2020年新人教版六年级数学思维训练题(有答案及解析)

合集下载

【小学数学】小学六年级数学思维训练题(含答案)

【小学数学】小学六年级数学思维训练题(含答案)

【小学数学】小学六年级数学思维训练题(含答案)思维训练题(含答案)1、两个相同的瓶子装满酒精溶液。

一个瓶中酒精与水的比2︰3;另一个瓶中酒精与水的比是3︰5;若把两瓶酒精溶液混合;混合后酒精与水的比是多少?分析与解答:因为两个瓶子相同;可以分别求出每个瓶中酒精占瓶子容积的几分之几;在求出混合后酒精和水各占容器容积的几分之几;即可求出混合后酒精与水的比。

2、某饮料店有一桶奶茶;上午售出其中的25%;下午售出30升;晚上售出剩下的10%;最后剩下的奶茶再减6升刚好半桶;问一桶奶茶共有多少升?【考点】L6:分数和百分数应用题【分析】设一桶奶茶共有a升;则晚上售出(a﹣25%a﹣30)×10%;此时剩下(a﹣25%a﹣30)×(1﹣10%);对应着50%a+6;列出方程求解.【解答】解:设一桶奶茶共有a升(a﹣25%a﹣30)×(1﹣10%)=50%a+6(0.75a﹣30)×0.9=0.5a+60.675a﹣27=0.5a+60.175a=333、学校里买来了5个保温瓶和10个茶杯;共用了90元钱。

每个保温瓶是每个茶杯价钱的4倍;每个保温瓶和每个茶杯各多少元?分析与解:根据每个保温瓶的价钱是每个茶杯的4倍;可把5个保温瓶的价钱转化为20个茶杯的价钱。

这样就可把5个保温瓶和10个茶杯共用的90元钱;看作30个茶杯共用的钱数。

解:每个茶杯的价钱:=3(元)90÷(4×5+10)每个保温瓶的价钱3×4=12(元)答:每个保温瓶12元;每个茶杯3元。

4、某工地运进一批沙子和水泥;运进沙子袋数是水泥的2倍。

每天用去30袋水泥;40袋沙子;几天以后;水泥全部用完;而沙子还剩120袋;这批沙子和水泥各多少袋?分析与解:由己知条件可知道;每天用去30袋水混;同时用去30×2袋沙子才能同时用完。

但现在每天只用去40袋沙子;少用(30×2-40)袋;这样オ累计出120袋沙子。

六年级思维测试题及答案

六年级思维测试题及答案

六年级思维测试题及答案1. 逻辑推理题小明、小华和小刚是三个好朋友,他们分别在三个不同的班级:1班、2班和3班。

已知:- 小明不在2班;- 小华不在3班;- 1班的学生是小刚。

请判断小明和小华分别在哪个班级。

答案:小明在3班,小华在1班。

2. 数学应用题一个长方形的长是宽的两倍,如果长增加2米,宽增加1米,面积就增加了15平方米。

求原来长方形的长和宽。

答案:设原来长方形的宽为x米,则长为2x米。

根据题意,有方程:(2x+2)(x+1) - 2x*x = 15。

解得x=3,所以原来长方形的长为6米,宽为3米。

3. 语言理解题阅读以下句子:"他虽然很努力,但是成绩还是不理想。

" 请分析这句话表达的意思。

答案:这句话表达的意思是,尽管他付出了很多努力,但是他的学习成绩并没有达到预期的效果。

4. 科学常识题请列举至少三个地球自转产生的现象。

答案:1. 日夜交替;2. 时区差异;3. 季节变化。

5. 空间想象题一个立方体的每个面都涂上了不同的颜色,如果一个面是红色,相邻的两个面分别是蓝色和绿色,那么与红色面相对的面是什么颜色?答案:与红色面相对的面是黄色。

6. 数列规律题观察下列数列,找出规律并填出下一个数字:2, 4, 8, 16, 32, __。

答案:64。

这是一个等比数列,每个数字都是前一个数字的两倍。

7. 历史知识题请简述秦始皇统一六国的历史意义。

答案:秦始皇统一六国,结束了战国时期的分裂局面,实现了中国历史上的第一次大一统,奠定了中国统一多民族国家的基础,推动了社会经济的发展和文化的交流。

8. 英语翻译题翻译句子:“The early bird catches the worm.”答案:早起的鸟儿有虫吃。

9. 地理知识题请列举中国的四大高原。

答案:1. 青藏高原;2. 内蒙古高原;3. 黄土高原;4. 云贵高原。

10. 物理常识题为什么我们站在地面上,不会掉到地球的另一面?答案:因为地球的引力作用于我们的身体,使我们保持在地面上,而不是掉到地球的另一面。

2020年六年级下册数学思维培优训练及答案

2020年六年级下册数学思维培优训练及答案

2020年六年级下册数学思维培优训练及答案一、培优题易错题1.“△”表示一种新的运算符号,已知:2△3=2﹣3+4,7△2=7﹣8,3△5=3﹣4+5﹣6+7,…;按此规则,计算:(1)10△3=________.(2)若x△7=2003,则x=________.【答案】(1)11(2)2000【解析】【解答】(1)10△3=10-11+12=11;(2)∵x△7=2003,∴x-(x+1)+(x+2)-(x+3)+(x+4)-(x+5)+(x+6)=2003,解得x=2000.【分析】(1)首先弄清楚定义新运算的计算法则,从题目中给出的例子来看,第一个数表示从整数几开始,后面的数表示几个连续整数相加减,根据发现的运算规则,即可由10△3列出算式,再根据有理数加减法法则,即可算出答案;(2)根据定义新运算的计算方法,由x△7=2003,列出方程,求解即可。

