第1章_核反应堆的核物理基础(3)

合集下载

核反应堆

核反应堆

核反应堆物理分析第一章核反应堆的核物理基础1、反应堆:能够实现可控、自续链式核反应的装置。

2、反应堆物理:研究反应堆内中子行为的科学。

有时称neutronics。

或:研究、设计反应堆使得裂变反应所产生的中子与俘获反应及泄露所损失的中子相平衡。

3、在反应堆物理中,除非对于能量非常低的中子,都将中子视为粒子,不考虑其波动性及中子的不稳定性。

4、反应堆内,按中子与原子核的相互作用方式可分为三大类:势散射、直接相互作用和复合核的形成;按中子与原子核的相互作用可分为两大类:散射和吸收。

5、σ :微观截面表示平均一个入射中子与一个靶核发生相互作用的几率大小的一种量度,6、宏观截面:表征一个中子与单位体积内所有原子核发生核反应的平均概率;表征一个中子在介质中穿行单位距离与核发生反应的概率。

单位:1/m7、平均自由程λ: 中子在介质中运动时,与原子核连续两次相互作用之间穿行的平均距离。

或:平均每飞行λ距离发生一次碰撞。

λ= 1/8、核反应率:单位时间、单位体积内的中子与介质原子核发生作用的总次数(统计平均值)。

9、中子通量密度:表示1立方米内所有的中子在1秒钟内穿行距离的总和。

10、中子能谱分布:在核反应堆内,中子并不具有同一速度v或能量E,中子数关于能量E的分布称为中子能谱分布。

11、平均截面(等效截面):12、截面随中子能量的变化:一、微观吸收截面:①低能区(E<1eV)::中、重核在低能区有共振吸收现象②高能区(1eV<E<keV):重核:随着中子能量的增加,共振峰间距变小,共振峰开始重叠,以致不再能够分辨。

因此随E的变化,虽有一定起伏,但变得缓慢平滑了,而且数值甚小,一般只有几个靶。

轻核:一般要兆电子伏范围内才出现共振现象,且其共振峰宽而低。

二、微观散射截面:弹性散射截面σe :多数元素与较低能量中子的散射都是弹性的。

基本上为常数,截面值一般为几靶。

轻核、中等核:近似为常数;重核:在共振能区将出现共振弹性散射。

核反应堆物理分析第1章

核反应堆物理分析第1章
核反应堆物理分析第1章
中子也具有波粒二重性.其波长为 4.551012 meter
E
对于能量为0.01电子伏的中子其波长为4.55×10-11 meter. 与氢原子的半径同量级.比中子的平均自由程小许多量级. 在反应堆中讨论中子时和与原子核相互作用时,中子被看 成是粒子.
❖玻尔半径 ❖经典电子半径 ❖原子核半径
AzX + 01n → [A+1ZX]* → A-3Z-2X + 42He 例如: 105B + 01n → 73Li + 42He
在低能区,这个反应截面很大,所以105B被用作热中子反应 堆的反应性控制材料。
核反应堆物理分析第1章
❖ 核裂变
核裂变是反应堆中最重要的核反应,235U,233U, 239Pu, 241Pu 在低能中子的作用下发生裂变反应可能性较大,称为 易裂变同位素,232Th, 238U, 240Pu只有能量高于某一阈值 的中子的作用下才发生裂变反应,称为可裂变同位素。 目前堆中最常用的核燃料是235U。
核反应堆物理分析第1章
1.1.3 中子的散射
散射是使中子慢化的主要核反应过程。有弹性散射和 非弹性散射。
非弹性散射:中子被靶核吸收形成处于激发态的复合核, 然后靶核通过放出中子并发射γ射线而返回基态。
只有当入射中子的动能高于靶核第一激发态的能量时 才能使靶核激发。非弹性散射具有阈值的特点。看表1。
对于不同的核反应过程: Ra nva Rf nvf
多种元素组成的均匀混合物质:
m
Rn v 1n v2nvi n v
i1
核反应堆物理分析第1章
❖ 中子通量密度(Neutron Flux)
nv
单位是 中子∕m2s, 等于该点的中子密度与相应的中子速 度的乘积,它表示单位体积内所有中子在单位时间内穿行 距离总和。是标量不是矢量。与磁通量,光通量概念不同。

