人教版高一数学函数
人教版高一数学必修一知识点梳理

人教版高一数学必修一知识点梳理(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教案大全、书信范文、述职报告、合同范本、工作总结、演讲稿、心得体会、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as lesson plans, letter templates, job reports, contract templates, work summaries, speeches, reflections, essay summaries, work plans, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!人教版高一数学必修一知识点梳理本店铺为你整理的《人教版高一数学必修一知识点梳理》,希望你不负时光,努力向前,加油!1.人教版高一数学必修一知识点梳理函数的奇偶性(1)偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2).奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.注意:○1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。
人教版高一数学必修一第一单元知识点:函数及其表示

人教版高一数学必修一第一单元知识点:函数及其表示数学,是研究数量、结构、变化、空间以及信息等概念的一门学科,小编准备了人教版高一数学必修一第一单元知识点,希望你喜欢。
1.函数的基本概念(1)函数的定义:设A、B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么称f:A→B为从集合A到集合B的一个函数,记作:y=f(x),x∈A.(2)函数的定义域、值域在函数y=f(x),x∈A中,x叫自变量,x的取值范围A叫做定义域,与x的值对应的y值叫函数值,函数值的集合{f(x)|x∈A}叫值域.值域是集合B的子集.(3)函数的三要素:定义域、值域和对应关系.(4)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等;这是判断两函数相等的依据.2.函数的三种表示方法表示函数的常用方法有:解析法、列表法、图象法.3.映射的概念一般地,设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B 为从集合A到集合B的一个映射.注意:一个方法求复合函数y=f(t),t=q(x)的定义域的方法:①若y=f(t)的定义域为(a,b),则解不等式得a两个防范(1)解决函数问题,必须优先考虑函数的定义域.(2)用换元法解题时,应注意换元前后的等价性.三个要素函数的三要素是:定义域、值域和对应关系.值域是由函数的定义域和对应关系所确定的.两个函数的定义域和对应关系完全一致时,则认为两个函数相等.函数是特殊的映射,映射f:A→B的三要素是两个集合A、B和对应关系f.人教版高一数学必修一第一单元知识点就为大家介绍到这里,希望对你有所帮助。
函数的概念和函数的表示法教案-人教版数学高一上必修1第一章1.2.1-1.2.2

第一章集合与函数概念1.2 函数及其表示1.2.1 函数的概念和函数的表示法1 教学目标1.1 知识与技能:[1]理解函数的概念,了解构成函数的三要素.[2]会判断给出的两个函数是否是同一函数.[3]能正确使用区间表示数集.[4]函数的三种表示方法,并会求简单函数的定义域和值域.[5]通过实例体会分段函数的概念.[6]了解映射的概念及表示方法,并会判断一个对应关系是否是映射.1.2过程与方法:[1]通过具体实例,体会函数的概念和函数三要素,会求简单函数的定义域和值域。
[2]通过观察、画图等具体动手,体会分段函数的概念。
[3]通过具体习题,了解映射的概念,并会判断一个对应关系是否是映射.1.3 情感态度与价值观:[1]通过学习函数的概念及其表示法以及相关练习,培养学生逻辑思维。
[2]通过细致作图,培养学生的动手能力和识图能力。
2 教学重点/难点/易考点2.1 教学重点[1]函数的三种表示方法。
[2]分段函数的概念。
2.2 教学难点[1]根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.[2]会求函数的定义域和值域。
3 专家建议此节为高中数学函数的第一节内容,一定要让学生充分理解函数的概念,结合具体习题提升学生的逻辑思维和数学素养。
4 教学方法实例探究——归纳总结,提炼概念——补充讲解——练习提高5 教学用具多媒体,教学用直尺、三角板。
6 教学过程6.1 引入新课【师】同学们好。
初中的时候我们就接触过函数,并掌握了一次函数,二次函数和反比例函数。
这节课我们来继续进一步学习和函数有关的内容。
【板书】第一章集合与函数概念 1.2 函数及其表示6.2 新知介绍[1]函数的概念【师】下面请同学们看三个实例,看有什么不同点和相同点。
【板演/PPT】PPT演示三个实例。
【师】那我们现在可以发现不同点是三个实例分别用解析式,图像和表格刻画变量之间的对应关系。
相同点是都有两个非空数集,并且两个数集之间都有一种确定的对应关系。
人教版高一数学必修一函数的奇偶性课件PPT

总之,他们不是老老实实地坐在座位上听讲,而是急不可耐地 挨过上课时间,显然,你已经知道,从上课铃到下课铃的整个 课堂时段中,只有那些高效教师才能保持课堂不被琐事中断, 并且保证学生能够集中注意力。在高效教师的课堂上,没有 一分钟被浪费,没有学生无事可做。也正是因为这个原因,高 效的教师很少遇到有关课堂纪律的问题。 那么,高效教师是如何让整个课堂从头到尾一直保持饱满的 状态呢?他们仔细规划课堂上的每一分钟,以保证没有时间 被浪费;他们仔细规划讲课过程,力求简明扼要(因为他们知 道长时间维持学生的注意力是件很不容易的事。)他们为领 先的学生着想,他们也为后进的学生着想。
奇函数的定义域有什么特征?