2.列方程解应用题:(1)一个箱子,如果装橙子可以装18个,如果装梨可以装16个,现共有橙子、梨400个,而且装梨的箱子是装橙子箱子的2倍.请算一下,装橙子和装梨的箱子各多少个?(2)一群小孩分一堆苹果,每人3个多7个,每人4个少3个,求有几个小孩?几个苹果?(3)一架飞机在两城之间飞行,风速为24千米/时.顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机的速度和两城之间的航程.【答案】(1)解:设装橙子的箱子x个,则装梨的箱子2x个,依题意有18x+16×2x=400,解得x=8,2x=2×8=16.答:装橙子的箱子8个,则装梨的箱子16个(2)解:设有x个小孩,依题意得:3x+7=4x﹣3,解得x=10,则3x+7=37.答:有10个小孩,37个苹果(3)解:设无风时飞机的航速为x千米/小时.根据题意,列出方程得:(x+24)× =(x﹣24)×3,解这个方程,得x=840.航程为(x﹣24)×3=2448(千米).答:无风时飞机的航速为840千米/小时,两城之间的航程2448千米【解析】【分析】(1)根据梨和橙子与各自箱数分别相乘,相加为两者的总数,求出装梨和橙子的箱子数。

人教版六年级数学思维提升试卷及参考答案

人教版六年级数学思维提升试卷及参考答案

数学试题卷 第1页(共4页)六年级数学思维提升试卷(时间:80分钟,满分100分)一、填空题。

(第1-3题每小题3分,第4-7题每小题4分,第8-10题每小题5分,共40分)1. 把2017减去它的21,再减去余下的31,再减去余下的41,依此类推,一直减去余下的20161,那么最后剩下的数是( )。

2. 小丁、小钱、小王、小韩、小傅参加学校围棋比赛,而且都进入了前五名。

发奖前,老师让他们猜一猜各自的名次。

小丁说:小钱第三,小王第五;小钱说:小傅第四,小韩第五;小王说:小丁第一,小傅第四;小韩说:小王第一,小钱第二;小傅说:小丁第三,小韩第四。

老师说:每个名次都有人猜对。

那么,获第四名的是( )。

3. 甲、乙两位探险者要到沙漠深处探险,他们每天可走25千米,已知每人最多可带一个人20天的食物和水,如果允许将部分食物存放在途中,那么其中一个人最远可走入沙漠( )千米。

4. 有一些自然数按照右边规律排列,则上起第10行,左起第8列的数是 ( )。

5. 如下图,右面的4个图形,只有一个是左边的纸板折叠起来的,这个图形是( )。

6. 如图所示的四个圆形跑道,每个跑道长都是1千米。

甲、乙、丙、丁四人同时从交点O 出发,分别沿四个跑道跑步,他们的速度分别是每小时4千米,每小时6千米,每小时8千米,每小时10千米。

从出发到四人再次相遇,四人一共跑了( )千米。

7. 有黑色、白色、黄色、银色的筷子各8根,混杂放在一起,黑暗中想从这些筷子中取出颜色不同的三双筷子,至少要取出( )根才能保证达到要求。

8. 右图圆锥体底面半径为1.5厘米,AB 长为9厘米,一只甲壳虫从A 点出发绕圆锥表面爬一圈回到A 点,问最短路程是( )厘米。

9. 用面积为1、2、3、4的4张长方形纸片拼成如右图所示的长方形。

图中阴影部分的面积是 ( )。

10. 一批工人到甲乙两个工地进行清理工作。

甲工地的工作量是乙工地的工作量的211倍。

上午去甲工地的人数是去乙工地人数的3倍,下午这批工人中有125在乙工地工作,其他工人去甲工地。

小学数学六年级思维训练及答案

小学数学六年级思维训练及答案

小学数学六年级思维训练及答案一、选择题(每题1分)1. 225 ÷ 9 = ?A. 25B. 27C. 30D. 322. 5.7 × 10 = ?A. 57B. 570C. 5.07D. 0.573. 945 is a multiple of ______.A. 3B. 4C. 5D. 64. Which of the following is the prime number?A. 15B. 23C. 30D. 425. 3/4 + 2/3 = ?A. 1/6B. 5/12C. 7/12D. 11/12二、填空题(每题1分)1. 526 × 0 = ______.2. The perimeter of a square with each side measuring 4 cm is ______ cm.3. In a bag, there are 6 red marbles, 4 blue marbles, and 2 green marbles. If one marble is drawn at random, the probability of getting a red marble is ______.4. 2/5 ÷ 3/7 = ______.5. True or False: 62 is an even number.三、解答题(共30分)1. Calculate:(a) 3.4 + 2.9 = ______.(b) 6.8 - 3.2 = ______.(c) 4.5 × 2 = ______.(d) 12 ÷ 3 = ______.2. Simplify the following expression:2n - (3n + 4) + (5n - 1) = ______.3. A rectangular garden has a width of 6 meters and a perimeter of 30 meters. What is the length of the garden?4. Solve the equation:3(x + 4) = 21.5. Mr. Smith wants to buy 2 notebooks and 3 pencils. The cost of each notebook is $5.50, and each pencil costs $1.25. How much money does Mr. Smith need to buy all the notebooks and pencils?四、应用题(共20分)1. James has 28 apples. He wants to divide them equally among 7 friends. How many apples will each friend get?2. A box contains 35 chocolates. Each chocolate weighs 8 grams. What is the total weight of the chocolates in the box?3. A swimming pool is in the shape of a rectangle with a length of 15 meters and a width of 8 meters. The pool is 2 meters deep. What is the volume of the pool?4. Sarah went to the grocery store and bought 2.5 kg of apples, 1.8 kg of oranges, and 0.5 kg of grapes. How much fruit did she buy in total?5. The sum of two numbers is 68, and their difference is 12. Find the two numbers.答案:一、1. A 2. C 3. A 4. B 5. C二、1. 0 2. 16 3. 6/12 or 1/2 4. 2/3 5. False三、1. (a) 6.3 (b) 3.6 (c) 9 (d) 42. 2n + 113. 9 meters4. x = 35. $12.75四、1. Each friend will get 4 apples.2. The total weight of the chocolates is 280 grams.3. The volume of the pool is 240 cubic meters.4. She bought 4.8 kg of fruit in total.5. The two numbers are 40 and 28.。

