一些常见基团质子的化学位移值
特征质子的化学位移

特征质子的化学位移由于不同类型的质子化学位移不同,因此化学位移值对于分辨各类质子是重要的,而确定质子类型对于阐明分子结构是十分有意义的。
下表列出了一些特征质子的化学位移,表中黑体字的H是要研究的质子。
特征质子的化学位移质子的类型化学位移质子的类型化学位移RCH30.9ArOH4.5-4.7(分子内缔合10.5~16)R2CH21.3R3CH1.5R2C=CR—OH15~19(分子内缔合)0.22RCH2OH3.4~4R2C=CH24.5~5.9ROCH33.5~4R2C=CRH5.3RCHO9~10R2C=CR—CH31.7RCOCR2—H2~2.7RC≡CH7~3.5HCR2COOH2~2.6ArCR2—H2.2~3R2CHCOOR2~2.2RCH2F4~4.5RCOOCH33.7~4RCH2Cl3~4RC≡CCOCH32~3RCH2Br3.5~4RNH2或R2NH0.5~5(峰不尖锐,常呈馒头形)RCH2I3.2~4ROH0.5~5.5(温度、溶剂、浓度改变时影响很大)RCONRH或ArCONRH5~9.4[1]烷烃甲烷氢的化学位移值为0.23,其它开链烷烃中,一级质子在高场δ≈9处出现,二级质子移向低场在δ≈1.33处出现,三级质子移向更低场在δ≈1.5处出现。
例如:烷烃CH4CH3—CH3CH3—CH2—CH3(CH3)3CHδ0.230.860.860.911.330.910.861.50甲基峰一般具有比较明显的特征,亚甲基峰和次甲基峰没有明显的特征,而且常呈很复杂的峰形,不易辨认。
当分子中引人其它官能团后,甲基、次甲基及亚甲基的化学位移会发生变化,但其δ值极少超出0.7~4-5这一范围。
环己烷的各向异性屏蔽效应[1]环烷烃能以不同构象形式存在,未被取代的环烷烃处在一确定的构象中时,由于碳碳单键的各向异性屏蔽作用,不同氢的δ值略有差异。
例如,在环己烷的椅型构象中,由于C-I上的平伏(图键氢处于C⑵—C⑶键及C⑸—C⑹键的去屏蔽区,而C-I上的直立键氢不处在去屏蔽区,环己烷的各向异性屏蔽效应)。
核磁H谱化学位移

在有机化合物中,氢核受核外电子的屏蔽作用, 使其共振频率发生变化,即引起共振吸收峰的 位移,这种现象称为化学位移。(不同的氢核, 所处的化学环境不同,化学位移的值也不相 同。)
2、化学位移的表示方法
如定义中所提到的,不同的氢核,所处的化学环境 不同,出峰位置也不同,其峰的位置不便精确测定,
故在试验中采用某一标准物质作为基准,以基准物
如图,苯上的六个π电子产生较强的感应磁场,H位于 去屏蔽区,处于低场。 化学位移为6.8-8.
3、影响化学位移的因素
3.4、氢键的影响
键合在杂原子(N、O等)上的 质子易形成氢键。氢键质子相 比于没有形成氢键的质子有较 小的屏蔽效应,共振吸收峰出 现在低场。
3.5、温度的影响 温度:大多数信号的共振位置受温度影响很小,但-OH、-NH和-SH在升高温度时形 成氢键的程度降低,化学位移移向高场。 3.6、溶剂效应 溶剂效应:溶剂的磁各向异性和溶质与溶剂之间形成氢键将对溶质中不同位置的 氢核的化学位移产生影响。
3.3、磁各向异性 屏蔽区:感应磁场与区域。
如图,双键的H处于去屏蔽区,故其处于低场。 化学位移为4.5-5.1
3、影响化学位移的因素
3.3、磁各向异性
如图,三键是直线构型,H所处感应磁场方向与外磁场 方向相反,处于屏蔽区,故其处于高场。 化学位移为2-3.
三甲氧基苯_化学位移__解释说明