【VIP专享】第一章 核物理基础.ppt.Convertor

【VIP专享】第一章 核物理基础.ppt.Convertor

第一章核物理基础一.基本概念1.基态:能量最低的定态。

2.激发态:能量较高的定态。

3.元素:凡核内质子数相同的一类原子,称之为元素。

4.核素(nuclide) :凡原子核内质子数、中子数和核能态均相同的一类原子,称为一种核素。

§1 核射线及其与物质的相互作用5. 同位素(isotope)凡原子核内质子数相同,而中子数不同的一类原子,彼此互称为同位素, 比如:1H、2H、3H互称为同位素,每种同位素也是一种核素。

同位素之间具有完全相同的核外电子结构,宏观化学性质和体内生物学行为。

6.同质异能素(isomer) 核内质子数和质量数均相同,但所处能量状态不同的核素。

如99Tc与99mTc;111In与111mIn等。

7. 放射性核素:指原子核不稳定,易自发地发生核内成分或能态的变化而转变为另一核素,同时释放出一种或一种以上的射线。

放射性核素按其来源可分为天然和人工两大类。

8. 稳定性核素:一般不会自发地发生核内成分或能态的变化,或者发生几率极小。

已知的2700多种核素中,稳定性核素不足300种,其余为放射性核素。

二. 放射性核素的原子核不稳定因素只有两种力平衡原子核才是稳定的三.影响原子核平衡力的因素②中子质子比例不平衡。

§2 核衰变方式1.α衰变(alpha decay):指母核放出一个α粒子的过程。

发生条件:A>160 或Z>82实质:氦原子核通式:AZX→A-4Z-2Y+42He+Q实例:22688Ra →22286Rn+α+4.86Mevα特性:质量大,电荷多,射程短,穿透力弱,在空气中只能穿透几厘米,一张纸就可屏蔽,因而不适合作核医学显像用。

但α粒子对局部的电离作用强,对开展体内恶性组织的放射性核素治疗具有潜在的优势。

(2)β+衰变:指母核放出一个正电子的过程。

发生条件:发生在中子缺乏的核素,也可认为是质子过剩.发生β+ 衰变的核素都是人工放射性核素.实质:由核内产生的,向外发射的正电子。

第一章-核物理基础

第一章-核物理基础
四、放射性比活度及单位
单位质量(摩尔、容积)物质所含放射性的多少, 后 者常称为放射性浓度。
§4 核射线与物质的相互作用
一、带电粒子与物质的相互作用 (一)电离与激发(ionization and excitation)
电离:指带电粒子与物质相互作用,使物质中的中性原子变 成离子对的过程。 激发:如果核外电子所获动能不足以使之成为自由电子, 只是从内层跃迁到外层,从低能级跃迁到高能级,这一过程 称之激发。 电离密度:单位路径上形成的离子对的数目。它表示的是 射线电离作用强弱的量。与带电粒子所带电荷数、行进速 率及被作用物质的密度有关,α>β>γ。
(二)核反应:快中子与物质的原子核作用放出带电粒子而形
成新核的过程称为核反应。形成的新核如果是放射性核素则继续 衰变放射出β、γ射线,使物质原子产生电离或激发,称为感生放 射性。中子与物质相互作用产生核反应是中子反应堆工作的基础 ,也是中子弹的杀伤因素。
比如: 23Na+10n→24Na+γ可写成23Na(n、γ)24Na。
§1 核射线及其与物质的相互作用
一.基本概念
1.定态:电子在轨道上运行既不吸收也不放出 能量的状态。
2.基态:能量最低的定态。 3.激发态:能量较高的定态。 4. 元素:凡核内质子数相同的一类原子,称之
为元素。 5.核素(nuclide) :凡原子核内质子数、中子数
和核能态均相同的一类原子,称为一种核素。
衰变公式:N=Noe-λt
N = N0e-t
二、半衰期
1、物理半衰期(T1/2):放射性核素由于衰变,其原子 核数目或活度减少到原来一半所需的时间,用T1/2 表示
2、生物半衰期(Tb): 3、有效半衰期(Te): 引入半衰期概念以后,核衰变的公式可改写成:

反应堆的核物理基础

反应堆的核物理基础
1908年诺贝尔化学奖 其他主要贡献:
14N 1H 17O 1919年, 1920年,预言中子存在 培养了12位诺贝尔奖得主
质子的发现
1914年,卢瑟福用阴极射线轰击氢,结果使氢原子的电子被 打掉,变成了带正电的阳离子。它的电荷量为一个单位,质 量也为一个单位,卢瑟福将它命名为质子。 1919年,卢瑟福用加速了的高能α粒子轰击氮原子,结果发 现有质子从氮原子核中被打出,而氮原子也变成了氧原子。 这可能是人类第一次真正将一种元素变成另一种元素。他因 此建议原子序数为1的氢原子核是一个基本粒子。



1.1 原子核物理基础
⑴原子核的组成(卢瑟福散射实验) 原子核是由质子(proton)和中子(neutron)构成的。 其中:
质子:带正电,电量为+e,mp
= 1.007277amu; 中子:不带电,mn = 1.008665amu。

质子和中子统称为核子 这里amu为原子质量单位,其定义为:一个12C原 子质量的1/12:
原子质量的测量:常用仪器质谱仪。确切的说是离子的质量。
基本原理:首先让原子电离,然后在电场中加速获得一定动能, 接着在磁场中偏转,由偏转的曲率半径大小可求得离子的质量。
1 电场加速: Mv 2 qV 2
qB 2 R 2 M 2V
Mv 2 磁场中偏转 :Bvq R
通过测量q、V、B、R, 即可计算出M。
热中子反应堆内核裂变释放的中子,从产生到 被吸收或泄漏到堆外的平均寿命大约为10-4~10-3 秒量级,快堆则只有10-6~10-7秒量级。因此,讨 论反应堆的中子扩散、慢化、吸收或增殖等过 程时,可以不考虑中子的衰变问题。

原子核的质量
原子核几乎集中了原子的全部质量,可由原子质量与 核外电子质量之差(忽略核外电子的结合能)表示。 mN = MA-Zme+B(Z)≈ MA-Zme

哈工程核反应堆的核物理第1章核反应堆的核物理基础

哈工程核反应堆的核物理第1章核反应堆的核物理基础
第1章 核反应堆的核物理 基础
1.1 中子与原子核的相互作用
中子性质
中子质量:原子核的核子之一,静止质量在工程计算中近似 取1u。
中子的电荷:中子不带电,在靠近原子核时不受核内正电的排 斥。
中子的波粒二象性:除非对于能量非常低的中子,一般在反应 堆中讨论中子的运动和原子核的相互作用时,都把中子作为一 个粒子来描述。

( E ) ( E )dE
E

R
(E)dE
要计算平均截面或反应E 率,必须首先知道中子通量密度按能量
的分布
截面随中子能量的变化
考察元素反应截面随入射中子能量E变化的特性,可以发现大体 上存在着三个区域:
低能区(E≤1eV):在该区吸收截面随中子能量的减小而逐渐 增大,即与中子的速度成反比,该区域也叫做1/v区;
表示:
nv
由于各个中子具有不同的运动方向,因而它和中子的流动并没 有直接的关系,它是标量而不是矢量,所以引入中子通量密度。
平均截面
在实际的反应堆内中子并不具有同一速度或能量而是分布在一 个很宽的能量范围内。
中子数关于能量的分布称为中子能谱分布。 平均截面又称为等效截面。
可裂变同位素:只有在能量高于某一阈值的中子作 用下才发生裂变,通常把它们称为可裂变同位素。
1.2 中子截面和核反应率
微观截面
描述:一个粒子入射到单位面积内只含一个靶核的 靶子上所发生的反应概率,或表示一个入射粒子同 单位面积靶上一个靶核发生反应的概率。
公式表示:
s = -VI = - VI / I IN Vx N Vx
平均自由程
描述:中子在介质中运动时,与原子核连续两次相 互作用之间穿行的平均距离叫作平均自由程。

