高数复习笔记

合集下载

高数笔记大一基础知识点

高数笔记大一基础知识点

高数笔记大一基础知识点一、导数与微分在微积分中,导数和微分是非常基础的概念。

导数描述了函数在某一点上的变化率,而微分则表示函数在某一点上的近似线性变化。

1. 导数的定义对于函数f(x),在某一点x=a处的导数定义为:f'(a) = lim(x→a) [f(x) - f(a)] / (x - a)如果这个极限存在,那么函数在点x=a处是可导的。

2. 导数的计算法则- 常数法则:常数的导数为零- 幂函数法则:若f(x) = x^n,则f'(x) = nx^(n-1)- 指数函数法则:若f(x) = a^x,则f'(x) = (ln a) * a^x- 对数函数法则:若f(x) = log_a x,则f'(x) = 1 / (x * ln a)- 乘积法则:若f(x) = u(x) * v(x),则f'(x) = u'(x) * v(x) + u(x) * v'(x)- 商法则:若f(x) = u(x) / v(x),则f'(x) = [u'(x) * v(x) - u(x) *v'(x)] / [v(x)]^2- 链式法则:若f(x) = u(v(x)),则f'(x) = u'(v(x)) * v'(x)3. 微分的定义对于函数f(x),在某一点x=a处的微分定义为:df = f'(a) * dx其中,df表示函数在点x=a处的微小变化,dx表示自变量x的微小变化。

二、极限与连续极限是微积分中另一个重要的概念,它描述了函数在某一点上的值趋近于某个数的情况。

而连续则表示函数在某一区间内没有间断或跳跃。

1. 极限的定义设函数f(x)在点x=a的某一邻域内有定义,如果存在常数A,对于任意给定的ε,都存在正数δ,使得当0 < |x - a| < δ时,有|f(x) - A| < ε,则称A为f(x)当x趋于a时的极限,记作lim(x→a) f(x) = A。

大一高数笔记全部知识点

大一高数笔记全部知识点

大一高数笔记全部知识点第一章数列与极限1.1 数列1.1.1 数列的概念1.1.2 等差数列1.1.3 等比数列1.2 极限的概念与性质1.2.1 极限的定义1.2.2 极限存在的条件1.2.3 极限的性质1.3 极限运算法则1.3.1 无穷小量与无穷大量1.3.2 极限的四则运算第二章函数与连续2.1 函数的概念与性质2.1.1 函数的定义2.1.2 函数的性质2.2 基本初等函数2.2.1 幂函数与指数函数2.2.2 对数函数与指数对数函数2.3 函数的极限与连续性2.3.1 函数的极限2.3.2 函数的连续性第三章导数与微分3.1 导数的概念与计算方法3.1.1 导数的定义3.1.2 常用函数的导数计算3.2 微分的概念与性质3.2.1 微分的定义3.2.2 微分的性质3.3 高阶导数与导数的应用3.3.1 高阶导数的定义3.3.2 导数的应用:切线与法线第四章积分与不定积分4.1 不定积分的概念与性质4.1.1 不定积分的定义4.1.2 不定积分的性质4.2 定积分的概念与性质4.2.1 定积分的定义4.2.2 定积分的性质4.3 积分的运算法则与应用4.3.1 积分的基本运算法则4.3.2 积分的应用:面积与曲线长度第五章多元函数与偏导数5.1 多元函数的概念与性质5.1.1 多元函数的定义5.1.2 多元函数的性质5.2 偏导数的概念与计算方法5.2.1 偏导数的定义5.2.2 常用函数的偏导数计算5.3 高阶偏导数与微分的应用5.3.1 高阶偏导数的定义5.3.2 微分的应用:切平面与法线以上是大一高数课程中的全部知识点。

