考2:上述三个函数分别是什么类型的函数? 其单调性如何?
思考3:这三个方案前11天所得的回报如下表, 分析这些数据,你如何根据投资天数选择投 资方案?
天次
1 2 3 4 5 6 7 8 9 10 11 …
方案一 当天回 报 40 40 40 40 40 40 40 40 40 40 40 …
累计回 报 40 80 120 160 200 240 280 320 360 4x 4(x 1)
x
2

4x

3(x
和 1)
g(x) log2x 设h(x) f (x) g(x),试确定
函数h(x)的零点个数 .
例3 已知函数 f (x) 2ax2 x 1 在区间[0, 1]内有且只有一个零点,求实数a的取值 范围.
问题提出
1. 函数来源于实际又服务于实际,客观 世界的变化规律,常需要不同的数学模 型来描述,这涉及到函数的应用问题.

高中数学人教A版必修1教案-3.1_函数与方程_教学设计_教案_6

高中数学人教A版必修1教案-3.1_函数与方程_教学设计_教案_6

教学准备1. 教学目标教学目的:掌握两种思想:函数方程思想;数形结合思想,三种题型:求函数零点、确定零点个数、求零点所在区间。

2. 教学重点/难点重难点:1、函数方程思想;数形结合思想2、求函数零点、确定零点个数、求零点所在区间。

3. 教学用具4. 标签教学过程【环节一:巧设疑云,轻松渗透】设置问题情境,渗透数学思想教师活动:请同学们思考这个问题。

解方程:学生活动:回答,思考解法。

教师活动:第四个方程我们没有学过它的解法,通过这节课的学习我们来解决这个问题。

上一章我们学习了基本初等函数,这节课我们就通过研究函数来解决方程根的问题。

画出前三个方程相应函数的图象,并求出图象和x轴交点.学生活动:动手画图并求解。

教师活动:用屏幕显示方程的根、函数的图象以及函数图象与x轴交点的坐标。

观察三者之间的关系。

学生活动:观察图象,思考作答。

得到方程的实数根是函数图象与x轴交点的横坐标,是使函数值为零的x的结论。

教师活动:我们就把使f(x)=0的实数x称做函数的零点.设计意图:通过纯粹靠代数运算无法解决的方程,引起学生认知冲突,激起探求的热情.通过回顾一次函数、二次函数、指数函数图象与x轴的交点和相应方程的根的关系,将结论推广到一般函数,为零点概念做好铺垫.【环节二:形成概念,升华认知】引入零点定义,确认等价关系教师活动:这是我们本节课的第一个知识点。

板书函数零点的定义。

教师活动:结合函数零点的定义和我们刚才的探究过程,你认为方程的根与函数的零点究竟是什么关系?学生活动:思考作答。

教师活动:这是我们本节课的第二个知识点。

板书方程的根与函数零点的等价关系。

在屏幕上显示:函数y=f(x)有零点方程f(x)=0有实数根函数y=f(x)的图象与x轴有交点教师活动:强调方程与函数的思想。

教师活动:屏幕显示函数图象,指出这几个函数的零点是?学生活动:对比定义回答。

教师活动:强调:零点就是使函数值为0的实数而不是点!教师活动:对于函数y=f(x)有零点,从“数”的角度理解,就是方程f(x)=0有实根,从“形”的角度理解,就是图象与x轴有交点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数与方程__________________________________________________________________________________ __________________________________________________________________________________1、 掌握函数的零点和二分法的定义.2、 会用二分法求函数零点的近似值。

一、函数的零点:定义:一般地,如果函数()y f x =在实数a 处的值等于零即()0f a =,则a 叫做这个函数的零点。

对于任意函数,只要它的图像是连续不间断的,其函数的零点具有下列性质:当它通过零点(不是偶次零点)时函数值变号;相邻两个零点之间的所有的所有函数值保持同号。

特别提醒:函数零点个数的确定方法:1、判断二次函数的零点个数一般由判别式的情况完成;2、对于二次函数在某个闭区间上零点的个数以及不能用判别式判断的二次函数的零点,则要结合二次函数的图像进行;3、对于一般函数零点的个数的判断问题不仅要在闭区间[],a b 上是连续不间断的,且f(a)∙f (b )<0,还必须结合函数的图像和性质才能确定。

函数有多少个零点就是其对应的方程有多少个实数解。

二、二分法:定义:对于区间[],a b 上连续的,且()()0f a f b -<的函数()y f x =,通过不断地把函数()f x 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,从而等到零点近似值的方法,叫做二分法。

