高等数学笔记(扫描版)
高等数学a1_学习笔记

第一章:函数与极限1.1函数的定义与性质1.2极限的概念与计算1.3右极限与左极限1.4极限的性质第二章:连续性2.1连续函数的定义2.2连续性的判别2.3连续函数的性质2.4介值定理第三章:导数与微分3.1导数的定义与几何意义3.2导数的计算法则3.3微分的概念与应用3.4逻辑与高阶导数第四章:应用导数4.1函数的单调性与极值4.2曲线的凹凸性与拐点4.3应用导数解决实际问题4.4L'Hôpital法则第五章:定积分5.1定积分的定义与性质5.2定积分的计算方法5.3牛顿莱布尼茨公式5.4定积分的应用第六章:不定积分6.1不定积分的基本概念6.2常见的不定积分公式6.3不定积分的计算技巧6.4分部积分法与换元积分法第1章:函数与极限函数的定义与性质函数的定义:一个函数是一个将每个输入(自变量)与一个唯一的输出(因变量)相对应的关系。
通常用f(x)表示,其中x是自变量。
定义域:函数的定义域是所有可能的自变量x的集合。
值域:函数的值域是所有可能的因变量f(x)的集合。
例子:f(x)=x^2,定义域为所有实数,值域为所有非负实数。
单调性:如果对于任意的x1<x2,有f(x1)<f(x2),则f(x)是单调递增的;反之则是单调递减的。
有界性:如果存在M,使得对所有x,|f(x)|≤M,则f(x)是有界的。
奇偶性:如果f(x)=f(x),则f(x)是奇函数;如果f(x)=f(x),则f(x)是偶函数。
周期性:如果存在T,使得f(x+T)=f(x),则f(x)是周期函数。
例子:正弦函数sin(x)是周期函数,其周期为2π。
复合函数:如果g(x)是另一个函数,则复合函数f(g(x))是将g(x)的输出作为f(x)的输入。
例子:若f(x)=x^2,g(x)=x+1,则复合函数f(g(x))=(x+1)^2。
反函数:若f(x)是单调函数,则存在反函数f^(1)(x),使得f(f^(1)(x))=x。
(完整版)高等数学笔记

(完整版)高等数学笔记第一章 函数、极限和连续§1.1 函数一、 主要内容 ㈠ 函数的概念1。
函数的定义: y=f(x ), x ∈D定义域: D(f ), 值域: Z(f )。
2.分段函数: ⎩⎨⎧∈∈=21)()(D x x g D x x f y3。
隐函数: F(x,y )= 04。
反函数: y=f (x) → x=φ(y )=f —1(y )y=f -1(x)定理:如果函数: y=f (x), D (f )=X , Z (f )=Y 是严格单调增加(或减少)的; 则它必定存在反函数:y=f —1(x), D (f —1)=Y, Z (f —1)=X 且也是严格单调增加(或减少)的。
㈡ 函数的几何特性1。
函数的单调性: y=f (x ),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2),则称f(x )在D 内单调增加( );若f (x 1)≥f(x 2),则称f(x)在D 内单调减少( );若f(x 1)<f (x 2),则称f (x)在D 内严格单调增加( );若f(x 1)>f (x 2),则称f(x)在D 内严格单调减少( ).2。
函数的奇偶性:D(f )关于原点对称 偶函数:f(—x )=f (x) 奇函数:f (-x )=-f (x ) 3.函数的周期性:周期函数:f(x+T)=f(x ), x ∈(-∞,+∞) 周期:T-—最小的正数4。
函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数1。
常数函数: y=c , (c 为常数)2.幂函数: y=x n, (n 为实数)3.指数函数: y=a x, (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5。
三角函数: y=sin x , y=con xy=tan x , y=cot x y=sec x , y=csc x6。
反三角函数:y=arcsin x, y=arccon x y=arctan x , y=arccot x ㈣ 复合函数和初等函数1。
高数知识点总结电子版