通过学习这些知识,我们可以建立起数学的基础框架,为以后的学习打下坚实的基础。

每个知识点都有其重要性和实用性,在理解和掌握的过程中,我们要注重理论联系实际,通过例题和应用题的练习来提高解题能力。

希望同学们能够认真学习,并在课后进行适当的巩固和扩展。

加油!。

2022年高三数学复习资料复习笔记

2022年高三数学复习资料复习笔记

高中数学复习笔记(整顿于-8)一、 函数图象1、对称:y=f(x)与y=f(-x)关于y 轴对称,例如:x a y =与x a y -=(10≠>a a 且)关于y 轴对称y=f(x)与y= —f(x)关于x 轴对称,例如:21x y =与21x y -=关于x 轴对称y=f(x)与y= —f(-x)关于原点对称,例如:21x y =与21)(x y --=关于原点对称y=f(x)与y=f 1-(x)关于y=x 对称,例如: y=10x 与y=lgx 关于y=x 对称y=f(x)与y= —f 1-(—x)关于y= —x 对称,如:y=10x 与y= —lg(—x)关于y= —x 对称 注:偶函数图象自身就会关于y 轴对称,而奇函数图象自身就会关于原点对称,例如:2x y =图象自身就会关于y 轴对称,3x y =图象自身就会关于原点对称。

y=f(x)与y=f(a —x)关于x=2a 对称(22ax a x =-+ ) 注:求y=f(x)关于直线±x ±y ±c=0(注意此时系数要么是1要么是-1)对称方程,只需由x ±y+c=0解出x 、y 再代入y=f(x)即可,例如:求y=2x+1关于直线x-y-1=0对称方程,可先由x-y-1=0解出x=y+1,y=x-1,代入y=2x+1得:x-1=2(y+1)整顿即得:x-2y-3=02、平移:y=f(x)→y= f(ωx+φ)先向左(φ>0)或向右(φ<0)平移|φ|个单位,再保持纵坐标不变,横坐标压缩或伸长为本来ω1倍(若y= f(ωx+φ)→ y=f(x)则先保持纵坐标不变,横坐标压缩或伸长为本来ω倍,再将整个图象向右(φ>0)或向左(φ<0)平移|φ|个单位,即与原先顺序相反) y=f(x)→y= f ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+ωφωx 先保持纵坐标不变,横坐标压缩或伸长为本来|ω1|倍,然后再将整个图象向左(φ>0)或向右(φ<0)平移|ωφ|个单位,(反之亦然)。

高等数学笔记(含数一内容)

高等数学笔记(含数一内容)

隐函数求导
参数方程确定的函数求导
分段函数求导
先讨论关键点是否连续,确定连续后再判断函数各个部分是否可导。
求函数高阶导
一般使用数学归纳法解决。
微分
可微
定义:设y=f(x) (x∈D),x₀∈D。若∆y=A∆x+৹(∆x),则称f(x)在x=x₀处可微。
性质
可微一定可导,可导一定可微(充要条件)
若∆y=A∆x+৹(∆x),则A=f'(x₀),即dy∣₍x=x₀₎=f'(x₀)dx
二阶线性微分方程解的结构 齐+齐=齐 齐 + 非齐 = 非齐 非齐 + 非齐 = 齐 (拆解性质)对于方程**,若f(x)=f1(x)+f2(x)(即可拆成两部分),则分别构造两个二阶非齐次线性微分方程,且φ1(x),φ2(x)分别为它们的特解,则 有原方程特解为:
y=φ1(x)+φ2(x) (系数和的特点)设φ1(x),φ2(x),...,φn(x),为方程**的解,则通解的组合形式为y=k1φ1(x)+k2φ2(x)+...+knφn(x) 若y为方程*的通解,则k1+k2+...+kn=0(系数和为0) 若y为方程**的通解,则k1+k2+...+kn=1(系数和为1) (二阶常系数线性微分方程通解形式推导定理)
函数f(x)∈ c【a,b】的性质(函数在区间内恒连续)
性质1:∃最大值 M 和最小值 m (最值); 性质2:∃M₀>0,使得∣f(x)∣≤M₀(有界);
性质3: ∀η ∈【m,M】,∃ξ∈【a,b】,使得f(ξ)=η(介值定理);
性质4:若 f(a)*f(b)<0,则∃c∈(a,b),使得f(c)=0(零点定理)。 连续函数的运算

