广东省中考数学模拟题及答案
2024年广东省广州市中考模拟数学试题

2024年广东省广州市中考模拟数学试题一、单选题1.2024的相反数是( )A .2024B .2024-C .12024D .12024- 2.我国新能源汽车发展迅猛,下列新能源汽车标志既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 3.2024年全国高考报名人数约为13530000人,数13530000用科学记数法表示为( ) A .80.135310⨯ B .71.35310⨯ C .81.35310⨯ D .713.5310⨯4.不等式组212x x -+⎧⎨<⎩…的解集在数轴上可以表示为( ) A . B .C .D .5.如图为商场某品牌椅子的侧面图,120DEF ∠=︒,DE 与地面平行,50ABD ∠=︒,则ACB =∠( )A .70°B .65°C .60°D .50°6.在一次献爱心的捐款活动中,八(2)班50名同学捐款金额如图所示,则在这次捐款活动中,该班同学捐款金额的众数和中位数分别是( )A .20,10B .10,20C .10,10D .10,157.港珠澳大桥是世界上最长的跨海大桥,被誉为“现代世界七大奇迹”的超级工程,它是我国从桥梁大国走向桥梁强国的里程碑之作.港珠澳大桥主桥为三座大跨度钢结构斜拉桥,其中九洲航道桥主塔造型取自“风帆”,寓意“扬帆起航”.某校九年学生为了测量该主塔的高度,站在B 处看塔顶A ,仰角为60︒,然后向后走160米(160BC =米),到达C 处,此时看塔顶A ,仰角为30︒,则该主塔的高度是( )A .80米B .C .160米D .8.如图,四边形ABCD 内接于⊙O ,E 为DC 延长线上一点.若∠BCE =105°,则∠BOD 的度数是( )A .150°B .105°C .75°D .165°9.已知:ABC V 中,AD 是中线,点E 在AD 上,且,CE CD BAD ACE =∠=∠.则CE AC 的值为( )A B C .23 D10.如图,已知四边形ABCD 为正方形,AB =E 为对角线AC 上一点,连接DE ,过点E 作EF DE ⊥,交BC 的延长线于点F ,以DE ,EF 为邻边作矩形DEFG ,连接CG .下列结论:①矩形DEFG 是正方形;②CE CF =;③AE CG =;④6CE CG +=.其中结论正确的序号有( )A .①②③④B .①③④C .①③D .②④二、填空题11.甲、乙两人在100米短跑训练中,记录了5次测试的成绩:两人的平均成绩相等,甲的方差是0.14,乙的方差是0.06,这5次短跑测试的成绩较稳定的是. (填“甲”或“乙”) 12.在一个不透明的布袋中装有2个白球和n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,摸到黄球的概率是45,则n =. 13.因式分解:222x -=.14.如图,圆锥的侧面展开图是一个圆心角为120°圆锥的母线l =.15.如图,在平行四边形ABCD 中,AB =4,BC =6,以点B 为圆心,以任意长为半径作弧,分别交BA 、BC 于点P 、Q ,再分别以P 、Q 为圆心,以大于12PQ 的长为半径作弧,两弧在∠ABC 内交于点M ,连接BM 并延长交AD 于点E ,则DE 的长为.16.如图,在平面直角坐标系中,四边形ABOC 是正方形,点A 的坐标为()1,1,弧1AA 是以点B 为圆心,BA 为半径的圆弧;弧12A A 是以点O 为圆心,1OA 为半径的圆弧,弧23A A 是以点C 为圆心,2CA 为半径的圆弧,弧34A A 是以点A 为圆心,3AA 为半径的圆弧.继续以点B ,O ,C ,A 为圆心按上述作法得到的曲线12345AA A A A A …称为正方形的“渐开线”,则点2022A 的坐标是三、解答题17.(1112sin 303-⎛⎫-︒ ⎪⎝⎭; (2)解方程组:6936x y x y +=⎧⎨-=-⎩.18.先化简,再求值:22111x x x x x ++⎛⎫-⋅ ⎪-⎝⎭,其中1x . 19.中华文化源远流长,文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如下尚不完整的统计图.请根据以上信息,解决下列问题:(1)本次调查所得数据的众数是________部,中位数是________部;(2)扇形统计图中“4部”所在扇形的圆心角为________度;(3)请将条形统计图补充完整;(4)没有读过四大古典名著的两名学生准备从中各自随机选择一部来阅读,请用列表或画树状图的方法求他们恰好选中同一名著的概率.20.如图,一次函数5y x =-+与反比例函数()40y x x=≠的图象交于点A 、B .(1)求点A 、B 的坐标;(2)观察图象写出不等式45x x-+>的解集; (3)若位于第三象限的点M 在反比例函数()40y x x=≠的图象上,且MAB △是以AB 为底的等腰三角形,请直接写出点M 的坐标和MAB △的面积;21.有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为170人,1辆甲种客车与2辆乙种客车的总载客量为100人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某单位组织180名员工到某革命家传统教育基地开展“纪念建党100周年”活动,拟租用甲、乙两种客车共5辆,总费用在1950元的限额内,一次将全部员工送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为320元,有哪几种租车方案,最少租车费用是多少?22.综合应用:测旗杆高度小明和小红是学校的升旗手,两人想一同测出学校旗杆的高度.为了解决这个问题,他们向数学王老师请教,王老师给他们提供了测倾器和皮尺工具.经过两人的思考,他们决定利用如下的图示进行测量.【测量图示】【测量方法】在阳光下,小红站在旗杆影子的顶端F 处,此刻量出小红的影长FG ;然后小明在旗杆落在地面的影子上的某点D 处,安装测倾器CD ,测出旗杆顶端A 的仰角.【测量数据】小红影长2m FG =,身高 1.6m EF =,旗杆顶端A 的仰角为49︒,侧倾器CD 高0.6m ,6m DF =,旗台高 1.2m BP =.若已知点B 、D 、F 、G 在同一水平直线上,点A 、P 、B 在同一条直线上,AB 、CD 、EF 均垂直于BG .你能帮小明和小红两人测出旗杆AP 的高度吗?(参考数据:sin 490.8︒≈,cos490.7︒≈,tan 49 1.2︒≈)23.如图,在Rt ABC △中,90ACB ∠=︒,O 为AC 边上一点,连结OB ,以OC 为半径的半圆与AB 边相切于点D ,交AC 边于点E .(1)求证:BC BD =;(2)若OB OA =,2AE =,①求半圆O 的半径;②求图中阴影部分的面积.24.某个农场有一个花卉大棚,是利用部分墙体建造的.其横截面顶部为抛物线型,大棚的一端固定在墙体OA 上,另一端固定在墙体BC 上,其横截面有2根支架DE ,FG ,相关数据如图1所示,其中支架DE BC =,OF DF BD ==,这个大棚用了400根支架.为增加棚内空间,农场决定将图1中棚顶向上调整,支架总数不变,对应支架的长度变化,如图2所示,调整后C 与E 上升相同的高度,增加的支架单价为60元/米(接口忽略不计),需要增加经费32000元.(1)分别以OB 和OA 所在的直线为x 轴和y 轴建立平面直角坐标系.①求出改造前的函数解析式.②当1CC '=米,求GG '的长度.(2)只考虑经费情况下,求出CC '的最大值.25.【问题情境】(1)如图1,在正方形ABCD 中,E ,F ,G 分别是BC ,AB ,CD 上的点,FG ⊥AE 于点Q .求证:AE =FG .【尝试应用】(2)如图2,正方形网格中,点A,B,C,D为格点,AB交CD于点O.求tan∠AOC的值;【拓展提升】(3)如图3,点P是线段AB上的动点,分别以AP,BP为边在AB的同侧作正方形APCD与正方形PBEF,连接DE分别交线段BC,PC于点M,N.①求∠DMC的度数;②连接AC交DE于点H,直接写出DHBC的值.。
广东中考第二次模拟检测《数学试题》含答案解析

广东数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________ 一.选择题(共12小题)1.﹣34的绝对值是( )A. ﹣34B.34C. ﹣43D.432.如图的几何体由6个相同的小正方体搭成,它的主视图是( )A. B. C. D.3.如图,直线AB∥CD,直线EF分别交AB、CD于E、F两点,EG平分∠AEF,如果∠1=32°,那么∠2的度数是()A. 64°B. 68°C. 58°D. 60°4.下列运算正确的是( )A. 2m3+3m2=5m5B. m3÷m2=mC. m•(m2)3=m6D. (m﹣n)(n﹣m)=n2﹣m25.学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,则今年购置计算机的数量是( )A. 25台B. 50台C. 75台D. 100台6.小明将一正方形纸片画分成16个全等的小正方形,且如图所示为他将其中四个小正方形涂成灰色的情形.若小明想再将一小正方形涂成灰色,使此纸片上的灰色区域成为线对称图形,则此小正方形的位置为何?( ).A. 第一列第四行B. 第二列第一行C. 第三列第三行D. 第四列第一行7.某青少年篮球队有12名队员,队员的年龄情况统计如下: 年龄(岁) 12 13 14 15 16 人数 31251则这12名队员年龄的众数和中位数分别是( ) A. 15岁和14岁 B. 15岁和15岁 C. 15岁和14.5岁 D. 14岁和15岁8.已知下列命题: ①若a >b ,则ac >bc; ②若a=1a ③内错角相等;④90°的圆周角所对的弦是直径.其中原命题与逆命题均为真命题的个数是( ) A. 1个B. 2个C. 3个D. 4个9.如图,将ABC ∆沿BC 边上的中线AD 平移到A B C '''∆的位置.已知ABC ∆的面积为16,阴影部分三角形的面积9.若1AA '=,则A D '等于( )A. 2B. 3C. 4D. 3 210.如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是()A 20° B. 35° C. 40° D. 55°11.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点纵坐标分别为4,2,反比例函数ykx(x>0)的图象经过A,B两点,若菱形ABCD的面积为25,则k的值为( )A. 2B. 3C. 4D. 612.如图,以矩形ABCD对角线AC为底边作等腰直角△ACE,连接BE,分别交AD,AC于点F,N,CD=AF,AM平分∠BAN.下列结论:①EF⊥ED;②∠BCM=∠NCM;③AC=2EM;④BN2+EF2=EN2;⑤AE•AM =NE•FM,其中正确结论的个数是( )A 2 B. 3 C. 4 D. 5二.填空题(共4小题)13.把多项式9m 2﹣36n 2分解因式的结果是_____.14.在平面直角坐标系中,如果点P 坐标为(m ,n ),向量OP 可以用点P 的坐标表示为OP =(m ,n ),已知:OA =(x 1,y 1),OB =(x 2,y 2),如果x 1•x 2+y 1•y 2=0,那么OA 与OB 互相垂直,下列四组向量:①OC =(2,1),OD =(﹣1,2);②OE =(cos30°,tan45°),OF =(﹣1,sin60°);③OG =(3﹣2,﹣2),OH =(3+2,12);④OC =(π0,2),ON =(2,﹣1).其中互相垂直的是______(填上所有正确答案的符号).15.如图,一次函数y 1=kx +b (k ≠0)的图象与反比例函数y 2=mx(m 为常数且m ≠0)的图象都经过A (﹣1,2),B (2,﹣1),结合图象,则关于x 的不等式kx +b >mx的解集是_____.16.如图,Rt △ABC ,AB =3,AC =4,点D 在以C 为圆心3为半径的圆上,F 是BD 的中点,则线段AF 的最大值是_____.三.解答题(共7小题)17.计算:3016sin 45227()(20192019)2-︒+-+.18.先化简2728333x x x x x -⎛⎫+-÷⎪--⎝⎭,再从04x ≤≤中选一个适合的整数代入求值.19.为响应市政府关于”垃圾不落地市区更美丽”的主题宣传活动,郑州外国语中学随机调查了部分学生对垃圾分类知识的掌握情况,调查选项分为”A:非常了解;B:比较了解;C:了解较少;D:不了解“四种,并将调查结果绘制成以下两幅不完整的统计图请根据图中提供的信息,解答下列问题;()1求m=______,并补全条形统计图;()2若我校学生人数为1000名,根据调查结果,估计该校”非常了解”与”比较了解”的学生共有______名;()3已知”非常了解”是3名男生和1名女生,从中随机抽取2名向全校做垃圾分类的知识交流,请画树状图或列表的方法,求恰好抽到1男1女的概率.20.小明想测量湿地公园内某池塘两端A,B两点间的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=40°,再向前行走100米到点D处,测得∠BDF=52.44°,若直线AB与EF之间的距离为60米,求A,B两点的距离(结果精确到0.1)(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin52.44°≈0.79,cos52.44°≈0.61,tan52.44°≈1.30)21.仙桃是遂宁市某地的特色时令水果.仙桃一上市,水果店的老板用2400元购进一批仙桃,很快售完;老板又用3700元购进第二批仙桃,所购件数是第一批的32倍,但进价比第一批每件多了5元.(1)第一批仙桃每件进价是多少元?(2)老板以每件225元的价格销售第二批仙桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批仙桃的销售利润不少于440元,剩余的仙桃每件售价至少打几折?(利润=售价﹣进价)22.如图,AB是⊙O直径,点C是AB的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且23OEEB=,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.(1)求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.23.如图,抛物线y=ax2+bx(a≠0)与x轴交于原点及点A,且经过点B(4,8),对称轴为直线x=﹣2,顶点为D.(1)填空:抛物线的解析式为,顶点D的坐标为,直线AB的解析式为;(2)在直线AB左侧抛物线上存在点E,使得∠EBA=∠ABD,求E的坐标;(3)连接OB,点P为x轴下方抛物线上一动点,过点P作OB的平行线交直线AB于点Q,当S△POQ:S△BOQ =1:2时,求出点P的坐标.答案与解析一.选择题(共12小题)1.﹣34的绝对值是( )A. ﹣34B.34C. ﹣43D.43【答案】B 【解析】【分析】根据负数的绝对值等于它的相反数即可得出34的绝对值.【详解】解:|-34|=34,故选:B.【点睛】本题考查求一个数的绝对值.理解一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0是解决此题的关键.2.如图的几何体由6个相同的小正方体搭成,它的主视图是( )A. B. C. D.【答案】A【解析】分析】根据从正面看得到的视图是主视图,可得答案.【详解】从正面看有三列,从左起第一列有两个正方形,第二列有两个正方形,第三列有一个正方形,故A 符合题意,故选A.【点睛】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.3.