核反应堆物理基础Chapter3

核反应堆物理基础Chapter3

二、中子扩散理论(7) 中子扩散理论
扩散理论小结(2): 2.4 扩散理论小结(2):
反应堆物理分析的首要任务是得到中子通量。 反应堆物理分析的首要任务是得到中子通量。 一般情况下,中子通量是中子能量、 一般情况下,中子通量是中子能量、空间位 时间等的函数(更细致的考虑要包含空间 置、时间等的函数 更细致的考虑要包含空间 角度,即中子输运理论)。 角度,即中子输运理论 。我们的处理办法是 分离变量和离散化, 分离变量和离散化,根据实际需要求得中子 通量,从而知道各种核反应的反应率。 通量,从而知道各种核反应的反应率。
一、中子慢化(8) 中子慢化
中子慢化能谱(2): 1.3 中子慢化能谱(2): 1/E谱 谱
一、中子慢化(9) 中子慢化
中子慢化能谱(3): 1.3 中子慢化能谱(3):
实际反应堆比上述情况要复杂许多, 实际反应堆比上述情况要复杂许多,主要是慢化 过程中包含吸收,甚至是非常复杂的吸收(共振吸收 共振吸收)。 过程中包含吸收,甚至是非常复杂的吸收 共振吸收 。 另外,高能区有一定的中子源,介质是多样的、 另外,高能区有一定的中子源,介质是多样的、非均 匀的,有限空间情况时中子还可能泄漏。 匀的,有限空间情况时中子还可能泄漏。因此更具有 普遍意义的能谱方程为: 普遍意义的能谱方程为: ∑t(E) Φ(E) dE = ∫dE ∑s (E’ →E)Φ(E’)dE’ + S(E) 要得到中子能谱,就要求解上述中子能谱方程。 要得到中子能谱,就要求解上述中子能谱方程。 热中子堆中的中子能谱(中子数或中子通量随能量 热中子堆中的中子能谱 中子数或中子通量随能量 的变化关系)由三部分组成 裂变中子谱(试验获得 由三部分组成: 试验获得)、 的变化关系 由三部分组成:裂变中子谱 试验获得 、 慢化谱、麦克斯韦谱(近似 近似)。 慢化谱、麦克斯韦谱 近似 。

华北电力大学 核反应堆物理分析 第1章-核反应堆的核物理基础教材

华北电力大学 核反应堆物理分析 第1章-核反应堆的核物理基础教材
AP1000、EPR • 第四代:基于经济性、安全性、减少核废物及防止核
扩散考虑的新一代核系统,6种潜在堆型:超高温堆、 超临界水冷堆、熔盐堆、气冷快堆、钠冷快堆、铅冷 快堆
5
➢核素,同位素
• 一般把具有相同质子数Z、中子数N的一 类原子(或原子核)称为一种核素。
• 具有相同质子数,不同中子数的核素称为 同位素。
41
t 总截面, s 散射截面, a 吸收截面
或c 俘获截面, f 裂变截面
n, p (n, p)反应截面, n, (n,)反应截面
n,2n (n, 2n)反应截面。
t= s+ a
a=

f+
n,+
n,
p+
n
+...
,2 n
42
宏观截面
将(1-12)式改写成微分形式 dI=-NIdx, 对x坐标积分, 得靶厚度为x处未经碰撞的平行中子束强度为: I(x) = I0exp(-Nx)
• 铀235的丰度是: 0.72% • 铀235的富集度是: 0.712%
为什么富集度的值小于丰度的值?
23
二、中子与原子核的相互作用
• 1.1.1 中子特性
– 原子核由质子和中子两种核子组成(氢核?) – 静止质量:1.675E-27kg,工程计算取为1u – 中子属性:不带电荷,不产生初级电离 – 自由中子(free neutron):不稳定(T1/2=10.6 min)
• 某种材料的宏观吸收截面Σa=0.25/cm,那么中 子在此材料中飞行1cm,被该材料吸收的概率为 0.25
29
复合核的形成:
第一阶段:复 合核的形成
第二阶段:复合 核的衰变分解
30
复合核的各种衰变方式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
第一章(3):
核反应堆的核物理基础
授课教师:杨章灿
2017年4月26日 AND 2017年4月28日
第一次随堂小测验(满分110) 2
¨ 平均分:54
¨ 最高分:110
¨ 最低分:10
(开卷:-50%, 迟到:-50%, 请假:-50%)
记住:本课程注重平时成绩,
占比会比较高
本节课主要内容
三个问题
¨ 共振现象与多普勒效应;
¨ 热中子平均截面;
¨ 热中子反应堆内的中子循环
4
一、(1)共振现象
U-235裂变截面与中子能量的关系
¨ 当中子能量很高时,铀-235等核燃料的裂变截面σf(E)很小;
¨ 当中子能量很低时,铀-235等核燃料的裂变截面σf(E)很大。