高数复习笔记

高数复习笔记

第一章1、映射:Y中有唯一与x对应的元素,f为x到y的映射,y称为像,x称为原像条件:x,y均为非空集合,但是y反过来对应的x不一定是唯一的可以多个x对应一个y,不可一个x对应一个y。

y中所有元素均被对应,f称为满射。

一个x对应着一个y是单射,若即是单射又是满射则是双射。

2、函数的有界性:上有界,下有界。

恒小于一个值,恒大于一个值。

有界的充要条件是即有上界又有下界(函数绝对值恒小于一正数)数列收敛的定义1数列收敛极限唯一2数列收敛,数列一定有界3从某一项开始大于零,则其极限大于零4数列收敛,子数列收敛两函数相同的条件:定义域,表达式4、函数极限:δ,函数极限定义:定义、ε5、极限运算法则无穷小加无穷小为无穷小(零是无穷小,但是无穷小不一定为零)有界函数(常数)×无穷小也是无穷小6、重要极限7、极限存在准则:单调有界有极限夹逼准则函数的保号性常见等价无穷小1、sinx~x~tanx~ln(1+x)~arcsin(x)~arctan(x)~e x-12、1-cosx~1/2x23、(1+x)a-1函数连续间断定义某一点连续(左右极限存在且相等等于该点函数值,称之为连续1、左极限等于该点函数值——左连续,右极限等于该点函数值——右连续2、闭区间连续。

右左端点处对应左右连续,开区间上连续间断点类型1、没定义2、有定义,极限不存在3、有定义,极限存在。

但是极限不等于函数值1、第一类间断点左右极限都存在(都相等但是不等于函数值——可去间断点)(极限不相等,跳跃间断点)2、第二类间断点左右极限至少有一个不存在称为第二类间断点基本初等函数必连续(三角、反三角,幂函数,指数函数,对数函数)加减乘除(分母不为零)、复合函数只要原函数连续,则连续最值定理:闭区间连续函数一定可以取到最大最小值零点定理:端点处函数值异号,开区间内存在零点(开区间使用)介值定理:闭区间连续函数,区间内比存在一点,使其函数值取到最大值最小值之间(闭区间使用,且多个函数相加存在)第二章函数导数存在就是可导可导一定连续(可以推出极限值等于函数值)不连续一定不可导函数倒数存在——函数左右导数存在且相等验证可导与否,先看是否连续,后看左右导数是否相等Secx=1/cosx cscx=1/sinx三角函数N 阶导数——sinx 求导——sin(x+n*pai/2) cosx 同理1')(!*)1()1(++-=+n nn n b ax a n b ax 乘积函数求N 阶导数隐函数求导(两侧同时对x 求导,最后解出导数)参数方程求导)(')(')()(t t f dx dy t x t f y ϕϕ===可导《=》可微=>连续第三章三个条件拉格朗日中值定理:1、拉格朗日等价形式:)(*])([')()(a b a b a f a f b f --+=-θ2、三个点,采用两次拉格朗日定理 柯西中值定理:二阶可导——一阶可导——连续 洛必达法则:(存在局限性,如果上下求导最后极限不存在,但是其极限有可能存在,洛必达法则不适用) 1、0/0型。

(完整版)高等数学笔记

(完整版)高等数学笔记

第一章 函数、极限和连续§1.1 函数一、 主要内容 ㈠ 函数的概念1. 函数的定义: y=f(x), x ∈D定义域: D(f), 值域: Z(f).2.分段函数: ⎩⎨⎧∈∈=21)()(D x x g D x x f y3.隐函数: F(x,y)= 04.反函数: y=f(x) → x=φ(y)=f -1(y)y=f -1(x)定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数:y=f -1(x), D(f -1)=Y, Z(f -1)=X且也是严格单调增加(或减少)的。