如图,直线AB∥CD,直线EF分别交AB、CD于E、F两点,EG平分∠AEF,如果∠1=32°,那么∠2的度数是()A. 64°B. 68°C. 58°D. 60°【答案】A【解析】【分析】首先根据平行线性质得出∠1=∠AEG,再进一步利用角平分线性质可得∠AEF的度数,最后再利用平行线性质进一步求解即可.【详解】∵AB∥CD,∴∠1=∠AEG.∵EG平分∠AEF,∴∠AEF=2∠AEG,∴∠AEF=2∠1=64°,∵AB∥CD,∴∠2=64°.故选:A.【点睛】本题主要考查了角平分线性质以及平行线的性质,熟练掌握相关概念是解题关键.4.下列运算正确的是( )A. 2m3+3m2=5m5B. m3÷m2=mC. m•(m2)3=m6D. (m﹣n)(n﹣m)=n2﹣m2【答案】B【解析】【分析】根据合并同类项、幂的乘法除法、幂的乘方、完全平方公式分别计算即可.【详解】A.2m3+3m2,不是同类项,不能合并,故错误;B.m3÷m2=m,正确;C.m•(m2)3=m7,故错误;D.(m﹣n)(n﹣m)=﹣(m﹣n)2=﹣n2﹣m2+2mn,故错误.故选B.【点睛】本题考查了整式的运算,熟练掌握合并同类项、幂的乘除法、幂的乘方、完全平方公式是解题的关键.5. 学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,则今年购置计算机的数量是( )A. 25台B. 50台C. 75台D. 100台【答案】C【解析】试题分析:首先设去年购置计算机数量为x台,则今年购置计算机的数量为3x台,根据题意可得:x+3x=100,解得:x=25,则3x=3×25=75(台),即今年购置计算机的数量为75台.考点:一元一次方程的应用.6.小明将一正方形纸片画分成16个全等的小正方形,且如图所示为他将其中四个小正方形涂成灰色的情形.若小明想再将一小正方形涂成灰色,使此纸片上的灰色区域成为线对称图形,则此小正方形的位置为何?( ).A. 第一列第四行B. 第二列第一行C. 第三列第三行D. 第四列第一行【答案】B【解析】【分析】根据轴对称图形的性质和纸片上的四个灰色小正方形,确定出对称轴,即可得出小正方形的位置.【详解】解:根据题意得:涂成灰色的小方格在第二列第一行.故选B.点评:此题考查了利用轴对称设计图案,解答此题的关键是根据题意确定出对称轴,画出图形.7.某青少年篮球队有12名队员,队员的年龄情况统计如下:年龄(岁) 12 13 14 15 16人数 3 1 2 5 1则这12名队员年龄的众数和中位数分别是( )A. 15岁和14岁B. 15岁和15岁C. 15岁和14.5岁D. 14岁和15岁【答案】C【解析】【分析】众数就是出现次数最多的数,而中位数就是大小处于中间位置的数,根据定义即可求解.【详解】在这12名队员的年龄数据里,15岁出现了5次,次数最多,因而众数是1512名队员的年龄数据里,第6和第7个数据的平均数14152=14.5,因而中位数是14.5.故选C.【点睛】本题考查了众数和中位数的概念:一组数据中出现次数最多的数据叫做众数;注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.8.已知下列命题:①若a>b,则ac>bc;②若a=1,则a =a;③内错角相等;④90°的圆周角所对的弦是直径.其中原命题与逆命题均为真命题的个数是( )A. 1个B. 2个C. 3个D. 4个【答案】A【解析】【分析】先对原命题进行判断,再判断出逆命题的真假即可.【详解】解:①若a >b ,则ac >bc 是假命题,逆命题是假命题;②若a=1,则a =a 是真命题,逆命题是假命题;③内错角相等是假命题,逆命题是假命题;④90°的圆周角所对的弦是直径是真命题,逆命题是真命题;其中原命题与逆命题均为真命题的个数是1个;故选A .点评:主要考查命题与定理,用到的知识点是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉课本中的性质定理.9.如图,将ABC ∆沿BC 边上的中线AD 平移到A B C '''∆的位置.已知ABC ∆的面积为16,阴影部分三角形的面积9.若1AA '=,则A D '等于( )A. 2B. 3C. 4D. 32【答案】B【解析】【分析】由 S △ABC =16、S △A ′EF =9且 AD 为 BC 边的中线知 1922A DE A EF S S '∆'∆==,182ABD ABC S S ∆∆== ,根据△DA ′E ∽△DAB 知2A DE ABD S A D AD S ∆∆'⎛⎫=' ⎪⎝⎭,据此求解可得. 【详解】16ABC S ∆=、9A EF S ∆'=,且AD 为BC 边的中线,1922A DE A EF S S ∆∆''∴==,182ABD ABC S S ∆∆==, 将ABC ∆沿BC 边上的中线AD 平移得到A B C '''∆,//A E AB ∴',DA E DAB '∴∆~∆,则2A DE ABD S A D AD S ∆∆'⎛⎫=' ⎪⎝⎭,即22991816A D A D ⎛⎫== '⎪+⎝⎭', 解得3A D '=或37A D '=-(舍), 故选.【点睛】本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.10.如图,AB 是⊙O 的直径,EF ,EB 是⊙O 的弦,且EF=EB ,EF 与AB 交于点C ,连接OF ,若∠AOF=40°,则∠F 的度数是( )A. 20°B. 35°C. 40°D. 55°【答案】B【解析】【分析】 连接FB ,由邻补角定义可得∠FOB=140°,由圆周角定理求得∠FEB=70°,根据等腰三角形的性质分别求出∠OFB 、∠EFB 的度数,继而根据∠EFO =∠EBF-∠OFB 即可求得答案.【详解】连接FB ,则∠FOB=180°-∠AOF=180°-40°=140°,∴∠FEB=12∠FOB=70°,∵FO=BO,∴∠OFB=∠OBF=(180°-∠FOB)÷2=20°,∵EF=EB,∴∠EFB=∠EBF=(180°-∠FEB)÷2=55°,∴∠EFO=∠EBF-∠OFB=55°-20°=35°,故选B.【点睛】本题考查了圆周角定理、等腰三角形的性质等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.11.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为4,2,反比例函数ykx(x>0)的图象经过A,B两点,若菱形ABCD的面积为25,则k的值为( )A. 2B. 3C. 4D. 6【答案】C【解析】【分析】过点A作x轴的垂线,交CB的延长线于点E,根据A,B两点的纵坐标分别为4,2,可得出横坐标,即可求得AE,BE的长,根据菱形的面积为5AE的长,在Rt△AEB中,即可得出k的值.【详解】过点A作x轴的垂线,交CB的延长线于点E,∵A,B 两点在反比例函数y k x =(x >0)的图象,且纵坐标分别为4,2, ∴A (4k ,4),B(2k ,2), ∴AE=2,BE 12=k 14-k 14=k , ∵菱形ABCD 的面积为25,∴BC×AE=25,即BC 5=, ∴AB=BC 5=,在Rt△AEB 中,BE 22AB AE =-=1 ∴14k =1, ∴k=4.故选C .【点睛】本题考查了菱形的性质以及反比例函数图象上点的坐标特征,熟记菱形的面积公式是解题的关键. 12.如图,以矩形ABCD 对角线AC 为底边作等腰直角△ACE ,连接BE ,分别交AD ,AC 于点F ,N ,CD =AF ,AM 平分∠BAN .下列结论:①EF ⊥ED ;②∠BCM =∠NCM ;③AC =2EM ;④BN 2+EF 2=EN 2;⑤AE •AM =NE •FM ,其中正确结论的个数是( )A 2B. 3C. 4D. 5【答案】C【解析】【分析】①正确,只要证明A,B,C,D,E五点共圆即可解决问题;②正确,证明BE平分∠ABC,再证明点M是△ABC的内心即可;③正确,证明∠EAM=∠EMA可得EM=AE,即可解决问题;④正确.如图2中,将△ABN逆时针旋转90°得到△AFG,连接EG.想办法证明△GEF是直角三角形,利用勾股定理即可解决问题;⑤错误.利用反证法证明即可.【详解】解:如图1中,连接BD交AC于O,连接OE.∵四边形ABCD是矩形,∴OA=OC=OD=OB,∵∠AEC=90°,∴OE=OA=OC,∴OA=OB=OC=OD=OE,∴A,B,C,D,E五点共圆,BD直径,∴∠BED=90°,∴EF⊥ED,故①正确,∵CD=AB=AF,∠BAF=90°,∴∠ABF=∠AFB=∠FBC=45°,∴BM平分∠ABC,∵AM平分∠BAC,∴点M是△ABC的内心,∴CM平分∠ACB,∴∠MCB=∠MCA,故②正确,∵∠EAM=∠EAC+∠MAC,∠EMA=∠BAM+∠ABM,∠ABM=∠EAC=45°,∴∠EAM=∠EMA,∴EA=EM,∵△EAC是等腰直角三角形,∴AC=2EA=2EM,故③正确,如图2中,将△ABN绕点A逆时针旋转90°,得到△AFG,连接EG,∵将△ABN绕点A逆时针旋转90°,得到△AFG,∴∠NAB=∠GAF,∠GAN=∠BAD=90°,AG=AN,GF=BN,∵∠EAN=45°,∴∠EAG=∠EAN=45°,∵AE=AE,∴△AEG≌△AEN(SAS),∴EN=EG,∵∠AFG=∠ABN=∠AFB=45°,∴∠GFB=∠GFE=90°,∴EG2=GF2+EF2,∴BN2+EF2=EN2,故④正确,不妨设AE•AM=NE•FM,∵AE=EC,∴EC EN FM AM,∴只有△ECN∽△MAF才能成立,∴∠AMF =∠CEN ,∴CE ∥AM ,∵AE ⊥CE ,∴MA ⊥AE (矛盾),∴假设不成立,故⑤错误,故选:C .【点睛】本题考查矩形的性质,全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,相似三角形的判定和性质,圆等知识.解题的关键是学会添加常用辅助线,构造全等三角形解决问题.二.填空题(共4小题)13.把多项式9m 2﹣36n 2分解因式的结果是_____.【答案】9(m ﹣2n )(m +2n ).【解析】【分析】先提取公因式9,再利用平方差公式(22()()a b a b a b -=+-)因式分解即可.【详解】解:原式=9(m 2﹣4n 2)=9(m ﹣2n )(m +2n ),故答案为:9(m ﹣2n )(m +2n ).【点睛】本题考查综合运用提公因式法和公式法因式分解.一般来说,因式分解时,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.14.在平面直角坐标系中,如果点P 坐标为(m ,n ),向量OP 可以用点P 的坐标表示为OP =(m ,n ),已知:OA =(x 1,y 1),OB =(x 2,y 2),如果x 1•x 2+y 1•y 2=0,那么OA 与OB 互相垂直,下列四组向量:①OC =(2,1),OD =(﹣1,2);②OE =(cos30°,tan45°),OF =(﹣1,sin60°);③OG ,﹣2),OH 12);④OC =(π0,2),ON =(2,﹣1).其中互相垂直的是______(填上所有正确答案的符号).【答案】①③④【解析】分析:根据两个向量垂直的判定方法一一判断即可;详解:①∵2×(−1)+1×2=0,∴OC 与OD 垂直;②∵33cos301tan45sin60322⨯+⋅=+=, ∴OE 与OF 不垂直. ③∵()()()13232202-++-⨯=, ∴OG 与OH 垂直. ④∵()02210π⨯+⨯-=,∴OM 与ON 垂直.故答案为:①③④.点睛:考查平面向量,解题的关键是掌握向量垂直的定义.15.如图,一次函数y 1=kx +b (k ≠0)的图象与反比例函数y 2=m x(m 为常数且m ≠0)的图象都经过A (﹣1,2),B (2,﹣1),结合图象,则关于x 的不等式kx +b >m x的解集是_____.【答案】x <﹣1或0<x <2.【解析】【分析】根据一次函数图象在反比例函数图象上方的x 的取值范围便是不等式m kx b x+>的解集. 【详解】解:由函数图象可知,当一次函数y 1=kx +b (k ≠0)的图象在反比例函数y 2=m x (m 为常数且m ≠0)的图象上方时,x 的取值范围是:x <﹣1或0<x <2,∴不等式kx +b >m x的解集是x <﹣1或0<x <2, 故答案为:x <﹣1或0<x <2.【点睛】本题考查一次函数图象与反比例函数图象的交点问题,主要考查了由函数图象求不等式的解集.利用数形结合思想分析是解题的关键.16.如图,Rt△ABC,AB=3,AC=4,点D在以C为圆心3为半径的圆上,F是BD的中点,则线段AF的最大值是_____.【答案】4【解析】【分析】取BC的中点N,连接AN,NF,DC,根据直角三角形斜边上的中线等于斜边的一半以及三角形的中位线定理求得AN和NF的长,然后确定AF的范围.【详解】解:取BC的中点N,连接AN,NF,DC,∵Rt△ABC,AB=3,AC=4,∴BC22AB AC5,∵N为BC的中点,∴AN=12BC=52,又∵F为BD的中点,∴NF是△CDB的中位线,∴NF=12DC=32,∵52﹣32≤AF ≤52+32,即1≤AF ≤4. ∴最大值为4,故答案为:4.【点睛】本题考查圆的综合问题,三角形中位线定理,直角三角形斜边上的中线,勾股定理.熟练掌握直角三角形中线定理和三角形中位线定理,能正确构造辅助线是解题关键.三.解答题(共7小题)17.计算:3016sin 457()(20192-︒+-+.【解析】【分析】原式利用特殊角的三角函数值,绝对值的代数意义,零指数幂、负整数指数幂法则计算即可求出值.【详解】原式6781=--+= 【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.先化简2728333x x x x x -⎛⎫+-÷ ⎪--⎝⎭,再从04x ≤≤中选一个适合的整数代入求值. 【答案】42x x+;1x =时,原式52=(或当2x =时,原式32=.) 【解析】【分析】根据分式的运算法则进行化简,再选择使分式有意义的值代入. 【详解】解:原式22162833x x x x x --=÷-- (4)(4)332(4)x x x x x x -+-=⋅-- 42x x+= ∵0,3,4x ≠,∴当1x =时,原式52=(或当2x =时,原式32=.) 【点睛】本题考查了分式化简求值.,解题的关键是熟练掌握运算法则.19.为响应市政府关于”垃圾不落地市区更美丽”的主题宣传活动,郑州外国语中学随机调查了部分学生对垃圾分类知识的掌握情况,调查选项分为”A :非常了解;B :比较了解;C :了解较少;D :不了解 “四种,并将调查结果绘制成以下两幅不完整的统计图请根据图中提供的信息,解答下列问题;()1求m =______,并补全条形统计图;()2若我校学生人数为1000名,根据调查结果,估计该校”非常了解”与”比较了解”的学生共有______名;()3已知”非常了解”的是3名男生和1名女生,从中随机抽取2名向全校做垃圾分类的知识交流,请画树状图或列表的方法,求恰好抽到1男1女的概率.【答案】(1)20(2)500(3)12【解析】分析】 ()1先利用A 选项的人数和它所占百分比计算出调查的总人数为50,再计算出B 选项所占的百分比为42%,从而得到m%20%=,即m 20=,然后计算出C 、D 选项的人数,最后补全条形统计图;()2用1000乘以()8%42%+可估计该校”非常了解”与”比较了解”的学生数;()3画树状图展示所有12种等可能的结果数,找出抽到1男1女的结果数,然后根据概率公式求解.【详解】()1调查的总人数为48%50÷=,B 选项所占的百分比为21100%42%50⨯=, 所以m%18%42%30%20%=---=,即m 20=,C 选项的人数为30%5015(⨯=人),D 选项的人数为20%5010(⨯=人),条形统计图为:故答案为20;()()210008%42%500⨯+=,所以估计该校”非常了解”与”比较了解”的学生共有500名;故答案为500;()3画树状图为:共有12种等可能的结果数,其中抽到1男1女的结果数为6,所以恰好抽到1男1女的概率61 122 ==【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率也考查了统计图.20.