六年级数学人教版思维训练题

六年级数学人教版思维训练题

从课本中延伸出来的分数应用题知识要点:分数应用题主要分为两类:1、基本数量关系与整数应用题大体相同,只是把整数应用题中的已知数换成分数,解答方法与整数应用题基本相同。

2、根据分数乘除法的意义而产生的具有独特解法的分数应用题,这就是我们通常说的分数应用题。

分数应用题有以下三种基本类型:(1)求一个数是另一个数的几分之几:一个数÷单位“1”=几几 (2)求一个数的几分之几是多少:单位“1”×几几= 是多少 (3)已知一个数的几分之几是多少,求这个数(单位“1”):是多少÷几几= 单位“1” 在解分数应用题时,分析题中数量之间的关系,准确找出“量”与“率”之间的对应关系,是解题的关键。

例题剖析:例1、运一堆煤,上午拉了52,下午拉了2052吨,正好还剩一半。

如果每吨运费5元,运完这堆煤,共需付运费多少元?例2、小红看一本120页的故事书,第一天看全书的31,第二天看了剩下的21,第三天应从第几页开始看?例3、一本书,第一天看了它的31,第二天看了剩下的21,还剩20页没看,这本书共有多少页?例4、一根水泥桩露出水面2米,在泥中的占全长的52,水中的比泥中的多1米。

这根桩全长多少米?例5、甲、乙两个修路队合修一条公路,甲队先修了全长的53多400米,乙队接着修的长度为甲的一半,正好修完。

这条路全长多少米?例6、某水果店运进水果3000千克,其中苹果和梨占52,已知苹果比梨多52,苹果和梨各有多少千克?例7、一根竹竿插入河中,水中部分占全长的31,比泥中部分多31,露出水面的长3米,这根竹竿全长多少米?例8、学校买来一批作文本,分给三个班,甲班分全部的5021,乙班分到甲班的75,丙班比乙班少20本。

甲班分到多少本?巩固练习:(1)一人从东村步行到西村,走了路长的52后,离中点还有141千米。

东西两村之间路长多少千米?(2)食堂运来2吨煤,第一天用去41,第二天用去剩下的51,还剩多少吨?(3)两列火车同时从A 、B 两地相对开出,已知快车每小时行60千米,是慢车速度的121倍。

2020年六年级下册数学思维培优训练及答案

2020年六年级下册数学思维培优训练及答案

2020年六年级下册数学思维培优训练及答案一、培优题易错题1.对于实数a、b,定义运算:a▲b= ;如:2▲3=2﹣3= ,4▲2=42=16.照此定义的运算方式计算[2▲(﹣4)]×[(﹣4)▲(﹣2)]=________.【答案】1【解析】【解答】解:根据题意得:2▲(﹣4)=2﹣4= ,(﹣4)▲(﹣2)=(﹣4)2=16,则[2▲(﹣4)]×[(﹣4)▲(﹣2)]= ×16=1,故答案为:1【分析】先利用定义计算括号中的值,再进行计算即可.在利用新运算的时候需要先判断两个数的大小关系,根据其选择算式.2.小李到某城市行政中心大楼办事,假定乘电梯向上一楼记为+1,向下一楼记为–1.小李从1楼出发,电梯上下楼层依次记录如下(单位:层):+5,–3,+10,–8,+12,–6,–10.(1)请你通过计算说明小李最后是否回到出发点1楼;(2)该中心大楼每层高2.8m,电梯每上或下1m需要耗电0.1度.根据小李现在所处的位置,请你算一算,当他办事时电梯需要耗电多少度?【答案】(1)解:(+5)+(–3)+(+10)+(–8)+(+12)+(–6)+(–10)=0所以小李最后回到出发点1楼.(2)解:54×2.8×0.1=15.12(度)所以小李办事时电梯需要耗电15.12度.【解析】【分析】(1)根据有理数的加法列出算式并进行计算即可得出结果;(2)利用所给数据的绝对值的和计算总的层数,然后根据每层高2.8m,电梯每上或下1m 需要耗电0.1度利用乘法可得结果.3.下列图表是2017 年某校从参加中考体育测试的九年级学生中随机调查的10 名男生跑1000 米和 10 名女生跑 800米的成绩.(1)按规定,女生跑 800 米的时间不超过 3'24"就可以得满分.该校九年级学生有 490 人,男生比女生少 70 人.请你根据上面成绩,估计该校女生中有多少人该项测试成绩得满分? (2)假如男生 1 号和男生 10 号被分在同组测试,请分析他俩在 400 米的环形跑道测试的过程中能否相遇。