奇函数的定义域关于原点对称
理论迁移
例1 判断下列函数的奇偶性:
(1)
; (2)
.
例2 已知定义在R上的函数f(x)满足:对任
意实数,都有
成立.
(1)求f(1)和f(-1)的值;
(2)
确定f(x)的奇偶性.
例3 确定函数
y
-1 o 1
的单调区间.
x
1.3.2 奇偶性 第一课时 函数的奇偶性
f(x)=-f(-x)
思考4:我们把具有上述特征的函数叫做奇函 数,那么怎样定义奇函数?
如果对于函数f(x)定义域内的任意一个x, 都有f(-x)=-f(x)成立,则称函数f(x)为奇 函数.
思考5:等式f(-x)=-f(x)用文字语言怎样表 述?
自变量相反时对应的函数值相反
思考6:函数
是奇函数吗?
偶函数的定义域关于原点对称
知识探究(二)
考察下列两个函数:
(1)
;
(2)
.
y
y
o
人教版高中数学必修1《函数的表示法》高一上册PPT课件(第1.2.2-1课时)

PART 03
合作探究·攻重难
TO WORK TOGETHER TO FIND OUT WHAT'S GOING ON
高中数学精品系列课件
[合作探究· 攻重难]
函 数表 示 法的 选 择
例1某商场新进了10台彩电,每台售价3000元,试求售出台数x与收款数y之间的函数关系,分别用列表法、图
象法、解析法表示出来. [解] ①列表法如下:
高中数学精品系列课件
[解] (1)不能用解析法表示,用图象法表示为宜. 在同一个坐标系内画出这四个函数的图象如下:
人教版高中数学必修一精品课件
高中数学精品系列课件
(2)王伟同学的数学成绩始终高于班级平均水平, 学习情况比较稳定而且成绩优秀, 张城同学的数学成绩 不稳定,总是在班级平均水平上下波动,而且波动幅度较大.赵磊同学的数学成绩低于班级平均水平, 但他的成绩曲线呈上升趋势,表明他的数学成绩在稳步提高.
优点
缺点
①简明、全面地概括了变量间的关系;②可以通过解析式求出任意
解析法
不够形象、直观
一个自变量所对应的函数值
列表法 不通过计算就可以直接看出与自变量的值相对应的函数值
一般只能表示部分自变量的函数值
直观、形象地表示出函数的变化情况,有利于通过图形研究函数的 只能近似地求出自变量所对应的函数值,有时误
人教版高中数学必修一精品课件
高中数学精品系列课件
图象的画法及应用
例2作 出 下 列 函 数 的 图 象 并 求 出 其 值 域 . 2
(1)y= - x, x∈ {0,1, - 2,3}; (2)y=, x∈ [2, + ∞ ); (3)y= x2+ 2x, x∈ [- 2,2). x
[解] (1)列表
高一人教版数学必学知识点

高一人教版数学必学知识点数学作为一门学科,是高中学生必须学习的科目之一。
在高一的学习过程中,数学知识点的掌握是十分重要的。
本文将介绍高一人教版数学的必学知识点,帮助学生们更好地备考并提升学习成绩。
一、函数与方程1. 函数的概念与性质:在高一数学中,我们将首先学习函数的概念与性质。
函数是一种特殊的关系,它将一个自变量的值映射到一个因变量的值。
函数的性质包括定义域、值域、单调性等。
2. 一次函数与二次函数:一次函数和二次函数是高中数学中最常见的函数类型。
一次函数的一般形式为y = kx + b,其中k为斜率,b为截距。
而二次函数的一般形式为y = ax^2 + bx + c,其中a、b、c为常数。
3. 一元二次方程:高中数学中,我们将学习解一元二次方程的方法。
掌握求解一元二次方程的方法对于解决实际问题非常重要。
二、数列与数学归纳法1. 等差数列与等比数列:数列是一系列按照一定规律排列的数。
高一数学中,我们将学习等差数列与等比数列的求和公式,以及相关的性质和应用。
2. 数学归纳法:数学归纳法是证明数学命题成立的重要方法。
通过数学归纳法,可以推断出某个命题对于所有自然数成立。
三、三角函数与立体几何1. 三角函数的概念与性质:高一数学中,我们将学习三角函数的基本概念与性质,包括正弦函数、余弦函数、正切函数等。
掌握三角函数的性质对于解决相关题目非常有帮助。
2. 平面向量与立体几何的基本知识:平面向量和立体几何是高中数学中的重要内容。
学习平面向量的性质与运算法则,以及掌握立体几何的基本概念和定理对于解决几何题目非常重要。
四、概率与统计1. 概率的基本概念与计算方法:概率是数学中的一门重要分支,也是高中数学中必学的内容之一。
我们将学习概率的基本概念,包括事件、样本空间、概率的计算方法等。
2. 统计分析与统计图表:了解统计分析与统计图表的概念与应用对于解决实际问题非常有帮助。
在高一的数学学习中,我们将学习如何使用统计方法进行数据的分析和处理。
人教版高一数学必修第三节 函数的奇偶性与周期性