小明想测量湿地公园内某池塘两端A,B两点间的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=40°,再向前行走100米到点D处,测得∠BDF=52.44°,若直线AB与EF之间的距离为60米,求A,B两点的距离(结果精确到0.1)(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin52.44°≈0.79,cos52.44°≈0.61,tan52.44°≈1.30)【答案】74.7米【解析】【分析】根据题意作出合适的辅助线,画出相应的图形,可以分别求得CM、DN的长,由于AB=CN﹣CM,从而可以求得AB的长.【详解】解:作AM⊥EF于点M,作BN⊥EF于点N,如图所示,由题意可得,AM=BN=60米,CD=100米,∠ACF=40°,∠BDF=52.44°,∴CM=60tan400.84AM≈︒≈71.43(米),DN=60tan52.44 1.3BN︒≈≈46.15(米),∴AB=CD+DN﹣CM=100+46.15﹣71.43≈74.7(米),即A、B两点的距离是74.7米.【点睛】本题考查的知识点是解直角三角形,读懂题目,作出合适的辅助线是解此题的关键.21.仙桃是遂宁市某地的特色时令水果.仙桃一上市,水果店的老板用2400元购进一批仙桃,很快售完;老板又用3700元购进第二批仙桃,所购件数是第一批的32倍,但进价比第一批每件多了5元.(1)第一批仙桃每件进价是多少元?(2)老板以每件225元的价格销售第二批仙桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批仙桃的销售利润不少于440元,剩余的仙桃每件售价至少打几折?(利润=售价﹣进价)【答案】(1)进价为180元;(2)至少打6折.【解析】分析】(1)根据题意,列出等式24003370025x x⨯=+,解等式,再验证即可得到答案;(2)设剩余的仙桃每件售价打y折,由题意得到不等式,再解不等式,即可得到答案.【详解】解:(1)设第一批仙桃每件进价x元,则24003370025x x⨯=+,解得180x=.经检验,180x=是原方程的根.答:第一批仙桃每件进价为180元;(2)设剩余的仙桃每件售价打y折.则:3700370022580%225(180%)0.13700440 18051805y⨯⨯+⨯⨯-⨯-≥++,解得6y≥.答:剩余的仙桃每件售价至少打6折.【点睛】本题考查分式方程的应用和一元一次不等式的应用,解题的关键是熟练掌握分式方程的应用和一元一次不等式的应用.22.如图,AB是⊙O的直径,点C是AB的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且23OEEB=,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.(1)求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.【答案】(1)证明见解析;(2)BH=125.【解析】【分析】(1)先判断出∠AOC=90°,再判断出OC∥BD,即可得出结论;(2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论.【详解】(1)连接OC,∵AB是⊙O的直径,点C是AB的中点,∴∠AOC=90°,∵OA=OB,CD=AC,∴OC是△ABD是中位线,∴OC∥BD,∴∠ABD=∠AOC=90°,∴AB⊥BD,∵点B在⊙O上,∴BD是⊙O的切线; (2)由(1)知,OC∥BD,∴△OCE∽△BFE,∴OC OE BF EB=,∵OB=2,∴OC=OB=2,AB=4,23 OEEB=,∴223 BF=,∴BF=3,在Rt△ABF中,∠ABF=90°,根据勾股定理得,AF=5,∵S△ABF=12AB•BF=12AF•BH,∴AB•BF=AF•BH,∴4×3=5BH,∴BH=125.【点睛】此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键.23.如图,抛物线y=ax2+bx(a≠0)与x轴交于原点及点A,且经过点B(4,8),对称轴为直线x=﹣2,顶点为D.(1)填空:抛物线的解析式为,顶点D的坐标为,直线AB的解析式为;(2)在直线AB左侧抛物线上存在点E,使得∠EBA=∠ABD,求E的坐标;(3)连接OB,点P为x轴下方抛物线上一动点,过点P作OB的平行线交直线AB于点Q,当S△POQ:S△BOQ =1:2时,求出点P的坐标.【答案】(1)y =14x 2+x ;(﹣2,﹣1);y =x +4;(2)(﹣163,169);(3)P (﹣22,2﹣22). 【解析】【分析】 (1)根据对称轴可求得A 点坐标,再根据B 点坐标,利用待定系数法即可求得抛物线以及一次函数解析式,再利用对称轴为x =﹣2可求得抛物线顶点坐标;(2)证明四边形GDHD′为正方形,点D (-2,-1),则点G (-5,-1),则正方形的边长为3,则点D′(-5,2),求得直线BD′的解析式,与抛物线联立即可求解;(3)证明四边形PQHO 为平行四边形,则x Q -x P =x H -x O ,即可求解.【详解】解:(1)对称轴为直线x =﹣2,则点A (﹣4,0),将点A 、B 的坐标代入抛物线表达式得0=1648164a b a b -⎧⎨=+⎩ ,解得141a b ⎧=⎪⎨⎪=⎩. 故抛物线的表达式为:y =14x 2+x …①, 当x=-2时,21(2)(2)14y =⨯-+-=- ∴顶点D 的坐标为:(﹣2,﹣1),设直线AB 的表达式为y kx c =+,将点A 、B 的坐标代入一次函数表达式0484k c k c =-+⎧⎨=+⎩,解得14k c =⎧⎨=⎩, 所以,直线AB 的表达式为:y =x +4…②,故答案为:y =14x 2+x ;(﹣2,﹣1);y =x +4; (2)作点D 关于AB 的对称点D ′,分别过点D 、D ′作x 轴的平行线交直线AB 与点G 、H ,则','DH D H D G DG ,'D GH HGD ,∵直线AB 的解析式为y =x +4,'D H ∥x 轴,GD ∥x 轴,∴'45D HGHAO HGD , ∴''45D GHHGD D HG , ∴'90D GD ,''DH D H D G DG ,则四边形GDHD ′为正方形,根据点D (﹣2,﹣1),可得点G (﹣5,﹣1),所以,正方形的边长为3,则点D ′(﹣5,2),设直线BD ′的表达式为:11y k x c ,所以11112584k c k c =-+⎧⎨=+⎩,解得1123163k c ⎧=⎪⎪⎨⎪=⎪⎩, 所以,直线BD ′的表达式为:y =23x +163…③; 联立①③并解得:x =﹣163或4(舍去), 故点E (﹣163,169); (3)取OB 的中点H (2,4),则S △OQH =12S △OBQ ,而S △POQ :S △BOQ =1:2,故S △OQH =S △POQ ,∵PQ ∥OH ,故PQ =OH (四边形PQHO 为平行四边形),则x Q ﹣x P =x H ﹣x O ,设点P (m ,14m 2+m ), 直线OB 的表达式为:y =2x ,则直线PQ 的表达式为:y =2x +b 1,将点P 的坐标代入上式得21124m m m b +=+,解得2114b m m =-, 所以,直线PQ 的表达式为:y =2x +14m 2﹣m …④, 联立②④并解得:x Q =﹣14m 2+m +4, 而x Q ﹣x P =x H ﹣x O , 即﹣14m 2+m +4﹣m =2,解得:m =-或m =(舍去),故点P (﹣,2﹣).【点睛】本题考查二次函数综合,求一次函数解析式,正方形的性质和判定,平行四边形的性质和判定.(1)能利用对称轴求得A 点坐标是解题关键;(2)中能巧用轴对称的性质,得出作点D 关于AB 的对称点D ′时,∠D ′BA =∠ABD 是解题关键;(3)证明四边形PQHO 为平行四边形是解题关键.。
2020-2021学年广东省中考数学模拟试卷及答案解析

广东省中考数学模拟试卷一、选择题(每题3分,共30分)1.由几个大小相同的正方体组成的几何体如图所示,则它的俯视图为()A.B.C.D.2.下列图形是中心对称图形的是()A. B. C.D.3.将抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是()A.向左平移2个单位B.向右平移2个单位C.向上平移2个单位D.向下平移2个单位4.关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围为()A.B.C.D.5.如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,EC=10m,CD=20m,则河的宽度AB=()A.60 m B.40 m C.30 m D.20 m6.在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x人参加这次聚会,则列出方程正确的是()A.x(x﹣1)=10 B.=10 C.x(x+1)=10 D.=107.如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=40°.则∠ABD的度数是()A.30°B.25°C.20°D.15°8.如图,圆锥体的高h=2cm,底面半径r=2cm,则圆锥体的全面积为()cm2.A.4πB.8πC.12πD.(4+4)π9.如图,将含60°角的直角三角板ABC绕顶点A顺时针旋转45°度后得到△AB′C′,点B经过的路径为弧BB′,若∠BAC=60°,AC=1,则图中阴影部分的面积是()A.B.C.D.π10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.c>﹣1 B.b>0 C.2a+b≠0 D.9a+c>3b二、填空题(每题4分,共24分)11.计算:cos245°+tan30°•sin60°= .12.如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为,则点P的坐标为.13.如图,把一张三角形纸片ABC沿中位线DE剪开后,在平面上将△ADE绕着点E 顺时针旋转180°,点D运动到点F的位置,则S△ADE:S四边形DBCF是.14.如图,将长为8cm的铁丝尾相接围成半径为2cm的扇形,则S扇形= cm2.15.如图,边长为1的小正方形网格中,⊙O的圆心在格点上,则∠AED的余弦值是.16.如图,是一次函数y=kx+b与反比例函数y=的图象,则关于x的方程kx+b=的解为.三、解答题(每题6分,共18分)17.解方程:(2x+1)2=2x+1.18.如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B 的坐标分别是A(3,2)、B(1,3).△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)画出旋转后的图形;(2)求A1旋转经过的路程.19.甲乙两名同学做摸牌游戏.他们在桌上放了一副扑克牌中的4张牌,牌面分别是J,Q,K,K.将牌面全部朝下.(1)若随机从中抽出一张牌,牌面是K的概率为(2)若从这4张牌中随机取1张牌记下结果放回,洗匀后再随机取1张牌,若两次取出的牌中都没有K,则甲获胜,否则乙获胜.你认为甲乙两人谁获胜的可能性大?用列表或画树状图的方法说明理由.四、解答题(每题7分,共21分)20.雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?21.小明家所在居民楼的对面有一座大厦AB,AB=80米,为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C处测得大厦顶部A的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD的长度.(结果保留整数)(参考数据:)22.如图,AB是⊙O的直径,点E是上的一点,∠DBC=∠BED.(1)求证:BC是⊙O的切线;(2)已知AD=3,CD=2,求BC的长.五、解答题(每题9分,共27分)23.如图,等边△OAB和等边△AFE的一边都在x轴上,双曲线y=(k>0)经过边OB的中点C和AE的中点D.已知等边△OAB的边长为4.(1)求该双曲线所表示的函数解析式;(2)求等边△AEF的边长.24.用如图(1)两个直角三角形BC=EF=3,∠B=45°,∠E=30°,拼接如图(2),使得BC和ED重合,在BC边上有一动点P.(1)在图(2),当点P运动到∠CFB的平分线上时,连接AP,求线段AP的长;(2)在图(2),当点P在运动的过程中出现PA=FC时,求∠PAB的度数(3)当点P运动到什么位置时,以A、P、F、Q为顶点的平行四边形的顶点Q恰好在边FC上?求出此时四边形APFQ的面积.25.如图,抛物线y=(x﹣3)2﹣1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.(1)求点A,B,D的坐标;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD,求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.参考答案与试题解析一、选择题(每题3分,共30分)1.由几个大小相同的正方体组成的几何体如图所示,则它的俯视图为()A.B.C.D.【考点】简单组合体的三视图.【分析】根据俯视图是从上边看得到的图形,可得答案.【解答】解:从上边看第二层是三个小正方形,第一层左边一个小正方形,故选:A.2.下列图形是中心对称图形的是()A. B. C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确.故选D.3.将抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是()A.向左平移2个单位B.向右平移2个单位C.向上平移2个单位D.向下平移2个单位【考点】二次函数图象与几何变换.【分析】根据图象左移加,可得答案.【解答】解:将抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是向左平移了2个单位,故选:A.4.关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围为()A.B.C.D.【考点】根的判别式.【分析】先根据判别式的意义得到△=(﹣3)2﹣4m>0,然后解不等式即可.【解答】解:根据题意得△=(﹣3)2﹣4m>0,解得m<.故选:B.5.如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,EC=10m,CD=20m,则河的宽度AB=()A.60 m B.40 m C.30 m D.20 m【考点】相似三角形的应用.【分析】求出△ABE和△DCE相似,根据相似三角形对应边成比例列式计算即可得解.【解答】解:∵AB⊥BC,CD⊥BC,∴∠ABE=∠DCE=90°,又∵∠AEB=∠DEC,∴△ABE∽△DCE,∴=,即=,解得AB=40m.故选B.6.在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x人参加这次聚会,则列出方程正确的是()A.x(x﹣1)=10 B.=10 C.x(x+1)=10 D.=10【考点】由实际问题抽象出一元二次方程.