六年级数学思维题15题及详细答案

六年级数学思维题15题及详细答案

六年级数学思维题15题及详细答案1. 问题:速度问题一个人骑车行驶,平均速度是20公里/小时。

如果他行驶了2.5小时,那他总共行驶了多远?答案:行驶的距离= 速度×时间= 20km/h ×2.5h = 50公里。

2. 问题:找规律1,3,6,10,15, _____ , 下一个数是多少?答案:下一个数是21,因为这个数列的规律是前一项加当前项的顺序值,如1+2=3,3+3=6,6+4=10,10+5=15。

3. 问题:几何题一个正三角形的所有边都是6厘米,那么它的周长是多少?答案:周长= 边长×3 = 6cm ×3 = 18厘米。

4. 问题:时间计算从早上7:35到下午3:20,过去了多少分钟?答案:具体时间段= 下午3:20 -早上7:35 = 7小时和45分钟= 465分钟。

5. 问题:容积计算一个长方体的长是5米,宽是4米,高是3米,计算它的体积。

答案:体积= 长×宽×高= 5m ×4m ×3m = 60立方米。

6. 问题:找不同下列数列中哪个数字不符合规律:2,4,7,9,11,13。

答案:7,因为其他数都是偶数。

7. 问题:平均值计算5个学生的年龄分别是10、11、12、10和11岁,求这个群体的平均年龄。

答案:平均年龄= (10 + 11+ 12 + 10 + 11) ÷5 = 54 ÷5 = 10.8岁。

8. 问题:百分比计算在一次测验中,一名学生答对了18题,总共有20题。

这名学生的正确率是多少?答案:正确率= 答对的题目数÷总题目数×100% = 18 ÷20 ×100% = 90%.9. 问题:比例计算一场电影的时长为120分钟,现希望将其压缩为原来的一半,压缩后的电影时长是多久?答案:压缩后的电影时长= 120分钟×0.5 = 60分钟。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、兴趣篇1.甲、乙两队进行象棋对抗赛,甲队的三人是张、王、李,乙队的三人是赵、钱、孙,按照以往的比赛成绩看,张能胜钱,钱能胜李,李能胜孙,但是第一轮的三场比赛他们都没有成为对手.请问:第一轮比赛的分别是谁对谁?2.甲、乙、丙、丁与小强五位同学一起比赛象棋,每两人都要比赛一盘.到现在为止,甲已经赛了4盘,乙赛了3盘,丙赛了2盘,丁赛了1 盘.问:小强已经赛了几盘?分别与谁赛过?3.甲、乙、丙三名选手参加马拉松比赛,起跑后甲处在第一的位置,在整个比赛过程中,甲的位置共发生了7次变化.比赛结束时甲是第几名?(注:整个比赛过程中没有出现三人跑在同一位置的情形.)4.有10名选手参加乒乓球单打比赛,每名选手都要和其它选手各赛一场,而且每场比赛都分出胜负,请问:(1)总共有多少场比赛?(2)这10名选手胜的场数能否全都相同?(3)这10名选手胜的场数能否两两不同?5.6支足球队进行单循环比赛,即每两队之间都比赛一场.每场比赛胜者得3分,负者得0分,平局各得1分,请问:(1)各队总分之和最多是多少分?最少是多少分?(2)如果在比赛中出现了6场平局,那么各队总分之和是多少?6.红、黄、蓝三支乒乓球队进行比赛,每队派出3名队员参赛.比赛规则如下:参赛的9名队员进行单循环赛决出名次,按照获胜场数进行排名,并按照排名获得一定的分数,第一名得9分,第二名得8分,…,第九名得1分;除产生个人名次外,每个队伍还会计算各自队员的得分总和,按团体总分的高低评出团体名次.最后,比赛结果没有并列名次.其中个人评比的情况是:第一名是一位黄队队员,第二名是一位蓝队队员,相邻的名次的队员都不在同一个队.团体评比的情况是:团体第一的是黄队,总分16分;第二名是红队,第三名是蓝队.请问:红队队员分别得了多少分?7.5支球队进行单循环赛,每两队之间比赛一场,每场比赛胜者得3分,负者得0分,打平则双方各得1分,最后5支球队的积分各不相同,第三名得了7分,并且和第一名打平.请问:这5支球队的得分,从高到低依次是多少?8.有A、B、C三支足球队,每两队比赛一场,比赛结果为:A:两胜,共失2球;B:进4球,失5球;C:有一场踢平,进2球,失8球.则A与B两队间的比分是多少?9.一次考试共有10道判断题,正确的画“√”,错误的画“×”,每道题10分,满分为100分.甲、乙、丙、丁4名同学的解答及甲、乙、丙3名同学得分如下表所示.丁应得分.题号学生1 2 3 4 5 6 7 8 9 1得分甲××√√××√×√√70 乙×√×√√××√√×70 丙√×××√√√×××60 丁×√×√√×√×√×10.赵、钱、孙、李、周5户人家,每户至少订了A、B、C、D、E这5种报纸中的一种.已知赵、钱、孙、李分别订了其中的2、2、4、3种报纸,而A、B、C、D这4种报纸在这5户人家中分别有1、2、2、2家订户.周姓订户订有这5种报纸中的几种?报纸E在这5户人家中有几家订户?二、拓展篇11.编号为1、2、3、4、5、6的同学进行围棋比赛,每2个人都要赛1盘.现在编号为1、2、3、4、5的同学已经赛过的盘数和他们的编号数相等.