人教版初三数学上册同步练习
2022-2023学年全国初中九年级上数学新人教版同步练习(含解析)

2022-2023学年全国九年级上数学同步练习考试总分:24 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 4 小题 ,每题 3 分 ,共计12分 )1. 如图,在中,,按如下步骤作图:以点为圆心,小于的长为半径作弧,分别交,于点,;分别以点,为圆心,大于的长为半径作弧,两弧相交于点,作射线,交于点,过点作交于点.已知,,则的长为( )A.B.C.D.2. 如图,点、、在上,,则的度数是( )A.B.C.D.Rt △ABC ∠C =90∘①A AC AC AB M N ②M N MN 12P AP BC D D DE ⊥BC AB E DE =2∠B =30∘AC 5–√3+15–√23–√A B C ⊙O ∠AOB =40∘∠ACB 10∘20∘30∘403. 如图,和是两个全等的正三角形,它们各边的交点均为各边的三等分点.若从该图形中随机取一点,则该点取自其中阴影部分的概率为 A.B.C.D.4. 如图,中,弦与交于点,,,则的度数是( )A.B.C.D.卷II (非选择题)二、 填空题 (本题共计 3 小题 ,每题 3 分 ,共计9分 )5. 在圆的内接四边形中,、、的度数之比为,则的度数是________.6. 如图,一张扇形纸片,=,=,连接,,,若=,则图中阴影部分的面积为________(结果保留).△ABC △DEF ()12233458⊙O AB CD M ∠A =45∘∠AMD =75∘∠B 15∘20∘25∘30∘ABCD ∠A ∠B ∠C 2:3:4∠D ∘OAC ∠AOC 120∘OA 8AB BC AC OA AB π7. 如图,在菱形中,,点、分别在边、上,与关于直线对称,点的对称点是点,且点在边上.若,则的长为________.三、 解答题 (本题共计 1 小题 ,共计3分 )8.(3分) 如图,中, ,为上的一点,以为直径的交于,连接交于,交于,连接,求证:与相切;若,,则的半径________;若,,求(用的代数式表示).ABCD ∠BAD =120∘E F AB BC △BEF △GEF EF B G C AD EG ⊥AC,AB =62–√FC △ABC ∠ACB =90∘D AB CD ⊙O AC E BE CD P ⊙O F DF ∠ABC =∠EFD.(1)AB ⊙O (2)AD =4BD =6⊙O =(3)PC =2PF BF =a CP a参考答案与试题解析2022-2023学年全国九年级上数学同步练习一、 选择题 (本题共计 4 小题 ,每题 3 分 ,共计12分 )1.【答案】B【考点】作图—复杂作图角平分线的性质平行线的性质含30度角的直角三角形【解析】由作图知平分,由直角三角形性质可得,由平分,则,由,可得,则,故,由可得解.【解答】解:由作图步骤可知:平分,,,,,,,,,,平分,,,,,,,.故选.2.AD ∠CAB 30∘BE =2DE =4AD ∠CAB ∠CAD =∠BAD AC//DE ∠CAD =∠EDA ∠BAD =∠EDA AE =DE =2AB =AE +BE AD ∠CAB ∵DE ⊥BC ∴∠BDE =90∘∵∠B =30∘∴DE =BE 12∵DE =2∴BE =2DE =2×2=4∵∠C =90∘∴∠BDE =∠C =90∘∴AC//DE ∴∠CAD =∠EDA ∵AD ∠CAB ∴∠CAD =∠BAD ∴∠BAD =∠EDA ∴AE =DE =2∴AB =AE +BE =2+4=6∵∠C =90∘∠B =30∘∴AC =AB =×6=31212B【答案】B【考点】圆周角定理【解析】根据圆周角定理得到,即可计算出.【解答】解:∵,∴.故选.3.【答案】A【考点】几何概型计算(与长度、角度、面积、体积有关的几何概型)【解析】设正六边形的边长为,与的交点为,由已知求得,,,进一步求出阴影部分的面积,由测度比是面积比得答案.【解答】解:根据题意可得图形外侧的个小三角形均全等,且为正三角形.设一个小三角形面积为,则该图形的面积为,阴影部分的面积为,所以从该图形中随机取一点,则该点取自其中阴影部分的概率 ,故选4.【答案】∠ACB =∠AOB 12∠ACB ∠AOB =40∘∠ACB =∠AOB =1220∘B 2AC BE G BG AG CG 6S 12S 6S P ==6S 12S12A.D【考点】圆周角定理三角形的外角性质【解析】此题暂无解析【解答】解:根据圆周角定理可知:,∵,∴.故选.二、 填空题 (本题共计 3 小题 ,每题 3 分 ,共计9分 )5.【答案】【考点】圆内接四边形的性质【解析】根据圆内接四边形的性质得到,设,,的度数分别为、、,根据圆内接四边形的性质列出方程,解方程求出,计算即可.【解答】解:∵四边形是圆内接四边形,∴,设,,的度数分别为、、,则,解得,,则,∴.故答案是:.6.【答案】∠D =∠A =45∘∠AMD =∠B +∠D =75∘∠B =−∠D =75∘30∘D 90∠A +∠C =∠B +∠D ∠A ∠B ∠C 2x 3x 4x x ABCD ∠A +∠C =∠B +∠D =180∘∠A ∠B ∠C 2x 3x 4x 2x +64=180∘x =30∘∠B =3x =90∘∠D =−∠B =180∘90∘90【考点】扇形面积的计算【解析】此题暂无解析【解答】此题暂无解答7.【答案】【考点】切线的性质垂径定理勾股定理【解析】此题暂无解析【解答】解:如图,∵四边形是菱形,,∴,,∴,是等边三角形,∵,∴,∵,∴,∴,∴,∴,∴.故答案为:.三、 解答题 (本题共计 1 小题 ,共计3分 )36–√ABCD ∠BAD =120∘AB =BC =CD =AD ∠CAB =∠CAD =60∘△ABC △ACD EG ⊥AC ∠AEG =∠AGE =30∘∠B =∠EGF =60∘∠AGF =90∘FG ⊥BC 2⋅=BC ⋅FG S △ABC 2××(6=6⋅FG 3–√42–√)22–√FG =36–√36–√8.【答案】证明:∵,∴.∵,,∴.∵,∴,即.∴.∴与相切.解:如图,连接.∵是的直径,∴,∴.∵,,∴.∵,∴,又∵,∴,∴.∴.∵,∴,即.∵,∴.【考点】圆周角定理直角三角形的性质切线的判定三角形的外角性质相似三角形的性质与判定【解析】(1)∠ACB =90∘∠CEB +∠CBE =90∘∠ABC =∠EFD ∠EFD =∠FDB +∠FBD ∠EBC =∠FDB ∠CEB =∠CDF ∠CDF +∠FDB =90∘CDB =90∘CD ⊥AB AB ⊙O 6–√(3)CF CD ⊙O ∠CFD =90∘∠DCF +∠CDF =90∘∠CDB =90∘∴∠FDB +∠CDF =90∘∠FDB =∠DCF ∠EBC =∠FDB ∠EBC =∠DCF ∠CPF =∠BPC △PCF∽△PBC ==PC PB PF PC 12PB =2PC =4PF PB =PF +BF 4PF =PF +BF PF =BF =a1313PC =2PF CP =a 23∠CEB +∠CBE =90∘(1)根据直角三角形的两个锐角互余可得,根据三角形外角的性质可得,然后等量替换结合圆周角定理即可得到,进一步根据切线的判定可得结论.(2)利用已知条件证明,然后根据相似三角形的性质可以求出直径的长,进一步可求半径的长.(3)连接,然后证明,再根据相似三角形的性质可得和的关系,再结合即可得出的长.【解答】证明:∵,∴.∵,,∴.∵,∴,即.∴.∴与相切.解:∵,,∴.∵,∴,∴,∴.∴.∴的半径.故答案为:.解:如图,连接.∵是的直径,∴,∴.∵,,∴.∵,∴,又∵,∴,∴.∴.∵,∴,即.∵,∠CEB +∠CBE =90∘∠EFD =∠FDB +∠FBD ∠CDF +∠FDB =90∘△ACD ∼△CBD CD CF △PCF ∼△PBC PB PC PB =PF +BF PC (1)∠ACB =90∘∠CEB +∠CBE =90∘∠ABC =∠EFD ∠EFD =∠FDB +∠FBD ∠EBC =∠FDB ∠CEB =∠CDF ∠CDF +∠FDB =90∘CDB =90∘CD ⊥AB AB ⊙O (2)∠ACD +∠A =90∘∠ABC +∠A =90∘∠ACD =∠ABC ∠ADC =∠BDC =90∘△ACD ∽△CBD =CD BD AD CD C =AD ⋅BD =4×6=24D 2CD ==224−−√6–√⊙O =CD =126–√6–√(3)CF CD ⊙O ∠CFD =90∘∠DCF +∠CDF =90∘∠CDB =90∘∴∠FDB +∠CDF =90∘∠FDB =∠DCF ∠EBC =∠FDB ∠EBC =∠DCF ∠CPF =∠BPC △PCF ∽△PBC ==PC PB PF PC 12PB =2PC =4PF PB =PF +BF 4PF =PF +BFPF =BF =a 1313PC =2PF P =a2∴.CP =a 23。
人教九年级数学上册同步练习题及答案

九年级(上)第21章二次根式二次根式(第1课时)一、课前练习1、25的平方根是( ) A.5 B.-5 C.±5 D.52、16的算术平方根是( ) A.4 B.-4 C.±4 D.2563、下列计算中,正确的是( )A.(-2)0=0 B.9=3 C.-22=4 D.32-=-94、4的平方根是5、36的算术平方根是 二、课堂练习1、当X 时,二次根式3-X 在实数范围内有意义。
2、计算:64= ;3、计算:(3)2= 4、计算:(-2)2=5、代数式XX--13有意义,则X 的取值范围是6、计算:24=7、计算2)2(-=8、已知2+a +1-b =0,则a= ,b= 9、若X 2=36,则X=10、已知一个正数X 的平方根3X-5,另一个平方根是1-2X ,求X 的值。
二次根式(第2课时)一、课前练习1、计算:2)3(- = ;2、计算:(-5)2= ;3、化简:12=4、若13-m 有意义,则m 的取值范围是( ) A.m=31 B.m>31 C.m ≤31 D.m ≥315、下列各式中属于最简二次根式的是( ) A.1+X B.52Y X C.12 D.5.0二、课堂练习1、下面与2是同类二次根式的是( )A.3B.12C.8D.2-1 2、下列二次根式中,是最简二次根式的是( ) A.8 B.12-X C.XY+3 D.323Y X 3、化简:27= ;4、化简:211= ;5、计算(32)2= 6、计算:12·27= ;7、化简328Y X = 8、当X>1时,化简122+-X X9、若最简二次根式52-+Y X 和X Y X 113+-是同类二次根式,求X 、Y 的值。
二次根式的乘法(第3课时)1、计算:3×2= ;2、2×5=3、2XY ·Y 1= ; 4、XY ·2X1= 5、12149⨯= 二、课堂练习 1、计算:288⨯721= ;2、计算:255= 3、化简:3216c ab = ;4、计算2-9的结果是( ) A.1 B.-1 C.-7 D.55、下列计算中,正确的是( ) A.2⨯3=6 B. 2+3=5 C.8=42 D.4-2=26、下列计算中,正确的是( )A.2+3=5B.2·3=6C.8=4D.2)3(- =-37、计算:2110·3158、计算:318⨯639、计算:(3+5)( 3-5)10、计算:222440-二次根式的除法(第4课时)一、课前练习 1、计算:515 = ; 2、计算:31÷91= 3、化简:23625X y = ; 4、计算:321÷185= 5、化简:31 =二、课堂练习 1、化简:21= ;2、2-1的倒数是 3、计算:30÷5= ;4、计算(5-2)2 =5、下列式子中成立的是( )A.2)13(-=13B.-6.3=-0.6C. 2)13(-=-13 D.36=±66、若3-1=a,求a+a1的值 7、若X=2+1,求221X X +-的值 8、计算:(5+1)(5+3) 9、已知X=1+2,Y=1-2,求YX -1的值10、已知a=2+3,b=2-3,求a 2b-ab 2的值二次根式的加减(第5课时)一、课前练习1、化简18= 27= 12= 20=2、在30、24、ab 、22y x +、33b a 中,是最简二次根式, 与 是同类二次根式. 