【分析】如果有x人参加了聚会,则每个人需要握手(x﹣1)次,x人共需握手x(x ﹣1)次;而每两个人都握了一次手,因此要将重复计算的部分除去,即一共握手:次;已知“所有人共握手10次”,据此可列出关于x的方程.【解答】解:设x人参加这次聚会,则每个人需握手:x﹣1(次);依题意,可列方程为:=10;故选B.7.如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=40°.则∠ABD的度数是()A.30°B.25°C.20°D.15°【考点】切线的性质;三角形内角和定理;三角形的外角性质;等腰三角形的性质.【分析】根据切线的性质求出∠OAC,结合∠C=40°求出∠AOC,根据等腰三角形性质求出∠B=∠BDO,根据三角形外角性质求出即可.【解答】解:∵AC是⊙O的切线,∴∠OAC=90°,∵∠C=40°,∴∠AOC=50°,∵OB=OD,∴∠ABD=∠BDO,∵∠ABD+∠BDO=∠AOC,∴∠ABD=25°,故选:B.8.如图,圆锥体的高h=2cm,底面半径r=2cm,则圆锥体的全面积为()cm2.A.4πB.8πC.12πD.(4+4)π【考点】圆锥的计算.【分析】表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【解答】解:底面圆的半径为2,则底面周长=4π,∵底面半径为2cm、高为2cm,∴圆锥的母线长为4cm,∴侧面面积=×4π×4=8π;底面积为=4π,全面积为:8π+4π=12πcm2.故选:C.9.如图,将含60°角的直角三角板ABC绕顶点A顺时针旋转45°度后得到△AB′C′,点B经过的路径为弧BB′,若∠BAC=60°,AC=1,则图中阴影部分的面积是()A.B.C.D.π【考点】扇形面积的计算;旋转的性质.【分析】图中S阴影=S扇形ABB′+S△AB′C′﹣S△ABC.【解答】解:如图,∵在Rt△ABC中,∠ACB=90°,∠BAC=60°,AC=1,∴BC=ACtan60°=1×=,AB=2∴S△ABC=AC•BC=.根据旋转的性质知△ABC≌△AB′C′,则S△ABC=S△AB′C′,AB=AB′.∴S阴影=S扇形ABB′+S△AB′C′﹣S△ABC==.故选:A.10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.c>﹣1 B.b>0 C.2a+b≠0 D.9a+c>3b【考点】二次函数图象与系数的关系.【分析】由抛物线与y轴的交点在点(0,﹣1)的下方得到c<﹣1;由抛物线开口方向得a>0,再由抛物线的对称轴在y轴的右侧得a、b异号,即b<0;根据抛物线的对称性得到抛物线对称轴为直线x=﹣,若x=1,则2a+b=0,故可能成立;由于当x=﹣3时,y>0,所以9a﹣3b+c>0,即9a+c>3b.【解答】解:∵抛物线与y轴的交点在点(0,﹣1)的下方.∴c<﹣1;故A错误;∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴x=﹣>0,∴b<0;故B错误;∵抛物线对称轴为直线x=﹣,∴若x=1,即2a+b=0;故C错误;∵当x=﹣3时,y>0,∴9a﹣3b+c>0,即9a+c>3b.故选:D.二、填空题(每题4分,共24分)11.计算:cos245°+tan30°•sin60°= 1 .【考点】特殊角的三角函数值.【分析】将cos45°=,tan30°=,sin60°=代入即可得出答案.【解答】解:cos245°+tan30°•sin60°=+×==1.故答案为:1.12.如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为,则点P的坐标为(3,2).【考点】垂径定理;坐标与图形性质;勾股定理.【分析】过点P作PD⊥x轴于点D,连接OP,先由垂径定理求出OD的长,再根据勾股定理求出PD的长,故可得出答案.【解答】解:过点P作PD⊥x轴于点D,连接OP,∵A(6,0),PD⊥OA,∴OD=OA=3,在Rt△OPD中,∵OP=,OD=3,∴PD===2,∴P(3,2).故答案为:(3,2).13.如图,把一张三角形纸片ABC沿中位线DE剪开后,在平面上将△ADE绕着点E 顺时针旋转180°,点D运动到点F的位置,则S△ADE:S四边形DBCF是1:4 .【考点】相似三角形的判定与性质;三角形中位线定理;旋转的性质.【分析】由题意可知DE∥BC,所以△ADE∽△ABC,利用相似三角形的性质可得到S△ADE:S▱BCED=1:3,又因为S△ADE=S△CEF,进而可得到S△ADE:S▱DBCF的比值.【解答】解:∵DE是△ABC中位线,∴DE∥BC,∴△ADE∽△ABC,∴AD:AB=DE:BC=1:2,∴S△ADE=:S△ABC=1:4,∴S△ADE:S▱BCED=1:3,∵将△ADE绕着点E顺时针旋转180°得到△CEF,∴△ADE≌△CEF,∴S△ADE=S△CEF,∴S△ADE:S▱DBCF=1:4,故答案为:1:4.14.如图,将长为8cm的铁丝尾相接围成半径为2cm的扇形,则S扇形= 4 cm2.【考点】扇形面积的计算.【分析】根据扇形的面积公式S扇形=×弧长×半径,求出面积即可.【解答】解:由题可知,弧长=8﹣2×2=4cm,∴扇形的面积=×4×2=4cm2,故答案为:4.15.如图,边长为1的小正方形网格中,⊙O的圆心在格点上,则∠AED的余弦值是.【考点】圆周角定理;勾股定理;锐角三角函数的定义.【分析】根据同弧所对的圆周角相等得到∠ABC=∠AED,在直角三角形ABC中,利用锐角三角函数定义求出cos∠ABC的值,即为cos∠AED的值.【解答】解:∵∠AED与∠ABC都对,∴∠AED=∠ABC,在Rt△ABC中,AB=2,AC=1,根据勾股定理得:BC=,则cos∠AED=cos∠ABC==.故答案为:16.如图,是一次函数y=kx+b与反比例函数y=的图象,则关于x的方程kx+b=的解为1或﹣2 .【考点】反比例函数的图象;一次函数的图象.【分析】根据一次函数y=kx+b与反比例函数y=的图象交于点(1,2),(﹣2,﹣1),求出k,b的值,代入方程kx+b=,求得方程的解.【解答】解:一次函数y=kx+b与反比例函数y=的图象交于点(1,2),(﹣2,﹣1),则一次函数y=kx+b过点(1,2),又过点(﹣2,﹣1),故k=1,b=1,即y=x+1.关于x的方程kx+b=可化为x+1=,它的解为1或﹣2.故答案为:1或﹣2.三、解答题(每题6分,共18分)17.解方程:(2x+1)2=2x+1.【考点】解一元二次方程﹣因式分解法.【分析】因式分解法求解可得.【解答】解:∵(2x+1)2﹣(2x+1)=0,∴(2x+1)(2x+1﹣1)=0,即2x(2x+1)=0,则x=0或2x+1=0,解得:x=0或x=﹣.18.如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B 的坐标分别是A(3,2)、B(1,3).△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)画出旋转后的图形;(2)求A1旋转经过的路程.【考点】作图﹣旋转变换.【分析】(1)利用网格特点和旋转的性质画出A、B的对应点A1、B1,从而得到△OA1B1;(2)由于点A所走过的路线是以点O为圆心,OA为半径,圆心角为90°所对的弧,然后根据弧长公式求解.【解答】解:(1)如图,△A1OB1为所作;(2)OA==,所以A1旋转经过的路程长==π.19.甲乙两名同学做摸牌游戏.他们在桌上放了一副扑克牌中的4张牌,牌面分别是J,Q,K,K.将牌面全部朝下.(1)若随机从中抽出一张牌,牌面是K的概率为(2)若从这4张牌中随机取1张牌记下结果放回,洗匀后再随机取1张牌,若两次取出的牌中都没有K,则甲获胜,否则乙获胜.你认为甲乙两人谁获胜的可能性大?用列表或画树状图的方法说明理由.【考点】列表法与树状图法.【分析】(1)随机从中抽出一张牌,一共有四种可能,牌面是K的有两种可能,由此可知随机从中抽出一张牌牌面是K的概率=.(2)分别求出甲获胜与乙获胜的概率,进行比较,即可得出结论.【解答】解:(1)∵随机从中抽出一张牌,一共有四种可能,牌面是K的有两种可能,∴随机从中抽出一张牌,牌面是K的概率==.故答案为(2)乙获胜的可能性大.理由如下,进行一次游戏所有可能出现的结果如下表:从上表可以看出,一次游戏可能出现的结果共有16种,而且每种结果出现的可能性相等,其中两次取出的牌中都没有K的有(J,J),(J,Q),(Q,J),(Q,Q)等4种结果.∵P(两次取出的牌中都没有K)=.∴P(甲获胜)=,P(乙获胜)=.∵<,∴乙获胜的可能性大.四、解答题(每题7分,共21分)20.雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?【考点】一元二次方程的应用.【分析】(1)解答此题利用的数量关系是:第一天收到捐款钱数×(1+每次增长的百分率)2=第三天收到捐款钱数,设出未知数,列方程解答即可;(2)第三天收到捐款钱数×(1+每次增长的百分率)=第四天收到捐款钱数,依此列式子解答即可.【解答】解:(1)设捐款增长率为x,根据题意列方程得,10000×(1+x)2=12100,解得x1=0.1,x2=﹣2.1(不合题意,舍去);答:捐款增长率为10%.(2)12100×(1+10%)=13310元.答:第四天该单位能收到13310元捐款.21.小明家所在居民楼的对面有一座大厦AB,AB=80米,为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C处测得大厦顶部A的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD的长度.(结果保留整数)(参考数据:)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】利用所给角的三角函数用CD表示出AD、BD;根据AB=AD+BD=80米,即可求得居民楼与大厦的距离.【解答】解:设CD=x米.在Rt△ACD中,,则,∴;在Rt△BCD中,tan48°=,则,∴.∵AD+BD=AB,∴,解得:x≈43.答:小明家所在居民楼与大厦的距离CD大约是43米.22.如图,AB是⊙O的直径,点E是上的一点,∠DBC=∠BED.(1)求证:BC是⊙O的切线;(2)已知AD=3,CD=2,求BC的长.【考点】切线的判定;相似三角形的判定与性质.【分析】(1)AB是⊙O的直径,得∠ADB=90°,从而得出∠BAD=∠DBC,即∠ABC=90°,即可证明BC是⊙O的切线;(2)可证明△ABC∽△BDC,则=,即可得出BC=.【解答】(1)证明:∵AB是⊙O的切直径,∴∠ADB=90°,又∵∠BAD=∠BED,∠BED=∠DBC,∴∠BAD=∠DBC,∴∠BAD+∠ABD=∠DBC+∠ABD=90°,∴∠ABC=90°,∴BC是⊙O的切线;(2)解:∵∠BAD=∠DBC,∠C=∠C,∴△ABC∽△BDC,∴=,即BC2=AC•CD=(AD+CD)•CD=10,∴BC=.五、解答题(每题9分,共27分)23.如图,等边△OAB和等边△AFE的一边都在x轴上,双曲线y=(k>0)经过边OB的中点C和AE的中点D.已知等边△OAB的边长为4.(1)求该双曲线所表示的函数解析式;(2)求等边△AEF的边长.【考点】反比例函数综合题.【分析】(1)过点C作CG⊥OA于点G,根据等边三角形的性质求出OG、CG的长度,从而得到点C的坐标,再利用待定系数法求反比例函数解析式列式计算即可得解;(2)过点D作DH⊥AF于点H,设AH=a,根据等边三角形的性质表示出DH的长度,然后表示出点D的坐标,再把点D的坐标代入反比例函数解析式,解方程得到a的值,从而得解.【解答】解:(1)过点C作CG⊥OA于点G,∵点C是等边△OAB的边OB的中点,∴OC=2,∠AOB=60°,∴OG=1,CG=OG•tan60°=1•=,∴点C的坐标是(1,),由=,得:k=,∴该双曲线所表示的函数解析式为y=;(2)过点D作DH⊥AF于点H,设AH=a,则DH=a.∴点D的坐标为(4+a,),∵点D是双曲线y=上的点,由xy=,得(4+a)=,即:a2+4a﹣1=0,解得:a1=﹣2,a2=﹣﹣2(舍去),∴AD=2AH=2﹣4,∴等边△AEF的边长是2AD=4﹣8.24.用如图(1)两个直角三角形BC=EF=3,∠B=45°,∠E=30°,拼接如图(2),使得BC和ED重合,在BC边上有一动点P.(1)在图(2),当点P运动到∠CFB的平分线上时,连接AP,求线段AP的长;(2)在图(2),当点P在运动的过程中出现PA=FC时,求∠PAB的度数(3)当点P运动到什么位置时,以A、P、F、Q为顶点的平行四边形的顶点Q恰好在边FC上?求出此时四边形APFQ的面积.【考点】四边形综合题.【分析】(1)如答图1所示,过点A作AG⊥BC于点G,构造Rt△APG,利用勾股定理求出AP的长度;(2)如答图2所示,符合条件的点P有两个.解直角三角形,利用特殊角的三角函数值求出角的度数;(3)先判断出AP∥FQ,进而得出AP⊥BC,即可求出AP=BP=CP=,最后用四边形的面积公式即可得出结论.【解答】解:(1)依题意画出图形,如答图1所示:由题意,得∠CFB=60°,FP为角平分线,则∠CFP=30°,∴CF=BC•tan30°=3×=,∴CP=CF•tan∠CFP==1.过点A作AG⊥BC于点G,则AG=BC=,∴PG=CG﹣CP=﹣1=.在Rt△APG中,由勾股定理得:AP==.(2)由(1)可知,FC=.如答图2所示,以点A为圆心,以FC=长为半径画弧,与BC交于点P1、P2,则AP1=AP2=.过点A过AG⊥BC于点G,则AG=BC=.在Rt△AGP1中,cos∠P1AG==;∴∠P1AG=30°,∴∠P1AB=45°﹣30°=15°;同理求得,∠P2AG=30°,∠P2AB=45°+30°=75°.∴∠PAB的度数为15°或75°.(3)如答图3,∵以A、P、F、Q为顶点的平行四边形的顶点Q恰好在边FC上,∴AP∥QF,∴∠APC=∠BCF,∵∠BCF=90°,∴∠APC=90°,在R△ABC中,∠ABC=45°,BC=3,∴AC=AB=,∴AP=BP=CP=BC=,∴S平行四边形APFQ=AP×PC=×=,即:点P运动到BC中点的位置时,以A、P、F、Q为顶点的平行四边形的顶点Q恰好在边FC上,且面积是.25.如图,抛物线y=(x﹣3)2﹣1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.(1)求点A,B,D的坐标;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD,求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.【考点】二次函数综合题.【分析】(1)根据二次函数性质,求出点A、B、D的坐标;(2)如何证明∠AEO=∠ADC?如答图1所示,我们观察到在△EFH与△ADF中:∠EHF=90°,有一对对顶角相等;因此只需证明∠EAD=90°即可,即△ADE为直角三角形,由此我们联想到勾股定理的逆定理.分别求出△ADE三边的长度,再利用勾股定理的逆定理证明它是直角三角形,由此问题解决;(3)依题意画出图形,如答图2所示.由⊙E的半径为1,根据切线性质及勾股定理,得PQ2=EP2﹣1,要使切线长PQ最小,只需EP长最小,即EP2最小.利用二次函数性质求出EP2最小时点P的坐标,并进而求出点Q的坐标.【解答】方法一:(1)解:顶点D的坐标为(3,﹣1).令y=0,得(x﹣3)2﹣1=0,解得:x1=3+,x2=3﹣,∵点A在点B的左侧,∴A(3﹣,0),B(3+,0).(2)证明:如答图1,过顶点D作DG⊥y轴于点G,则G(0,﹣1),GD=3.令x=0,得y=,∴C(0,).∴CG=OC+OG=+1=,∴tan∠DCG=.设对称轴交x轴于点M,则OM=3,DM=1,AM=3﹣(3﹣)=.由OE⊥CD,易知∠EOM=∠DCG.∴tan∠EOM=tan∠DCG==,解得EM=2,∴DE=EM+DM=3.