请问:编号为6的同学赛了几盘?12.五行(火水木金土)相生相克,其中每一个元素都生一个,克一个,被一个生和被一个克,水克火是我们熟悉的,有一个俗语叫做“兵来将挡,水来土掩”,是说土能克水.另外,水能生木,火能生土.请把五行的相生相克关系画出来.13.A、B、C、D、E、F六个国家的足球队进行单循环比赛(即每队都与其他队赛一场),每天同时在3个场地各进行一场比赛,已知第一天B对D,第二天C对E,第三天D对F,第四天B对C请问:第五天与A队比赛的是哪支队伍?14.A、B、C三个篮球队进行比赛,规定每天比赛一场,每场比赛结束后,第二天由胜队与另一队进行比赛,败队则休息一天,如此继续下去,最后结果是A队胜10场,B队胜12场,C队胜14场,则A队共打了几场比赛?15.甲、乙、丙、丁四名同学进行象棋比赛,每两人都比赛一场,规定胜者得2分,平局各得1分,输者得0分,请问:(1)一共有多少场比赛?(2)四个人最后得分的总和是多少?(3)如果最后结果甲得第一,乙、丙并列第二,丁是最后一名,那么乙得了多少分?16.五支足球队进行循环赛,即每两个队之间都要赛一场,每场比赛胜者得2分,输者得0分,平局两队各得1分.比赛结果各队得分互不相同.已知:①第一名的队没有平过;②第二名的队没有输过;③第四名的队没有胜过,问:第一名至第五名各得多少分?全部比赛共打平过几场?17.4支足球队进行单循环比赛,即每两队之间都比赛一场.每场比赛胜者得3分,负者得0 分,平局各得1分.比赛结果,各队的总得分恰好是4个连续的自然数.问:输给第一名的队的总分是多少?18.甲、乙、丙、丁、戊五个同学的各科考试成绩如表,已知:①每门功课五个人的分数恰巧分别为l、2、3、4、5;②五个人的总分互不相同,且从高到低的顺序排列是:甲、乙、丙、丁、戊;③丙有四门功课的分数相同.请你把表格补充完整.语文数学英语音乐美术总分田24 乙丙丁 4戊 3 519.一次足球赛,有A、B、C、D四个队参加,每两队都赛一场,按规则,胜一场得2分,平一场得1分,负一场得0分.比赛结束后,B队得5分,A队得1分.所有场次共进了9个球,B队进球最多,共进了4个球,C队共失了3个球,D队1个球也未进,A队与C队的比赛比分是2:3.问:A队与B队的比赛比分是多少?2020、B、C、D四个足球队进行循环比赛.赛了若干场后,A、B、C三队的比赛情况如表:问:D赛了几场?D赛的几场的比分各是多少?场数胜平负进球失球A 3 2 10 2 0B 2 1 10 4 3C 2 002 3 6D21.九个外表完全相同的小球,重量分别是1,2,…,9.为了加以区分,它们都被贴上了数字标签,可是有一天,不知被哪个调皮鬼重新乱贴了一通.我们用天平做了两次称量,得到如下结果:(1)①②>③④⑤⑥⑦;(2)③⑧=⑦,请问:⑨号小球的重量是多少?22.A、B、C、D、E五位同学分别从不同的途径打听到五年级数学竞赛获得第一名的那位同学的情况:A打听到的:姓李,是女同学,13岁,东城区;B打听到的:姓张,是男同学,11岁,海淀区;C打听到的:姓陈,是女同学,13岁,东城区;D打听到的:姓黄,是男同学,11岁,西城区;E打听到的:姓张,是男同学,12岁,东城区.’实际上第一名同学的情况在上面都出现过,而且这五位同学的消息都仅有一项正确,那么第一名的同学应该是哪个区的,今年多少岁呢?三、超越篇23.在一次射击练习中,甲、乙、丙三位战士打了四发子弹,全部中靶,其中命中情况如下:(1)每人四发子弹命中的环数各不相同;(2)每人四发子弹命中的总环数均为17环;(3)乙有两发命中的环数分别与甲其中两发一样,乙另外两发命中的环数与丙其中两发一样;(4)甲与丙只有一发环数相同;(5)每人每发子弹的最好成绩不超过7环.问:甲与丙命中的相同环数是几?24.一次象棋比赛共有10位选手参加,他们分别来自甲、乙、丙3个队.每人都与其余9人比赛一盘,每盘胜者得1分,负者得0分,平局各得0.5分.结果乙队平均得分为3.6分,丙队平均得分为9分,那么甲队平均得多少分?25.A、B、C、D、E这5支足球队进行循环赛,每两队之间比赛一场.每场比赛胜者得3分,负者得0分,打平则双方各得1分,最后5支球队的积分各不相同,从高到低依次为D、A、E、B、C又已知5支球队当中只有A没输过,只有C没赢过,而且B 战胜了E.请问:战胜过C的球队有哪些?26.10名选手参加象棋比赛,每两名选手间都要比赛一次,已知胜一场得2分,平一场得1分,负一场不得分.比赛结果:选手们所得分数各不相同,前两名选手都没输过,前两名的总分比第三名多2020第四名得分与后四名所得总分相等,问:前六名的分数各为多少?27.现有A、B、C共3支足球队举行单循环比赛,即每两队之间都要比赛一场.比赛积分的规定是胜一场积2分,平一场积1分,负一场积0分,表1是一张记有比赛详细情况表格,但是,经过核对,发现表中恰好有4个数字是错误的,请你把正确的结果填入表2中.表1场数胜负平进球失球积分A 22 0 1 0 2 3B 21103 6 2 C 12120 1 1 表2场数胜负平进球失球积分ABC28.9个小朋友从前到后站成一列.