第三节 函数的奇偶性与周期性一、基础知1.函数的奇偶性函数的定义域关于原点对称是函数具有奇偶性的前提条件.若f (x )≠0,则奇(偶)函数定义的等价形式如下:(1)f (-x )=f (x )⇔f (-x )-f (x )=0⇔f (-x )f (x )=1⇔f (x )为偶函数;(2)f (-x )=-f (x )⇔f (-x )+f (x )=0⇔f (-x )f (x )=-1⇔f (x )为奇函数.2.函数的周期性 (1)周期函数对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数f (x )为周期函数,称T 为这个函数的周期.周期函数定义的实质存在一个非零常数T ,使f (x +T )=f (x )为恒等式,即自变量x 每增加一个T 后,函数值就会重复出现一次.(2)最小正周期如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.二、常用结论1.函数奇偶性常用结论(1)如果函数f (x )是奇函数且在x =0处有定义,则一定有f (0)=0;如果函数f (x )是偶函数,那么f (x )=f (|x |).(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.2.函数周期性常用结论 对f (x )定义域内任一自变量x : (1)若f (x +a )=-f (x ),则T =2a (a >0). (2)若f (x +a )=1f (x ),则T =2a (a >0). (3)若f (x +a )=-1f (x ),则T =2a (a >0).3.函数图象的对称性(1)若函数y =f (x +a )是偶函数,即f (a -x )=f (a +x ),则函数y =f (x )的图象关于直线x =a 对称.(2)若对于R 上的任意x 都有f (2a -x )=f (x )或f (-x )=f (2a +x ),则y =f (x )的图象关于直线x =a 对称.(3)若函数y =f (x +b )是奇函数,即f (-x +b )+f (x +b )=0,则函数y =f (x )关于点(b,0)中心对称.考点一 函数奇偶性的判断[典例] 判断下列函数的奇偶性: (1)f (x )=36-x 2|x +3|-3;(2)f (x )=1-x 2+x 2-1; (3)f (x )=log 2(1-x 2)|x -2|-2;(4)f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,x 2-x ,x >0.[解] (1)由f (x )=36-x 2|x +3|-3,可知⎩⎪⎨⎪⎧ 36-x 2≥0,|x +3|-3≠0⇒⎩⎪⎨⎪⎧-6≤x ≤6,x ≠0且x ≠-6,故函数f (x )的定义域为(-6,0)∪(0,6],定义域不关于原点对称,故f (x )为非奇非偶函数.(2)由⎩⎪⎨⎪⎧1-x 2≥0,x 2-1≥0⇒x 2=1⇒x =±1,故函数f (x )的定义域为{-1,1},关于原点对称,且f (x )=0,所以f (-x )=f (x )=-f (x ),所以函数f (x )既是奇函数又是偶函数.(3)由⎩⎪⎨⎪⎧1-x 2>0,|x -2|-2≠0⇒-1<x <0或0<x <1,定义域关于原点对称.此时f (x )=log 2(1-x 2)|x -2|-2=log 2(1-x 2)2-x -2=-log 2(1-x 2)x ,故有f (-x )=-log 2[1-(-x )2]-x =log 2(1-x 2)x =-f (x ),所以函数f (x )为奇函数. (4)法一:图象法画出函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,x 2-x ,x >0的图象如图所示,图象关于y 轴对称,故f (x )为偶函数.法二:定义法易知函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称,当x >0时,f (x )=x 2-x ,则当x <0时,-x >0,故f (-x )=x 2+x =f (x );当x <0时,f (x )=x 2+x ,则当x >0时,-x <0,故f (-x )=x 2-x =f (x ),故原函数是偶函数.法三:f (x )还可以写成f (x )=x 2-|x |(x ≠0),故f (x )为偶函数.[题组训练]1.(2018·福建期末)下列函数为偶函数的是( ) A .y =tan ⎝⎛⎭⎫x +π4 B .y =x 2+e |x | C .y =x cos xD .y =ln|x |-sin x解析:选B 对于选项A ,易知y =tan ⎝⎛⎭⎫x +π4为非奇非偶函数;对于选项B ,设f (x )=x 2+e |x |,则f (-x )=(-x )2+e |-x |=x 2+e |x |=f (x ),所以y =x 2+e |x |为偶函数;对于选项C ,设f (x )=x cos x ,则f (-x )=-x cos(-x )=-x cos x =-f (x ),所以y =x cos x 为奇函数;对于选项D ,设f (x )=ln|x |-sin x ,则f (2)=ln 2-sin 2,f (-2)=ln 2-sin(-2)=ln 2+sin 2≠f (2),所以y =ln|x |-sin x 为非奇非偶函数,故选B.2.设函数f (x )=e x -e -x2,则下列结论错误的是( )A .|f (x )|是偶函数B .-f (x )是奇函数C .f (x )|f (x )|是奇函数D .f (|x |)f (x )是偶函数解析:选D ∵f (x )=e x -e -x2,则f (-x )=e -x -e x2=-f (x ).∴f (x )是奇函数. ∵f (|-x |)=f (|x |),∴f (|x |)是偶函数,∴f (|x |)f (x )是奇函数.考点二 函数奇偶性的应用[典例] (1)(2019·福建三明模拟)函数y =f (x )是R 上的奇函数,当x <0时,f (x )=2x ,则当x >0时,f (x )=( )A .-2xB .2-xC .