在Rt△AEM中,AM=,EM=2,由勾股定理得:AE=;在Rt△ADM中,AM=,DM=1,由勾股定理得:AD=.∵AE2+AD2=6+3=9=DE2,∴△ADE为直角三角形,∠EAD=90°.设AE交CD于点F,∵∠AEO+∠EFH=90°,∠ADC+AFD=90°,∠EFH=∠AFD(对顶角相等),∴∠AEO=∠ADC.(3)解:依题意画出图形,如答图2所示:由⊙E的半径为1,根据切线性质及勾股定理,得PQ2=EP2﹣1,要使切线长PQ最小,只需EP长最小,即EP2最小.设点P坐标为(x,y),由勾股定理得:EP2=(x﹣3)2+(y﹣2)2.∵y=(x﹣3)2﹣1,∴(x﹣3)2=2y+2.∴EP2=2y+2+(y﹣2)2=(y﹣1)2+5当y=1时,EP2有最小值,最小值为5.将y=1代入y=(x﹣3)2﹣1,得(x﹣3)2﹣1=1,解得:x1=1,x2=5.又∵点P在对称轴右侧的抛物线上,∴x1=1舍去.∴P(5,1).∵△EQ2P为直角三角形,∴过点Q2作x轴的平行线,再分别过点E,P向其作垂线,垂足分别为M点和N点.由切割线定理得到Q2P=Q1P=2,EQ2=1设点Q2的坐标为(m,n)则在Rt△MQ2E和Rt△Q2NP中建立勾股方程,即(m﹣3)2+(n﹣2)2=1①,(5﹣m)2+(n﹣1)2=4②①﹣②得n=2m﹣5③将③代入到①得到m1=3(舍,为Q1)m2=再将m=代入③得n=,∴Q2(,)此时点Q坐标为(3,1)或(,).方法二:(1)略.(2)∵C(0,),D(3,﹣1),∴KCD=,∵OE⊥CD,∴K CD×K OE=﹣1,∴K OE=,∴l OE:y=x,把x=3代入,得y=2,∴E(3,2),∵A(3﹣,0),D(3,﹣1),∴K EA==,∵K AD=,∴K EA×K AD=﹣1,∴EA⊥AD,∠EHD=∠EAD,∵∠EFH=∠AFD,∴∠AEO=∠ADC.(3)由⊙E的半径为1,得PQ2=EP2﹣1,要使切线长PQ最小,只需EP长最小,即EP2最小,设点P坐标为(x,y),EP2=(x﹣3)2+(y﹣2)2,∵y=(x﹣3)2﹣1,∴(x﹣3)2=2y+2,∴EP2=2y+2+(y﹣2)2=(y﹣1)2+5,∴当y=1时,EP2有最小值,将y=1代入y=(x﹣3)2﹣1得:x1=1,x2=5,又∵点P在对称轴右侧的抛物线上,∴x1=1舍去,∴P(5,1),显然Q1(3,1),∵Q1Q2被EP垂直平分,垂足为H,∴K Q1Q2×K EP=﹣1,∴K EP==﹣,K Q1Q2=2,∵Q1(3,1),∴l Q1Q2:y=2x﹣5,∵l EP:y=﹣x+,∴x=,y=,∴H(,),∵H为Q1Q2的中点,∴H x=,H Y=,∴Q2(x)=2×﹣3=,Q2(Y)=2×﹣1=,∴Q2(,).。
广东省广州市广雅中学2024届中考数学全真模拟试题含解析

广东省广州市广雅中学2024届中考数学全真模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图所示,在平面直角坐标系中A(0,0),B(2,0),△AP1B是等腰直角三角形,且∠P1=90°,把△AP1B绕点B顺时针旋转180°,得到△BP2C;把△BP2C绕点C顺时针旋转180°,得到△CP3D,依此类推,则旋转第2017次后,得到的等腰直角三角形的直角顶点P2018的坐标为()A.(4030,1)B.(4029,﹣1)C.(4033,1)D.(4035,﹣1)2.如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-,y1),(,y2)是抛物线上两点,则y1<y2,其中结论正确的是( )A.①②B.②③C.②④D.①③④3.计算2a2+3a2的结果是()A.5a4B.6a2C.6a4D.5a24.如图,AB∥CD,点E在CA的延长线上.若∠BAE=40°,则∠ACD的大小为()A.150°B.140°C.130°D.120°5.关于x 的方程(a ﹣1)x |a|+1﹣3x+2=0是一元二次方程,则( )A .a≠±1B .a =1C .a =﹣1D .a =±16.如图,这是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,根据统计图提供的信息,可得到该班40名同学一周参加体育锻炼时间的众数、中位数分别是( )A .8,9B .8,8.5C .16,8.5D .16,10.57.如图,在△ABC 中,DE ∥BC ,若23AD DB =,则AE EC 等于( ) A .13 B .25 C .23 D .358.在平面直角坐标系中,位于第二象限的点是( )A .(﹣1,0)B .(﹣2,﹣3)C .(2,﹣1)D .(﹣3,1)9.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( )A .摸出的是3个白球B .摸出的是3个黑球C .摸出的是2个白球、1个黑球D .摸出的是2个黑球、1个白球 10.下列说法正确的是( )A .2a 2b 与–2b 2a 的和为0B .223a b π的系数是23,次数是4次 C .2x 2y –3y 2–1是3次3项式D 32y 3与–3213x y 是同类项 二、填空题(共7小题,每小题3分,满分21分)11.在矩形ABCD 中,AB=6CM ,E 为直线CD 上一点,连接AC ,BE ,若AC 与BE 交与点F , DE=2,则EF :BE= ________ 。
2024年广东省中考数学模拟卷答案

2024年广东省初中数学中考模拟卷(解析卷)(满分为120分,考试时间为90分钟)一.选择题(本大题共10小题,每小题3分,共30分)1.单项式-35ab³d²的系数是()A.-3 B.-5C.- 35D.35【答案】C2.已知点A(2,b)与点B(a,4)关于原点对称,则a﹣b=( )A.﹣2 B.2 C.-4 D.6【答案】B3.下列运算正确的是()A.2﹣=√3B.(a2)3=a5C.2a2•a=a3D.(a+1)2=a2+a+1【答案】A4.若点A(-1,a),B(1,b),C(2,c)在反比例函数y=-2xx的图象上,则a,b,c的大小关系是( ) A. a<b<c B. b<a<c C. b<c<a D. a<c<b【答案】C5.若关于x的一元二次方程x2+3x+m=0有两个相等的实数根,则实数m的值为()A.﹣9 B.94C.D.-94【答案】B6.如图所示,水平放置的几何体的俯视图是()A. B. C. D.【答案】C7.一个圆锥的底面半径r=6,高h=8,则这个圆锥的侧面积是()A.60 B.60πC.120 D.120π【答案】B8.不透明的袋子中装有红、绿、黄小球各一个,除颜色外三个小球无其他差别.从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么摸到一个红球一个黄球的概率是()A.29B.C.79D.59【答案】A9.如图,△ABC中,点D、E分别是AB、AC的中点,若S△ADE=3,则S△ABC=.A.12 B.6 C.9 D.10【答案】A10.如图,在菱形ABCD中,AB =4,BD=7.若M、N分别是边ADBC上的动点,且AM=BN,作ME⊥BD,NF⊥BD,垂足分别为E、F,则ME+NF的值为()A.3 B.√10 C.9√15D.√152【答案】D【详解】二.填空题(本大题共5小题,每小题3分, 共15分)11.分解因式:2xy2﹣2x=.【答案】2x(y+1)(y-1)12.如图,OA ,OB 是⊙O 的两条半径,点C 在⊙O 上,若∠C =30°,则的∠AOB 度数为 .【答案】60°13.2023年第四季度,某中小企业实现营业收入1.48百万元,将“1.48百万”用科学计数法表示为 .【答案】1.48×10714.如图,直线//,130,240a b °°∠=∠=,且AD AC =,则3∠的度数是 .【答案】40°15.如图,在平面直角坐标系中,边长为2的正六边形ABCDEF 的中心与原点O 重合,AB ∥x 轴,交y 轴于点P .将△OAP 绕点O 顺时针旋转,每次旋转90°,则第2024次旋转结束时,点A 的坐标为 .【答案】(1,)三、解答题(本大题共9小题,满分75分.)16.(4分)计算:-|√3-5|+2sin60°-(π-6)0-4【答案】2√317.(5分)解不等式组�2(3xx −1)≤−2xx +7 ①3xx+52≥53+2xx ② 【答案】x ≤98【分析】先分别求出每个不等式得解集,然后根据夹逼原则求出不等式组的解集即可.【详解】解∶�2(3xx−1)≤−2xx+7①3xx+52≥53+2xx②解不等式①,得x≤98,解不等式②,得x≤53,∴不等式组的解集为x≤9818. (8分)先化简,再求值:(1+)÷,其中a=+1.解:原式=÷=•=,当a=+1时,原式==.19.(8分)2021年3月29日,卫建委发布了《新冠疫苗接种指南》,某中学为了解九年级学生对新冠疫苗知识的了解情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类--非常了解:B类--比较了解;C类--一般了解;D类--不了解,现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了名学生;补全条形统计图;(2)D类所对应扇形的圆心角的大小为 ;若该校九年级学生共有1000名,根据以上抽样结果估计该校九年级学生对新冠疫苗知识非常了解的约有名.(3)已知调查的该班第一组学生中有2名男生1名女生,老师随机从该组中选取2名学生进一步了解其家庭成员接种情况,请用树状图或列表求所选2名学生恰为一男生一女生的概率。
2024年广东省九年级数学中考模拟试卷答案

2024年中考模拟检测数学试题一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中只有一项符合题问要求,请将正确选项前的字母代号填在答题卡相应位置上)1. 实数2022−的绝对值是( )A. 2022−B. 2022C. 12022D. 12022− 2. 垃圾分类可以有效减少垃圾对环境的污染,因此我们应增强环保意识,积极参与垃圾分类,共享低碳生活.下列有关垃圾分类的图标,是轴对称图形的有( )A. B.C. D.3. 计算2212ac −的结果是() A. 2412a c − B. 2212a c C. 2414a c D. 2214a c 4. 为了发扬“中国航天精神”,年的4月24日设立为“中国航天日”.正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是( )A. 航B. 天C. 精D. 神5. 如图,A 、B 、C 是⊙O 上的点,OC AB ⊥,垂足为点D ,若OA =5,AB =8,则CD 的长为( ).A. 5B. 4C. 3D. 26. 一个小球在如图所示的地板上自由滚动,并随机停在某块方砖上.如果每一块方砖除颜色外完全相同,那么小球最终停留在黑砖上的概率是( )A. 49B. 59C. 23D. 457. 若2x =是关于x 的一元二次方程220x mx +−=的一个根,则m 的值为( )A. 1B. 3C. 1−D. 3−8. 方程231x x +=的根可视为函数3y x 的图象与函数1y x =的图象交点的横坐标,那么用此方法可推断出方程3223x x x −+=的实数根x 所在的范围是( )A. 12x <<B. 23x <<C. 34x <<D. 45x <<二、填空题(本大题共8小题,起小题!分,共24分,请将答案直接写在答题卡相应位置上)9. 我国的北斗卫星导航系统()BDS 星座已部署完成,其中一颗中高轨道卫星高度大约是21500000米.将数字21500000用科学记数法表示为________.10.在实数范围内有意义,则x 的取值范围是__________.11. 分解因式:2218m −=______. 12. 如图所示,在O 中,直径10AB =,弦DE AB ⊥于点C ,连接DO .若3OC =,则DE 长为 _____.的13. 如图,点A B C D ,,,在O 上,130AOC ∠=°,则ABC ∠=___________°.14. 如果所示的地板由15块方砖组成,每一块方砖除颜色外完全相同,小球自由滚动,随机停在黑色方砖的概率为_________.15. 小明参加“强国有我”主题演讲比赛,其演讲形象、内容、效果三项的成绩分别是70分、90分、80分.若将三项得分依次按2:4:4的比例确定最终成绩,则小明的最终比赛成绩为______分.16. 已知ABC ,动点P 从点A 出发,以每秒钟1个单位长度的速度沿A→B→C→A 方向运动到点A 处停止.设点P 运动的运动时间为t 秒,PAB 的面积S 关于t 的函数图象如图所示,则ABC 的边BC 上的高等于____________________.三、解答题(本大题共11小题,共102分.请在答题卡指定位置作答,解答时应写出必要的文字说明、满算步骤或推理过程)17. 计算:(()2023011−+−−° 18. 解不等式2732x x −−<,并把它的解集表示在数轴上.19. 先化简,再求值:()()()()232232x x x x x −++−+−,其中2x =−.20. 如图,在ABC 中,点D 为BC 边上中点,连接AD .(1)尺规作图:作射线BF ,使得CBF ∠=C ∠,且射线BF 交AD 的延长线于点E (不要求写作法,保留作图痕迹);(2)在(1)的条件下,连接CE ,若12AD BC =,求证:四边形ABEC 为矩形. 21. 某校为了了解家长和学生的参与“防疫教育”的情况,在本校学生中随机抽取部分学生做调查,把收集的数据分为以下4类情形:A .仅学生自己参与;B .家长和学生一起参与;C .仅家长自己参与;D .家长和学生都未参与,请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了 名学生?(2)补全条形统计图,并在扇形统计图中计算C 类所对应扇形的圆心角的度数 ;(3)根据抽样调查结果,估计该校3200名学生中“家长和学生都参与”的人数.22. 4月18日上午7:30,2021盐城马拉松在盐城市盐南体育中心正式鸣枪开跑,共吸引了来自全国各地的约15000名选手同台竞技.本次马拉松共设三个项目:全程马拉松、半程马拉松、迷你马拉松.小乐和小观参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组中的一个.(1)小乐被分配到半程马拉松项目组的概率为______.(2)用树状图或列表法求小乐和小观被分到同一个项目组概率.23. 在某市双城同创的工作中,某社区计划对1200m 2的区域进行绿化,经投标,由甲、乙两个施工队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为2300m 区域的绿化时,甲队比乙队少用3天.(1)甲、乙两施工队每天分别能完成绿化的面积是多少?的(2)若甲队每天绿化费用为0.4万元,乙队每天绿化费用为0.15万元,且甲、乙两队施工的总天数不超过14天,则如何安排甲、乙两队施工的天数,使施工费用最少?并求出最少费用.24. 如图,以AB 为直径作O ,在O 上取一点C ,延长AB 至点D ,连接DC ,DCB DAC ∠=∠,过点A 作AE AD ⊥交DC 的延长线于点E .(1)求证:CD 是O 的切线;(2)若4CD =,2DB =,求AE 的长.25. LED 感应灯是一种通过感应模块自动控制光源点亮的一种新智能照明产品,当人进入感应范围内灯自动亮,离开感应范围灯灭.若在感应范围内有多个感应灯装置,那么人离哪个感应灯更近,这个感应灯就会亮,其它感应灯就不亮,这样既方便又节能.(说明:人到两个感应灯距离相等时,两个灯都亮)(1)如图①,已知在ABC 中,906m 8m A AB AC ∠=°==,,,若在ABC 的其中两个顶点B 、C 处分别装有感应灯,EF 垂直平分BC ,垂足为点F ,交AC 于点E ,请求出在该三角形内能使感应灯C 亮的区域面积;(2)如图②,在ABC 中,5m 6m ABAC BC ===,,AD 为BC 边上的高,在ABC 的三个顶点处都装有感应灯,请求出在该三角形内能使感应灯B 亮的区域面积;(3)如图③,在平面内五个散点A 、B 、C 、D 、E 处装有自控灯,请用直尺和圆规在平面内作出能使感应灯上亮的区域图形.26. 定义:在平面内,将点A 关于过点B 的任意一条直线对称后得到点C ,称点C 为点A 关于点B 的线对称点.理解:在直角坐标系中,已知点()2,0A ,(1)点A 关于直线y x =对称的点的坐标为_______;(2)若点A 、B 关于直线2y x =对称,则OA 与OB 数量关系为________; (3)下列为点A 关于原点的线对称点是_______.(填写序号,可多选) ①()2,0−②(③(1, ④()1,2 运用: (4)已知直线y mx b =+经过点()2,4,当m 满足什么条件时,该直线上始终存在点()2,0关于原点的线对称点:(5)已知抛物线2182y x =−+,问:该抛物线上是否存在点()0,0关于()0,3线对称点,若存在请求出点坐标,若不存在请说明理由.27. 已知ABC 是等腰直角三角形,90C AC BC ∠=°=,.(1)当6AC BC ==时,①将一个直角的顶点D 放至AB 的中点处(如图①),两条直角边分别交AC BC 、于点E 、F ,请说明DEF 为等腰直角三角形;②将直角顶点D 放至AC 边的某处(如图②),与另两边的交点分别为点E 、F ,若DEF 为等腰直角三角形,且面积为4,求CD 的长.(2)若等腰Rt DEF △三个顶点分别在等腰Rt ABC △的三边上,等腰Rt DEF △的直角边长为1时,求等腰Rt ABC △的直角边长的最大值.的的。