3、化简31= 81= 212= 29=4、如果a 与3是同类二次根式,则a=5、2a +5a -3a =二、课堂练习1、在12、27、75、30中, 与3不是同类二次根式 2、计算:①a 20+a 45 ② 75-12+27③(27+18)-(23-8) ④ 2148+2112二次根式的加减(第6课时)一、课前练习1、化简下列二次根式:54 = 96=108= 32 =51350a =3148=2154= 232= 2、计算: ①80-125+25②12+32-(631+221) 二、课堂练习计算:①45+50-75 ②18-8+2132③已知X=2+1,Y=2-1,求X 2-Y 2的值④已知a=21,求3a +a1+a 的值二次根式的加减(第7课时)一、课前练习计算:①(3+2)⨯2 ②31x 18+42x③(3-2)(3+2) ④(3-2)2二、课堂练习①(5-3)(5+3)②(3x +y )(3x -y )③(23-2)2④(296-36)÷3⑤已知a-a 1=2,求a+a1的值第22章 一元二次方程22.1一元二次方程一、基础训练1、下列方程中,一元二次方程是( )A 、3x + 4=0B 、4x 2+2y-1=0C 、x 2+x2-1=0 D 、3x 2-2x +1=0 2、方程x 2 -3 = -3x 化成一般形式后,它的各项系数是( ) A 0,-3,-3, B 1,-3,3 C 1,-3,-3 D 1,3,-33若关于的方程(m-1)x 2+nx+p=0是一元方程,则有( ) A m=0 B m ≠ 0 C m=1 D m ≠1 4、一元二次方程的一般形式是5、已知2是关于的方程3x=2a 的一个解,则a=二、综合训练:1、如果x=3是方程x 2 –mx=6的根,则m=2、已知x=1是方程3x 2-2b=1的解,则b 2-1=3、方程x 2-16=0的根是( )4、将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项; (1)9 x 2 – 3 = 3x +1 (2)5x ( 2x + 3 ) = 3x –722.2.1配方法(第一课时)一、课前小测1、方程x 2 – 4 =0的根是2、将方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项; (1)6x – 5 = x 2 + 3 x (2)2x – 7 = x ( 2x – 9 )二、基础训练1、用适当的数值填空,使下列各式成立 (1)x 2+2x+ = (x+ )2 (2)x 2– 6x + = (x - )2 (3)x 2 +px + = (x + )22、式子x 2 -4x + 是一个完全平方式3、把方程x 2 +8x +9 =0配成( x + m)2 = n 的形式是4、方程3x 2 – 27=0的根是5、当n= ,时形如(x +m)2 =n 的方程可以求解 三、综合训练:1、方程(2x-1)2=9的根是2、当x= 时,代数式2x 2 -3的值等于53、方程x 2=0的实数根个数是( )个 A1 B2 C0 D 无限多22.2.1配方法(第二课时)一、课前小测:1、方程x 2– 81 = 0的根是2、把方程x 2- 2x -3 =0配方后得3、把方程2x 2-8x -1=0配方后得4、方程(x- 2)2 = 9的根是5、方程(3x -1)2 =0的根是 二、基础训练:1、若x 2+10x+a 是一个完全平方式,则a=2、用适当的数填空:(1) x 2 +x + = ( x + )2 (2) x 2– x + =(x - )2 (3) 9x 2 -18x + = (3x - )2 3、用配方法解下列方程:(1)x 2 -2x -8 =0 (2)2x 2 -4x +1=0三、综合训练:1、方程x 2+4x = -4的根是2、如果x 2 +ax +9是一个完全平方式,则a=3、已知x 满足4x 2 -4x +1=0则2x +x21=4、求证:6x 2 – 24 x +27的值恒大于零22.2.2公式法(第一课时)一、课前小测1、用配方法解下列方程:x 2 +8x +7 =02、将方程x ( x -2 )=8化成一般形式是3、方程5x 2= 3x + 2中,a = , b= , c= , 二、基础训练:1、在方程x 2+9x=6,b 2 -4ac =2、用公式法解下列方程 (1)3x 2– 5x -2 =0(2)4x 2– 3x +1 =0三、综合训练;1、当x= 时,122+--x x x 分式的值为02、若代数式x 2+ 4x -5的值和代数式 x -1 的值相等,则x=3、用公式法解下列方程:(1)y 2 –23y +2=0(2)(x – 7)(x+3)=2522.2.2公式法(第二课时)课前小测:1、一元二次方程ax 2+bx+c=0(a ≠0)的求根公式是________,条件是________.2、一元二次方程5x 2-2x-1=0中,a=____,b=_____,c=_____. 用公式法解下列方程.3、2x 2-3x=04、3x 25、4x 2+x+1=0基础训练:1、一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式是:____________。
人教版九年级数学上册全册同步练习

21.1 一元二次方程一.选择题1.(2018•宁夏)若2﹣是方程x2﹣4x+c=0的一个根,则c的值是()A.1 B.C.D.2.(2018•盐城)已知一元二次方程x2+kx﹣3=0有一个根为1,则k的值为()A.﹣2 B.2 C.﹣4 D.43.(2017•本溪)关于x的一元二次方程x2﹣3x﹣a=0有一个实数根为﹣1,则a的值()A.2 B.﹣2 C.4 D.﹣44.(2017•威海)若1﹣是方程x2﹣2x+c=0的一个根,则c的值为()A.﹣2 B.4﹣2 C.3﹣D.1+5.(2017•温州)我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是()A.x1=1,x2=3 B.x1=1,x2=﹣3 C.x1=﹣1,x2=3 D.x1=﹣1,x2=﹣3 6.(2016•大庆)若x0是方程ax2+2x+c=0(a≠0)的一个根,设M=1﹣ac,N=(ax0+1)2,则M与N的大小关系正确的为()A.M>N B.M=N C.M<N D.不确定7.(2016•包头)若关于x的方程x2+(m+1)x+=0的一个实数根的倒数恰是它本身,则m 的值是()A.﹣ B.C.﹣或D.18.(2016•攀枝花)若x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,则a的值为()A.﹣1或4 B.﹣1或﹣4 C.1或﹣4 D.1或4二.填空题9.(2018•扬州)若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2015的值为.10.(2018•苏州)若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n= .11.(2018•荆门)已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根,则k的值为.12.(2018•资阳)已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m= .13.(2018•南充)若2n(n≠0)是关于x的方程x2﹣2mx+2n=0的根,则m﹣n的值为.14.(2017•常州)已知x=1是关于x的方程ax2﹣2x+3=0的一个根,则a= .15.(2017•巴中)已知x=1是一元二次方程x2+ax+b=0的一个根,则a2+2ab+b2的值为.16.(2017•菏泽)关于x的一元二次方程(k﹣1)x2+6x+k2﹣k=0的一个根是0,则k的值是.17.(2016•泰州)方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为.18.(2016•河池)已知关于x的方程x2﹣3x+m=0的一个根是1,则m= .19.(2016•临夏州)三角形的两边长分别是3和4,第三边长是方程x2﹣13x+40=0的根,则该三角形的周长为.20.(2016•菏泽)已知m是关于x的方程x2﹣2x﹣3=0的一个根,则2m2﹣4m= .参考答案一.选择题1.A.2.B.3.C.4.A.5.D.6.B.7.C.8.C.二.填空题9.201810.﹣2.11.﹣3.12.2.13..14.﹣1.15.1.16.017.﹣3.18.2.19.12.20.6.21.2 解一元二次方程一.选择题1.(2018•泰州)已知x1、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是()A.x1≠x2B.x1+x2>0 C.x1•x2>0 D.x1<0,x2<02.(2018•娄底)关于x的一元二次方程x2﹣(k+3)x+k=0的根的情况是()A.有两不相等实数根 B.有两相等实数根C.无实数根 D.不能确定3.(2018•包头)已知关于x的一元二次方程x2+2x+m﹣2=0有两个实数根,m为正整数,且该方程的根都是整数,则符合条件的所有正整数m的和为()A.6 B.5 C.4 D.34.(2018•宜宾)一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为()A.﹣2 B.1 C.2 D.05.(2018•临沂)一元二次方程y2﹣y﹣=0配方后可化为()A.(y+)2=1 B.(y﹣)2=1 C.(y+)2=D.(y﹣)2=6.(2018•眉山)若α,β是一元二次方程3x2+2x﹣9=0的两根,则+的值是()A.B.﹣C.﹣D.7.(2018•铜仁市)关于x的一元二次方程x2﹣4x+3=0的解为()A.x1=﹣1,x2=3 B.x1=1,x2=﹣3 C.x1=1,x2=3 D.x1=﹣1,x2=﹣3 8.(2018•湘潭)若一元二次方程x2﹣2x+m=0有两个不相同的实数根,则实数m的取值范围是()A.m≥1 B.m≤1 C.m>1 D.m<19.(2018•福建)已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根10.(2018•桂林)已知关于x的一元二次方程2x2﹣kx+3=0有两个相等的实根,则k的值为()A.B.C.2或3 D.11.(2017•广州)关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16 B.q>16 C.q≤4 D.q≥412.(2017•呼和浩特)关于x的一元二次方程x2+(a2﹣2a)x+a﹣1=0的两个实数根互为相反数,则a的值为()A.2 B.0 C.1 D.2或013.(2017•宜宾)一元二次方程4x2﹣2x+=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.无法判断14.(2017•通辽)若关于x的一元二次方程(k+1)x2+2(k+1)x+k﹣2=0有实数根,则k 的取值范围在数轴上表示正确的是()A.B.C.D.15.(2016•贵港)若关于x的一元二次方程x2﹣3x+p=0(p≠0)的两个不相等的实数根分别为a和b,且a2﹣ab+b2=18,则+的值是()A.3 B.﹣3 C.5 D.﹣516.(2016•金华)一元二次方程x2﹣3x﹣2=0的两根为x1,x2,则下列结论正确的是()A.x1=﹣1,x2=2 B.x1=1,x2=﹣2 C.x1+x2=3 D.x1x2=217.(2016•昆明)一元二次方程x2﹣4x+4=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.无实数根 D.无法确定18.(2016•威海)已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是()A.B.﹣ C.4 D.﹣119.(2016•枣庄)若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A.B. C. D.20.(2016•天津)方程x2+x﹣12=0的两个根为()A.x1=﹣2,x2=6 B.x1=﹣6,x2=2 C.x1=﹣3,x2=4 D.x1=﹣4,x2=3二.填空题(2018•怀化)关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m的值是.21.22.(2018•淮安)一元二次方程x2﹣x=0的根是.23.(2018•南京)设x1、x2是一元二次方程x2﹣mx﹣6=0的两个根,且x1+x2=1,则x1= ,x2= .24.(2018•吉林)若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值为.25.(2018•德州)若x1,x2是一元二次方程x2+x﹣2=0的两个实数根,则x1+x2+x1x2= .(2017•连云港)已知关于x的方程x2﹣2x+m=0有两个相等的实数根,则m的值是.26.27.(2017•抚顺)已知关于x的方程x2+2x﹣m=0有实数解,那么m的取值范围是.(2017•南京)已知关于x的方程x2+px+q=0的两根为﹣3和﹣1,则p= ,q= .28.29.(2016•青岛)已知二次函数y=3x2+c与正比例函数y=4x的图象只有一个交点,则c的值为.30.(2016•达州)设m,n分别为一元二次方程x2+2x﹣2018=0的两个实数根,则m2+3m+n= .31.(2016•德州)方程2x2﹣3x﹣1=0的两根为x1,x2,则x12+x22= .三.解答题32.(2018•成都)若关于x的一元二次方程x2﹣(2a+1)x+a2=0有两个不相等的实数根,求a的取值范围.33.(2018•齐齐哈尔)解方程:2(x﹣3)=3x(x﹣3).34.(2018•梧州)解方程:2x2﹣4x﹣30=0.35.(2018•南充)已知关于x的一元二次方程x2﹣(2m﹣2)x+(m2﹣2m)=0.(1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为x1,x2,且x12+x22=10,求m的值.36.(2018•随州)已知关于x的一元二次方程x2+(2k+3)x+k2=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)若+=﹣1,求k的值.37.(2018•遂宁)已知关于x的一元二次方程x2﹣2x+a=0的两实数根x1,x2满足x1x2+x1+x2>0,求a的取值范围.38.(2017•黄冈)已知关于x的一元二次方程x2+(2k+1)x+k2=0①有两个不相等的实数根.(1)求k的取值范围;(2)设方程①的两个实数根分别为x1,x2,当k=1时,求x12+x22的值.参考答案一.