U-238吸收截面与中子能量的关系
¨ 中能区有许多窄而高的峰-共振峰(俘获截面很大)。

6.67ev处的第一共振峰,俘获截面高达2万巴.
由此可见
¨ 低能中子容易引起铀裂变;
¨ 铀裂变时放出的是高能中子,不容易再引起铀裂变; 为了增大下一代中子的裂变概率,宜将高能中子慢化为低能
中子。

¨ 中子从高能逐步慢化到低能的过程中,要通过中能区。

铀238的吸收截面曲线在中能区有许多窄而高
的峰-共振峰(俘获截面很大)。

6.67ev处的第一
共振峰,俘获截面高达2万巴.
¨ 核电站反应堆一般都采用低富集度的铀燃料,其中
含有大量的铀238, 故肯定有一部分中子在慢化过程
中要被铀238吸收。

关于共振的几个概念
¨ 存在共振峰的能量区间称为共振能区;
¨ 中子慢化过程中在共振能区被吸收的现象称为共振吸收;
¨ 铀238之类的具有一系列共振吸收峰的材料,称
为共振吸收剂。

¨ 能量较低处的共振峰是宽间距的、清晰可分辨的。

能量较高处的共振峰是密布连成一体的、不可分辨的。

¨ 在热中子反应堆里,可分辨共振起着主要作用.
¨ 在快中子反应堆里, 可分辨共振不重要, 但是对不可分辨共振需要仔细考虑.
WHY?
Answer 9
为什么会有共振吸收现象?
¨ 某些重原子核(例如铀239核)存在许多分立的能级(量子态),
¨ 如果某种能量的中子被吸入铀238核后、正好能使铀239核跃迁到某个激发态,那么这种能量的中子被铀238核吸收的概率就很大。

U-238在6.67eV处共振峰的原因
类比而得共振之名
¨ 力学上桥梁的共振:驱动力的频率正好等于桥梁固有频率时候,发生共振,振幅最大。

¨ 电波的频率正好等于收音机的谐振回路的频率时,发生共振,收到的信号最强。

¨ 中子能量恰好等于靶核激发到某个能级所需的能量时,被靶核俘获的概率最大,故也称为共振。

共振散射
¨ 除了共振俘获,散射也有共振现象。

即在某些能量处,散射截面很大。

¨ 此外,裂变也有共振现象。

¨ 在热中子反应堆中,铀238对中子的共振吸收和共振散射
(尤其是共振吸收)是最重要的,是我们讨论的重点。

共振散射:峰的形状的比较
散射共振峰
吸收共振峰
共振散射峰的形状不同于共振吸收峰。

有三种可行方法:
1.在
曲线上的共振峰附近,逐点给出 的截面值;
2. 用数学方法将上述数据拟合成公式
3. 根据物理原理,推导出描述共振峰的公式。

WHY )
()E γσ()E E γσ:如何描述共振?
这就是为什么我们要引入能级宽度这个量的原因!
共振参数的测量
称为共振参数,可以通过实验来测量。

“ ” )
0 r n E γσΓΓΓ,,,,等
B-W公式是处理共振问题的重要工具
因为它是一个简单、而又较精确的表达式,
可以用来进行运算、推导、分析等工作。