2024年广东省广州市中考模拟数学试题

2024年广东省广州市中考模拟数学试题一、单选题1.如图,几何体由5个相同的小正方体搭成.它的主视图是( )A .B .C .D .2.下列各式中运算正确的是( ) A .321a a -= B .()11a a --+=- C .()22330-+-=D .()3326a a -=3.石墨烯堪称目前世界上最薄的材料,约为0.3纳米(1纳米0.000000001=米).与此同时,石墨烯比金刚石更硬,是世界上最坚硬又最薄的纳米材料.0.3纳米用科学记数法可以表示为( )米. A .8310-⨯B .90.310-⨯C .9310-⨯D .10310-⨯4.不透明的盒子放有三张大小、形状及质地相同的卡片,卡片上分别写有李白《峨眉山月歌》,李白《渡荆门送别》和王维《寄荆州张丞相》三首诗,小明从盒子中随机抽取两张卡片,卡片上诗的作者都是李白的概率( ) A .13B .14C .15D .165.端午节,赛龙舟,小亮在点P 处观看400米直道竞速赛,如图所示,赛道AB 为东西方向,赛道起点A 位于点P 的北偏西30︒方向上,终点B 位于点P 的北偏东60︒方向上,400AB =米,则点P 到赛道AB 的距离为( )米.A .B .C .87D .1736.已知关于x 的一元二次方程()22110k k x x -++=有两个实数根1x ,2x ,且满足()()12112x x ++=,则k 的值是( )A .1k =-B .1k =C .2k =-D .1k =或2k =-7.若关于x 的一元一次不等式结3132x x x a-⎧≤+⎪⎨⎪≤⎩的解集为x a ≤;且关于y 的分式方程34122y a y y y --+=--有正整数解,则所有满足条件的整数a 的值之积是( ) A .7 B .-14 C .28 D .-568.如图,在等边ABC V 中,D 是边AC 上一点,连接BD ,将BCD △绕点B 按逆时针方向旋转60︒,得到BAE V ,连接ED ,若10BC =,9BD =,则四边形ADBE 的周长是( )A .19B .20C .28D .299.如图,四边形ABCD 内接于O e ,AB 为直径,AD CD =,过点D 作DE AB ⊥于点E ,连接AC 交DE 于点F .若3sin 5CAB ∠=,5DF =,则BC 的长为( )A .8B .10C .12D .1610.如图,正方形ABCD 的边长为4,点E ,F 分别在边DC BC ,上,且BF CE =,AE 平分CAD ∠,连接DF ,分别交AE AC ,于点G ,M ,P 是线段AG 上的一个动点,过点P 作PN AC ⊥,垂足为N ,连接PM ,有下列四个结论:①AE 垂直平分DM ;②PM PN +的最小值为③2CF GE AE =⋅;④ADM S =△ )A .1B .2C .3D .4二、填空题11.因式分解:29x y y -=.12.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=55°,则∠3=.13.如图,圆锥的侧面展开图是一个圆心角为120︒的扇形,若圆锥的底面圆半径是5,则圆锥的母线l 为.14.若关于x 的一元二次方程210(0)4ax x a --=≠有两个不相等的实数根,则点(1, 3 )P a a +--在第象限.15.如图,在平面直角坐标系xOy 中,反比例函数(0)k y x x=>的图象与半径为10的O e 交于,A B 两点,若60AOB ∠=︒,则k 的值是.16.如图,已知正方形ABCD 的边长为2,E 为AB 的中点,F 是AD 边上的一个动点,连接EF ,将AEF △沿EF 折叠得HEF V ,若延长FH 交边BC 于点M ,则DH 的取值范围是.三、解答题17.计算:()11113tan303π-⎛⎫-+--︒ ⎪⎝⎭18.先化简,再求值:222211121x x x x x ++⎛⎫+÷ ⎪--+⎝⎭,其中4x =.19.为打造书香文化,培养阅读习惯,某中学计划在各班建设图书角,并开展主题为“我最喜欢阅读的书篇”的调查活动,学生根据自己的爱好选择一类书籍(A :科技类,B :文学类,C :政史类,D :艺术类,E :其他类).张老师组织数学兴趣小组对学校部分同学进行了问卷调查.根据收集到的数据,绘制了两幅不完整的统计图(如图所示).根据图中信息,请回答下列问题:(1)填空:参与本次问卷调查活动的学生人数是______;(2)甲同学从A ,B ,C 三类书籍中随机选择一种,乙同学从B ,C ,D 三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.20.某文具店准备购进甲、乙两种圆规,若购进甲种圆规10个,乙种圆规30个,需要340元;若购进甲种圆规30个,乙种圆规50个,需要700元. (1)求购进甲、乙两种圆规的单价各是多少元;(2)文具店购进甲、乙两种圆规共100个,每个甲种圆规的售价为15元,每个乙种圆规的售价为12元,销售这两种圆规的总利润不低于480元,那么这个文具店至少购进甲种圆规多少个?21.如图,四边形ABCD 为正方形,点A 在y 轴上,点B 在x 轴上,且4OA =,2OB =,反比例函数()0ky k x=≠在第一象限的图象经过正方形的顶点C .(1)求点C 的坐标和反比例函数的解析式;(2)若点N 为直线OD 上的一动点(不与点O 重合),在y 轴上是否存在点M ,使以点A 、M 、C 、N 为顶点的四边形是平行四边形?若存在,求出点M 的坐标;若不存在,请说明理由.22.如图是一个山坡的纵向剖面图,坡面DE 的延长线交地面AC 于点B ,点E 恰好在BD 的中点处,60CBD ∠=︒,坡面AE 的坡角为45°,山坡顶点D 与水平线AC 的距离,即CD 的长为.(1)求BE 的长度;(2)求AB 的长度.(结果保留根号)23.如图,在Rt ABC △中,90ABC ∠=︒,点P 是斜边AC 上一个动点,以BP 为直径作O e ,交BC 于点D ,与AC 的另一个交点为E ,连接DE ,BE .(1)当»»DPEP =时,求证:AB AP =; (2)当3AB =,4BC =时.①是否存在点P ,使得BDE V 是等腰三角形,若存在,求出所有符合条件的CP 的长;若不存在,请说明理由;②连接DP ,点H 在DP 的延长线上,若点O 关于DE 的对称点Q 恰好落在CPH ∠内,求CP 的取值范围.24.已知抛物线22y x mx n =-++经过点(2,23)m -. (1)用含m 的式子表示n ;(2)当0m <时,设该抛物线与x 轴交于点A ,B (点A 在点B 的左侧),与y 轴交于点C ,ABC V 的外接圆与y 轴交于另一点D (点D 与点C 不重合),求点D 的坐标;(3)若点()13,E y -,()2,F t y ,()31,G m y -在该抛物线上,且当34t <≤时,总有123y y y <<,求3y 的取值范围.25.如图,在四边形ABCD 中,点N ,M 分别在边BC ,CD 上.连接AM ,AN ,MN ,45MAN ∠=︒.(1)【实践探究】如图①,四边形ABCD 是正方形. (ⅰ)若6CN =,10MN =,求CMN ∠的余弦值; (ⅱ)若1an 3t BAN =∠,求证:M 是CD 的中点;(2)【拓展】如图②,四边形ABCD 是直角梯形,AD BC ∥,90C ∠=︒,12CD =,16AD =,12CN =,求DM 的长.。
【中考冲刺】2023年广东省中考数学模拟试卷(附答案)

2023年广东省中考数学模拟试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.-2021的绝对值是( )A .2021-B .12021-C .2021D .12020 2.剪纸是我国古老的民间艺术,下列四个剪纸图案为轴对称图形的是( ) A . B .C .D .3.某几何体的三视图如图所示,则此几何体是( )A .圆锥B .圆柱C .长方体D .四棱柱 4.下列运算正确的是( )A .235a a a +=B .3412a a a ⋅=C .32a a a÷= D .()236236a b a b -= 5.关于x 的一元一次不等式58x x ≥+的解集在数轴上表示为( )A .B .C .D .6.如图,直线a ,b 被直线c 所截,若//a b ,170∠=︒,则2∠的度数是( )A .70°B .100°C .110°D .120°7.计算22111m m m m ----的结果是( ) A .1m + B .1m - C .2m - D .2m -- 8.如图,AB 是O 的直径,点E ,C 在O 上,点A 是EC 的中点,过点A 画O 的切线,交BC 的延长线于点D ,连接EC .若58.5ADB ∠=︒,则ACE ∠的度数为( )A .29.5︒B .31.5︒C .58.5︒D .63︒9.如图,O 是坐标原点,点B 在x 轴上,在OAB 中,AO =AB =5,OB =6,点A 在反比例函数y =k x(k ≠0)图象上,则k 的值( )A .﹣12B .﹣15C .﹣20D .﹣3010.如图,在Rt △ABC 中,△A =30°,△C =90°,AB =6,点P 是线段AC 上一动点,点M 在线段AB 上,当AM =13AB 时,PB +PM 的最小值为( )A.B.C.2D.3二、填空题11.因式分解:2728a-=________.12.解决全人类温饱问题是“世界杂交水稻之父”袁隆平先生的毕生追求.2020年中国粮食总产量达到657 000 000吨,已成为世界粮食第一大国.将657 000 000用科学记数法表示为________.13.不等式组51350xx-<⎧⎨-≥⎩的解集是__________.14.已知甲、乙两队员射击的成绩如图,设甲、乙两队员射击成绩的方差分别为2S甲、2 S 乙,则2S甲___2S乙.(填“>”、“=”、“<”)15.如图,花瓣图案中的正六边形ABCDEF的每个内角的度数是__.16.若实数x满足210x x--=,则3222021x x-+=__.17.如图,把边长为3的正方形OABC绕点O逆时针旋转n°(0<n<90)得到正方形ODEF,DE与BC交于点P,ED的延长线交AB于点Q,交OA的延长线于点M.若BQ:AQ=3:1,则AM=__________.三、解答题18.计算:(π﹣1)0+2|﹣(13)﹣1+tan60°.19.如图,在菱形ABCD中,点M、N分别在AB、CB上,且ADM CDN∠=∠,求证:BM BN=.20.端午节吃粽子是中华民族的传统习俗.某超市节前购进了甲、乙两种畅销口味的粽子.已知购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个,甲种粽子的单价是乙种粽子单价的2倍.(1)求甲、乙两种粽子的单价分别是多少元?(2)为满足消费者需求,该超市准备再次购进甲、乙两种粽子共200个,若总金额不超过1150元,问最多购进多少个甲种粽子?21.为庆祝建党100周年,某校开展“学党史•颂党恩”的作品征集活动,征集的作品分为四类:征文、书法、剪纸、绘画.学校随机抽取部分学生的作品进行整理,并根据结果绘制成如下两幅不完整的统计图.请根据以上信息解答下列问题:(1)所抽取的学生作品的样本容量是多少?(2)补全条形统计图.(3)本次活动共征集作品1200件,估计绘画作品有多少件.22.某校数学社团开展“探索生活中的数学”研学活动,准备测量一栋大楼BC的高度.如图所示,其中观景平台斜坡DE的长是20米,坡角为37︒,斜坡DE底部D与大楼底端C的距离CD为74米,与地面CD垂直的路灯AE的高度是3米,从楼顶B测得路灯AE 项端A 处的俯角是42.6︒.试求大楼BC 的高度. (参考数据:3sin 375︒≈,4cos375≈︒,3tan 374︒≈,17sin 42.625︒≈,34cos 42.645︒≈,9tan 42.610︒≈)23.某药店新进一批桶装消毒液,每桶进价35元,原计划以每桶55元的价格销售,为更好地助力疫情防控,现决定降价销售.已知这种消毒液销售量y (桶)与每桶降价x (元)(020x <<)之间满足一次函数关系,其图象如图所示:(1)求y 与x 之间的函数关系式;(2)在这次助力疫情防控活动中,该药店仅获利1760元.这种消毒液每桶实际售价多少元?24.如图,AB 是O 的直径,C 、D 是O 上两点,且BD CD =,过点D 的直线DE AC ⊥交AC 的延长线于点E ,交AB 的延长线于点F ,连接AD 、OE 交于点G . (1)求证:DE 是O 的切线;(2)若23DG AG =,O 的半径为2,求阴影部分的面积;(3)连结BE ,在(2)的条件下,求BE 的长.25.如图1,二次函数()()34y a x x =+-的图象交坐标轴于点A ,()0,2B -,点P 为x 轴上一动点.(1)求二次函数()()34y a x x =+-的表达式;(2)过点P 作PQ x ⊥轴分别交线段AB ,抛物线于点Q ,C ,连接AC .当1OP =时,求ACQ 的面积;(3)如图2,将线段PB 绕点P 逆时针旋转90得到线段PD .△当点D 在抛物线上时,求点D 的坐标;△点52,3E ⎛⎫- ⎪⎝⎭在抛物线上,连接PE ,当PE 平分BPD ∠时,直接写出点P 的坐标.参考答案:1.C【解析】【分析】根据绝对值的定义即可得出正确选项.【详解】解:-2021的绝对值是2021故选:C.【点睛】本题考查求绝对值,掌握正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数是解题的关键.2.C【解析】【分析】过一个图形的一条直线,把这个图形分成可以完全重合的两个部分,这个图形就叫做轴对称图形;根据轴对称图形的概念求解即可.【详解】解:A、不是轴对称图形,本选项不符合题意;B、不是轴对称图形,本选项不符合题意;C、是轴对称图形,本选项符合题意;D、不是轴对称图形,本选项不符合题意.故选:C.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.B【解析】【详解】解:圆柱体的主视图、左视图、右视图,都是长方形(或正方形),俯视图是圆,故选:B.【点睛】本题考查三视图.4.C【解析】【分析】根据合并同类项的法则,同底数幂的乘法,同底数幂的除法,幂的乘方与积的乘方的性质逐项计算可判断求解.