选择题1.A.2.A.3.B.4.D.5.B.6.C.7.C.8.D.9.D.10.A.11.A.12.B.13.B.14.A.15.D.16.C.17.B.18.A.19.B.20.D.二.填空题(共11小题)21.1.22.x1=0,x2=1.23.﹣2;3.24.﹣1.25.﹣326.1.27.m≥﹣1.28.4;3.29..30.2016.31..三.解答题(共7小题)32.解:∵关于x的一元二次方程x2﹣(2a+1)x+a2=0有两个不相等的实数根,∴△=[﹣(2a+1)]2﹣4a2=4a+1>0,解得:a>﹣.33.解:2(x﹣3)=3x(x﹣3),移项得:2(x﹣3)﹣3x(x﹣3)=0,整理得:(x﹣3)(2﹣3x)=0,x﹣3=0或2﹣3x=0,解得:x1=3或x2=.34.解:∵2x2﹣4x﹣30=0,∴x2﹣2x﹣15=0,∴(x﹣5)(x+3)=0,∴x1=5,x2=﹣3.35.解:(1)由题意可知:△=(2m﹣2)2﹣4(m2﹣2m)=4>0,∴方程有两个不相等的实数根.(2)∵x1+x2=2m﹣2,x1x2=m2﹣2m,∴+=(x1+x2)2﹣2x1x2=10,∴(2m﹣2)2﹣2(m2﹣2m)=10,∴m2﹣2m﹣3=0,∴m=﹣1或m=336.解:(1)∵关于x的一元二次方程x2+(2k+3)x+k2=0有两个不相等的实数根,∴△=(2k+3)2﹣4k2>0,解得:k>﹣.(2)∵x1、x2是方程x2+(2k+3)x+k2=0的实数根,∴x1+x2=﹣2k﹣3,x1x2=k2,∴+==﹣=﹣1,解得:k1=3,k2=﹣1,经检验,k1=3,k2=﹣1都是原分式方程的根.又∵k>﹣,∴k=3.37.解:∵该一元二次方程有两个实数根,∴△=(﹣2)2﹣4×1×a=4﹣4a≥0,解得:a≤1,由韦达定理可得x1x2=a,x1+x2=2,∵x1x2+x1+x2>0,∴a+2>0,解得:a>﹣2,∴﹣2<a≤1.38.解:(1)∵方程有两个不相等的实数根,∴△=(2k+1)2﹣4k2=4k+1>0,解得:k>﹣;(2)当k=1时,方程为x2+3x+1=0,∵x1+x2=﹣3,x1x2=1,∴x12+x22=(x1+x2)2﹣2x1x2=9﹣2=7.21.3 实际问题与一元二次方程一.选择题(共20小题)1.(2018•宜宾)某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A.2% B.4.4% C.20% D.44%2.(2018•大连)如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各减去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为()A.10×6﹣4×6x=32 B.(10﹣2x)(6﹣2x)=32 C.(10﹣x)(6﹣x)=32 D.10×6﹣4x2=323.(2018•绵阳)在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人4.(2018•宁夏)某企业2018年初获利润300万元,到2020年初计划利润达到507万元.设这两年的年利润平均增长率为x.应列方程是()A.300(1+x)=507 B.300(1+x)2=507C.300(1+x)+300(1+x)2=507 D.300+300(1+x)+300(1+x)2=5075.(2018•黑龙江)某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.76.(2018•广西)某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=100 7.(2018•乌鲁木齐)宾馆有50间房供游客居住,当毎间房毎天定价为180元时,宾馆会住满;当毎间房毎天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的毎间房毎天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价定为x元.则有()A.(180+x﹣20)(50﹣)=10890 B.(x﹣20)(50﹣)=10890C.x(50﹣)﹣50×20=10890 D.(x+180)(50﹣)﹣50×20=10890 8.(2018•眉山)我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是()A.8% B.9% C.10% D.11%9.(2018•赤峰)2017﹣2018赛季中国男子篮球职业联赛,采用双循环制(每两队之间都进行两场比赛),比赛总厂数为380场,若设参赛队伍有x支,则可列方程为()A. x(x﹣1)=380 B.x(x﹣1)=380C. x(x+1)=380 D.x(x+1)=38010.(2017•来宾)某文具店二月销售签字笔40支,三月、四月销售量连续增长,四月销售量为90支,求月平均增长率.设月平均增长率为x,则由已知条件列出的方程是()A.40(1+x2)=90 B.40(1+2x)=90 C.40(1+x)2=90 D.90(1﹣x)2=40 11.(2017•杭州)某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则()A.10.8(1+x)=16.8 B.16.8(1﹣x)=10.8C.10.8(1+x)2=16.8 D.10.8[(1+x)+(1+x)2]=16.812.(2017•无锡)某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20% B.25% C.50% D.62.5%13.(2017•白银)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=57014.(2017•朝阳)某校进行体操队列训练,原有8行10列,后增加40人,使得队伍增加的行数、列数相同,你知道增加了多少行或多少列吗?设增加了x行或列,则列方程得()A.(8﹣x)(10﹣x)=8×10﹣40 B.(8﹣x)(10﹣x)=8×10+40C.(8+x)(10+x)=8×10﹣40 D.(8+x)(10+x)=8×10+4015.(2017•黔南州)“一带一路”国际合作高峰论坛于2017年5月14日至15日在北京举行,在论坛召开之际,福田欧辉陆续向缅甸仰光公交公司交付1000台清洁能源公交车,以2017客车海外出口第一大单的成绩,创下了客车行业出口之最,同时,这也是在国家“一带一路”战略下,福田欧辉代表“中国制造”走出去的成果.预计到2019年,福田公司将向海外出口清洁能源公交车达到3000台.设平均每年的出口增长率为x,可列方程为()A.1000(1+x%)2=3000 B.1000(1﹣x%)2=3000C.1000(1+x)2=3000 D.1000(1﹣x)2=300016.(2016•通辽)现代互联网技术的广泛应用,促进快递行业高速发展,据调查,我市某家快递公司,今年3月份与5月份完成投递的快递总件数分别为6.3万件和8万件.设该快递公司这两个月投递总件数的月平均增长率为x,则下列方程正确的是()A.6.3(1+2x)=8 B.6.3(1+x)=8C.6.3(1+x)2=8 D.6.3+6.3(1+x)+6.3(1+x)2=817.(2016•抚顺)某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.4 18.(2016•大连)某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x,则该文具店五月份销售铅笔的支数是()A.100(1+x)B.100(1+x)2C.100(1+x2)D.100(1+2x)19.(2016•恩施州)某商品的售价为100元,连续两次降价x%后售价降低了36元,则x 为()A.8 B.20 C.36 D.1820.(2016•随州)随州市尚市“桃花节”观赏人数逐年增加,据有关部门统计,2014年约为20万人次,2016年约为28.8万人次,设观赏人数年均增长率为x,则下列方程中正确的是()A.20(1+2x)=28.8 B.28.8(1+x)2=20C.20(1+x)2=28.8 D.20+20(1+x)+20(1+x)2=28.8二.填空题(共5小题)21.(2018•通辽)为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛,根据题意,可列方程为.22.(2017•宜宾)经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是.23.(2017•黑龙江)原价100元的某商品,连续两次降价后售价为81元,若每次降低的百分率相同,则降低的百分率为.24.(2016•十堰)某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,则这个百分率是.25.(2016•丹东)某公司今年4月份营业额为60万元,6月份营业额达到100万元,设该公司5、6两个月营业额的月均增长率为x,则可列方程为.三.解答题(共12小题)26.(2018•遵义)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?27.(2018•德州)为积极响应新旧动能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y(单位:台)和销售单价x(单位:万元)成一次函数关系.(1)求年销售量y与销售单价x的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润,则该设备的销售单价应是多少万元?28.(2018•沈阳)某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.29.(2018•盐城)一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?30.(2018•宜昌)某市创建“绿色发展模范城市”,针对境内长江段两种主要污染源:生活污水和沿江工厂污染物排放,分别用“生活污水集中处理”(下称甲方案)和“沿江工厂转型升级”(下称乙方案)进行治理,若江水污染指数记为Q,沿江工厂用乙方案进行一次性治理(当年完工),从当年开始,所治理的每家工厂一年降低的Q值都以平均值n计算.第一年有40家工厂用乙方案治理,共使Q值降低了12.经过三年治理,境内长江水质明显改善.(1)求n的值;(2)从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m,三年来用乙方案治理的工厂数量共190家,求m的值,并计算第二年用乙方案新治理的工厂数量;(3)该市生活污水用甲方案治理,从第二年起,每年因此降低的Q值比上一年都增加个相同的数值a.在(2)的情况下,第二年,用乙方案所治理的工厂合计降低的Q值与当年因甲方案治理降低的Q值相等,第三年,用甲方案使Q值降低了39.5.求第一年用甲方案治理降低的Q值及a的值.31.(2018•安顺)某地2015年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天奖励5元,按租房400天计算,求2017年该地至少有多少户享受到优先搬迁租房奖励.32.(2018•重庆)在美丽乡村建设中,某县通过政府投入进行村级道路硬化和道路拓宽改造.(1)原计划今年1至5月,村级道路硬化和道路拓宽的里程数共50千米,其中道路硬化的里程数至少是道路拓宽的里程数的4倍,那么,原计划今年1至5月,道路硬化的里程数至少是多少千米?(2)到今年5月底,道路硬化和道路拓宽的里程数刚好按原计划完成,且道路硬化的里程数正好是原计划的最小值.2017年通过政府投入780万元进行村级道路硬化和道路拓宽的里程数共45千米,每千米的道路硬化和道路拓宽的经费之比为1:2,且里程数之比为2:1.为加快美丽乡村建设,政府决定加大投入.经测算:从今年6月起至年底,如果政府投入经费在2017年的基础上增加10a%(a>0),并全部用于道路硬化和道路拓宽,而每千米道路硬化、道路拓宽的费用也在2017年的基础上分别增加a%,5a%,那么道路硬化和道路拓宽的里程数将会在今年1至5月的基础上分别增加5a%,8a%,求a的值.33.(2017•南宁)为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本).该阅览室在2014年图书借阅总量是7500本,2016年图书借阅总量是10800本.(1)求该社区的图书借阅总量从2014年至2016年的年平均增长率;(2)已知2016年该社区居民借阅图书人数有1350人,预计2017年达到1440人.如果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增长率,那么2017年的人均借阅量比2016年增长a%,求a的值至少是多少?34.(2017•襄阳)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.(1)求该企业从2014年到2016年利润的年平均增长率;(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?35.(2017•铜仁市)某商店以20元/千克的单价新进一批商品,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间为一次函数关系,如图所示.