-2-xD .2x(2)(2018·贵阳摸底考试)已知函数f (x )=a -2e x +1(a ∈R)是奇函数,则函数f (x )的值域为( )A .(-1,1)B .(-2,2)C .(-3,3)D .(-4,4)[解析] (1)当x >0时,-x <0,∵x <0时,f (x )=2x ,∴当x >0时,f (-x )=2-x .∵f (x )是R 上的奇函数,∴当x >0时,f (x )=-f (-x )=-2-x .(2)法一:由f (x )是奇函数知f (-x )=-f (x ),所以a -2e -x+1=-a +2e x +1,得2a =2e x+1+2e -x +1,所以a =1e x +1+e x e x +1=1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).法二:函数f (x )的定义域为R ,且函数f (x )是奇函数,所以f (0)=a -1=0,即a =1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).[答案] (1)C (2)A[解题技法]应用函数奇偶性可解决的四类问题及解题方法(1)求函数值将待求值利用奇偶性转化为已知区间上的函数值求解.(2)求解析式先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.(3)求函数解析式中参数的值利用待定系数法求解,根据f (x )±f (-x )=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值.(4)画函数图象和判断单调性利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.[题组训练]1.(2019·贵阳检测)若函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=log 2(x +2)-1,则f (-6)=( )A .2B .4C .-2D .-4解析:选C 根据题意得f (-6)=-f (6)=1-log 2(6+2)=1-3=-2.2.已知函数f (x )为奇函数,当x >0时,f (x )=x 2-x ,则当x <0时,函数f (x )的最大值为________.解析:法一:当x <0时,-x >0,所以f (-x )=x 2+x .又因为函数f (x )为奇函数,所以f (x )=-f (-x )=-x 2-x =-⎝⎛⎭⎫x +122+14,所以当x <0时,函数f (x )的最大值为14. 法二:当x >0时,f (x )=x 2-x =⎝⎛⎭⎫x -122-14,最小值为-14,因为函数f (x )为奇函数,所以当x <0时,函数f (x )的最大值为14.答案:143.(2018·合肥八中模拟)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. 解析:∵f (x )=x ln(x +a +x 2)为偶函数,∴f (-x )=f (x ),即-x ln(a +x 2-x )=x ln(x +a +x 2),从而ln[(a +x 2)2-x 2]=0,即ln a =0,故a =1.答案:1考点三 函数的周期性[典例] (1)(2018·开封期末)已知定义在R 上的函数f (x )满足f (x )=-f (x +2),当x ∈(0,2]时,f (x )=2x +log 2x ,则f (2 019)=( )A .5 B.12C .2D .-2(2)(2018·江苏高考)函数f (x )满足f (x +4)=f (x )(x ∈R),且在区间(-2,2]上,f (x )=⎩⎨⎧cos πx2,0<x ≤2,⎪⎪⎪⎪x +12,-2<x ≤0,则f (f (15))的值为________.[解析] (1)由f (x )=-f (x +2),得f (x +4)=f (x ),所以函数f (x )是周期为4的周期函数,所以f (2 019)=f (504×4+3)=f (3)=f (1+2)=-f (1)=-(2+0)=-2.(2)由函数f (x )满足f (x +4)=f (x )(x ∈R), 可知函数f (x )的周期是4, 所以f (15)=f (-1)=⎪⎪⎪⎪-1+12=12, 所以f (f (15))=f ⎝⎛⎭⎫12=cos π4=22. [答案] (1)D (2)22[题组训练]1.(2019·山西八校联考)已知f (x )是定义在R 上的函数,且满足f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f ⎝⎛⎭⎫-112=________. 解析:∵f (x +2)=-1f (x ),∴f (x +4)=f (x ), ∴f ⎝⎛⎭⎫-112=f ⎝⎛⎭⎫52,又2≤x ≤3时,f (x )=x , ∴f ⎝⎛⎭⎫52=52,∴f ⎝⎛⎭⎫-112=52. 答案:522.(2019·哈尔滨六中期中)设f (x )是定义在R 上的周期为3的函数,当x ∈[-2,1)时,f (x )=⎩⎪⎨⎪⎧4x 2-2,-2≤x ≤0,x ,0<x <1,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫214=________. 解析:由题意可得f ⎝⎛⎭⎫214=f ⎝⎛⎭⎫6-34=f ⎝⎛⎭⎫-34=4×⎝⎛⎭⎫-342-2=14,f ⎝⎛⎭⎫14=14.答案:14[课时跟踪检测]A 级1.