【详解】解:A.2a与3a不是同类项,不能合并,故A选项不符合题意;B.347a a a⋅=,故B选项不符合题意;C.32÷=,故C选项符合题意;a a aD.3262-=,故D选项不符合题意,(3)9a b a b故选:C.【点睛】本题考查了合并同类项的法则,同底数幂的乘法,同底数幂的除法,幂的乘方与积的乘方,掌握以上知识是解题的关键.5.B【解析】【分析】求出不等式的解集,并表示出数轴上即可.【详解】≥+x x58x≥解得2x≥表示在数轴上,如图将2故选B【点睛】本题考查了解一元一次不等式,并将不等式的解集表示在数轴上,数形结合是解题的关键.6.C【解析】【分析】由已知条件//a b ,可得1370==︒∠∠,由平角的性质可得23180∠+∠=︒代入计算即可得出答案.【详解】解:如图,//a b ,1370∴∠=∠=︒,23180∠+∠=︒,2180318070110∴∠=︒-∠=︒-︒=︒.故选:C .【点睛】本题主要考查了平行线的性质,熟练掌握平行线的性质进行求解是解决本题的关键. 7.B【解析】【分析】根据分式的减法法则可直接进行求解.【详解】 解:()2221212111111m m m m m m m m m m ---+-===-----; 故选B .【点睛】本题主要考查分式的减法运算,熟练掌握分式的减法运算是解题的关键.8.B【解析】【分析】根据切线的性质得到BA△AD,根据直角三角形的性质求出△B,根据圆周角定理得到△ACB=90°,进而求出△BAC,根据垂径定理得到BA△EC,进而得出答案.【详解】解:△AD是△O的切线,△BA△AD,△△ADB=58.5°,△△B=90°-△ADB=31.5°,△AB是△O的直径,△△ACB=90°,△△BAC=90°-△B=58.5°,△点A是弧EC的中点,△BA△EC,△△ACE=90°-△BAC=31.5°,故选:B.【点睛】本题考查的是切线的性质、圆周角定理、垂径定理,掌握圆的切线垂直于经过切点的半径是解题的关键.9.A【解析】【分析】过A点作AC△OB,利用等腰三角形的性质求出点A的坐标即可解决问题.【详解】解:过A点作AC△OB,△AO=AB,AC△OB,OB=6,△OC=BC=3,在Rt△AOC中,OA=5,△AC4,△A(﹣3,4),把A(﹣3,4)代入y=kx,可得k=﹣12故选:A.【点睛】本题考查反比例函数图象上的点的性质,等腰三角形的性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.B【解析】【分析】作B点关于AC的对称点B',连接B'M交AC于点P,则PB+PM的最小值为B'M的长,过点B'作B'H△AB交H点,在Rt△BB'H中,B'H=HB=3,可求MH=1,在Rt△MHB'中,B'M=PB+PM的最小值为【详解】解:作B点关于AC的对称点B',连接B'M交AC于点P,△BP=B'P,BC=B'C,△PB+PM=B'P+PM≥B'M,△PB+PM的最小值为B'M的长,过点B'作B'H△AB交H点,△△A =30°,△C =90°,△△CBA =60°,△AB =6,△BC =3,△BB '=BC +B 'C =6,在Rt △BB 'H 中,△B 'BH =60°,∴△BB 'H =30°,△BH =3,由勾股定理可得:'B H =△AH =AB -BH =3,△AM =13AB , △AM =2,△MH =AH -AM =1,在Rt △MHB '中,'B M =△PB +PM 的最小值为故选:B .【点睛】本题考查轴对称—最短路线问题,涉及到解直角三角形,解题的关键是做辅助线,找出PB +PM 的最小值为B 'M 的长.11.7(2)(2)a a +-【解析】【分析】先提取公因式7,然后再使用平方差公式求解即可.【详解】解:原式2=7(4)7(2)(2)a a a -=+-,故答案为:7(2)(2)a a +-.【点睛】本题考查了因式分解的方法,先提公因式,再看能否套平方差公式或完全平方式. 12.6.57×108【解析】【分析】由题意结合科学记数法表示较大的数时,一般形式为a ×10n ,其中1≤|a |<10,n 为整数,且n 比原来的整数位数少1,据此进行分析即可.【详解】解:将657 000 000用科学记数法表示为6.57×108.故答案为:6.57×108.【点睛】本题主要考查用科学记数法表示较大的数,一般形式为a ×10n ,其中1≤|a |<10,确定a 与n 的值是解题的关键.13.563x < 【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:解不等式51x -<,得:6x <,解不等式350x -,得:53x , 则不等式组的解集为563x <, 故答案为:563x <. 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14.>【解析】【分析】先计算两组数据的平均数,再计算它们的方差,即可得出答案.【详解】解:甲射击的成绩为:6,7,7,7,8,8,9,9,9,10,乙射击的成绩为:6,7,7,8,8,8,8,9,9,10,则x甲=110×(6+7×3+8×2+9×3+10)=8,x乙=110×(6+7×2+8×4+9×2+10)=8,△S甲2=110×[(6-8)2+3×(7-8)2+2×(8-8)2+3×(9-8)2+(10-8)2]=110×[4+3+3+4]=1.4;S乙2=110×[(6-8)2+2×(7-8)2+4×(8-8)2+2×(9-8)2+(10-8)2]=110×[4+2+2+4]=1.2;△1.4>1.2,△S甲2>S乙2,故答案为:>.【点睛】题主要考查了平均数及方差的知识.方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.15.120°【解析】【分析】多边形的内角和可以表示成(n ﹣2)•180°,因为所给多边形的每个内角均相等,可设这个正六边形的每一个内角的度数为x ,故又可表示成6x ,列方程可求解.【详解】解:设这个正六边形的每一个内角的度数为x ,则6x =(6﹣2)•180°,解得x =120°.故答案为:120°.【点睛】本题考查根据多边形的内角和计算公式及求正多边形的内角的度数,解答时要会根据公式进行正确运算、变形和数据处理.16.2020【解析】【分析】由等式性质可得21x x =+,21x x -=,再整体代入计算可求解.【详解】解:210--=x x ,21x x ∴=+,21x x -=,3222021x x -+2(1)22021x x x =+-+2222021x x x =+-+22021x x =-+12021=-+2020=.故答案为:2020.【点睛】本题主要考查因式分解的应用,将等式转化为21x x =+,21x x -=是解题的关键.17.25【解析】【分析】连接OQ ,OP ,利用HL 证明Rt △OAQ △Rt △ODQ ,得QA =DQ ,同理可证:CP =DP ,设CP =x ,则BP =3-x ,PQ =x +34,在Rt △BPQ 中,利用勾股定理列出方程求出x =95,再利用△AQM △△BQP 可求解.【详解】解:连接OQ ,OP ,△将正方形OABC 绕点O 逆时针旋转n °(0<n <90)得到正方形ODEF ,△OA =OD ,△OAQ =△ODQ =90°,在Rt △OAQ 和Rt △ODQ 中,OQ OQ OA OD=⎧⎨=⎩, △Rt △OAQ △Rt △ODQ (HL ),△QA =DQ ,同理可证:CP =DP ,△BQ :AQ =3:1,AB =3,△BQ =94,AQ =34, 设CP =x ,则BP =3-x ,PQ =x +34, 在Rt △BPQ 中,由勾股定理得:(3-x )2+(94)2=(x +34)2, 解得x =95, △BP =65, △△AQM =△BQP ,△BAM =△B ,△△AQM △△BQP ,△13AM AQ BP BQ ==, △1635AM =,△AM =25. 故答案为:25. 【点睛】本题主要考查了旋转的性质,全等三角形的判定与性质,勾股定理,相似三角形的判定与性质等知识,利用全等证明QA =DQ ,CP =DP 是解题的关键.18.0【解析】【分析】根据011(1)1,()223π--===60°角的正切值解题即可. 【详解】解:原式123=+0=.【点睛】本题考查实数的混合运算,涉及零指数幂、负整指数幂、绝对值、正切等知识,是重要考点,难度较易,掌握相关知识是解题关键.19.见解析【解析】【分析】菱形ABCD 中,四边相等,对角相等,结合已知条件ADM CDN ∠=∠,可利用三角形全等进行证明,得到AM CN =,再线段之差相等即可得证.【详解】四边形ABCD 是菱形,,BA BC DA DC A C ∴==∠=∠在AMD 和CND △中A C DA DCADM CDN ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AMD ≌CND △(ASA)AM CN ∴=BA BC =BA AM BC CN ∴-=-即BM BN =.【点睛】本题考查了三角形全等的证明,菱形的性质,根据题意找准三角形证明的条件,利用角边角进行三角形全等的证明是解题的关键.20.(1)乙种粽子的单价为4元,则甲种粽子的单价为8元;(2)最多购进87个甲种粽子【解析】【分析】(1)设乙种粽子的单价为x 元,则甲种粽子的单价为2x 元,然后根据“购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个”可列方程求解;(2)设购进m 个甲种粽子,则购进乙种粽子为(200-m )个,然后根据(1)及题意可列不等式进行求解.【详解】解:(1)设乙种粽子的单价为x 元,则甲种粽子的单价为2x 元,由题意得:1200800502x x+=, 解得:4x =,经检验4x =是原方程的解,答:乙种粽子的单价为4元,则甲种粽子的单价为8元.(2)设购进m 个甲种粽子,则购进乙种粽子为(200-m )个,由(1)及题意得: ()842001150m m +-≤,解得:87.5m ≤,△m 为正整数,△m 的最大值为87;答:最多购进87个甲种粽子.【点睛】本题主要考查分式及一元一次不等式的应用,熟练掌握分式方程的解法及一元一次不等式的解法是解题的关键.21.(1)120;(2)图形见解析;(3)360件【解析】【分析】(1)根据剪纸的人数除以所占百分比,得到抽取作品的总件数;(2)由总件数减去其他作品数,求出绘画作品的件数,补全条形统计图即可;(3)求出样本中绘画作品的百分比,乘以1200即可得到结果.【详解】解:(1)根据题意得:1210%120÷=(件),所抽取的学生作品的样本容量是120;(2)绘画作品为120(423012)36-++=(件),补全统计图,如图所示:(3)根据题意得:361200360120⨯=(件),则绘画作品约有360件.答:本次活动共征集作品1200件时,绘画作品约有360件.【点睛】本题主要考查了总体、个体、样本、样本容量,用样本估计总体,条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.96米【解析】【分析】延长AE 交CD 延长线于M ,过A 作AN△BC 于N ,则四边形AMCN 是矩形,得NC=AM ,AN=MC ,由锐角三角函数定义求出EM 、DM 的长,得出AN 的长,然后由锐角三角函数求出BN 的长,即可求解.【详解】延长AE 交CD 于点M ,过点A 作AN BC ⊥,交BC 于点N ,由题意得,90AMC NCM ANC ∠=∠=∠=︒,△四边形AMCN 为矩形,△NC AM =,NA CM =.在Rt EMD △中,90EMD ∠=︒, △sin EM EDM ED ∠=,cos DM EDM ED ∠=, △sin 3720EM ︒=,cos3720MD ︒=, △320sin 3720125EM =⋅≈⨯=︒, △420cos3720165DM =⋅︒≈⨯=. 在Rt BNA △中,90BNA ∠=︒, △tan BN BAN AN ∠=, △tan 42.67416BN ︒=+, △990tan 42.6908110BN =≈⨯=︒, △8131296BC BN AE EM =++=++=.答:大楼BC 的高度约为96米.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,坡度坡角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.23.(1)y =10x +100;(2)这种消毒液每桶实际售价43元【解析】【分析】(1)设y 与x 之间的函数表达式为y kx b =+,将点(1,110)、(3,130)代入一次函数表达式,即可求解;(2)根据利润等于每桶的利润乘以销售量得关于x 的一元二次方程,通过解方程即可求解.【详解】解:(1)设y 与销售单价x 之间的函数关系式为:y kx b =+,将点(1,110)、(3,130)代入一次函数表达式得:1101303k b k b =+⎧⎨=+⎩, 解得:10100k b =⎧⎨=⎩, 故函数的表达式为:10100y x =+;(2)由题意得:(10100)(5535)1760x x +⨯--=,整理,得210240x x --=.解得112x =,22x =-(舍去).所以5543x -=.答:这种消毒液每桶实际售价43元.【点睛】本题主要考查了一元二次方程的应用以及用待定系数法求一次函数解析式等知识,正确利用销量⨯每件的利润=总利润得出一元二次方程是解题关键.24.(1)见解析;(2)23π;(3【解析】【分析】(1)根据同圆中等弧所对的圆周角相等得到△CAD =△DAB ,根据等边对等角得到△DAB =△ODA ,则△CAD =△ODA ,即可判定OD △AE ,进而得到OD △DE ,据此即可得解;(2)连接BD ,根据相似三角形的性质求出AE =3,AD△DAB =30°,则△EAF =60°,△DOB =60°,DFS 阴影=S △DOF -S 扇形DOB 即可得解;(3)过点E 作EM △AB 于点M ,连接BE ,解直角三角形得到AM =32,EM MB =52,再根据勾股定理求解即可. 【详解】解:(1)证明:如图,连接OD ,BD CD =,CAD DAB ∴∠=∠,OA OD =,DAB ODA ∴∠=∠,CAD ODA ∴∠=∠,//OD AE ∴,DE AC ⊥,OD DE ∴⊥, OD 是O 的半径,DE ∴是O 的切线;(2)解://OD AE ,OGD EGA ∴∆∆∽, ∴DG OD AG AE=, 23DG AG =,O 的半径为2, ∴223AE=, 3AE ∴=,如图,连接BD ,AB 是O 的直径,DE AE ⊥,90AED ADB ∴∠=∠=︒,CAD DAB ∠=∠,AED ADB ∴∆∆∽, ∴AE AD AD AB=, 即34AD AD =,AD ∴=在Rt ADB ∆中,cos AD DAB AB ∠= 30DAB ∴∠=︒,60EAF ∴∠=︒,60DOB ∠=︒,30F ∴∠=︒,2OD =,2tan30DF ∴=︒216022223603DOF DOB S S S ππ∆⨯∴=-=⨯⨯=阴影扇形; (3)如图,过点E 作EM AB ⊥于点M ,连接BE ,在Rt AEM ∆中,13cos60322AM AE =⋅︒=⨯=,sin 60EM AE =⋅︒ 35422MB AB AM ∴=-=-=,BE ∴ 【点睛】此题是圆的综合题,考查了切线的判定与性质、扇形的面积、相似三角形的判定与性质、解直角三角形,熟练掌握切线的判定与性质、相似三角形的判定与性质并证明△OGD △△EGA 求出AE 是解题的关键.25.(1)211266y x x =--;(2)34;(3)△(3,1)D -或(8,10)-;△1(,0)3-或(2,0). 