三甲氧基苯化学位移解释说明1. 引言1.1 概述三甲氧基苯是一种常见有机化合物,具有多个甲氧基(-OCH3)官能团置于苯环上。
化学位移作为核磁共振(NMR)技术的重要参数,能够提供关于分子结构和官能团影响的重要信息。
因此,了解三甲氧基苯的化学位移及其解释是非常有意义的。
1.2 文章结构本文首先介绍三甲氧基苯的化学位移,并探讨其中的影响因素。
随后,我们将简要介绍核磁共振原理,并详细阐述化学位移的概念和定义。
最后,我们将重点讨论不同官能团对三甲氧基苯化学位移的影响并解释可能的机理。
1.3 目的本文旨在提供关于三甲氧基苯化学位移的全面解释说明。
通过对实验数据进行分析和比较,探讨可能存在的解释和机理。
同时,通过对不同官能团引入后化学位移变化情况进行比较研究,揭示不同官能团与三甲氧基苯之间相互作用的特性。
通过本文的研究,有望进一步完善对三甲氧基苯分子结构特征的理解,并为相关领域的应用提供理论支持。
2. 三甲氧基苯的化学位移2.1 定义和背景在有机化学中,化学位移是指核磁共振(NMR)谱图中出现的信号相对于参考信号位置的偏移量。
它常用来确定分子结构和官能团的存在。
三甲氧基苯是一种有机化合物,其分子结构中含有一个芳香环并且还连接了三个甲氧基基团(-OCH3)。
由于其独特的分子结构以及电子环境,三甲氧基苯的化学位移表现出一些特殊性质和规律。
2.2 影响因素化学位移受到多种因素的影响,其中最重要的因素是电子环境。
对于三甲氧基苯而言,附加在芳香环上的三个甲氧基基团对该分子的电子环境产生了显著影响。
这些取代基可以通过吸电子效应或推电子效应改变其周围原子核的化学位移值。
此外,溶剂效应也可能对化学位移产生一定影响。
不同溶剂具有不同极性和溶解度等性质,这些性质会干扰分子内部的相互作用,并可能导致化学位移的变化。
2.3 实验方法和测量技术确定化学位移通常是通过核磁共振谱仪进行实验来完成的。
核磁共振谱图显示了样品中各种不同原子种类的特定峰值信号,这些峰值与特定化学位移值相关联。
丙酮质子的相对化学位移2.1,这种质子共振吸收处于tms的低场

丙酮质子的相对化学位移2.1,这种质子共振吸收处于tms的低场1. 引言1.1 概述丙酮是一种常见的有机溶剂和化工原料,广泛应用于化学合成、药物制造、涂料和染料等领域。
在有机化学研究中,通过核磁共振(NMR)技术可以对丙酮分子进行分析和表征。
其中,丙酮质子的相对化学位移则是一个重要的参数,可以给出关于丙酮分子结构和其它相关性质的信息。
1.2 文章结构本文将首先概述丙酮质子相对化学位移的背景和意义,然后详细介绍质子共振吸收处于三甲基硅烷(TMS)低场下的解释原理。
接着,我们将探讨影响丙酮质子相对化学位移的因素,并通过实验数据分析来验证这些因素在实际情况中的作用。
最后,我们将讨论丙酮质子相对化学位移与其结构之间可能存在的关系,并展望未来研究在此领域中的重要意义。
1.3 目的本文旨在系统地讲解丙酮质子相对化学位移及其相关内容,并深入分析影响丙酮质子相对化学位移的因素。
通过本文的阐述,读者将能够更好地理解丙酮质子相对化学位移与结构之间的关系,并对该领域的未来研究方向有所了解。
以上就是本文章“1. 引言”部分的详细内容,希望能满足您的需求。
如有任何问题,请随时提问。
2. 正文:2.1 丙酮质子的相对化学位移概述在核磁共振(NMR)光谱中,丙酮的质子信号是一个常见的实验信号。
相对化学位移是指某个原子核在强加外磁场下的共振频率与参考物质(通常为四甲基硅烷,简称TMS)的共振频率之比。
丙酮质子的相对化学位移被测定为2.1,在一般实验条件下,这个数值较为稳定。
2.2 质子共振吸收处于TMS的低场解释TMS作为一个标准参考物质,其H-NMR谱图中包含一个定义为零点的信号。
这个信号被定义为0 ppm (部分百万)。
而丙酮所产生的信号出现在更高场(消化位置),意味着它比TMS更受外界磁场影响。
这种低场位移可以通过电荷环境、溶剂效应以及分子构象等因素来解释。
2.3 影响丙酮质子相对化学位移的因素有多种因素会影响丙酮质子相对化学位移。
各类质子的化学位移