(1)求y与x的函数表达式;(2)要使销售利润达到800元,销售单价应定为每千克多少元?36.(2017•桂林)为进一步促进义务教育均衡发展,某市加大了基础教育经费的投入,已知2015年该市投入基础教育经费5000万元,2017年投入基础教育经费7200万元.(1)求该市这两年投入基础教育经费的年平均增长率;(2)如果按(1)中基础教育经费投入的年平均增长率计算,该市计划2018年用不超过当年基础教育经费的5%购买电脑和实物投影仪共1500台,调配给农村学校,若购买一台电脑需3500元,购买一台实物投影需2000元,则最多可购买电脑多少台?37.(2016•朝阳)为满足市场需求,新生活超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价4元时,每天能出售500个,并且售价每上涨0.1元,其销售量将减少10个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价的200%,请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为800元.参考答案一.选择题(共20小题)1.C.2.B.3.C.4.B.5.C.6.A.7.B.8.C.9.B.10.C.11.C.12.C.13.A.14.D.15.C.16.C.17.D.18.B.19.B.20.C.二.填空题(共5小题)21. x(x﹣1)=21.22.50(1﹣x)2=32.23.10%.24.10%.25.60(1+x)2=100.三.解答题(共12小题)26.解:(1)设y与x之间的函数关系式为y=kx+b,将(22.6,34.8)、(24,32)代入y=kx+b,,解得:,∴y与x之间的函数关系式为y=﹣2x+80.当x=23.5时,y=﹣2x+80=33.答:当天该水果的销售量为33千克.(2)根据题意得:(x﹣20)(﹣2x+80)=150,解得:x1=35,x2=25.∵20≤x≤32,∴x=25.答:如果某天销售这种水果获利150元,那么该天水果的售价为25元.27.解:(1)设年销售量y与销售单价x的函数关系式为y=kx+b(k≠0),将(40,600)、(45,550)代入y=kx+b,得:,解得:,∴年销售量y与销售单价x的函数关系式为y=﹣10x+1000.(2)设此设备的销售单价为x万元/台,则每台设备的利润为(x﹣30)万元,销售数量为(﹣10x+1000)台,根据题意得:(x﹣30)(﹣10x+1000)=10000,整理,得:x2﹣130x+4000=0,解得:x1=50,x2=80.∵此设备的销售单价不得高于70万元,∴x=50.答:该设备的销售单价应是50万元/台.28.解:(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%.(2)361×(1﹣5%)=342.95(万元).答:预测4月份该公司的生产成本为342.95万元.29.解:(1)若降价3元,则平均每天销售数量为20+2×3=26件.故答案为26;(2)设每件商品应降价x元时,该商店每天销售利润为1200元.根据题意,得(40﹣x)(20+2x)=1200,整理,得x2﹣30x+200=0,解得:x1=10,x2=20.∵要求每件盈利不少于25元,∴x2=20应舍去,解得:x=10.答:每件商品应降价10元时,该商店每天销售利润为1200元.30.解:(1)由题意可得:40n=12,解得:n=0.3;(2)由题意可得:40+40(1+m)+40(1+m)2=190,解得:m1=,m2=﹣(舍去),∴第二年用乙方案新治理的工厂数量为:40(1+m)=40(1+50%)=60(家),(3)设第一年用乙方案治理降低了100n=100×0.3=30,则(30﹣a)+2a=39.5,解得:a=9.5,则Q=20.5.设第一年用甲方案整理降低的Q值为x,第二年Q值因乙方案治理降低了100n=100×0.3=30,解法一:(30﹣a)+2a=39.5a=9.5x=20.5解法二:解得:31.解:(1)设该地投入异地安置资金的年平均增长率为x,根据题意得:1280(1+x)2=1280+1600,解得:x1=0.5=50%,x2=﹣2.5(舍去).答:从2015年到2017年,该地投入异地安置资金的年平均增长率为50%.(2)设2017年该地有a户享受到优先搬迁租房奖励,根据题意得:8×1000×400+5×400(a﹣1000)≥5000000,解得:a≥1900.答:2017年该地至少有1900户享受到优先搬迁租房奖励.32.解:(1)设道路硬化的里程数是x千米,则道路拓宽的里程数是(50﹣x)千米,根据题意得:x≥4(50﹣x),解得:x≥40.答:原计划今年1至5月,道路硬化的里程数至少是40千米.(2)设2017年通过政府投人780万元进行村级道路硬化和道路拓宽的里程数分别为2x千米、x千米,2x+x=45,x=15,2x=30,设每千米的道路硬化和道路拓宽的经费分别为y元、2y元,30y+15×2y=780,y=13,2y=26,由题意得:13(1+a%)•30(1+5a%)+26(1+5a%)•15(1+8a%)=780(1+10a%),设a%=m,则390(1+m)(1+5m)+390(1+5m)(1+8m)=780(1+10m),45m2﹣m=0,m1=,m2=0(舍),∴a=.33.解:(1)设该社区的图书借阅总量从2014年至2016年的年平均增长率为x,根据题意得7500(1+x)2=10800,即(1+x)2=1.44,解得:x1=0.2,x2=﹣2.2(舍去)答:该社区的图书借阅总量从2014年至2016年的年平均增长率为20%;(2)10800(1+0.2)=12960(本)10800÷1350=8(本)12960÷1440=9(本)(9﹣8)÷8×100%=12.5%.故a的值至少是12.5.34.解:(1)设这两年该企业年利润平均增长率为x.根据题意得2(1+x)2=2.88,解得 x1 =0.2=20%,x2 =﹣2.2 (不合题意,舍去).答:这两年该企业年利润平均增长率为20%.(2)如果2017年仍保持相同的年平均增长率,那么2017年该企业年利润为:2.88(1+20%)=3.456,3.456>3.4答:该企业2017年的利润能超过3.4亿元.35.解:(1)当0<x<20时,y=60;当20≤x≤80时,设y与x的函数表达式为y=kx+b,把(20,60),(80,0)代入,可得,解得,∴y=﹣x+80,∴y与x的函数表达式为y=;(2)若销售利润达到800元,则(x﹣20)(﹣x+80)=800,解得x1=40,x2=60,∴要使销售利润达到800元,销售单价应定为每千克40元或60元.36.解:(1)设该市这两年投入基础教育经费的年平均增长率为x,根据题意得:5000(1+x)2=7200,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:该市这两年投入基础教育经费的年平均增长率为20%.(2)2018年投入基础教育经费为7200×(1+20%)=8640(万元),设购买电脑m台,则购买实物投影仪(1500﹣m)台,根据题意得:3500m+2000(1500﹣m)≤86400000×5%,解得:m≤880.答:2018年最多可购买电脑880台.37.解:设每个粽子的定价为x元时,每天的利润为800元.根据题意,得(x﹣3)(500﹣10×)=800,解得x1=7,x2=5.∵售价不能超过进价的200%,∴x≤3×200%.即x≤6.∴x=5.答:每个粽子的定价为5元时,每天的利润为800元.22.1 二次函数的图象和性质一.选择题(共16小题)1.(2018•临安区)抛物线y=3(x﹣1)2+1的顶点坐标是()A.(1,1) B.(﹣1,1)C.(﹣1,﹣1) D.(1,﹣1)2.(2018•上海)下列对二次函数y=x2﹣x的图象的描述,正确的是()A.开口向下 B.对称轴是y轴C.经过原点 D.在对称轴右侧部分是下降的3.(2018•山西)用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7 B.y=(x﹣4)2﹣25 C.y=(x+4)2+7 D.y=(x+4)2﹣25 4.(2018•枣庄)如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A.b2<4ac B.ac>0 C.2a﹣b=0 D.a﹣b+c=05.(2018•潍坊)已知二次函数y=﹣(x﹣h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为﹣1,则h的值为()A.3或6 B.1或6 C.1或3 D.4或66.(2018•泸州)已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x 的增大而增大,且﹣2≤x≤1时,y的最大值为9,则a的值为()A.1或﹣2 B C D.17.(2018•遂宁)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则以下结论同时成立的是()AC D8.(2017•黔东南州)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有()A.1个B.2个C.3个D.4个9.(2017•泰安)如图,在△ABC中,∠C=90°,AB=10cm,BC=8cm,点P从点A沿AC向点C以1cm/s的速度运动,同时点Q从点C沿CB向点B以2cm/s的速度运动(点Q运动到点B 停止),在运动过程中,四边形PABQ的面积最小值为()A.19cm2B.16cm2C.15cm2D.12cm210.(2017•资阳)如图,抛物线y=ax2+bx+c(a≠0)的顶点和该抛物线与y轴的交点在一次函数y=kx+1(k≠0)的图象上,它的对称轴是x=1,有下列四个结论:①abc<0,②a<a=﹣k,④当0<x<1时,ax+b>k,其中正确结论的个数是()A.4 B.3 C.2 D.111.(2017•玉林)对于函数y=﹣2(x﹣m)2的图象,下列说法不正确的是()A.开口向下 B.对称轴是x=m C.最大值为0 D.与y轴不相交12.(2017•杭州)设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,()A.若m>1,则(m﹣1)a+b>0 B.若m>1,则(m﹣1)a+b<0C.若m<1,则(m+1)a+b>0 D.若m<1,则(m+1)a+b<013.(2016•沈阳)在平面直角坐标系中,二次函数y=x2+2x﹣3的图象如图所示,点A(x1,y1),B(x2,y2)是该二次函数图象上的两点,其中﹣3≤x1<x2≤0,则下列结论正确的是()A.y1<y2B.y1>y2C.y的最小值是﹣3 D.y的最小值是﹣414.(2016•株洲)已知二次函数y=ax2+bx+c(a>0)的图象经过点A(﹣1,2),B(2,5),顶点坐标为(m,n),则下列说法错误的是()A.c<3 B.m C.n≤2 D.b<115.(2016•绵阳)二次函数y=ax2+bx+c的图象如图所示,下列结论:①b<2a;②a+2c﹣b >0;③b>a>c;④b2+2ac<3ab.其中正确结论的个数是()A.1 B.2 C.3 D.416.(2016•泰安)二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=ax+b的图象大致是()A B C.D二.填空题(共10小题)17.(2018•哈尔滨)抛物线y=2(x+2)2+4的顶点坐标为.18.(2018•广州)已知二次函数y=x2,当x>0时,y随x的增大而(填“增大”或“减小”).19.(2018•新疆)如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们规定:当x取任意一个值时,x对应的函数值分别为y1和y2,若y1≠y2,取y1和y2中较小值为M;若y1=y2,记M=y1=y2.①当x>2时,M=y2;②当x<0时,M随x的增大而增大;③使得M大于4的x的值不存在;④若M=2,则x=1.上述结论正确的是(填写所有正确结论的序号).20.(2017•河北)对于实数p,q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2}=1,因此,min{}= ;若min{(x﹣1)2,x2}=1,则x= .21.(2017•邵阳)若抛物线y=ax2+bx+c的开口向下,则a的值可能是.(写一个即可)22.(2017•广州)当x= 时,二次函数y=x2﹣2x+6有最小值.23.(2017•黔西南州)如图,图中二次函数解析式为y=ax2+bx+c(a≠0)则下列命题中正确的有(填序号)①abc>0;②b2<4ac;③4a﹣2b+c>0;④2a+b>c.24.(2016•营口)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y 轴交于点C,对称轴是直线x=﹣1,点B的坐标为(1,0).下面的四个结论:①AB=4;②b2﹣4ac>0;③ab<0;④a﹣b+c<0,其中正确的结论是(填写序号).25.(2016•大庆)直线y=kx+b与抛物线2交于A(x1,y1)、B(x2,y2)两点,当OA ⊥OB时,直线AB恒过一个定点,该定点坐标为.26.(2016•南充)已知抛物线y=ax2+bx+c开口向上且经过点(1,1),双曲线点(a,bc),给出下列结论:①bc>0;②b+c>0;③b,c是关于x的一元二次方程x2+(a。