【解析】【分析】(1)根据B 点的坐标以及已知条件,将B 的坐标代入即可求得a 的值,进而求得抛物线的解析式;(2)依题意根据(1)的解析式求得A 的坐标,进而求得1tan 2OAB ∠=,据此求得PQ ,根据1OP =进而求得C 的坐标,根据12ACQ S QC AP =⋅⋅△即可求得ACQ 的面积;(3)△过D 作DF x ⊥轴,分D 点在x 轴上方和下方两种情况讨论,证明BOP PFD △≌△,设(,0)P a ,(2,)D a a +-将点D 的坐标代入(1)中抛物线解析式中即可求得D 点的坐标情形2,方法同情形1;△分当PE 不平行于y 轴和//PE y 轴两种情况讨论,当当PE 不平行于y 轴时,过点B 作BM BP ⊥交PE 于点M ,过点M 作MH OB ⊥于点H ,证明BOP MHB △≌△进而可得P 的坐标,当//PE y 轴时,结合已知条件即可求得P 的坐标.【详解】(1)二次函数()()34y a x x =+-的图象经过()0,2B -∴122a -=- 解得16a = ∴()()34y a x x =+-1(3)(4)6x x =+- ∴211266y x x =-- (2)由1(3)(4)6y x x =+-,令0y = 解得123,4x x =-=(4,0),4A OA ∴=21tan 42OB OAB OA ∠=== ∴当1OP =时,413PA OA OP =-=-=13tan 322PQ PA OAB =⋅∠=⨯= ∴1C x =,则()()1131426C y =+-=- 111332224ACQ S QC AP ∴=⋅⋅=⨯⨯=△; (3)如图,当点D 在x 轴下方时,过点D 作DF AP ⊥于点F ,由211266y x x =--,令0x =, 解得2y =-(0,2)B ,2OB =90FPD PDF ∴∠+∠=︒,将线段PB 绕点P 逆时针旋转90得到线段PD ,90BPD ∴∠=︒90OPB FPD ∴∠+∠=︒OPB PDF ∴∠=∠90,BOP PFD PB DP ∠=∠=︒=∴BOP PFD △≌△2BO PF ∴==,OP DF =,设(0)OP DF a a ==>,2OF OP PF a ∴=+=+(2,)D a a ∴+-D 点在抛物线上,∴()()123246a a a +++-=- 解得121,10a a ==-(舍)(3,1)D ∴-当点D 在x 轴上方时,如图,过点D 作DF AP ⊥于点F ,设OF a =(0)a >同理可得BOP PFD △≌△2,2BO PF DF OP a ∴====+(,2)D a a ∴-+ D 点在抛物线上, ∴()()13426a a a -+--=+ 解得128,3a a ==-(舍去),(8,10)D ∴-综上所述,(3,1)D -或(8,10)-;△当PE 不平行于y 轴时,过点B 作BM BP ⊥交PE 于点M ,过点M 作MH OB ⊥于点H ,如图,PE 平分BPD ∠,PD PB ⊥,45BPE ∴∠=︒,BP BM ⊥,90HBM PBO ∴∠+∠=︒,90,BOP BHM PB BM ∠=∠=︒=90HBM PBO ∴∠+∠=︒90BPO PBO ∠+∠=︒BPO HBM ∴∠=∠90,BOP BHM PB BM ∴∠=∠=︒=BOP MHB ∴△≌△2HM OB ∴==2M x ∴=∴当PE 不平行于y 轴时,,E M 重合,BOP MHB △≌△,52,3E ⎛⎫- ⎪⎝⎭ ∴51233OP BH OB OH ==-=-=- 1(,0)3P ∴- 当PE //y 轴时,如图,此时P E x x =则(2,0)P综上所述,当PE平方BPD∠时,点P的坐标为1(,0)3-或(2,0).【点睛】本题考查了待定系数法求二次函数解析式,二次函数与坐标轴交点,正切的定义,三角形全等的性质与判定,分类讨论是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考模拟题1、如图是小刘做的一个风筝支架示意图,已知BC ∥PQ ,AB :AP=2:5,AQ=20cm ,则CQ 的长是( )A .8cmB .12cmC .30cmD .50cm2、在同一坐标系中,一次函数y=ax+b 与二次函数y=bx 2+a 的图象可能是( )A .B .C .D .3、如图,在矩形ABCD 中,AB=2,∠AOB=60°,则OB 的长为( )A .1B .2C .3D .44、一元二次方程的根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根 D .无法确定5、河堤横断面如图所示,坝高BC=6米,迎水坡AB的坡长比为1:,则AB的长为()A.5米B.4米C.12米D.6米6、下面几个几何体,主视图是圆的是()A.B.C.D.7、为了响应中央号召,今年我市加大财政支农力度,全市农业支出累计达到235000 000元,其中235000 000元用科学记数法可表示为()A.2.34×108元B.2.35×108元C.2.35×109元D.2.34×109元8、–2的绝对值是()A.2B.–2C.±2D.9、配方法解方程时,原方程应变形为( )A.B.C.D.10、如图,A、D是⊙O上的两个点,BC是直径.若∠D=32°,则∠OAC等于:A. 64°B. 58°C. 72°D. 55°11、分解因式:______________12、某药店响应国家政策,某品牌药连续两次降价,由开始每盒16元下降到每盒14元.设每次降价的平均百分率是x,则列出关于x的方程是__.13、如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x的图象上,从左向右第3个正方形中的一个顶点A的坐标为(8,4),阴影三角形部分的面积从左向右依次记为S1、S2、S3、…、S n,则S n的值为__.(用含n的代数式表示,n为正整数)14、如图,已知正六边形ABCDEF的外接圆半径为2cm,则正六边形的边心距是__cm.15、已知点A(1,y1),B(2,y2)是如图所示的反比例函数y=图象上两点,则y1__y2(填“>”,“<”或“=”).16、若两个相似三角形的周长之比为2:3,较小三角形的面积为8cm2,则较大三角形面积是__cm2.17、某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.问如何提高售价,才能在半个月内获得最大利润?18、如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:ED平分∠BEP;(3)若⊙O的半径为5,CF=2EF,求PD的长.19、如图,在直角坐标系中,点A(0,4),B(-3,4),C(-6,0),动点P从点A出发以1个单位/秒的速度在y轴上向下运动,动点Q同时从点C出发以2个单位/秒的速度在x轴上向右运动,过点P作PD⊥y轴,交OB于D,连接DQ.当点P与点O重合时,两动点均停止运动.设运动的时间为t秒.(1)当t=1时,求线段DP的长;(2)连接CD,设△CDQ的面积为S,求S关于t的函数解析式,并求出S的最大值;(3)运动过程中是否存在某一时刻,使△ODQ与△ABC相似?若存在,请求出所有满足要求的t的值;若不存在,请说明理由.20、如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶点A点测得建筑物CD的顶点C点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD 为45°.(1)求两建筑物底部之间水平距离BD的长度;(2)求建筑物CD的高度(结果保留根号).21、如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A(1,a),B(3,b)两点.(1)求反比例函数的表达式(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标(3)求△PAB的面积.22、平行四边形ABCD的对角线AC和BD交于O点,分别过顶点B,C作两对角线的平行线交于点E,得平行四边形OBEC.(1)如果四边形ABCD为矩形(如图),四边形OBEC为何种四边形?请证明你的结论;(2)当四边形ABCD是形时,四边形OBEC是正方形23、商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.(为了方便,列树状图或列表时,雪碧、可乐、果汁、奶汁可以分别用a、b、c、d代替)(1)若他去买一瓶饮料,则他买到奶汁的概率是;(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率.24、如图,在等腰直角△ABC中,∠ACB=90°,AC=BC=.(1)作⊙O,使它过点A、B、C(要求:尺规作图,保留作图痕迹,不写作法).(2)在(1)所作的圆中,圆心角∠BOC= º,圆的半径为,劣弧的长为.25、计算:﹣(﹣1)2017﹣(π﹣3)0+.参考答案1、B2、C3、B4、A5、C6、B7、B8、A9、C10、B11、;12、16(1-x)2=14.13、24n﹣514、15、>16、1817、售价为35元时,在半月内可获得最大利润18、(1)证明见试题解析;(2)证明见试题解析;(3).19、(1);(2)S=,当时,S最大值=4;(3)和20、(1)60;(2).21、(1)反比例函数的表达式y=,(2)点P坐标(,0),(3)S△PAB= 1.5.22、(1)四边形OBEC是菱形.证明见解析;(2)正方形23、(1)0.25;(2)他恰好买到雪碧和奶汁的概率为24、(1)画图见解析;(2)90 , 1 ,二分之一π25、2+2【解析】1、试题解析:∵BC∥PQ,∴△ABC∽△APQ,∴,∵AB:AP=2:5,AQ=20cm,∴,解得:AC=8cm,∴CQ=AQ-AC=20-8=12(cm),故选B.2、A.由直线可知,a>0,b>0,由抛物线可知,b>0,a<0,故本选项错误;B.由直线可知,a>0,b>0,由抛物线可知,b<0,a>0,故本选项错误;C.由直线可知,a<0,b>0,由抛物线可知,b>0,a<0,故本选项正确;D.由直线可知,a<0,b<0,由抛物线可知,b>0,a<0,故本选项错误;. 故选C.点晴:本题主要考查直线与抛物线的图象和性质. 解题的关键在于深刻理解直线中的k、b的正负性与一次函数图象的关系及二次函数中的a、c的正负性与二次函数图象的关系,从而通过图象来判断出a、b的符号.3、∵四边形ABCD是矩形∴AO=BO∵∠AOB=60°∴AB=AO=BO∴BO =AB=2.故选B.4、在一元二次方程中,∵∴∴此一元二次方程没有实数根故选A.5、∵迎水坡AB的坡长比为1:∴∵BC=6∴AC=由勾股定理得: (m)故选C.6、A.正方体的主视图是正方形;B.球的主视图是圆;C.圆锥的主视图是等腰三角形;D.圆柱的主视图是长方形.故选B.7、235 000 000元=2.35×108元故选B.8、∵负数的绝对值是它的相反数,∴|-2|=2.故选A.9、试题分析:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.在本题中,把常数项-5移项后,应该在左右两边同时加上一次项系数-2的一半的平方.解:移项得,x2-2x=5,配方得,x2-2x+1=5+1,即(x-1)2=6,故选C.考点:解一元二次方程-配方法.10、试题分析:先根据圆周角定理求出∠B及∠BAC的度数,再由等腰三角形的性质求出∠OAB的度数,进而可得出结论.∵BC是直径,∠D=32°,∴∠B=∠D=32°,∠BAC=90°.∵OA=OB,∴∠BAO=∠B=32°,∴∠OAC=∠BAC﹣∠BAO=90°﹣32°=58°考点:圆周角定理11、试题分析:=.故答案为:.考点:因式分解-运用公式法;因式分解.12、试题解析:设该药品平均每次降价的百分率是x,根据题意得16×(1-x)(1-x)=14,整理得:16(1-x)2=14.考点:由实际问题抽象出一元二次方程.13、∵函数y=x与x轴的夹角为45°,∴直线y=x与正方形的边围成的三角形是等腰直角三角形.∵A(8,4),∴第四个正方形的边长为8,第三个正方形的边长为4,第二个正方形的边长为2,第一个正方形的边长为1,…,第n个正方形的边长为2n﹣1.由图可知,S1=×1×1+×(1+2)×2﹣×(1+2)×2=,S2=×4×4+×(2+4)×4﹣×(2+4)×4=8,…,S n为第2n与第2n﹣1个正方形中的阴影部分,第2n个正方形的边长为22n﹣1,第2n﹣1个正方形的边长为22n﹣2,∴S n=•22n﹣2•22n﹣2=24n﹣5.故答案为:24n﹣5.点晴:找规律问题是中考试卷中的热点问题,也是中考试卷中的难点所在,其难度大、区分度高,学生往往因找不到规律而无法解决此类问题,解决此类问题的关健是在于将变量(如正方形的边长)与序号联系在一起进行考虑,通过观察、分析、思考、建模从而建立起求阴影面积的计算模型.14、连接OA,作OM⊥AB于点M,∵正六边形ABCDEF的外接圆半径为2cm∴正六边形的半径为2 cm,即OA=2cm在正六边形ABCDEF中,∠AOM=30°,∴正六边形的边心距是OM= cos30°×OA= (cm)故答案为:.15、根据反比例函数图象的性质:当时,双曲线的两个分支分别位于第一、三象限,在每一个象限内,y随x的增大而减小.∵1<2∴y1>y2故答案为:>.16、设较大三角形面积是x cm2∵相似三角形的周长比等于相似比,面积比等于相似比的平方∴∴故答案为:18.17、本题考查了二次函数的应用.设销售单价为x元,销售利润为y元.求得方程,根据最值公式求得.解:设销售单价为x元,销售利润为y元.根据题意,得y=(x-20)[400-20(x-30)]=(x-20)(1000-20x)=-20x2+1400x-20000 当x==35时,才能在半月内获得最大利润18、试题分析:(1)如图,连接OE,证明OE⊥PE即可得出PE是⊙O的切线;(2)由圆周角定理得到∠AEB=∠CED=90°,进而得到∠3=∠4,结合已知条件证得结论;(3)设EF=x,则CF=2x,在RT△OEF中,根据勾股定理求出EF的长,进而求得BE,CF的长,在RT△AEB中,根据勾股定理求出AE的长,然后根据△AEB∽△EFP,求出PF的长,即可求得PD的长.试题解析:(1)如图,连接OE.∵CD是圆O的直径,∴∠CED=90°,∵OC=OE,∴∠1=∠2,又∵∠PED=∠C,即∠PED=∠1,∴∠PED=∠2,∴∠PED+∠OED=∠2+∠OED=90°,即∠OEP=90°,∴OE⊥EP,又∵点E在圆上,∴PE是⊙O的切线;(2)∵AB、CD为⊙O的直径,∴∠AEB=∠CED=90°,∴∠3=∠4(同角的余角相等),又∵∠PED=∠1,∴∠PED=∠4,即ED平分∠BEP;(3)设EF=x,则CF=2x,∵⊙O的半径为5,∴OF=2x﹣5,在RT△OEF中,,即,解得x=4,∴EF=4,∴BE=2EF=8,CF=2EF=8,∴DF=CD﹣CF=10﹣8=2,∵AB为⊙O的直径,∴∠AEB=90°,∵AB=10,BE=8,∴AE=6,∵∠BEP=∠A,∠EFP=∠AEB=90°,∴△AEB∽△EFP,∴,即,∴PF=,∴PD=PF﹣DF==.考点:1.切线的判定;2.相似三角形的判定与性质;3.圆的综合题;4.压轴题.19、试题分析:(1)先由题意得到OA=4,AB=3,CO=6,再求出当t=1时,AP、OP的长,最后根据PD⊥y轴,AB⊥y轴,结合平行线分线段成比例即可列比例式求解;(2)作DE⊥CO于点E,分别用含t的字母表示出CQ、AP、OP,即可表示出DE的长,再根据三角形的面积公式即可得到S关于t的函数解析式,根据二次函数的性质即可求得S 的最大值;(3)分和两种情况,结合相似三角形的判定方法讨论即可.(1)由A(0,4),B(-3,4),C(-6,0)可知OA=4,AB=3,CO=6,当t=1时,AP=1,则OP=3,∵PD⊥y轴,AB⊥y轴∴PD∥AB∴∴解得DP=;(2)CQ=2t,AP=t,OP=4–t作DE⊥CO于点E,则DE=OP=4–t∴S==×2t×(4–t)=当时,S最大值=4(3)分两种情况讨论:①当时,点Q在CO上运动(当t=3时,△ODQ不存在)∵AB∥CO∴∠BOC=∠ABO<∠ABC可证得BO=BC∴∠BOC=∠BCO>∠BCA∵AB∥CO∴∠BAC=∠ACO<∠BCO=∠BOC∴当时,△ODQ与△ABC不可能相似。