下列函数为奇函数的是( ) A .f (x )=x 3+1 B .f (x )=ln 1-x1+xC .f (x )=e xD .f (x )=x sin x解析:选B 对于A ,f (-x )=-x 3+1≠-f (x ),所以其不是奇函数;对于B ,f (-x )=ln 1+x 1-x=-ln1-x 1+x=-f (x ),所以其是奇函数;对于C ,f (-x )=e -x ≠-f (x ),所以其不是奇函数;对于D ,f (-x )=-x sin(-x )=x sin x =f (x ),所以其不是奇函数.故选B.2.(2019·南昌联考)函数f (x )=9x +13x 的图象( )A .关于x 轴对称B .关于y 轴对称C .关于坐标原点对称D .关于直线y =x 对称解析:选B 因为f (x )=9x +13x =3x +3-x ,易知f (x )为偶函数,所以函数f (x )的图象关于y轴对称.3.设函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 2(x +1),x ≥0,g (x ),x <0,则f (-7)=( )A .3B .-3C .2D .-2解析:选B 因为函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 2(x +1),x ≥0,g (x ),x <0,所以f (-7)=-f (7)=-log 2(7+1)=-3.4.若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )=( ) A .e x -e -xB.12(e x +e -x )C.12(e -x -e x ) D.12(e x -e -x )解析:选D 因为f (x )+g (x )=e x ,所以f (-x )+g (-x )=f (x )-g (x )=e -x ,所以g (x )=12(e x -e -x ).5.设f (x )是定义在R 上周期为2的奇函数,当0≤x ≤1时,f (x )=x 2-x ,则f ⎝⎛⎭⎫-52=( ) A .-14B .-12C.14D.12解析:选C 因为f (x )是定义在R 上周期为2的奇函数,所以f ⎝⎛⎭⎫-52=-f ⎝⎛⎭⎫52=-f ⎝⎛⎭⎫12.又当0≤x ≤1时,f (x )=x 2-x ,所以f ⎝⎛⎭⎫12=⎝⎛⎭⎫122-12=-14,则f ⎝⎛⎭⎫-52=14. 6.(2019·益阳、湘潭调研)定义在R 上的函数f (x ),满足f (x +5)=f (x ),当x ∈(-3,0]时,f (x )=-x -1,当x ∈(0,2]时,f (x )=log 2x ,则f (1)+f (2)+f (3)+…+f (2 019)的值等于( )A .403B .405C .806D .809解析:选B 定义在R 上的函数f (x ),满足f (x +5)=f (x ),即函数f (x )的周期为5.又当x ∈(0,2]时,f (x )=log 2x ,所以f (1)=log 21=0,f (2)=log 22=1.当x ∈(-3,0]时,f (x )=-x -1,所以f (3)=f (-2)=1,f (4)=f (-1)=0,f (5)=f (0)=-1.故f (1)+f (2)+f (3)+…+f (2 019)=403×[f (1)+f (2)+f (3)+f (4)+f (5)]+f (2 016)+f (2 017)+f (2 018)+f (2 019)=403×1+f (1)+f (2)+f (3)+f (4)=403+0+1+1+0=405.7.已知函数f (x )是偶函数,当x >0时,f (x )=ln x ,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫1e 2的值为________. 解析:由已知可得f ⎝⎛⎭⎫1e 2=ln 1e2=-2, 所以f ⎝⎛⎭⎫f ⎝⎛⎭⎫1e 2=f (-2). 又因为f (x )是偶函数,所以f ⎝⎛⎭⎫f ⎝⎛⎭⎫1e 2=f (-2)=f (2)=ln 2. 答案:ln 28.(2019·惠州调研)已知函数f (x )=x +1x -1,f (a )=2,则f (-a )=________.解析:法一:因为f (x )+1=x +1x ,设g (x )=f (x )+1=x +1x ,易判断g (x )=x +1x 为奇函数,故g (x )+g (-x )=x +1x -x -1x=0,即f (x )+1+f (-x )+1=0,故f (x )+f (-x )=-2. 所以f (a )+f (-a )=-2,故f (-a )=-4. 法二:由已知得f (a )=a +1a-1=2,即a +1a =3,所以f (-a )=-a -1a -1=-⎝⎛⎭⎫a +1a -1=-3-1=-4. 答案:-49.(2019·陕西一测)若函数f (x )=ax +b ,x ∈[a -4,a ]的图象关于原点对称,则函数g (x )=bx +ax,x ∈[-4,-1]的值域为________.解析:由函数f (x )的图象关于原点对称,可得a -4+a =0,即a =2,则函数f (x )=2x +b ,其定义域为[-2,2],所以f (0)=0,所以b =0,所以g (x )=2x ,易知g (x )在[-4,-1]上单调递减,故值域为[g (-1),g (-4)],即⎣⎡⎦⎤-2,-12. 