各类质子的化学位移碳上质子的化学位移值取决于质子的化学环境。
因此,我们也可以反过来由质子的化学位移推测质子的化学环境及分子的结构。
各类质子的化学位移大体有一个范围,下面给出各类质子的粗略化学位移:碳上的氢(H)脂肪族CH(C上无杂原子)0——2.0β-取代脂肪族CH1.0——2.0炔氢1.6——3.4α-取代脂肪族CH(C上有O、N、X或与烯键、炔键相连) 1.5——5.0烯氢4.5——7 .5苯环、芳杂环上氢6.0——9.5醛基氢9——10 .5氧上的氢(OH)醇类0.5——5.5酚类4 .0——8.0酸9——13.0氮上的氢(NH)脂肪族0.6——3.5芳香胺3.0——5.0酰胺5——8.5对于大部分有机化合物来说氢谱的化学位移值在0-13 ppm. 大致可分以下几个区0-0.8 ppm :很少见,典型化合物; 环丙烷,硅烷,以及金属有机化合物。
0.8-1.5 ppm :烷烃区域. 氢直接与脂肪碳相连,没有强电负性取代基。
化学位移地次序CH>CH2>CH3.。
如果有更多的取代基化学位移移向低场。
2-3 ppm:羰基αH(醛、酮、羧酸、酯)、苄位碳H。
1.5-2ppm:烯丙位碳H卤代烃(氯、溴、碘)同碳氢:2-4ppm,氟代烃:4-4.53.0-4.5 ppm:醚区域。
即醚,羟基或者酯基碳氧单键的αH如果有更多的电负性取代基化学位移移向低场。
5.0-7.0 ppm :双键区域,氢直接与C=C 双键相连。
炔氢化学位移2-3。
7.0-8.0 ppm :芳环质子区域. 磁各向异性作用,导致芳环质子处于去屏蔽区。
同样现象发生在醛由于羰基地磁各向异性,醛质子化学位移在9-10 ppm-OH 可以出现在任何位置,谱线的性质由多重因此影响H的交换:pH.浓度,温度,溶剂等。
一般芳环酚羟基更趋于低场。
醇羟基0.5-5.5ppm,酚羟基4-8ppm 醇在DMSO中4.0-6.5大多数的-NHR, -NH2和醇一样,可被交换,在 2-3 ppm 区域显示宽峰。
核磁共振氢谱中的几个重要参数

2.1核磁共振氢谱中的几个重要参数1、化学位移(1)影响化学位移的主要因素:a.诱导效应。
电负性取代基降低氢核外电子云密度,其共振吸收向低场位移,δ值增大,如CH3F CH3OH CH3Cl CH3Br CH3I CH4TMSδ(ppm) 4.06 3.40 3.05 2.68 2.16 0.23 0X电负性 4.0 3.5 3.0 2.8 2.5 2.1 1.6对于X-CH<YZ型化合物,X、Y、Z基对>CH-δ值的影响具有加合性,可用shoolery公式估算,式中0.23为CH4的δ,Ci值见下表。
例如:BrCH2Cl(括号内为实测值)δ=0.23+2.33+2.53=5.09ppm(5.16ppm)利用此公式,计算值与实测值误差通常小于0.6ppm,但有时可达1pmm。
值得注意的是,诱导效应是通过成键电子传递的,随着与电负性取代基距离的增大,诱导效应的影响逐渐减弱,通常相隔3个碳以上的影响可以忽略不计。
例如:b.磁各向异性效应。
上面所述的质子周围的电子云密度,能阐明大多数有机化合物的化学位移值。
但是还存在用这一因素不能解释的事实:如纯液态下的乙炔质子与乙烯质子相比,前者在高场共振;相反苯的质子又在低场下发生共振。
这些现象可用磁各向异性效应解释。
当分子中某些基团的电子云排布不是球形对称时,即磁各向异性时,它对邻近的H核就附加一个各向异性磁场,使某些位置上核受屏蔽,而另一些位置上的核受去屏蔽,这一现象称为各向异性效应。
在氢谱中,这种邻近基团的磁各向异性的影响十分重要。
现举例说明一下:叁键的磁各向异性效应:如乙炔分子呈直线型,叁键轴向的周围电子云是对称分布的。
乙炔质子处于屏蔽区,使质子的δ值向高场移动。
双键:π电子云分布于成键平面的上、下方,平面内为去屏蔽区。
与SP杂2化碳相连的氢位于成键的平面内(处于去屏蔽区),较炔氢低场位移。
乙烯:5.25ppm;醛氢:9-10ppm。
化学键的各向异性还可由下述化合物(1)至(4)看出:化合物(1)、(3)中的标记氢分别处于双键和苯环的屏蔽区,而化合物(2)、(4)中相应的氢分别处于双键和苯环的去屏蔽区,δ值增大。
第三章 核磁共振氢谱2-化学位移