㈡ 函数的几何特性1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2),则称f(x)在D 内单调增加( );若f(x 1)≥f(x 2),则称f(x)在D 内单调减少( );若f(x 1)<f(x 2),则称f(x)在D 内严格单调增加( );若f(x 1)>f(x 2),则称f(x)在D 内严格单调减少( )。

2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x)3.函数的周期性:周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数4.函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数1.常数函数: y=c , (c 为常数)2.幂函数: y=x n, (n 为实数)3.指数函数: y=a x, (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con xy=tan x , y=cot x y=sec x , y=csc x6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数1.复合函数: y=f(u) , u=φ(x)y=f[φ(x)] , x ∈X2.初等函数:由基本初等函数经过有限次的四则运算(加、减、乘、除)和复合所构成的,并且能用一个数学式子表示的函数§1.2 极 限一、 主要内容 ㈠极限的概念1. 数列的极限:A ynn =∞→lim 称数列{}n y 以常数A 为极限;或称数列{}n y 收敛于A.定理: 若{}n y 的极限存在⇒{}n y 必定有界. 2.函数的极限:⑴当∞→x 时,)(x f 的极限:A x f A x f A x f x x x =⇔⎪⎪⎭⎫==∞→+∞→-∞→)(lim )(lim )(lim ⑵当0x x→时,)(x f 的极限:A x f xx =→)(lim 0左极限:A x f x x =-→)(lim 0右极限:A x f x x =+→)(lim 0⑶函数极限存的充要条件: 定理:A x f x f A x f x x x x x x ==⇔=+-→→→)(lim )(lim )(lim㈡无穷大量和无穷小量 1.无穷大量:+∞=)(limx f称在该变化过程中)(x f 为无穷大量。

《高等数学》笔记-知识归纳整理

《高等数学》笔记-知识归纳整理

- 1 -第一章 函数与极限第一节 函数1.区间(interval):介于某两个实数之间的全体实数构成区间.这两个实数叫做区间的端点..,,b a R b a <∈∀且}{b x a x <<开区间),(b a 记作}{b x a x ≤≤闭区间],[b a 记作ox a bo xab}{b x a x <≤}{b x a x ≤<左闭右开区间左开右闭区间),[b a 记作],(b a 记作}{),[x a x a ≤=+∞}{),(b x x b <=-∞o x aoxb注:两端点间的距离称为区间的长度.无穷区间2 邻域.0,>δδ且是两个实数与设a ,叫做这邻域的中心点a .叫做这邻域的半径δ.}{),(δδδ+<<-=a x a x a U xaδ-a δ+a δδ,}{邻域的称为点数集δδa a x x <-记作二、函数的概念1.函数的定义函——信函单值对应多值函数不是函数自变量因变量对应法则(())x )(0x f f xyDW------函数的定义域D 和函数的对应规律f 函数的值域称为派生要素。

2. 函数的两个要素w={y │y=f(x), x ∈D}xaδ- a δ+ a δδ,邻域 的去心的 点 δa) , ( δ a U记作 .}0{),(δδ<-<=a x x a U知识归纳整理- 2 -❖定义域的求法❖在实际问题中,定义域由实际问题的具体条件来确定。

(即使实际问题故意义的取值范围)。

如时光、长度、分量必须大等于0 。

❖对于数学式子表达的函数,如果给出了取值范围就不必再求。

否则,则是使解析式故意义的x的集合(使对应的函数值唯一确定)。

1. 在分式中,分母应不为0;2. 在偶次根式中,被开方数不能为负数;3. 在对数式中,真数不能为0和负数;▪ 4. 在反三角函数式中,要符合反三角函数的定义域;▪ 5. 若函数表达式中含有分式、根式、对数式、反三角函数式等,则应取各部分定义域的交集。