答案:⎣⎡⎦⎤-2,-12 10.设函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值范围是____________.解析:当x >0时,lg x >0,所以x >1, 当x <0时,由奇函数的对称性得-1<x <0, 故填(-1,0)∪(1,+∞). 答案:(-1,0)∪(1,+∞)11.f (x )为R 上的奇函数,当x >0时,f (x )=-2x 2+3x +1,求f (x )的解析式. 解:当x <0时,-x >0,则f (-x )=-2(-x )2+3(-x )+1=-2x 2-3x +1. 由于f (x )是奇函数,故f (x )=-f (-x ), 所以当x <0时,f (x )=2x 2+3x -1. 因为f (x )为R 上的奇函数,故f (0)=0.综上可得f (x )的解析式为f (x )=⎩⎪⎨⎪⎧-2x 2+3x +1,x >0,0,x =0,2x 2+3x -1,x <0.12.设函数f (x )是定义在R 上的奇函数,对任意实数x 有f ⎝⎛⎭⎫32+x =-f ⎝⎛⎭⎫32-x 成立. (1)证明y =f (x )是周期函数,并指出其周期; (2)若f (1)=2,求f (2)+f (3)的值. 解:(1)证明:由f ⎝⎛⎭⎫32+x =-f ⎝⎛⎭⎫32-x ,且f (-x )=-f (x ),知f (3+x )=f ⎣⎡⎦⎤32+⎝⎛⎭⎫32+x =-f ⎣⎡⎦⎤32-⎝⎛⎭⎫32+x =-f (-x )=f (x ), 所以y =f (x )是周期函数,且T =3是其一个周期. (2)因为f (x )为定义在R 上的奇函数,所以f (0)=0,且f (-1)=-f (1)=-2,又T =3是y =f (x )的一个周期,所以f (2)+f (3)=f (-1)+f (0)=-2+0=-2.B 级1.已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图象在区间[0,6]上与x 轴的交点的个数为( )A .6B .7C .8D .9解析:选B 因为f (x )是最小正周期为2的周期函数,且0≤x <2时,f (x )=x 3-x =x (x -1)(x +1),所以当0≤x <2时,f (x )=0有两个根,即x 1=0,x 2=1.由周期函数的性质知,当2≤x <4时,f (x )=0有两个根,即x 3=2,x 4=3;当4≤x ≤6时,f (x )=0有三个根,即x 5=4,x 6=5,x 7=6,故f (x )的图象在区间[0,6]上与x 轴的交点个数为7.2.(2019·洛阳统考)若函数f (x )=ln(e x +1)+ax 为偶函数,则实数a =________. 解析:法一:(定义法)∵函数f (x )=ln(e x +1)+ax 为偶函数,∴f (-x )=f (x ), 即ln(e -x +1)-ax =ln(e x +1)+ax ,∴2ax =ln(e -x+1)-ln(e x+1)=ln e -x +1e x +1=ln 1e x =-x ,∴2a =-1,解得a =-12.法二:(特殊值法)由题意知函数f (x )的定义域为R ,由f (x )为偶函数得f (-1)=f (1), ∴ln(e -1+1)-a =ln(e 1+1)+a ,∴2a =ln(e -1+1)-ln(e 1+1)=ln e -1+1e +1=ln 1e =-1,∴a =-12.答案:-123.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. 解:(1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x .又f (x )为奇函数,所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象(如图所示)知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3, 故实数a 的取值范围是(1,3].。
高一上数学知识点归纳人教版

高一上数学知识点归纳人教版高一上数学知识点归纳(人教版)一、函数与方程1. 函数的概念在数学中,函数是一种关系,它将一个集合的元素(称为自变量)与另一个集合的元素(称为因变量)相关联。
函数通常用符号表示,常见的表示形式有f(x)或y=f(x)。
2. 二次函数二次函数是一种具有二次项的函数,其一般形式为f(x) = ax^2+ bx + c,其中a、b和c分别是常数,且a ≠ 0。
二次函数的图像是一个抛物线。
3. 一次函数一次函数是一种具有一次项的函数,其一般形式为f(x) = kx + b,其中k和b是常数。
一次函数的图像是一条直线。
4. 方程的解方程是一个等式,包含一个或多个未知数,我们需要找到使等式成立的未知数的值。
解是使方程成立的值或值的集合。
5. 二次方程的解法二次方程是一个包含未知数的二次项的方程,通常形式为ax^2 + bx + c = 0。
我们可以使用求根公式x = (-b ± √(b^2 - 4ac)) / (2a)来求解二次方程。
二、三角函数1. 三角函数的定义三角函数是对应于单位圆上的角度的函数。
常见的三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)等。