2022-2023学年新人教版九年级上数学同步练习(含解析)

2022-2023学年初中九年级上数学同步练习学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:48 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1. 已知,且,,则的值为()A.B.C.D.2. 用配方法解方程,则方程可变形为( )A.B.C.D.3. 设,是方程的两个实数根,则的值为( )A.B.C.D.4. 已知,是关于的方程的两根,下列结论一定正确的是( )mn ≠15+2019m +9=0m 29+2019n +5=0n 2mn −402599567033−6x +2=0x 2(x −3=)2233(x −1=)223(3x −1=1)2(x −1=)213m n +x −1001x 2=0+2m +n m 2−100110011000−1000x 1x 2x +mx −1x 2=0≠A.B.C.D.,5. 将抛物线 向左平移个单位长度,再向下平移个单位长度,得到的抛物线的函数表达式为 A.B.C.D.6. 抛一个铁球,在泥地上砸了一个直径,深的坑,这个铁球的直径是( )A.B.C.D.7. 如图,中,半径弦于点,点在上,,,则线段等于( )A.B.C.D.8. 如图,在中,是的直径,,点,是的三等分点,是上一动点,则的最小值是 ≠x 1x 2+<0x 1x 2⋅>0x 1x 2>0x 1<0x 2y =x 223()y =(x +2−3)2y =(x +2+3)2y =(x −2+3)2y =(x −2+3)28cm 2cm 12cm10cm8cm2–√6cm3–√⊙O OC ⊥AB D E ⊙O ∠E =22.5∘AB =4CD 2–√12−22–√32⊙O AB ⊙O AB =12C D AB ˆM AB CM +DM ()A.B.C.D.9. 下列说法中,正确的是( )A.在同圆或等圆中,相等的圆心角所对的弧相等B.平分弦的直径垂直于弦C.长度相等的两条弧是等弧D.圆的切线垂直于半径10. 如图,点、、在上,,则的度数是( )A.B.C.D.卷II (非选择题)二、 解答题 (本题共计 6 小题 ,每题 3 分 ,共计18分 )11.;;;161286A B C ⊙O ∠AOB =40∘∠ACB 10∘20∘30∘40(1)+x =2x 23–√(2)6000=8640(1+x)2(3)−6x −7=0x 2(2−3x)+=02. 12. 某商品现在的售价为每件元,每星期可卖出件,市场调查反映,如调整价格,每降价元,每星期可多卖出件,已知商品的进价为每件元.该商品每件降价多少元,商场可以获利元?该商品每件降价多少元,才能使利润最大?13. 设椭圆的右焦点为,过的直线与交于,两点,点的坐标为.(1)当与轴垂直时,求直线的方程;(2)设为坐标原点,求的值.14. 已知关于的一元二次方程.求证:此方程有两个不相等的实数根;如果方程的两个实数根为,且,求的值.15. 抛物线经过点,,直线过点,,点是抛物线上点,间的动点(不含端点,),过作轴于点,连接,.求抛物线与直线的解析式;求证:为定值;若的面积为,求满足条件的点的坐标.16. 某广告公司设计一幅周长为米的矩形广告牌,广告设计费为每平方米元. 设矩形一边长为,面积为平方米.求与之间的函数关系式,并写出自变量的取值范围;设计费能达到元吗?为什么?当是多少米时,设计费最多?最多是多少元?(4)(2−3x)+=0(3x −2)26030012040(1)3000(2)C :+=1x 22y 2F F l C A B M (2,0)l x AM O ∠OMA ∠OMB x −(2m −2)x +(−2m)=0x 2m 2(1)(2),x 1x 2+=10x 12x 22m y =a +b x 2A (4,0)B (0,−4)EC E (4,−1)C (0,−3)P A B A B P PD ⊥x D PC PE (1)CE (2)PC +PD (3)△PEC 1P 162000x S (1)S x x (2)24000(3)x参考答案与试题解析2022-2023学年初中九年级上数学同步练习一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1.【答案】C【考点】根与系数的关系【解析】此题暂无解析【解答】解:将变形得:,,∴与为方程的两个解,则,故选.2.【答案】D【考点】解一元二次方程-配方法【解析】先移项得到,再把方程两边都除以,然后把方程两边加上即可得到.【解答】解:移项得,二次系数化为得,9+2009n +5=0n 25×+2009×+9=0()1n 21n 5+2009m +9=0m 2m 1m 5+2009x +9=0x 2m ⋅==1n m n 95C 3−6x =−2x 231(x −1=)2133−6x =−2x 21−2x =−x 2232x +1=−+12方程两边加上得,所以.故选.3.【答案】C【考点】列代数式求值根与系数的关系一元二次方程的解【解析】由于、是方程的两个实数根,根据根与系数的关系可以得到,并且,然后把变形为,把前面的值代入即可求出结果.【解答】解:,是方程的两个实数根,该一元二次方程,二次项系数,一次项系数,常数项,根据根与系数的关系,可得到.又,,.故选.4.【答案】A【考点】根与系数的关系根的判别式【解析】先计算判别式的值得到=,根据判别式的意义可判断方程有两个不相等的实数解,再利用根与系数的关系得到、异号,然后对各选项进行判断.【解答】解:,,1−2x +1=−+1x 223(x −1=)213D m n +x −1001=0x 2m +n =−1+m −1001=0m 2+2m +n m 2(+m)+(m +1)m 2m n +x −1001=0x 2a =1b =1c =−1001m +n =−=−1b a +m −1001=0m 2+m =1001m 2+2m +n =(+m)+(m +n)m 2m 2=1001−1=1000C △+4>0m 2x 1x 2A Δ=−4×(−1)m 2=+4>0m 2∴方程有两个不相等的实数解,∴.故选项正确;,,不能确定是否小于,故选项错误;,,故选项错误;,,,异号,但不能确定大小,故选项错误.故选.5.【答案】A【考点】二次函数图象与几何变换【解析】先确定抛物线的顶点坐标为,再根据点平移的规律得到点平移后所得对应点的坐标为,然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线 向左平移个单位长度,得到,再向下平移个单位长度,则得到的抛物线的函数表达式为:.故选.6.【答案】B【考点】垂径定理的应用【解析】根据题意画出草图,建立数学模型.根据勾股定理和垂径定理求解.【解答】设该铅球的半径是.在由铅球的半径、小坑的半径即半弦和弦心距组成的直角三角形中,根据勾股定理,得=,解得=,故=.7.【答案】≠x 1x 2B +=−m x 1x 20C x 1x 2=−1<0D x 1x 2=−1<0x 1x 2A y =x 2(0,0)(0,0)(−2,−3)y =x 22y =(x +2)23y =(x +2−3)2A rcm r 2(r −2+16)2r 52r 10C【考点】圆周角定理垂径定理勾股定理【解析】直接利用垂径定理进而结合圆周角定理得出是等腰直角三角形,进而得出答案.【解答】解:∵半径弦于点,∴,∴,∴,∴是等腰直角三角形,∵,∴,则半径等于:,∴.故选.8.【答案】B【考点】垂径定理的应用【解析】作点关于的对称点,连接与相交于点,根据轴对称确定最短路线问题,点为的最小值时的位置,根据垂径定理可得,然后求出为直径,从而得解.【解答】解:如图,作点关于的对称点,连接与相交于点,此时,点为的最小值时的位置,由垂径定理,,△ODB OC ⊥AB D =ACˆBC ˆ∠E =∠BOC =1222.5∘∠BOD =45∘△ODB AB =4DB =OD =2OB =2+2222−−−−−−√2–√CD =2−22–√C C AB C'C'D AB M M CM +DM =AC ˆAC'ˆC'D C AB C'D C ′AB M M CM +DM =AC ˆAC ′ˆˆˆ∴,∵,为直径,∴为直径,即的最小值是.故选.9.【答案】【考点】圆心角、弧、弦的关系【解析】此题暂无解析【解答】此题暂无解答10.【答案】B【考点】圆周角定理【解析】根据圆周角定理得到,即可计算出.【解答】解:∵,∴.故选.二、 解答题 (本题共计 6 小题 ,每题 3 分 ,共计18分 )11.【答案】解:原式可化为,则,解得,.=BD ˆAC ′ˆ==AC ˆCD ˆBD ˆAB D C ′CM +DM 12B ∠ACB =∠AOB 12∠ACB ∠AOB =40∘∠ACB =∠AOB =1220∘B (1)+x −2=0x 23–√x =−±3–√3+8−−−−√2=x 1−+3–√11−−√2=x 2−−3–√11−−√2x +1=8640原式可化为,即,则,解得,.移项,得,配方,得,即,则,解得,.原式可化为,则,所以或,解得,,【考点】解一元二次方程-因式分解法解一元二次方程-公式法解一元二次方程-配方法解一元二次方程-直接开平方法【解析】无无无无【解答】解:原式可化为,则,解得,.原式可化为,即,则,解得,.移项,得,配方,得,即,则,解得,.(2)(x +1=)286406000(x +1=)23625x +1=±65=x 115=−x 2115(3)−6x =7x 2−6x +9=16x 2(x −3=16)2x −3=±4=7x 1=−1x 2(4)(2−3x)+(2−3x =0)2(2−3x)(2−3x +1)=02−3x =02−3x +1=0=x 123=1x 2(1)+x −2=0x 23–√x =−±3–√3+8−−−−√2=x 1−+3–√11−−√2=x 2−−3–√11−−√2(2)(x +1=)286406000(x +1=)23625x +1=±65=x 115=−x 2115(3)−6x =7x 2−6x +9=16x 2(x −3=16)2x −3=±4=7x 1=−1x 2(4)(2−3x)+(2−3x =0)2原式可化为,则,所以或,解得,,12.【答案】解:设该商品每件降价元,根据题意,得解得:,(不符合题意,舍去),答:该商品每件降价元.设商品每件降价元,获得的利润为元,根据题意,得,,当时,有最大值,即最大值为,答:商品每件降价元,才能使利润最大.【考点】一元二次方程的应用二次函数的最值二次函数的应用【解析】本小题考查一元二次方程的应用.设该商品每件降价元,则每件利润为元,可卖件数为件,根据利润=每件利润件数列出方程为,求解即可.注意:要检验是否符合题意.本题考查二次函数的应用.利用二次函数最值求解.先设商品每件降价元,获得的利润为元,根据利润每件商品的单价件数列出二次函数,再根据二次函数最值求法求解即可.【解答】解:设该商品每件降价元,根据题意,得解得:,(不符合题意,舍去),答:该商品每件降价元.设商品每件降价元,获得的利润为元,根据题意,得,,当时,有最大值,即最大值为,答:商品每件降价元,才能使利润最大.13.(4)(2−3x)+(2−3x =0)2(2−3x)(2−3x +1)=02−3x =02−3x +1=0=x 123=1x 2(1)x (60−40−x)(300+20x)=3000=15x 1=−10x 215(2)x y y =(60−40−x)(300+20x)=−20+100x +6000x 2=−20+6125(x −)522∵−20<0∴x =52y 612552(1)x (60−40−x)(300+20x)×(60−40−x)(300+20x)=3000(2)x y =×(1)x (60−40−x)(300+20x)=3000=15x 1=−10x 215(2)x y y =(60−40−x)(300+20x)=−20+100x +6000x 2=−20+6125(x −)522∵−20<0∴x =52y 612552【答案】解:(1)由已知得,的方程为,由已知可得,点的坐标为或.所以的方程为或.(2)由题意知直线的斜率不为,当与轴不垂直时,设的方程为,,,直线,的斜率之和为,由,得,将代入得,所以,.则,从而,故,的倾斜角互补,所以.当与轴垂直时,由椭圆方程的对称性可知,.所以.【考点】直线与椭圆的位置关系【解析】【解答】解:(1)由已知得,的方程为,由已知可得,点的坐标为或.所以的方程为或.F(1,0)l x =1A (1,)2–√2(1,−)2–√2AM y =−x +2–√22–√y =x −2–√22–√l 0l x l y =k(x −1)(k ≠0)A (,)x 1y 1B (,)x 2y 2MA MB +=+k MA k MB y 1−2x 1y 2−2x 2=k (−1)y 1x 1=k (−1)y 2x 2+=k MA k MB 2k −3k (+)+4k x 1x 2x 1x 2(−2)(−2)x 1x 2y =k(x −1)+=1x 22y 2(2+1)−4x +2−2=0k 2x 2k 2k 2+=x 1x 24k 22+1k 2=x 1x 22−2k 22+1k 22k −3k (+)+4kx 1x 2x 1x 2==04−4k −12+8+4k k 3k 3k 32+1k 2+=0k MA k MB MA MB ∠OMA =∠OMB l x ∠OMA =∠OMB =1∠OMA ∠OMBF(1,0)l x =1A (1,)2–√2(1,−)2–√2AM y =−x +2–√22–√y =x −2–√22–√l(2)由题意知直线的斜率不为,当与轴不垂直时,设的方程为,,,直线,的斜率之和为,由,得,将代入得,所以,.