高数笔记(全)

高数笔记(全)

第一章 函数、极限和连续§1.1 函数一、主要内容㈠ 函数的概念1. 函数的定义: y=f(x), x ∈D定义域: D(f), 值域: Z(f).2.分段函数:⎩⎨⎧∈∈=21)()(D x x g D x x f y3.隐函数: F(x,y)= 04.反函数: y=f(x) → x=φ(y)=f -1(y) y=f -1(x)定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数:y=f -1(x), D(f -1)=Y, Z(f -1)=X且也是严格单调增加(或减少)的。

㈡ 函数的几何特性1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2),则称f(x)在D 内单调增加( );若f(x 1)≥f(x 2),则称f(x)在D 内单调减少( );若f(x 1)<f(x 2),则称f(x)在D 内严格单调增加( );若f(x 1)>f(x 2),则称f(x)在D 内严格单调减少( )。

2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x)3.函数的周期性:周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数4.函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数1.常数函数: y=c , (c 为常数)2.幂函数: y=x n, (n 为实数) 3.指数函数: y=a x , (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con xy=tan x , y=cot x y=sec x , y=csc x6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x㈣ 复合函数和初等函数1.复合函数: y=f(u) , u=φ(x)y=f[φ(x)] , x ∈X2.初等函数:由基本初等函数经过有限次的四则运算(加、减、乘、除)和复合所构成的,并且能用一个数学式子表示的函数§1.2 极 限一、主要内容㈠极限的概念1. 数列的极限:Aynn =∞→lim称数列{}n y 以常数A 为极限;或称数列{}n y 收敛于A.定理: 若{}n y 的极限存在⇒{}n y 必定有界.2.函数的极限:⑴当∞→x 时,)(x f 的极限:⑵当0x x →时,)(x f 的极限:左极限:Ax f x x =-→)(lim 0右极限:A x f x x =+→)(lim 0⑶函数极限存的充要条件:定理:Ax f x f A x f x x x x x x ==⇔=+-→→→)(lim )(lim )(lim 0㈡无穷大量和无穷小量1. 无穷大量:+∞=)(lim x f称在该变化过程中)(x f 为无穷大量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高数一(微积分)总复习笔录
可能考的知识点:
第一章:函数及其图形
(一)对于定义域的求法:
形如y=1/f(x),要求f(x)不等于0
对于根号f(x),要求f(x)大于等于0
对于Y=logf(x),要求f(x)大于0
对于y=arccosf(x)或y=arcsinf(x),要求f(x)大于等于负1,小于等于正1.
*值域:以定义域带进去求。

(二)判断函数的奇偶性:
奇函数:f(-x)=-f(x),关于原点对称;
偶函数:f(-x)=f(x),关于Y轴对称。

(1)两个偶函数之和或差是偶函数,两个奇函数之和或差是奇函数;
(2)两个偶函数或两个奇函数之积或商是偶函数;
(3)一个奇函数与一个偶函数之积或商是奇函数。

(三)复合函数的分解:
(四)反函数的求法:把x 从y=f(x)中反解出来即可。

* (五)经济学中常用的函数:
(1)需求函数:D=(a-P)/b;D=(a-P^2)/b;
(2)供给函数:S=aP-b;S=(aP-b)/(cP+d)。

(3)总收益函数。

(4)总成本函数:总成本=固定成本+可变成本。

(5)总利润函数:
第二章极限与连续
(一)收敛数项级数的极限计算:
1、当等比级数的公比的绝对值小于1时收敛,其和为a/(1-q);当大于1时发散;
2、荚逼定理:;
3、单调上升有上界(或单调下降有下界)的数列必有极限。