现在将红黄蓝三种颜色的帽子各三顶分别戴在这些小朋友的头上.每个小朋友都只能看到站在他前面的小朋友帽子的颜色.后来统计了一下,发现他们看到的红颜色帽子的总次数等于他们看到的黄颜色帽子的总次数,也等于他们看到的蓝颜色帽子的总次数.已知从前往后数第三个小朋友戴着红帽子,第六个小朋友戴着黄帽子,请问:最后一个小朋友戴着什么颜色的帽子?29.有A、B、C三支球队进行比赛,每一轮比赛三个队之间各赛一场.每队胜一场得2分,平一场得1分,负一场不得分.如果三支球队共比赛了7轮,最后A胜的场数最多,B输的场数最少,C的得分最高<这些都没有并列).请问:A得了多少分?30.阿奇和8个好朋友去李老师家玩,李老师给每人发了一顶帽子,并在每个人的帽子上写了一个两位数,这9个两位数互不相同,且每个小朋友只能看见别人帽子上的数.李老师在纸上写了一个自然数A,问这9位同学:“你们知道自己帽子上的数能否被A整除吗?知道的请举手,”结果有4人举手.李老师又问:“现在你们知道自己帽子上的数能否被24整除吗?知道的请举手.”结果有6人举手.已知阿奇两次都举手了,并且这9位同学都足够聪明且从不说谎.请问:除了阿奇之外的人帽子上8个两位数的总和是多少?参考答案与试题解析一、兴趣篇1.甲、乙两队进行象棋对抗赛,甲队的三人是张、王、李,乙队的三人是赵、钱、孙,按照以往的比赛成绩看,张能胜钱,钱能胜李,李能胜孙,但是第一轮的三场比赛他们都没有成为对手.请问:第一轮比赛的分别是谁对谁?【分析】张能胜钱,说明第一轮只会碰赵或者孙;钱能胜李,说明第一轮只会碰赵或者孙;钱能胜李,说明第一轮只会碰张,或者是王;而李能胜孙,说明第一轮只会碰赵或者钱;由于都没有碰到对手,说明钱只能对上王,遇张不行,故王与钱;而李由于只能碰赵或者钱,在钱有对手的情况下只能选赵,故李与赵,最后得出张与孙.【解答】解:根据上述分析可知:张能胜钱,说明第一轮只会碰赵或者孙;钱能胜李,说明第一轮只会碰张,或者是王;李能胜孙,说明第一轮只会碰赵或者钱综上所述:第一轮比赛是张与孙,王与钱,李与赵答:第一轮比赛是张与孙,王与钱,李与赵.2.甲、乙、丙、丁与小强五位同学一起比赛象棋,每两人都要比赛一盘.到现在为止,甲已经赛了4盘,乙赛了3盘,丙赛了2盘,丁赛了1 盘.问:小强已经赛了几盘?分别与谁赛过?【分析】这道题按照常规思路似乎不太好解决,我们画个图试试,用五个点分别表示参加比赛的五个人,如果某两人已经赛过,就用线段把代表这两个人的点连接起来,因为甲已经赛了4盘,除了甲以外还有4个点,所以甲与其他4个点都有线段相连(见下图),根据图即可做出解答.【解答】解:用五个点分别表示参加比赛的五个人,如果某两人已经赛过,就用线段把代表这两个人的点连接起来,因为甲已经赛了4盘,除了甲以外还有4个点,所以甲与其他4个点都有线段相连(见左下图),因为丁只赛了1盘,所以丁只与甲有线段相连,因为乙赛了3盘,除了丁以外,乙与其他三个点都有线段相连(见右上图),因为丙赛了2盘,右上图中丙已有两条线段相连,所以丙只与甲、乙赛过,由上页右图清楚地看出,小强赛过2盘,分别与甲、乙比赛,答:小强赛过2盘,分别与甲、乙比赛.3.甲、乙、丙三名选手参加马拉松比赛,起跑后甲处在第一的位置,在整个比赛过程中,甲的位置共发生了7次变化.比赛结束时甲是第几名?(注:整个比赛过程中没有出现三人跑在同一位置的情形.)【分析】据题意可知,甲原为第一名(奇数),第一次位置交换后,甲成了第二名(偶数);第二次位置交换后,甲不是第二名,成了第一名或第三名(奇数);第三次位置变化后,不管之前甲处于第一名还是第三名,这次甲肯定又成了第二名(偶数),…;所以可以知道,当甲交换了奇数次位置时,甲一定是第二名;偶数次时,甲一定不在第二名.【解答】解:据题意可知,当甲与共交换了奇数次位置时,甲一定是第二名;偶数次时,甲一定不在第二名.所以甲共交换了7次位置时,7是奇数,则甲一定是在第二名.答:比赛的结果甲是第二名.4.有10名选手参加乒乓球单打比赛,每名选手都要和其它选手各赛一场,而且每场比赛都分出胜负,请问:(1)总共有多少场比赛?(2)这10名选手胜的场数能否全都相同?(3)这10名选手胜的场数能否两两不同?【分析】(1)因为每一个选手都和其他选手进行一场比赛,属于单循环赛制中,参赛人数与比赛场数的关系为:比赛场数=×参赛人数×(人数﹣1),由此代入求得问题;【解答】解:(1)×10×(10﹣1)=45(场),答:一共要进行45场比赛.(2)45÷10=4(个)…5(场) (不相同,有余数.)答:这10名选手胜的场数不相同.(3)45可以分成1,2,3,4,5,6,7,8,9,0的数列(有五列,是整数,可以)答:这10名选手胜的场数可以两两不同.5.6支足球队进行单循环比赛,即每两队之间都比赛一场.每场比赛胜者得3分,负者得0分,平局各得1分,请问:(1)各队总分之和最多是多少分?最少是多少分?(2)如果在比赛中出现了6场平局,那么各队总分之和是多少?【分析】(1)6支足球队进行单循环比赛,即每两队之间都比赛一场,所以一个球队赛5场,加入五场全胜,则得分最多是:3×5=15分;有一个球队5场全负,得分最少是0分.