则,从而,故,的倾斜角互补,所以.当与轴垂直时,由椭圆方程的对称性可知,.所以.14.【答案】证明:由题意得:,∴此方程有两个不相等的实数根.解:∵,∴,即,∴,解得或.【考点】根与系数的关系根的判别式【解析】此题暂无解析l 0l x l y =k(x −1)(k ≠0)A (,)x1y 1B (,)x2y 2MA MB +=+k MA k MB y 1−2x 1y 2−2x 2=k (−1)y 1x 1=k (−1)y 2x 2+=k MA k MB 2k −3k (+)+4kx 1x 2x 1x 2(−2)(−2)x 1x 2y =k(x −1)+=1x 22y 2(2+1)−4x +2−2=0k 2x 2k 2k 2+=x 1x 24k 22+1k 2=x 1x 22−2k 22+1k 22k −3k (+)+4kx 1x 2x1x2==04−4k −12+8+4kk 3k 3k 32+1k 2+=0k MA k MB MA MB ∠OMA =∠OMB l x ∠OMA =∠OMB =1∠OMA ∠OMB(1)Δ=[−(2m −2)−4(−2m)=4>0]2m 2(2)+=2m −2,=−2m x 1x 2x 1x 2m 2+=x 12x 22(+−2=10x 1x 2)2x 1x 2(2m −2−2(−2m)=10)2m 2−2m −3=0m 2m =−1m =3【解答】证明:由题意得:,∴此方程有两个不相等的实数根.解:∵,∴,即,∴,解得或.15.【答案】解:将,代入 ,得∴抛物线的解析式为.设直线的解析式为 ,将点,代入得解得∴直线的解析式为.证明:过点作轴于点,如图,设点, ,则, ,, ,(1)Δ=[−(2m −2)−4(−2m)=4>0]2m 2(2)+=2m −2,=−2m x 1x 2x 1x 2m 2+=x 12x 22(+−2=10x 1x 2)2x 1x 2(2m −2−2(−2m)=10)2m 2−2m −3=0m 2m =−1m =3(1)A (4,0)B (0,−4)y =a +b x 2{16a +b =0,b =−4,a =,14b =−4,y =−414x 2CE y =mx +n E (4,−1)C (0,−3)y =mx +n {4m +n =−1,n =−3,m =,12n =−3,CE y =x −312(2)P PF ⊥y F P (t,−4)14t 20<t <4PF =t FC =|−4+3|=|−1|14t 214t 2PD =4−14t 2PC ===+1+t 2(−1)14t 22−−−−−−−−−−−−−√(+1)14t 22−−−−−−−−−−√14t 2C +PD =(+1)+(4−)=511∴为定值.解:设与的交点为,设,①如图,当点在点上方时,,∵,∴,解得, (负根舍去),∴ ,即.②如图,当点在点下方时,,∵,∴,解得,(负根舍去),∴ ,即,综上所述,满足条件的点有 ,.【考点】PC +PD =(+1)+(4−)=514t 214t 2(3)DP EC G P (x,−4)14x 2G P =×4×[(x −3)−(−4)]S △PEC 121214x 2=−+12(x −1)252=1S △PEC−+=112(x −1)252=1+x 13–√=1−x 23–√y =×−4=−314(1+)3–√23–√2(1+,−3)P 13–√3–√2G P =×4×[(−4)−(x −3)]S △PEC 1214x 212=−12(x −1)252=1S △PEC −=112(x −1)252=1+x 37–√=1−x 47–√y =×−4=−214(1+)7–√27–√2(1+,−2)P 27–√7–√2(1+,−3)P 13–√3–√2(1+,−2)P 27–√7–√2待定系数法求二次函数解析式待定系数法求一次函数解析式二次函数综合题二次函数图象上点的坐标特征勾股定理三角形的面积【解析】暂无暂无暂无【解答】解:将,代入 ,得∴抛物线的解析式为.设直线的解析式为 ,将点,代入得解得∴直线的解析式为.证明:过点作轴于点,如图,设点, ,则, ,, ,(1)A (4,0)B (0,−4)y =a +b x 2{16a +b =0,b =−4,a =,14b =−4,y =−414x 2CE y =mx +n E (4,−1)C (0,−3)y =mx +n {4m +n =−1,n =−3,m =,12n =−3,CE y =x −312(2)P PF ⊥y F P (t,−4)14t 20<t <4PF =t FC =|−4+3|=|−1|14t 214t 2PD =4−14t 2PC ===+1+t 2(−1)14t 22−−−−−−−−−−−−−√(+1)14t 22−−−−−−−−−−√14t 2C +PD =(+1)+(4−)=511∴为定值.解:设与的交点为,设,①如图,当点在点上方时,,∵,∴,解得, (负根舍去),∴ ,即.②如图,当点在点下方时,,∵,∴,解得,(负根舍去),∴ ,即,综上所述,满足条件的点有 ,.16.【答案】PC +PD =(+1)+(4−)=514t 214t 2(3)DP EC G P (x,−4)14x 2G P =×4×[(x −3)−(−4)]S △PEC 121214x 2=−+12(x −1)252=1S △PEC −+=112(x −1)252=1+x 13–√=1−x 23–√y =×−4=−314(1+)3–√23–√2(1+,−3)P 13–√3–√2G P =×4×[(−4)−(x −3)]S △PEC 1214x 212=−12(x −1)252=1S △PEC−=112(x −1)252=1+x 37–√=1−x 47–√y =×−4=−214(1+)7–√27–√2(1+,−2)P 27–√7–√2(1+,−3)P 13–√3–√2(1+,−2)P 27–√7–√2(1)解:∵矩形的一边长为米,周长为米,∴另一边长为米,∴,其中.能,理由如下:当设计费为元时,面积为(平方米),即,解得:或,符合,故设计费能达到元.∵,∴当时,,∴当米时,矩形的最大面积为平方米,设计费最多,最多是元.【考点】二次函数的应用一元二次方程的应用【解析】(1)由矩形的一边长为、周长为得出另一边长为,根据矩形的面积公式可得答案;(2)由设计费为元得出矩形面积为平方米,据此列出方程,解之求得的值,从而得出答案;(3)将函数解析式配方成顶点式,可得函数的最值情况.【解答】解:∵矩形的一边长为米,周长为米,∴另一边长为米,∴,其中.能,理由如下:当设计费为元时,面积为(平方米),即,解得:或,符合,故设计费能达到元.∵,∴当时,,∴当米时,矩形的最大面积为平方米,设计费最多,最多是元.(1)x 16(8−x)S =x(8−x)=−+8x x 20<x <8(2)2400024000÷2000=12−+8x =12x 2x =2x =60<x <824000(3)S =−+8x =−(x −4+16x 2)2x =4=16S max x =41632000x 168−x 2400012x (1)x 16(8−x)S =x(8−x)=−+8x x 20<x <8(2)2400024000÷2000=12−+8x =12x 2x =2x =60<x <824000(3)S =−+8x =−(x −4+16x 2)2x =4=16S max x =41632000。
2022-2023学年全国初中九年级上数学人教版同步练习(含答案解析)102330

2022-2023学年全国初中九年级上数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 抛物线的顶点坐标是( )A.B.C.D.2. 如图,直线交轴于点,交轴于点,与反比例函数交于点,若,则________.3. 已知二次函数的图象经过点,则有( )A.最小值B.最小值C.最大值D.最大值 4. 抛物线的顶点坐标是( )A.B.y =3(x+2)2(2,0)(0,2)(−2,0)(0,−2)y =x+b A y B y =k x C AC ⋅BC =63–√k =y =+bx+c x 2(−1,−2)bc −14−941494y =−2(x+3−4)2(3,4)(3,−4)C.D.5. 已知二次函数,当时,,当时,,则,的值是( )A.,B.,C.,D.,6. 抛物线( )A.有最大值B.有最小值C.有最大值D.有最小值7. 已知顶点为的抛物线过点,此抛物线的表达式是( )A.B.C.D.8. 当,函数的最小值为,则的值为( )A.B.C.或D.或二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 已知抛物线=过点,两点,若线段的长不大于,则代数式的最小值是________.10. 在数学课上,小杰、小明和小丽分别说出了一个二次函数图像的一些特点:(−3,−4)(−3,4)y =+bx+c x 2x =−2y =3x =1y =−3b c b =1c =3b =−1c =−5b =−1c =−3b =−3c =−1y =(x−1+3)21133(2,4)(4,0)y =−(x−2+4)2y =(x−2−4)2y =(x−2+4)2y =−(x−2−4)2a x a +1y =−2x+1x 21a −1202−12y a +4ax+4a +1(a ≠0)x 2A(m,3)B(n,3)AB 4+a +1a 2小杰说:“它的图像开口向下;”小明说:“它的对称轴是直线;”小丽说:“它的图像经过原点;”请你写出满足上述全部特点的一个二次函数解析式________(只要求写出一个).11. 已知二次函数,当自变量的取值在的范围内时,函数有最小值,则的最大值是________.12. 抛物线的对称轴是直线,则的值为________.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13. 如图,点,点的坐标分别为 与,以点为顶点的抛物线记为;以为顶点的抛物线记为,且抛物线与轴交于点.求出抛物线和的解析式,请你判断抛物线会经过点;若抛物线和中的都随的增大而减小,请直接写出此时的取值范围;设新的函数,求函数与的函数关系式,当时,求的值. 14. 某商场销售一批名牌衬衫,平均每天可售出件,每件赢利元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价元,那么商场平均每天可多售出件.若商场平均每天要赢利元,则每件衬衫应降价多少元?每件衬衫降价多少元时,商场平均每天赢利最多?15. 如图,点是抛物线=与轴的交点,轴交抛物线另一点于,点为该抛物线的顶点,若为等边三角形,则值为多少.16. 二次函数的图象如图所示,已知,,试求该抛物线的解析式.(1)(2)x =1(3)y=−2hx+h x 2x −1≤x ≤1n n y =2−mx+3x 2x =1m A E (0,3)(1,2)A :=−+n C 1y 1x 2E :=a +bx+c C 2y 2x 2C 2y P(0,)52(1)C 1C 2C 1E (2)C 1C 2y x x (3)=|−|y 3y 1y 2y 3x =y 323x 204012(1)1200(2)A y a(x−3+k )2y AB//x B C △ABC a y =a(x−h)2a =12OA =OC参考答案与试题解析2022-2023学年全国初中九年级上数学人教版同步练习一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】C【考点】二次函数的性质【解析】已知抛物线解析式为顶点式,可直接写出顶点坐标.【解答】解:∵为抛物线的顶点式,∴根据顶点式的坐标特点可知,抛物线的顶点坐标为.故选.2.【答案】【考点】待定系数法求二次函数解析式【解析】此题暂无解析【解答】解:设,∵直线与轴交于点,,,.故答案为:.y =3(x+2)2(−2,0)C 33–√C(x,y)y =x+b x 、y A 、B ∴∠ABO =∠OAB =45∘∴AC =y,BC =x 2–√2–√∴AC ⋅BC =2xy =2k =6,∴k =33–√3–√33–√3.【答案】B【考点】二次函数图象上点的坐标特征二次函数的最值【解析】把点代入即可证得,所以,根据二次函数的性质即可求得.【解答】解:∵二次函数的图象经过点,∴,∴.∴,∴函数有为.故选.4.【答案】C【考点】二次函数的性质【解析】利用抛物线解析式即可求得答案.【解答】解:∵,∴抛物线顶点坐标为.故选.5.【答案】C(−1,−2)y =+bx+c +1x 2c =b −3bc =b(b −3)=−3b =(b −−b 232)294y =+bx+c x 2(−1,−2)−2=1−b +c c =b −3bc =b(b −3)=−3b =(b −−b 232)294bc −94B y=−2(x+3−4)2(−3,−4)C【考点】待定系数法求二次函数解析式【解析】用待定系数法求、的值.将; , 代入联立方程组即可求得.【解答】解:将,;,分别代入得,解得故选.6.【答案】D【考点】二次函数的最值【解析】本题考查利用二次函数顶点式求最大(小)值的方法.【解答】此题暂无解答7.【答案】A【考点】待定系数法求二次函数解析式【解析】本题主要考察了二次函数的顶点式.【解答】解:设抛物线b c x =−2,y =3x =1y =−3y =+bx+c x 2x =−2y =3x =1y =−3y =+bx+c x 2{3=4−2b +c ,−3=1+b +c ,{b =−1,c =−3.C y =a(x−2+4)2将(,)代入∴抛物线表达式是.故选.8.