高数知识点总结电子版一、极限与连续1. 函数的极限(1) 函数极限的定义(2) 函数极限的性质(3) 无穷小量与无穷大量(4) 夹逼准则2. 连续与间断(1) 连续的定义(2) 连续函数的性质(3) 间断点的分类(4) 间断函数的构造二、导数与微分1. 导数的定义(1) 导数的几何意义(2) 导数的计算方法(3) 导数的性质(4) 高阶导数2. 微分的定义(1) 微分的几何意义(2) 微分的计算方法(3) 微分的性质(4) 隐函数求导三、微分中值定理与泰勒公式1. 罗尔中值定理(1) 罗尔中值定理的条件(2) 罗尔中值定理的应用2. 拉格朗日中值定理(1) 拉格朗日中值定理的条件(2) 拉格朗日中值定理的应用3. 柯西中值定理(1) 柯西中值定理的条件(2) 柯西中值定理的应用4. 泰勒公式(1) 泰勒公式的表述(2) 泰勒公式的应用四、不定积分与定积分1. 不定积分(1) 不定积分的概念(2) 不定积分的计算方法(3) 不定积分的性质(4) 不定积分的换元法2. 定积分(1) 定积分的概念(2) 定积分的计算方法(3) 定积分的性质(4) 定积分的应用五、微分方程1. 微分方程的基本概念(1) 微分方程的定义(2) 微分方程的类型(3) 微分方程的解的存在唯一性定理2. 一阶常微分方程(1) 可分离变量的微分方程(2) 齐次微分方程(3) 一阶线性微分方程3. 高阶常微分方程(1) 高阶线性微分方程(2) 常系数齐次线性微分方程六、多元函数微分学1. 多元函数的极限(1) 多元函数极限的定义(2) 多元函数极限的性质(3) 重要极限的计算2. 偏导数(1) 偏导数的定义(2) 偏导数的计算方法(3) 高阶偏导数3. 方向导数(1) 方向导数的定义(2) 方向导数的计算方法(3) 梯度4. 多元函数的微分(1) 多元函数的全微分(2) 多元函数的微分近似七、多元函数积分学1. 二重积分(1) 二重积分的定义(2) 二重积分的计算方法(3) 二重积分的性质(4) 二重积分的应用2. 三重积分(1) 三重积分的定义(2) 三重积分的计算方法(3) 三重积分的性质(4) 三重积分的应用3. 曲线积分与曲面积分(1) 曲线积分的定义(2) 曲线积分的计算方法(3) 曲面积分的定义(4) 曲面积分的计算方法八、向量分析1. 向量及其运算(1) 向量的基本概念(2) 向量的线性运算(3) 向量的数量积与叉积2. 曲线与曲面的方程(1) 曲线的参数方程(2) 曲线的一般方程(3) 曲面的参数方程(4) 曲面的一般方程3. 向量场与散度(1) 向量场的定义与性质(2) 散度的概念与计算(3) 散度的物理意义4. 向量场与旋度(1) 旋度的概念与计算(2) 旋度的物理意义(3) 欧拉公式以上就是高等数学的知识点总结,希望对你的学习有所帮助。
高数学公式和知识点笔记

高数学公式和知识点笔记高等数学是一门重要的基础学科,包含众多的公式和知识点。
以下是为您整理的一份较为全面的高数学公式和知识点笔记,希望能对您的学习有所帮助。
一、函数与极限1、函数的概念函数是一种对应关系,对于定义域内的每个自变量的值,都有唯一确定的因变量值与之对应。
2、基本初等函数包括幂函数、指数函数、对数函数、三角函数和反三角函数。
3、极限的定义当自变量趋近于某个值时,函数值趋近于一个确定的常数,这个常数就是极限。
4、极限的计算方法(1)代入法:直接将趋近的值代入函数。
(2)化简法:通过约分、通分等方法化简函数。
(3)等价无穷小替换:在求极限时,将一些无穷小量用与其等价的无穷小量替换。
5、两个重要极限(1)$\lim_{x\to 0} \frac{\sin x}{x} = 1$(2)$\lim_{x\to \infty} (1 +\frac{1}{x})^x = e$二、导数与微分1、导数的定义函数在某一点的导数是函数在该点的变化率。
2、导数的几何意义导数表示函数在某一点处的切线斜率。
3、基本函数的导数公式(1)$(x^n)'= nx^{n 1}$(2)$(\sin x)'=\cos x$(3)$(\cos x)'=\sin x$(4)$(e^x)'= e^x$(5)$(\ln x)'=\frac{1}{x}$4、导数的四则运算(1)$(u + v)'= u' + v'$(2)$(u v)'= u' v'$(3)$(uv)'= u'v + uv'$(4)$(\frac{u}{v})'=\frac{u'v uv'}{v^2}$5、复合函数求导法则设$y = f(g(x))$,则$y' = f'(g(x))\cdot g'(x)$6、微分的定义函数的微分等于函数的导数乘以自变量的增量。
三、中值定理与导数的应用1、罗尔定理如果函数$f(x)$满足:在闭区间$a, b$上连续,在开区间$(a, b)$内可导,且$f(a) =f(b)$,那么在$(a, b)$内至少存在一点$\xi$,使得$f'(\xi) = 0$。
高等数学第一章笔记