2. 三角函数的性质三角函数具有一些重要的性质,例如正弦函数的值范围在-1到1之间,余弦函数和正切函数的值范围没有限制。
3. 三角函数的图像通过绘制三角函数的图像,我们可以更好地理解它们的性质和变化规律。
例如,正弦函数和余弦函数的图像是周期性的波形。
4. 三角函数的应用三角函数在几何学、物理学、工程学等领域都有广泛的应用。
例如,在测量三角形的边长和角度时,可以使用三角函数来计算。
三、平面向量1. 平面向量的概念平面向量是具有大小和方向的量,通常用有向线段表示。
平面向量由起点和终点确定。
2. 平面向量的加法与减法平面向量的加法与减法遵循向量的平行四边形法则。
两个向量的和是通过将一个向量的终点与另一个向量的起点相连得到的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学函数一、知识结构二、重点难点重点:有关映射与函数的概念,要求会求函数的定义域和一些简单函数的值域;幂函数的图象和性质;单调性的概念;反函数的概念;要掌握函数的图象和性质;对数运算与指数运算的关系,对数式与指数式的互化;对数性质和运算法则;难点:映射的概念;幂函数的应用;用定义判定函数的单调性与确定函数的单调区间;反函数的求法;利用指数函数的性质,结合有关幂函数以及函数的单调性、奇偶性和有关复合函数的知识解决函数值的比较与求值域问题;对数概念与各名称的意义的理解;注意法则应用的条件和推导。
三、知识点解析1、函数:(1)定义:1)传统定义:如果在某变化过程中有两个变量,x y ,并且对于x 在某个范围内的每一个确定的值,按照某个对应法则f ,y 都有惟一确定的值和它对应,那么y 就是x 的函数,记为()y f x ;2)近代定义:函数是由一个非空数集到另一个非空数集的映射。
;上述两个定义实质上是一致的,只不过传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发,侧重点不同,函数实质上是从集合A 到集合B 的一个特殊的映射,其特殊性在于集合A 、B 都是非空数集。
自变量的取值集合叫做函数的定义域,函数值的集合C 叫做函数的值域。
这里应该注意的是,值域C 并不一定等于集合B ,而只能说C 是B 的一个子集;(2)三要素:函数是由定义域、值域以及从定义域到值域的对应法则三部分组成的特殊的映射。
2、函数的单调性:(1)定义:对于给定区间上的函数()f x ,1)如果对于属于这个区间的任意两个自变量的值12,x x ,当12x x <时,都有12()()f x f x <,那么就说()f x 在这个区间上是增函数;2)如果对于属于这个区间的任意两个自变量的值12,x x ,当12x x <,都有12()()f x f x >,那么就说()f x 在这个区间上是减函数;(2)证明函数单调性的方法:1)用定义;2)利用已知函数的单调性;3)利用函数的图像;4)依据符合函数单调性有关结论;5)1212()()0()f x f x f x x x ->⇔-为增函数,1212()()0()f x f x f x x x -<⇔-为减函数;(3)函数的周期性:对于函数()f x ,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,()()f x T f x +=都成立,那么就把函数()y f x =叫做周期函数,不为零的常数T 叫做这个函数的周期;对于一个周期函数,如果在所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期:1)式子()()f x T f x +=对定义域中的每一个值都成立,即对定义域中的任何x ,式子都成立,而不能是“一个x ”或“某些x ”;2)一个函数是周期函数,它并不一定就有最小正周期,如:()f x a =(a 是常数),显然,对任何一个正数T ,都有()()()f x T f x x R +=∈;这就是说,任何一个正数都是()f x 的周期,由于正数中不存在最小的数,所以周期函数()f x a =不存在最小正周期。
③设T 是()()f x x R ∈的周期,那么(kT k N ∈且0k ≠)也一定是()f x 的周期。
3、反函数(1)反函数的意义:一般地,式子()y f x =表示y 是自变量x 的函数,设它的定义域为A ,值域为B 、我们从式子()y f x =中解出x ,得到式子()x y ϕ=。
如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=就表示x 是自变量y 的函数,这样的函数()x y ϕ=,叫做函数()y f x =的反函数,记作1()x fy -=,即1()()x y f y ϕ-==,在函数式1()x f y -=中,y 表示自变量,x 表示函数。
习惯上,一般用x表示自变量,用y 表示函数.为此对调函数式1()x fy -=中的字母,x y ,把它改写成1()y f x -=。