【答案】D【考点】二次函数的最值【解析】此题暂无解析【解答】解:当时,有,解得: ,∵当时,函数有最小值,∴或,∴或,故选.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.【答案】【考点】二次函数的性质二次函数图象上点的坐标特征二次函数的最值【解析】根据题意得,解不等式求得,把代入代数式即可求得.【解答】400=a(4−2+4)2a =−1y =−(x−2+4)2A y =1−2x+1=1x 2=0,x 1=2x 2a ≤x ≤a +11a =2a +1=0a =2a =−1D 744a +1≥3a ≥12x =12a +4ax+4a +12a(x+2+1(a ≠0))2∵抛物线==,∴顶点为,过点,两点,∴,∴对称轴为直线=,线段的长不大于,∴∴∴的最小值为:;10.【答案】(答案不唯一)【考点】待定系数法求二次函数解析式【解析】由开口向下,可知,可以设,对称轴是直线,可得,即可求出解析式.【解答】解:∵二次函数的图象开口向下,.图像经过原点,可设,∵对称轴为直线,,,二次函数的解析式为:.故答案为:(答案不唯一).11.【答案】【考点】二次函数的最值【解析】此题暂无解析【解答】y a +4ax+4a +1x 2a(x+2+1(a ≠0))2(−2,1)A(m,3)B(n,3)a >0x −2AB 44a +1≥3a ≥12+a +1a 2(++1=12)21274y =−2+4x x 2a <0a =−2x =1b =4∴a <0∵∴a =−2y =−2+bxx 2x =1∴−=1b 2×(−2)∴b =4∴y =−2+4x x 2y =−2+4x x 214−2hx+h2解:二次函数图象的对称轴为直线,当时,时取最小值,此时,当时,时取最小值,此时,当时,时取最小值,此时,综上所述:的最大值为.故答案为:.12.【答案】【考点】二次函数的性质【解析】抛物线的对称轴为直线,根据对称轴公式可求的值.【解答】解:,,根据对称轴公式得:,解得.故答案为:.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.【答案】解:根据题意将点代入,得:,∴;∵抛物线的顶点坐标为,∴设抛物线的解析式为,将点代入,得:,解得:,∴抛物线的解析式为,当时,,∴抛物线经过点;在,当时,随的增大而减小,在中,当时,随的增大而减小,∴当时,抛物线和中的都随的增大而减小;y=−2hx+h x 2x=h h ≤−1x=−1y n=1+2h+h =1+3h ≤−2−1<h <1x=h y n=−2+h h 2h 2=−+h h 2=−(h−+≤12)21414h ≥1x=1y n=1−2h+h =1−h ≤0n 14144y =a +bx+c x 2x =−b 2a m a =2b =−m x =−=−=1b 2a −m 2×2m=44(1)A(0,3)=−+n y 1x 2n =3=−+3y 1x 2C 2(1,2)C 2y =a(x−1+2)2P(0,)52a +2=52a =12C 2=(x−1+2=−x+y 212)212x 252x =1=−+3=2y 112C 1E (2)=−+3y 1x 2x >0y x =(x−1+2y 212)2x <1y x 0<x <1C 1C 2y x |−|=|−+3−(−x+)|15,当 时,,此时,当时,解得;当或 时,,此时,当,解得.∴当时,的值为或.【考点】待定系数法求二次函数解析式二次函数的最值【解析】(1)待定系数法分别求解可得,再求出时,的值即可判断抛物线是否经过点;(2)分别求出两函数随的增大而减小时的范围可得答案;(3)将、代入整理成一般式,再配方成顶点式可得答案.【解答】解:根据题意将点代入,得:,∴;∵抛物线的顶点坐标为,∴设抛物线的解析式为,将点代入,得:,解得:,∴抛物线的解析式为,当时,,∴抛物线经过点;在,当时,随的增大而减小,在中,当时,随的增大而减小,∴当时,抛物线和中的都随的增大而减小;,当 时,,此时,当,解得;当或 时,,(3)=|−|=|−+3−(−x+)|y 3y 1y 2x 212x 252=|−+x+|=|−(x−+|32x 2123213)223−≤x ≤113=y 3−+x+32x 212=y 323x =13x <−13x >1=y 3−x−32x 212=y 323x =1±22–√3=y 323x 131±22–√3x =1y 1C 1E y x x y 1y 2=−y 3y 1y 2(1)A(0,3)=−+n y 1x 2n =3=−+3y 1x 2C 2(1,2)C 2y =a(x−1+2)2P(0,)52a +2=52a =12C 2=(x−1+2=−x+y 212)212x 252x =1=−+3=2y 112C 1E (2)=−+3y 1x 2x >0y x =(x−1+2y 212)2x <1y x 0<x <1C 1C 2y x (3)=|−|=|−+3−(−x+)|y 3y 1y 2x 212x 252=|−+x+|=|−(x−+|32x 2123213)223−≤x ≤113=y 3−+x+32x 212=y 323x =13x <−13x >1=y 3−x−32x 212=1±2–√此时,当,解得.∴当时,的值为或.14.【答案】解:设每件衬衫应降价元,根据题意得,,整理得,,解得,,.因为要尽量减少库存,在获利相同的条件下,降价越多,销售越快,故每件衬衫应降元.答:每件衬衫应降价元.设商场平均每天赢利元,则.∴当时,取最大值.答:每件衬衫降价元时,商场平均每天赢利最多.【考点】二次函数的最值一元二次方程的应用【解析】此题属于经营问题,若设每件衬衫应降价元,则每件所得利润为元,但每天多售出件即售出件数为件,因此每天赢利为元,进而可根据题意列出方程求解.【解答】解:设每件衬衫应降价元,根据题意得,,整理得,,解得,,.因为要尽量减少库存,在获利相同的条件下,降价越多,销售越快,故每件衬衫应降元.答:每件衬衫应降价元.设商场平均每天赢利元,则.∴当时,取最大值.答:每件衬衫降价元时,商场平均每天赢利最多.15.【答案】=y 323x =1±22–√3=y 323x 131±22–√3(1)x (40−x)(20+2x)=12002−60x+400=0x 2=20x 1=10x 22020(2)y y =(20+2x)(40−x)=−2+60x+800x 2=−2(x−15+1250)2(0<x <20)x =15y 15x (40−x)2x (20+2x)(40−x)(20+2x)(1)x (40−x)(20+2x)=12002−60x+400=0x 2=20x 1=10x 22020(2)y y =(20+2x)(40−x)=−2+60x+800x 2=−2(x−15+1250)2(0<x <20)x =15y 15解:过作于,∵抛物线=的对称轴为=,为等边三角形,且轴,∴=,=,∵当=时,=,∴,∴=,∴.【考点】二次函数的性质等边三角形的性质【解析】根据抛物线解析式求出对称轴为=,再根据抛物线的对称性求出的长度,然后根据=列方程求解即可.【解答】解:过作于,∵抛物线=的对称轴为=,为等边三角形,且轴,∴=,=,∵当=时,=,∴,∴=,∴.C CD ⊥AB D y a(x−3+k )2x 3△ABC AB//x AD 3CD 33–√C(3,k)x 0y 9a +k A(0,9a +k)9a +k −k 33–√a =3–√3x 3AB CD 33–√C CD ⊥AB D y a(x−3+k )2x 3△ABC AB//x AD 3CD 33–√C(3,k)x 0y 9a +k A(0,9a +k)9a +k −k 33–√a =3–√316.【答案】解:把代入得:,根据,得到,即,解得:(不合题意,舍去)或,则抛物线解析式为.【考点】待定系数法求二次函数解析式【解析】把的值代入二次函数解析式,根据求出的值,即可确定出解析式.【解答】解:把代入得:,根据,得到,即,解得:(不合题意,舍去)或,则抛物线解析式为.a =12y =(x−h 12)2OA =OC =h 12h 2h(h−2)=0h =0h =2y =(x−2=−2x+212)212x 2a OA =OC h a =12y =(x−h 12)2OA =OC =h 12h 2h(h−2)=0h =0h =2y =(x−2=−2x+212)212x 2。
2022-2023学年新人教版九年级上数学同步练习(含解析)

2022-2023学年初中九年级上数学同步练习学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:27 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 4 小题 ,每题 3 分 ,共计12分 )1. 已知,,是抛物线上的三点,如果直线,被圆截得的两段弦长都等于,则直线的方程为( )A.B.C.D.2. 如果两圆的半径长分别为和,圆心距为,那么这两个圆的位置关系是( )A.内切B.外切C.相交D.外离3. 的半径是,点到直线的距离为,则直线与的位置关系为( )A.相离B.相切C.相交D.内含4. 已知 的直径为,点到直线的距离为,则直线与 的位置关系是( )A.相交B.相切C.相离D.无法判断卷II (非选择题)A (2,2)BC =2px y 2AB AC +=3(x −2)2y 223–√BC 3x +6y +4=0x +2y +1=02x +6y +3=0x +3y +2=02cm 5cm 8cm ⊙O 6O a 5a ⊙O ⊙O 4O m 2m ⊙O二、 填空题 (本题共计 3 小题 ,每题 3 分 ,共计9分 )5. 如图,是的直径,弦,,,则阴影部分图形的面积为________.6. 如图,在中, ,是高,如果厘米,厘米, 厘米,那么点到直线的距离为________厘米.7. 如图所示,在平面直角坐标系中,半径为的的圆心的坐标为,将沿轴正方向平移,使与轴相切,则平移的距离为________.三、 解答题 (本题共计 2 小题 ,每题 3 分 ,共计6分 )8. 如图,是的直径,弦于点,过点的切线与直径的延长线相交于点,连接,,.(1)求证:是的切线;(2)求证:;AB ⊙O CD ⊥AB ∠CDB =30∘CD =23–√△ABC ∠ACB =90∘CD AB =5BC =3AC =4C AB xOy 2⊙P P (−3,0)⊙P x ⊙P y AB ⊙O CD ⊥AB M C AB P AD BD PD PD ⊙O △PDB ∼△PAD D =4,tan ∠BDC =1(3)若,求的半径.9. 如图,点是等边三角形外接圆的上一点(与点,不重合),交于点.(1)求证:是等边三角形;(2)求证:=;(3)如果=,=,求的长.PD =4,tan ∠BDC =12⊙O D ABC A C CE //AD BD E △CDE AD BE AD 2CD 4AC参考答案与试题解析2022-2023学年初中九年级上数学同步练习一、 选择题 (本题共计 4 小题 ,每题 3 分 ,共计12分 )1.【答案】A【考点】圆锥曲线的综合问题点到直线的距离公式【解析】此题暂无解析【解答】解:在抛物线上,故,即,抛物线方程为,设,,∴,∴直线的方程为:,即,设直线的方程为,即,依题意:圆心到直线的距离,解得,由得:,同理,∴,,故直线的方程为.故选.2.【答案】D【考点】圆与圆的位置关系A (2,2)=2px y 2=2p ×222p =1=2x y 2B (,)y 212y 1C (,)y 222y 2==k BC −y 1y 2(−)12y 21y 222+y 1y 2BC y −=(x −)y 12+y 1y 2y 2122x −(+)y +=0y 1y 2y 1y 2AB(AC):y −2=k (x −2)kx −y +2−2k =0(2,0)AB (AC)d ==1|2k −0+2−2k|+1k 2−−−−−√k =±3–√==k AB 2+2y 13–√=−2+y 123–√:=−2−y 223–√+=−4y 1y 2=−=y 1y 222()23–√283BC 3x +6y +4=0A【解析】先求两圆半径的和与差,再与圆心距进行比较,确定两圆的位置关系.【解答】解:因为,圆心距,根据圆心距大于两圆半径和时,两圆外离可知,两圆外离.故选.3.【答案】C【考点】直线与圆的位置关系【解析】用到的知识点有:若,则直线与圆相交;若=,则直线于圆相切;若,则直线与圆相离.【解答】根据点到直线的距离圆的半径,则直线和圆相交.4.【答案】B【考点】直线与圆的位置关系【解析】根据直线与圆的位置关系判定方法,假设圆心到直线的距离为d ,当d >r ,直线与圆相离,当d=r ,直线与圆相切,当d <r ,直线与圆相交。
2022-2023学年全国初中九年级上数学新人教版同步练习(含解析)