(二)函数极限:
1、定理:当x->x`时函数f(x)以A为极限的充分必要条件是f(x)在x`的左、右极限都存在并均为A。

2、极限的四则运算法则:
(三)利用无穷小量与无穷大量的运算法则求极限:
1、无穷小量:无穷小量的和、差、积也都是无穷小量。

有界变量与无穷小量的积为无穷小量。

2、两个无穷小量相除:a/b趋于0,a是比b高阶的无穷小,a趋于0的速度比b 快;
(四)利用无穷小量与无穷大量的关系求极限:
(五)利用两个重要极限求极限:
(六)利用函数的连续性求极限:
函数在一点处连续,要求在这一点有定义,函数的极限存在,并且相等.
(七)利用等价无穷小的代换求极限:
(八)连续函数的运算和初等函数的连续性:
1、连续函数的和、差、积、商仍是连续函数;
2、设函数在区间上是单调的连续函数,则其值域是一个区间,且它的反函数是区间上的单调连续函数;
3、闭区间上的连续函数必有界;
4、最值定理:闭区间上的连续函数必有最大值和最小值;
5、零点定理:设f(x)是[a,b]上的连续函数,且f(a),f(b)异号,则函数f(x)在(a,b)中至少有一个零点;
6、介值定理:闭区间上的连续函数必能取得它在区间上的最大值和最小值之间的任何值。

7、闭区间上的连续函数不一定能取到最大值,最小值。

(九)函数的间断点:
1、函数的左、右极限都存在的间断点为第一类间断点;
2、函数的左、右极限至少有一个极限不存在的点为第二类间断点;
第三章一元函数的导数与微分
(一)基本求导公式:
导数的求法:
1、利用导数的定义求导:
2、导数的四则运算法则:
3、复合求导法则:
4、对数求导法则:
5、隐函数求导法则:
(二)反函数求导法则:
(三)高阶导数:
(四)基本微分公式与微分法则:
(五)切线方程:
(六)弹性函数:
第四章微分中值定理和导数的应用
(一)利用洛必达法则求未定式。

(二)用导数分析函数的单调性:
1、函数单调性判定法:导数>0时单调增加;导数<0时单调减少。

2、求出F(x)的驻点和不可导点,在若干小区间上判定单调性。

(三)曲线的凹凸性判别方法:
f(x)的二阶导数大于0,则曲线是凹的;
f(x)的二阶导数小于0,则曲线是凸。

(四)函数的极值
求函数极值的步骤:
1、求函数f(x)导数;
2、求f(x)的导数=0的点(驻点)以及不存在的点;
3、考虑每一极值点两侧的符号。

4、极值的第二判别法:二阶导数小于零,是极大值,大于零是极小值。

(五)函数的最值
就是极值中最小的或最大的值。

(六)拐点
凹凸分界点。

(七)曲线的渐近线
y=b是水平渐近线;y=a竖直渐近线
第五章一元函数积分学
(一)基本积分公式:
(二)利用基本积分公式求不定积分:
1、凑微分法(第一积分法);
2、第二换元法
3、分部积分法:
(三)一阶线性微分议程:
齐次线性方程dy/dx+P(x)y=0的通解为:
(C为任意常数);
非齐次线性方程dy/dx+P(x)y=Q(x)的通解为:
(C为任意常数);
解题步骤:
(四)定积分的基本定理、性质及其计算:
A、函数f(x)在区间[a,b]上可积的必要条件是f(x)在[a,b]上有界;
B、如果f(x)是[a,b]上的连续函数,则它在[a,b]上可积;
C、如果f(x)在[a,b]上有界,且在[a,b]上除有限个间断点外连续,则f(x)在[a,b]上可积。

(五)定积分的性质:
(六)牛顿-莱布尼茨公式:
(七)利用定积分计算旋转体体积:
(八)利用定积分计算平面图形的面积:
1、着先把平面图形画出来;求出曲线的交点;
2、然后决定积分上限、下限,同时确定被积函数,列出定积分;
3、最后计算定积分。

4、由边际函数求总函数:
(九)无穷限反常积分:。

相关文档
最新文档