1)()y f x =与1()y f x -=具有四性:A 、互换性;B 、对称性;C 、奇偶性;D 、单调性;2)()y f x =和1()y fx -=互为反函数,即1[()]()f f x x x B -=∈或1[()]()f f x x x A -=∈;3)求反函数的步骤:A 、解出 1()x f y -=;B 、交换,x y ,得1()y f x -=;C 、解出反函数的定义域(即原函数值域);4)互为反函数的两个函数图像关于直线y x =对称;(2)反函数存在的条件:并不是所有函数都存在反函数.根据反函数的定义,只有原象具有唯一性的函数,即对任意的12x x ≠,能推断出12()()f x f x ≠成立的函数才具有反函数;(3)反函数与原函数的关系:1)原函数的定义域是反函数的值域,原函数的值域是反函数的定义域;2)()y f x =与1()y fx -=互为反函数,设()f x 的定义域为A ,值域为C ,则有1[()]()f f x x x C -=∈,1[()]()f f x x x A -=∈;(4)反函数的求法:可以根据反函数的定义求出已知函数的反函数,其步骤为:1)由()y f x =解出()x y ϕ=;2)交换,x y ,得1()()x f x ϕ-=;3)根据()y f x =的值域,写出1()y f x -=的定义域。
4、幂函数、指数函数、对数函数 (1)幂、指数、对数式 1)同底数幂的运算性质: ①(,)mn m n aa a m n Q +=∈,②()(,)m n mn a a m n Q =∈,③()()n n n ab a b n Q =∈;2)根式的运算性质:①nn a a =,②当n 是偶数时(0)(||)||(0)n n a a a a a a ≥⎧==⎨-<⎩,当n 是奇数时)nn a a =;3)分数指数幂与根式的关系规定: ①正分数指数幂0,.,1)n m n ma a a m n N m =>∈>且,②正分数指数幂1(0,.,1)n mn maa m n N m a-=>∈>且;4)对数及对数的运算性质:①定义:如果(0ba N a =>且1a ≠),则数b 叫做以a 为底N 的对数,记作log a N b =, ②对数恒等式:log Na a N =(a >0且a ≠1,N >0),③对数的性质:(ⅰ)负数和零没有对数,(ⅱ)log 10(0,1)a a a =>≠,(ⅲ)log 1(0,1)a a a a =>≠;④对数的运算法则:(ⅰ)()(0,0)MN M N M N =+>>a a a log log log ,(ⅱ)M log N aM N =-a a log log ,(ⅲ)log ()n a N n N =a log ,(ⅳ)1log n a N N n=a log ; ⑤换底公式:log log log a b a N N b =(ⅰ)1log log a b b a=,(ⅱ)12231log log log 1(,2)n a a a a a a n N n =∈≥,(ⅲ)log log m n a a nb b m=; (2)幂函数1)定义:形如ay x =(a 是常数)的函数叫幂函数; 2)幂函数的图像见图:3)幂函数的性质: ①都过点(1,1);②除原点外,任何幂函数图像与坐标轴都不相交,任何幂函数都不过第四象限;③0a >时,幂函数图像过(0,0)且在(0,+∞)上是增函数;0a <时,幂函数图像不过(0,0)且在(0,+∞)上是减函数;④任何两个幂函数图像最多有三个公共点,除(1,1),(0,0),(-1,1)外,其它任何一点都不是两个幂函数的公共点;(3)指数函数1)定义:形如xy a =(0a >且1a ≠)的函数叫指数函数; 2)指数函数的图像见图:3)指数函数的性质①都过(0,1)点;②定义域为R ,值域为R +;③1a >时,在(-∞,+∞)上是增函数;01a <<时,在(-∞,+∞)上是减函数;④1a >时,01001x x x a x a ⎧>⇒>⎪⎨<⇒<<⎪⎩;01a <<时,00101xxx a x a ⎧>⇒<<⎪⎨<⇒>⎪⎩。
(4)对数函数1)定义:形如log a y x =(0a >且1a ≠)的函数叫对数函数;2)对数函数图像见图。
对数函数图像和指数函数图像关于直线y x =对称(互为反函数);3)对数函数的性质: ①都过(1,0)点;②定义域为R +,值域为R ;③1a >时,在(0,+∞)上是增函数;01a <<时,在(0,+∞)上是减函数; ④1a >时,10010x y x y >⇒>⎧⎨<<⇒<⎩;01a <<时,10010x y x y >⇒<⎧⎨<<⇒>⎩。
四、例题1、函数例1 审查下面四个命题:(ⅰ)()21f x x x =--是函数;(ⅱ)函数是其定义域到值域的映射;(ⅲ)y x =和2y x =表示同一函数;(ⅳ)x y x=和0y x =表示同一函数;其中正确的有 [ ]A 、1个B 、2个C 、3个D 、4个解 B注 高中数学中的函数是通过映射来定义的。
例2 函数||||x y x x=+的图像是[ ]解 D 函数||||x y x x =+可化为1,01,0x x y x x +>⎧=⎨--<⎩。
例3 设ak >0,bc <0,在同一坐标系中y=ax 2+c 与y=kx+b 的图象应是 [ ]解 B 由,a k 同号排除D ;由b ,c 异号排除A ,C 。
例4 已知函数3()()232cx f x x x =≠-+满足(())f f x x =,则c 的 [ ]A 、3B 、-3C 、3或-3D 、不存在解 B 223(())(26)92323cxcx f f x x x c c cx x +==⇒+=-++。
对任何3()2x x ≠-成立,所以22690c c +=-=,即3c =-。
而33232x x -≠-+,故所求3c =-。
例5 函数11y x=-- [ ]A 、(,0]-∞B 、(,0)(0,1]-∞⋃C 、(,1]-∞D 、无法确定解 B 解不等式组10110x x -≥⎧⎪⎨-≠⎪⎩得(,0)(0,1]-∞⋃,此即所求定义域。