(2)出现了6场平局,得12分,一共1赛15场,剩下9场就是输或者赢了,9×3=27分,那么总分就是:12+27=39分.【解答】解:(1)每支球队赛5场,全胜得分最多:5×3=15(分)最少得分就是全输得0分:答:各队总分之和最多是15分,最少是0分.(2)6×5÷2=15(场)6×2+(15﹣6)×3=12+27=39(分)答:那么各队总分之和是39分.6.红、黄、蓝三支乒乓球队进行比赛,每队派出3名队员参赛.比赛规则如下:参赛的9名队员进行单循环赛决出名次,按照获胜场数进行排名,并按照排名获得一定的分数,第一名得9分,第二名得8分,…,第九名得1分;除产生个人名次外,每个队伍还会计算各自队员的得分总和,按团体总分的高低评出团体名次.最后,比赛结果没有并列名次.其中个人评比的情况是:第一名是一位黄队队员,第二名是一位蓝队队员,相邻的名次的队员都不在同一个队.团体评比的情况是:团体第一的是黄队,总分16分;第二名是红队,第三名是蓝队.请问:红队队员分别得了多少分?【分析】首先总分是45分,黄队16分,红蓝共29分,又团队第一的是黄队且比赛结果没有并列名次,故只能是红队15分,蓝队14分.第一名是一位黄队队员有9分,第二名是一位蓝队队员有8分,即黄队另两名队员共有7分,蓝队另两名队员共有6分,又每名队员至少1分故第三名是一位红队队员有7分,即红队另两名队员共有8分..又相邻的名次的队员都不在同一个队故第四名的得6分的队员是黄队,此时黄队最后一名队员1分.故得5分的不是蓝队队员,不然蓝队又有一名队员1分矛盾.故得5分为红队队员,此时红队有一名是3分.故剩下的蓝队为4分和2分,刚好共6分.故得分情况如下:黄:9、6、1 蓝:8、4、2 红:7、5、3,据此解答即可.【解答】解:1.由于1到9名分数分别是9到1分,那么总共9人总分就是45分2.由于团队第一名16分,第二名只能是小于等于15,第三名小于等于14.而总分是45.所以第二,第三只能分别是15分,14分.(因为16+15+14=45,没有其他组合等于45分)因此第二名红对共得15分.3.由于单打前两名分别由黄队和蓝队的队员获得.因此红对个人得分最多的一个小于等于7分.又因为相邻名次没有同队的人员,所以红对的三人得分可能是7,5,3或者7,4,2等几种(没有列全).但是红队总分能达到15分的组合只有7+5+3=15.所以红对队员分别得了7,5,3分.答:红队队员分别得了7,5,3分.7.5支球队进行单循环赛,每两队之间比赛一场,每场比赛胜者得3分,负者得0分,打平则双方各得1分,最后5支球队的积分各不相同,第三名得了7分,并且和第一名打平.请问:这5支球队的得分,从高到低依次是多少?【分析】由于5支足球队进行单循环赛,每两队之间进行一场比赛,则每一队都要和其它四队赛一场,即每支球队进行了4场比赛,全胜得12分,第三名得了7分,并且和第一名打平得一分,那么另三场只能是两胜一负,因各队得分都不相同,第一名平一场,如平再负一场就和第三名得分一样,如果再平一场就得8分,这都不符合题意,所以剩下三场只能胜,积3×3+1=10分,也就是胜2、4、5名,第二名只能是三胜一负,积3×3+0=9分.也就是胜3、4、5名;第三名胜4、5,负2,平1;第四名为负1、2、3,第五名也负1、2、3又因各队比分不同则4胜5积3分,第五名全负,积0分.【解答】解:由题意可知,每支球队进行了4场比赛,第三名得了7分,并且和第一名打平,那么另三场只能是两胜一负;因各队得分都不相同,第一名平一场,另三场只能胜,积3×3+1=10分,也就是胜2、4、5名;第二名只能是三胜一负,积3×3+0=9分.也就是胜3、4、5;第三名胜4、5,负2,平1;第四名为负1、2、3,第五名也负1、2、3名;又因各队比分不同则4胜5积3分,则第五名全负,积0分;即:第一名:10分,第二名:9分,第三名:7分,第四名:3分,第五名:0分.答:第一名:10分,第二名:9分,第三名:7分,第四名:3分,第五名:0分.8.有A、B、C三支足球队,每两队比赛一场,比赛结果为:A:两胜,共失2球;B:进4球,失5球;C:有一场踢平,进2球,失8球.则A与B两队间的比分是多少?【分析】A两战两胜,C有一场平说明比赛胜负情况如下:A胜B A胜C B平C;而B C 的比分:0:0 这种情况不存在因为A共失球两个而B C共进球6个1:1 同上2:2 适合条件B另外两个球攻入A的球门3:3 不存在C共进球两个所以得出B:C 为2:2则C另外6个失球失给A,B剩下两个进球,3个失球是跟A比赛的时候故可得出结论:A胜B 3比2A胜C 6比0B平C 2比2【解答】解:总进球=总失球A进球+4+2=2+5+8A进球=9A全胜那么B与C打平又因为B比C多进2球那么B对A进的球比C对A进的球多2个又因为A只失2球那么B对A进2球C对A进0球那么B:C=2:2那么A:B=3;2答:A与B两队间的比分是3:2.9.一次考试共有10道判断题,正确的画“√”,错误的画“×”,每道题10分,满分为100分.甲、乙、丙、丁4名同学的解答及甲、乙、丙3名同学得分如下表所示.