六、 氢键的影响 • 氢键的形成 降低了核外电子云密度,有去屏蔽效应, 使质子的δ值显著增大。δ值会在很宽的范围内变化。
• 随样品浓度的增加,缔合程度增大,分子间氢键 增强,羟基氢δ值增大。
PhOH中酚羟基H的化学位移与浓度的关系:
浓度 δ/ppm 100% 7.45 20% 6.8 10% 6.4 5% 5.9 2% 4.9 1% 4.35
一、 饱和碳上质子的化学位移 甲基 甲基的化学位移在0.7~4ppm之间。
亚甲基(CH2)和次甲基(CH):1-2ppm Shoolery经验计算: δ :-CH< = 0.23 + ∑Ci
0.23是甲烷的化学位移值,Ci是与次甲基(亚甲
基)相连的取代基的影响参数(P95,表3.1)。 例:BrCH2Cl Br: 2.33; Cl: 2.53
-CH 2 -NO
13
12
11
10
9
8
7
6
5
4
3
2
1
0
各类质子的化学位移值范围
• 有机化合物中质子化学位移规律:
饱和碳原子上的质子的 值:叔碳 > 仲碳 > 伯碳 与H相连的碳上有电负性大的原子或吸电子基团 (N, O, X, NO2, CO等), 值变大。电负性越 大,吸电子能力越强, 值越大。 值:芳氢 > 烯氢 > 烷氢
吸电子诱导效应:去屏蔽效应,化学位移增大 给电子诱导效应:屏蔽效应,化学位移减小
化合物 δ
CH4 0.23
CH3Cl 3.05
CH2Cl2 5.33
CHCl3 7.27
化合物 电负性 δ
C-CH3 C: 2.5 0.7~1.9
N-CH3 N: 3.0 2.1~3.1
13CNMR核磁共振碳谱化学位移总览表

1) INEPT法
由于核磁共振本身信号灵敏度很低,尤其是低天然丰度的核 (如13C、15N等)更为突出。INEPT法是在具有两种核自旋的系统 中,以CH为例,通过脉冲技术,把高灵敏1H核的自旋极化传递到 低灵敏的13C核上去,这样由1H到与其偶合的13C的完全极化传递可 使,13C信号强度增强4倍。
的峰的裂分应全部去除。如果还有谱线的裂分不能去除,应考虑分
子中是否含F或P等元素。 (6)从分子式和可能的结构单元,推出可能的结构式。利用化学位移 规律和经验计算式,估算各碳的化学位移,与实测值比较。 (7)综合考虑1H NMR、IR、MS和UV的分析结果,必要时进行其他 的双共振技术及τ 1测定,排除不合理者,得到正确的结构式。
δ值范围在100-150ppm,sp杂化碳的δ值范围在60-95ppm。
2.诱导效应
当电负性大的元素或基团与碳相连时,诱导效应使碳的核外 电子云密度降低,故具有去屏蔽作用。随着取代基电负性增强, 或取代基数目增大,去屏蔽作用也增强, δ值愈向低场位移。
3.共轭效应
共轭作用会引起电子云分布的变化,导致不同位置碳的共 振吸收峰向高场或低场移动。
5.弛豫时间τ1可作为化合物结构鉴定的波谱参数
在化合物中,处于不同环境的13C核,它们的弛豫时间τ1数
值相差较大,可达2-3个数量级,通过τ1可以指认结构归属,
窥测体系运动状况等。
4.2.1
脉冲傅里叶变换法
原理同1H NMR。
4.2.2
核磁共振碳谱中几种去偶技术
在有机化合物的13C NMR中,13C-13C之间的偶合由于13C的天然丰 度很低,可以不予考虑。但13C-1H核之间的偶合常数很大,如1JCH高达 120-320Hz,13C的谱线会被与之偶合的氢按n+1规律裂分成多重峰,这 种峰的裂分对信号的归属是有用的,但当谱图复杂时,加上2JCCH、