特别提醒:用二分法求函数零点的近似值第一步:确定区间[],a b ,验证:f(a)∙f (b )<0,给定精确度;第二步:求区间[],a b 得中点1x ;第三步:计算()1f x ;若()1f x =0,则1x 就是函数零点;若f(a)∙f (x 1)<0,则令1b x =;若f(x 1)∙f (b )<0,则令1a x =第四步:判断是否达到精确度ε,即若a b ε-<,则得到零点近似值a ()b 或,否则重复第二、类型一求函数的零点例1:求函数y =x -1的零点: 解析:令y =x -1=0,得x =1, ∴函数y =x -1的零点是1. 答案:1练习1:求函数y =x 3-x 2-4x +4的零点. 答案:-2,1,2.练习2:函数f (x )=2x +7的零点为( ) A .7 B .72C .-72D .-7答案:C类型二 零点个数的判断例2:判断函数f (x )=x 2-7x +12的零点个数解析:由f (x )=0,即x 2-7x +12=0得Δ=49-4×12=1>0,∴方程x 2-7x +12=0有两个不相等的实数根3,4, ∴函数f (x )有两个零点,分别是3,4. 答案:2个练习1:二次函数y =ax 2+bx +c 中,a ·c <0,则函数的零点个数是( ) A .1个 B .2个 C .0个 D .无法确定答案:B练习2:已知二次函数f (x )=ax 2+6x -1有两个不同的零点,则实数a 的取值范围是( ) A .a >-9且a ≠0 B .a >-9 C .a <-9 D .a >0或a <0答案:A类型三 函数零点的应用例3:若关于x 的方程x 2+(k -2)x +2k -1=0的两实数根中,一根在0和1之间,另一根在1和2之间,求实数k 的取值范围.解析:设函数f(x)=x 2+(k -2)x +2k -1,先画出函数的简图,如图所示,函数f(x)=x 2+(k -2)x +2k -1的图象开口向上,零点x 1∈(0,1),x 2∈(1,2),由(0)0(1)0(2)0f f f >⎧⎪<⎨⎪>⎩,解得,2<k <3,∴实数k 的取值范围是⎝ ⎛⎭⎪⎫12,23. 答案:⎝ ⎛⎭⎪⎫12,23. 练习1:已知方程x 2+2px +1=0有一个根大于1,有一个根小于1,则p 的取值范围为__________.答案:(-∞,-1)练习2:函数f (x )=2(m +1)x 2+4mx +2m -1的一个零点在原点,则m 的值为________. 答案:12类型四 二分法的概念例4:函数图象与x 轴均有公共点,但不能用二分法求公共点横坐标的是( ).解析:选项B 中的函数零点是不变号零点,不能用二分法求解. 答案:B练习1:函数y =f (x )在区间[a ,b ]上的图象不间断,并且f (a )·f (b )<0,则这个函数在这个区间上( )A .只有一个变号零点B .有一个不变号零点C .至少有一个变号零点D .不一定有零点 答案:C练习2:用二分法求函数f (x )=x 3-2的零点时,初始区间可选为( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)答案:B类型五 用二分法求函数零点的近似值例5: 求函数f (x )=x 3+2x 2-3x -6的一个为正数的零点(精确到0.1).解析:由于f (1)=-6<0,f (2)=4>0,可取区间[1,2]作为计算的初始区间.用二分法逐次计算,列表如下:端点(中点)坐标 计算中点的函数值 取区间 a 0=1,b 0=2 f(1)=-6,f(2)=4 [1,2] x 1=1+22=1.5f(x 1)=-2.625<0 [1.5,2] x 2=1.5+22=1.75f(x 2)≈0.234 4>0 [1.5,1.75] x 3=1.5+1.752=1.625f(x 3)≈-1.302 7<0 [1.625,1.75] x 4=1.625+1.752=1.6875f(x 4)≈-0.561 8<0 [1.687 5,1.75] x 5=1.687 5+1.752=1.718 75f(x 5)≈-0.171<0 [1.718 75,1.75] x 6=1.718 75+1.752=1.734 375f(x 6)≈0.03>0 [1.718 75,1.734 375]求函数精确到0.1的实数解.答案:1.7练习1: 试用计算器求出函数f (x )=x 2,g (x )=2x +2的图象交点的横坐标(精确到0.1). 答案:-0.7.练习2: (2014~2015学年度四川省中学高一月考)用二分法求方程x 3+3x -7=0在(1,2)内近似解的过程中,设函数f (x )=x 3+3x -7,算得f (1)<0,f (1.25)<0,f (1.5)>0,f (1.75)>0,则该方程的根落在区间( )A .(1,1.25)B .(1.25,1.5)C .(1.5,1.75)D .