丁应得90分.题号学生1 2 3 4 5 6 7 8 9 1得分甲××√√××√×√√70 乙×√×√√××√√×70 丙√×××√√√×××60 丁×√×√√×√×√×【分析】观察甲与乙的答案可知,A、B有1、4、6、9这四道题答案相同,6道题答案不同.因为每人都是70分,所以4道答案相同的题都答对了,6道答案不同的题各对了3道;由此可知第1、4、6、9题的答案分别是×、√、×、√;又丙的1、4、6、9题的答案分别是√、×、√、×;所以丙的这四道题答错,又丙得60分,所以丙的其他题目全部答对,即2,3,5,7,8,10的答案分别是×,×、√、√、×、×.由此可知,这10道题的答案分别是:据此即能得出丁得多少分.【解答】解:由于A、B有1、4、6、9这四道题答案相同,6道题答案不同.且每人都是70分,所以4道答案相同的题都答对了,6道答案不同的题各对了3道;由此可知第1、4、6、9题的答案分别是×、√、×、√;由于丙的1、4、6、9题的答案分别是√、×、√、×;所以丙的这四道题答错,又丙得60分,所以丙的其他题目全部答对,即2,3,5,7,8,10的答案分别是×,×、√、√、×、×.这10道题的答案分别是:所以丁的只的2题,扣10分,得90分.故答案为:90.10.赵、钱、孙、李、周5户人家,每户至少订了A、B、C、D、E这5种报纸中的一种.已知赵、钱、孙、李分别订了其中的2、2、4、3种报纸,而A、B、C、D这4种报纸在这5户人家中分别有1、2、2、2家订户.周姓订户订有这5种报纸中的几种?报纸E在这5户人家中有几家订户?【分析】通过分析可知:赵钱孙李一共订了:2+2+4+3=11份A,B,C,D一共订了:1+2+2+2=7份根据题意,周至少订了1份5人一共最少订了11+1=12份那么订E的就有12﹣7=5户如果周订的不止1份,假设周至少订了2份那么5人订报总数至少为11+2=13份那么订E的至少有:13﹣7=6户,这与一共有5户矛盾所以周只能订1种,订E的有5户【解答】解:赵钱孙李订的份数:2+2+4+3=11份A,B,C,D订的份数:1+2+2+2=7份根据题意可知周至少订了1份所以5人一共最少订了11+1=12份那么订E的就有12﹣7=5户如果周订的不止1份,假设周至少订了2份那么5人订报总数至少为11+2=13份那么订E的至少有:13﹣7=6户,这与一共有5户矛盾所以周只能订1种,订E的有5户答:周姓订户订有这5种报纸中的1种,报纸E在这5户人家中有5家订户.二、拓展篇11.编号为1、2、3、4、5、6的同学进行围棋比赛,每2个人都要赛1盘.现在编号为1、2、3、4、5的同学已经赛过的盘数和他们的编号数相等.请问:编号为6的同学赛了几盘?【分析】从5号队员开始讨论,他和另外5个队员各赛了1场,由此得出1号只跟5号赛了1场,由此类推即可得出结果.【解答】解:因为是每2个人都要赛1盘,所以可以这样推理:①5号赛了5场,说明他与1,2,3,4,6,各赛了1场;②1号赛1场,那么1号只跟5号赛了1场;③4号赛了4场,除了跟5号赛1场,另外3场是跟2,3,6号;④那么2号此时分别和5号、4号已赛了2场;④3号赛了3场,除了和4号,5号之外,又和6号赛了1场.将上述推理过程用图表示为:答:此时6号已经赛了3场.12.五行(火水木金土)相生相克,其中每一个元素都生一个,克一个,被一个生和被一个克,水克火是我们熟悉的,有一个俗语叫做“兵来将挡,水来土掩”,是说土能克水.另外,水能生木,火能生土.请把五行的相生相克关系画出来.【分析】五行有‘五行相生’和‘五行相克’,‘五行相生’是互相生旺的意思,表示生成化育,‘五行相克’就是互相反驳、互相战斗、制衡.五行相生:水生木→木生火→火生土→土生金→金生水五行相克:木克土→土克水→水克火→火克金→金克木据此解答即可.【解答】解:根据五行相生:水生木→木生火→火生土→土生金→金生水五行相克:木克土→土克水→水克火→火克金→金克木得出图为:13.A、B、C、D、E、F六个国家的足球队进行单循环比赛(即每队都与其他队赛一场),每天同时在3个场地各进行一场比赛,已知第一天B对D,第二天C对E,第三天D 对F,第四天B对C请问:第五天与A队比赛的是哪支队伍?【分析】因“A、B、C、D、E、F六个国家的足球队单循环比赛(即每队都与其他队赛一场),每天同时在3个场地各进行一场比赛”,根据已经进行的比赛场次进行推理,据此解答即可.【解答】解:第二天A不能对B,否则A对B、D对F与第三天D对F矛盾,所以应当B对F、A对D.第三天A也不能对B,否则C对E与第二天C对E矛盾,应当B对E(不能B对C,与第四天矛盾),A对C.第四天B对C,D对E,A对F,所以第五天A对B.答:第五天与A队比赛的是B支队伍.14.A、B、C三个篮球队进行比赛,规定每天比赛一场,每场比赛结束后,第二天由胜队与另一队进行比赛,败队则休息一天,如此继续下去,最后结果是A队胜10场,B队胜12场,C队胜14场,则A队共打了几场比赛?【分析】根据题意,扣除A、B、C分别赢的场次,得出A、B、C各打了几场,即可得出A总共打了几场.。

相关文档
最新文档