高等数学第一章笔记高等数学第一章笔记第一章的主要内容是函数和极限。
函数是数学中非常重要的概念,它描述了一个变量与另一个变量之间的关系。
在高等数学中,我们主要研究实函数和实变量,即定义域和值域都是实数集的函数。
1. 函数的定义和性质函数是一种映射关系,它将定义域上的每个元素映射到值域上的唯一元素。
函数可以用公式、图像或者表格来表示。
函数的性质包括定义域、值域、奇偶性、周期性等。
2. 函数的运算函数之间可以进行加减乘除等基本运算。
例如,两个函数的和、差、积、商仍然是函数。
函数的复合也是一种常见的运算,表示将一个函数的输出作为另一个函数的输入。
3. 函数的图像和性质函数的图像是函数在平面直角坐标系中的表示。
通过观察函数的图像,我们可以了解函数的性质,如增减性、奇偶性、周期性等。
函数的图像可以用手绘或者计算机绘制。
4. 函数的极限极限是函数的重要概念,它描述了函数在某一点的趋势。
函数在某一点的左极限表示函数从左边趋近于这个点的情况,右极限表示函数从右边趋近于这个点的情况。
如果函数在某一点的左右极限相等,则函数在这一点处有极限。
5. 极限的性质和运算函数的极限具有一些重要的性质,如唯一性、保序性、保不等式性等。
在进行函数的极限运算时,我们可以利用极限的性质进行简化,如极限的四则运算、复合函数的极限等。
6. 函数的连续性函数的连续性是指函数在其定义域上的每一点都有极限,并且函数的极限与函数值相等。
连续函数是一种重要的函数类型,它在数学和物理等领域中有广泛的应用。
总结起来,高等数学第一章主要介绍了函数和极限的概念、性质和运算。
函数是数学中非常重要的概念,它描述了变量之间的关系。
极限是函数在某一点的趋势,它描述了函数在这一点的值与函数在这一点的左右极限之间的关系。
理解和掌握函数和极限的概念和性质,对于后续学习高等数学的内容非常重要。
高等数学归纳笔记(全)

一、函数与极限 (2)1、集合的概念 (2)2、常量与变量 (3)2、函数 (4)3、函数的简单性态 (4)4、反函数 (5)5、复合函数 (6)6、初等函数 (6)7、双曲函数及反双曲函数 (7)8、数列的极限 (9)9、函数的极限 (10)10、函数极限的运算规则 (12)一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。
如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。
⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。
⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
(完整版)高等数学完全归纳笔记(全)

一、函数与极限 (2)1、集合的概念 (2)2、常量与变量 (3)2、函数 (4)3、函数的简单性态 (4)4、反函数 (5)5、复合函数 (6)6、初等函数 (6)7、双曲函数及反双曲函数 (7)8、数列的极限 (9)9、函数的极限 (10)10、函数极限的运算规则 (12)一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。
如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。
⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。
⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
高等数学笔记(含数一内容)

隐函数求导
参数方程确定的函数求导
分段函数求导
先讨论关键点是否连续,确定连续后再判断函数各个部分是否可导。
求函数高阶导
一般使用数学归纳法解决。
微分
可微
定义:设y=f(x) (x∈D),x₀∈D。若∆y=A∆x+৹(∆x),则称f(x)在x=x₀处可微。
性质
可微一定可导,可导一定可微(充要条件)
若∆y=A∆x+৹(∆x),则A=f'(x₀),即dy∣₍x=x₀₎=f'(x₀)dx
二阶线性微分方程解的结构 齐+齐=齐 齐 + 非齐 = 非齐 非齐 + 非齐 = 齐 (拆解性质)对于方程**,若f(x)=f1(x)+f2(x)(即可拆成两部分),则分别构造两个二阶非齐次线性微分方程,且φ1(x),φ2(x)分别为它们的特解,则 有原方程特解为:
y=φ1(x)+φ2(x) (系数和的特点)设φ1(x),φ2(x),...,φn(x),为方程**的解,则通解的组合形式为y=k1φ1(x)+k2φ2(x)+...+knφn(x) 若y为方程*的通解,则k1+k2+...+kn=0(系数和为0) 若y为方程**的通解,则k1+k2+...+kn=1(系数和为1) (二阶常系数线性微分方程通解形式推导定理)
函数f(x)∈ c【a,b】的性质(函数在区间内恒连续)
性质1:∃最大值 M 和最小值 m (最值); 性质2:∃M₀>0,使得∣f(x)∣≤M₀(有界);
性质3: ∀η ∈【m,M】,∃ξ∈【a,b】,使得f(ξ)=η(介值定理);
性质4:若 f(a)*f(b)<0,则∃c∈(a,b),使得f(c)=0(零点定理)。 连续函数的运算