24
一、(2)多普勒效应
什么是多普勒效应?
¨ 人在火车站台。

火车飞驰而来(或飞驰而去)时,人听的汽笛声频率与火车静止时不一样。

原因:声源在运动
(Doppler 雷达、 激光测速、宇宙膨胀引起的光谱线红移)
¨ 当原子核运动时,与原子核静止时相比,共振吸收截面有显著变化。

类比而取多普勒之名也。

反应堆物理中的多普勒效应
¨ 反应堆内温度升高,铀238的共振峰展宽、变矮。

这一现象称为共振的多普勒效应。

¨ 如下图,温度升高使得共振吸收截面从20000靶恩降低到7000靶恩。

Why?
Answer: 原子核热运动的影响
¨ 如果铀238核是静止的 ,那么用能量恰好等于 6. 67ev的单能中子去轰击,俘获截面就是,20000 b
¨ 实际上只要温度高于绝对零度,原子核总是在作热运动的。

¨ 实际上σ(E)中 的 E 应该是中子-靶核系统的总动能。

靶核运动时,中子与靶核的相对运动速度决定了截面的大小。

而靶核的热运动速度大小与温度有关。

多普勒效应:图解
¨ 共振吸收截面不但与中子能量(速度)有关,而且与靶核的能量(速度)有关,即与靶核物质的温度有关。

所以我们用σ(E,T)表示中子能量和介质温度对共振截面的影响。

峰为何展宽?
¨ 考虑铀238核的运动后,铀238核对能量为6.67ev 的中子的吸收截面有所减小,但是对能量在6.67ev附近的许多中子,吸收截面会有所增加。

这解释了共振峰展宽。

¨ 温度越高,核运动速度越大,更宽能量范围的中子有可能被共振吸收。

峰为何降低?
¨ 在下图上,温度为293K时,铀238核对能量为6.67ev的中子的俘获截面降为7000b,因为此时与能量为6.67ev 的中子发生反应的是一群运动速度并不一致的核, 中子与核之间的相对速度各不相同、中子-靶核系统的动能也不等于6.67ev,故俘获截面降低了, 7000b 是其平均值.
多普勒函数
33
称为多普勒函数,后者的数学表达式见拉马什教材,多普勒函数的值可以查表.其公式推导过程请参考
Lamarsh p46-49。

如何计算多普勒函数的值?是一个数值积分问题.有兴趣的同学不仿钻研一下。

x ψζ(,)
x χζ(,)
多普勒效应对反应堆安全的影响
¨ 堆温度升高,铀238吸收共振峰展宽,使得更多中子被共振吸收。

why?以后再讲。

¨ 多普勒效应对反应堆安全极为有利
堆功率上升--燃料温度上升--多普勒展宽
使得更多中子被共振吸收--裂变链式反应减慢--堆功率下降。

多普勒效应使反应堆具有固有安全性,非能动安全性
35
二、热中子能谱与热
中子平均截面
什么是热中子
¨ 定义:与周围介质处于热平衡状态的中子称为热中子
经过多次碰撞、交换能量,达到动态平衡 (回忆普物中的热学和分子运动论)
¨ 温度不同,热中子的能量也不同
E ~ kT
¨ 冷中子:实际上是低温下的热中子
热中子: T=293K时
T=293K (室温)时,热中子的最可几能量
E = kT = 0.0253ev
相应的中子速度为
v = 2200米/秒
所以教科书上给出的“2200米/秒 截面”是室温下热中子最可几能量对应的截面。


热中子能谱与Maxwell谱的差别
¨ 形成Maxwell谱的条件:无源、无吸收。

¨ 反应堆内的热中子能谱:
1/v …
故热中子能谱比Maxwell谱硬(要求的条件更高)。

热中子能谱与Maxwell谱的差别
经过能谱平均的截面数据
48
三、热中子反应堆内
的中子循环
热中子反应堆内的中子循环
¨ 什么是热中子反应堆?
主要依靠热中子裂变反应来维持链式反应的反应堆称为热中子反应堆。

¨ 种种误解

目前的核电站反应堆皆为热中子反应堆
¨ PWR 压水堆
¨ BWR 沸水堆
¨ CANDU 重水堆
¨ 石墨沸水堆(俄国)
¨ 气冷堆 (英国)
所用核燃料皆为低富集度铀或天然铀,因此堆芯中均有大量U-238。

相关文档
最新文档