(1.75,2)答案:B1、(2014·湖北文)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x .则函数g (x )=f (x )-x +3的零点的集合为( )A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3}答案: D2、已知x =-1是函数f (x )=ax+b (a ≠0)的一个零点,则函数g (x )=ax 2-bx 的零点是( ) A .-1或1 B .0或-1 C .1或0 D .2或1答案: C3、三次方程x 3+x 2-2x -1=0的根不可能所在的区间为( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)4、(2014~2015学年度黑龙江省哈尔滨市第三十二中学高一期中测试)若函数f (x )=x 3+x 2-2x -2的一个正数零点附近的函数值用二分法逐次计算,参考数据如下表:f (1)=-2 f (1.5)=0.625 f (1.25)=-0.984 f (1.375)=-0.260 f (1.438)=0.165f (1.406 5)=-0.0520.1)为( ) A .1.2 B .1.3 C .1.4 D .1.5答案: C5、已知函数y =f (x )的图象是连续不断的,有如下的对应值表:x 1 2 3 4 5 6 y123.5621.45-7.8211.45-53.76-128.88A .2个B .3个C .4个D .5个答案: B_________________________________________________________________________________ _________________________________________________________________________________基础巩固1.若函数f (x )在定义域{x |x ≠0}上是偶函数,且在(0,+∞)上是减函数,f (2)=0,则函数f (x )的零点有( )A .一个B .两个C .至少两个D .无法判断答案: B2.若关于x 的方程ax 2+bx +c =0(a ≠0)有两个实根1、2,则实数f (x )=cx 2+bx +a 的零点为( )A .1,2B .-1,-2C .1,12D .-1,-123.若a<b<c,则函数f(x)=(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)的两个零点分别位于区间( )A.(a,b)和(b,c)内B.(-∞,a)和(a,b)内C.(b,c)和(c,+∞)内D.(-∞,a)和(c,+∞)内答案: A4.下列命题中正确的是( )A.方程(x-2)(x-5)=1有两个相异实根,且一个大于5,一个小于2B.函数y=f(x)的图象与直线x=1的交点个数是1C.零点存在性定理能用来判断函数零点的存在性,也能用来判断函数零点的个数D.利用二分法所得方程的近似解是惟一的答案: A5.在用二分法求函数f(x)的一个正实数零点时,经计算,f(0.64)<0, f(0.72)>0, f(0.68)<0,则函数的一个精确到0.1的正实数零点的近似值为( )A.0.68 B.0.72C.0.7 D.0.6答案: C能力提升6.二次函数y=ax2+bx+c(x∈R)的部分对应值如下表,则使ax2+bx+c>0成立的x的取值范围是______.x -3-2-10123 4y 60-4-6-6-40 6 答案:(7.已知函数f(x)=x2+ax+b(a、b∈R)的值域为[0,+∞),若关于x的方程f(x)=c(c∈R)有两个实根m、m+6,则实数c的值为________.答案:98.给出以下结论,其中正确结论的序号是________.①函数图象通过零点时,函数值一定变号;②相邻两个零点之间的所有函数值保持同号;③函数f(x)在区间[a,b]上连续,若满足f(a)·f(b)<0,则方程f(x)=0在区间[a,b]上一定有实根;④“二分法”对连续不断的函数的所有零点都有效.答案:②③9. 设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +cx ≤02 x >0,若f (-4)=2,f (-2)=-2,则关于x 的方程f (x )=x 的解的个数是________. 答案:310. 已知函数f (x )=ax 3-2ax +3a -4在区间(-1,1)上有一个零点. (1)求实数a 的取值范围;(2)若a =3217,用二分法求方程f (x )=0在区间(-1,1)上的根.答案:(1)1<a <2.(2)若a =3217,则f (x )=3217x 3-6417x +2817,∴f (-1)=6017>0, f (0)=2817>0, f (1)=-417<0,∴函数零点在(0,1),又f (12)=0,∴方程f (x )=0在区间(-1,1)上的根为12.。

相关文档
最新文档