2022-2023学年全国九年级上数学同步练习考试总分:21 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 5 小题 ,每题 3 分 ,共计15分 )1. 下列说法中,正确的是( )A.不可能事件发生的概率为B.随机事件发生的概率为C.投掷一枚质地均匀的硬币次,正面朝上的次数一定为次D.概率很小的事件不可能发生2. 某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是( )A.B.C.D.3. 某人有把钥匙,其中有两把房门钥匙,但忘记了开房门的是哪两把,只好逐把试开,则此人在次内能开房门的概率是( )A.B.C.01210050116161412531−A 33A 35+⋅A 23A 12A 35⋅A 13A 22A 351−()353×()+××212D. 4. 利用计算机可以辅助数学学习.如图是小明利用几何画板软件,绘制的他家(点)到两个景点,的示意图,景点位于他家的东南(即南偏东)方向,景点位于他家的正南方向,并测得 , ,则景点位于景点的( )A.南偏东方向B.北偏东方向C.北偏东方向D.南偏东方向5. 如图,一次函数的图象分别与轴、轴交于,两点,过原点作垂直于直线交于点,过点作垂直于轴交轴于点,过点作垂直于直线交于点,过点作垂直于轴交轴于点,,依此规律作下去,则点的坐标是( )A.B.C.D.卷II (非选择题)二、 解答题 (本题共计 2 小题 ,每题 3 分 ,共计6分 )××()+××C 23()35225C 13()351()252A B C B 45∘C AB =6km 2–√AC =6(1+)km 3–√B C 30∘30∘60∘60∘y =x +4x y A B O OA 1AB AB A 1A 1A 1B 1x x B 1B 1B 1A 2AB AB A 2A 2A 2B 2x x B 2⋯A 5(−,)15414(,)15414(−,)7214(−,)318186. 复工复学后,为防控冠状病毒,学生进校园必须戴口罩,测体温.某校开通了两种不同类型的测温通道共三条.分别为:红外热成像测温(通道)和人工测温(通道和通道).在三条通道中,每位同学都可随机选择其中的一条通过,周五有甲、乙两位同学进校园.(1)求甲同学进校园时,从人工测温通道通过的概率;(2)请用列表或画树状图的方法求甲、乙两位同学从不同类型测温通道通过的概率.7. 我校开展“厉行勤俭节约,反对铺张浪费”主题活动,为了此次主题活动,九年级学生会成员在全校范围内随机抽取了若干名学生就某日午饭浪费饭菜情况进行了调查,将调查内容分为四组:.饭和菜全部吃完;.有剩饭但菜吃完;.饭吃完但菜有剩;.饭和菜都有剩.根据调查结果,绘制了如图所示两幅尚不完整的统计图.回答下列问题:这次被抽查的学生共有________人,扇形统计图中,“组”所对圆心角的度数为________.补全条形统计图;我校共有学生人,请估计这日午饭有剩饭的学生人数;若有剩饭的学生按平均每人剩米饭计算,这日午饭将浪费多少千克米饭?A B C A B C D (1)B (2)(3)160020g参考答案与试题解析2022-2023学年全国九年级上数学同步练习一、 选择题 (本题共计 5 小题 ,每题 3 分 ,共计15分 )1.【答案】A【考点】概率的意义随机事件不可能事件【解析】根据概率的意义和必然发生的事件的概率、不可能发生事件的概率对、、进行判定;根据频率与概率的区别对进行判定.【解答】解:,不可能事件发生的概率为,所以选项正确;,随机事件发生的概率在与之间,所以选项错误;,概率很小的事件不是不可能发生,而是发生的机会较小,所以选项错误;,投掷一枚质地均匀的硬币次,正面朝上的次数可能为次,所以选项错误.故选.2.【答案】C【考点】列表法与树状图法【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案.【解答】P(A)=1P(A)=0A B C D A 0A B 01B C C D 10050D A解:画树状图如下:由树状图可知,共有种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有种等可能结果,所以佳佳和琪琪恰好从同一个入口进入该公园的概率为.故选.3.【答案】A【考点】n 次独立重复试验【解析】此题暂无解析【解答】略4.【答案】B【考点】方向角【解析】此题暂无解析【解答】解:如图,过作垂直于交与点,164=41614C B BD AC AC D Rt △ABD在中∵,∴∵,∴∴,即景点位于景点的北偏东方向,故选.5.【答案】D【考点】规律型:图形的变化类一次函数图象上点的坐标特点规律型:点的坐标规律型:数字的变化类【解析】此题暂无解析【解答】解:过点,,,,分别作,,,,垂足分别为点,,,,∵一次函数的图象分别与轴、轴交于,,∴,∵,∴,∴,∴四边形是正方形,同理可得,四边形和四边形也是正方形,∴,∴,∴,Rt △ABD AB =6km 2–√∠DAB =,45∘AD =DB =6km ,AC =6(1+)km 3–√DC =6km ,3–√∠DCB =30∘B C 30∘B A 1A 2A 3⋯C ⊥BO A 1D ⊥A 2A 1B 1E ⊥A 3A 2B 2⋯C D E ⋯y =x +4x y A (−4,0)B (0,4)OA =OB =4O ⊥AB A 1∠OB =∠OBA =∠OAB =A 145∘OC =C =BC =OB =2A 112OC A 1B 1D A 2B 2B 1E A 3B 3B 2(−2,2)A 1D ===1A 2A 2B 212A 1B 1(−2−1,1)A 2−2−1−,)11∴,∴,即,∴.故选.二、 解答题 (本题共计 2 小题 ,每题 3 分 ,共计6分 )6.【答案】∵共有三个通道,分别是红外热成像测温(通道)和人工测温(通道和通道),∴从人工测温通道通过的概率是;根据题意画树状图如下:共有种等可能的情况数,其中甲,则甲、乙两位同学从不同类型测温通道通过的概率是.【考点】列表法与树状图法【解析】(1)直接根据概率公式求解即可;(2)根据题意画出树状图得出所有等情况数,找出符合条件的情况数,然后根据概率公式即可得出答案.【解答】∵共有三个通道,分别是红外热成像测温(通道)和人工测温(通道和通道),∴从人工测温通道通过的概率是;根据题意画树状图如下:共有种等可能的情况数,其中甲,(−2−1−,)A 31212⋯(−2−1−−−,)A 512141818(−−−−−,)A 521202−12−22−32−3(−,)A 531818D A B C 2A B C 2则甲、乙两位同学从不同类型测温通道通过的概率是.7.【答案】,组的人数为:(人),补全条形统计图如下:这日午饭有剩饭的学生人数为:(人),(克)(千克),答:这日午饭将浪费千克米饭.【考点】扇形统计图条形统计图用样本估计总体【解析】()用组人数除以它所占的百分比即可得到调查的总人数;求出组所占的百分比,再乘以即可得出“组”所对应的圆心角的度数;(2)用调查的总人数乘以组所占的百分比得出组的人数,进而补全条形统计图;(3)用总人数乘以午饭有剩饭的学生人数所占的百分比求出这日午饭有剩饭的学生人数,再乘以平均每人剩米饭的克数即可得出午饭浪费的总克数.【解答】解:这次被抽查的学生数是:(人),“组”所对应的圆心角的度数为故答案为:;;组的人数为: (人),补全条形统计图如下:12072∘(2)C 120×10%=12(3)1600×=48024+12120480×20=9600=9.69.61A B 360∘B C C (1)72÷60%=120B ×=360∘2412072∘12072∘(2)C 120×10%=12这日午饭有剩饭的学生人数为:(人),(克)(千克),答:这日午饭将浪费千克米饭.(3)1600×=48024+12120480×20=9600=9.69.6。
2022-2023学年全国初中九年级上数学新人教版同步练习(含解析)

2022-2023学年全国九年级上数学同步练习考试总分:21 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 3 小题 ,每题 3 分 ,共计9分 )1. 解方程的最佳方法应选择( )A.直接开平方法B.因式分解法C.配方法D.公式法2. 一元二次方程配方后可变形为( )A.B.C.D.3. 下列一元二次方程中,有两个不相等实数根的是( )A.B.C.D.卷II (非选择题)二、 填空题 (本题共计 3 小题 ,每题 3 分 ,共计9分 )4. 化简:________.7(8x +3)=6(8x +3)2−8x =1x 2(x −4=15)2(x +4=15)2(x −4=17)2(x +1=17)2+6x +9=0x 2=xx 2+3=2xx 2(x −1+1=0)2=(1−2–√)2−−−−−−−−√5. 某学校为了提高学生的安全意识,防止安全事故的发生,学校拟在未来的连续天中随机选择天进行紧急疏散演练,则选择的天中恰好仅有天连续的概率为________.6. 有一组数据:,,,,…,观察其规律,推断第个数据应是________.三、 解答题 (本题共计 1 小题 ,共计3分 )7. (3分) 甲、乙两人同时解方程组,甲解题看错了①中的,解得,乙解题时看错②中的,解得,试求原方程组的解.7332x 2x 24x 38x 416x 5n {mx +y =5①2x −ny =13②m x =72y =−2n {x =3y =−7参考答案与试题解析2022-2023学年全国九年级上数学同步练习一、 选择题 (本题共计 3 小题 ,每题 3 分 ,共计9分 )1.【答案】B【考点】解一元二次方程-因式分解法【解析】根据题目特点,可把看做一个整体,移项后,用因式分解法即可求解方程.【解答】解:根据一元二次方程的特点,选择因式分解法解方程.故选.2.【答案】C【考点】解一元二次方程-配方法【解析】两边配上一次项系数一半的平方可得.【解答】解:∵,∴,即,故选:.3.【答案】B【考点】18x +3B −8x =1x 2−8x +16=1+16x 2(x −4=17)2C根的判别式【解析】根据一元二次方程根的判别式判断即可.【解答】解:选项,,方程有两个相等实数根;选项,,,两个不相等实数根;选项,,,方程无实根;选项,,则方程无实根.故选.二、 填空题 (本题共计 3 小题 ,每题 3 分 ,共计9分 )4.【答案】【考点】平方根【解析】根据二次根式的性质解答.【解答】解:.故答案为:.5.【答案】【考点】A +6x +9=0x 2Δ=−4×9=36−36=062B =x x 2−x =0x 2Δ=(−1−4×1×0=1>0)2C +3=2x x 2−2x +3=0x 2Δ=(−2−4×1×3=−8<0)2D (x −1+1=0)2(x −1=−1)2B −12–√=−1(1−2–√)2−−−−−−−−√2–√−12–√古典概型及其概率计算公式【解析】此题暂无解析【解答】此题暂无解答6.【答案】【考点】多项式单项式【解析】根据各个单项式的变化规律解答即可.【解答】解:,,,,则个数据为:;故答案为:.三、 解答题 (本题共计 1 小题 ,共计3分 )7.【答案】解:已知甲看错,即当时,解得.又乙看错了,即当时,解得.当,时,代入方程组得:①,②,①②,解得.即.则原方程的解为.【考点】2n−1x nx =21−1x 12=x 222−1x 24=x 323−1x 38=x 424−1x 416=x 525−1x 5n 2n−1x n 2n−1x n m x =,y =−272n =3n x =3,y =−7m =4m =4n =34x +y =52x −3y =13×3+x =2y =−3{x =2y =−3方程的解【解析】本题主要考查对于解方程的运算能力.【解答】解:已知甲看错,即当时,解得.又乙看错了,即当时,解得.当,时,代入方程组得:①,②,①②,解得.即.则原方程的解为.m x =,y =−272n =3n x =3,y =−7m =4m =4n =34x +y =52x −3y =13×3+x =2y =−3{x =2y =−3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21. 3实际问题与一元二次方程(第一课时)
♦课下作业•拓展提高
1、一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共有( )人•
A. 12
B. 10
C. 9 D . 8
2、县化肥厂第一季度增产a吨化肥,以后每季度比上一季度增产x%,则第三季度化肥增产的吨数为( )
2 2 2 2
A. a(1 - x)
B. a(1 x%)
C. (1 x%)
D. a a(x%)
3、某化工厂今年一月份生产化工原料15万吨,通过优化管理,产量逐年上升,第一季度共生产化工原料60万吨,设二、三月份平均增长的百分率相同,均为X,则可列出方程为____________________________ .
4、甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,乙而后又将这手股票返卖给甲,但乙损失了10%, ?最后甲按乙卖给甲的价格的九折将这手股票卖出,在上述股票交易中,甲盈了 _________ 元.
5、某公司一月份营业额为10万元,第一季度总营业额为33.1万元,求该公司二、三月份营业额平均增长率是多少?
(分析:设该公司二、三月份营业额平均增长率为x,那么二月份的营业额就应该是10(1 • x),三月份的营业额应是2
10 (1 x).)
6、上海甲商场七月份利润为100万元,九月份的利润为121万元,乙商场七月份利润为200万元,九月份的利润为288万元, 那么哪个商场利润的月平均上升率较大?
7、某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出小分支。
8、参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有个队参加比赛。
•体验中考
1、某种品牌的手机经过四、五月份连续两次降价,每部售价由3200元降到了2500元.设平均每月降价的百分率为X,根据题意列
出的方程是___________________________ .(注意:要理解增长率或降低率问题中的数量关系.)
2、某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?。