颅内血肿磁共振信号变化(附图)

颅内血肿磁共振信号变化(附图)
颅内血肿磁共振信号变化(附图)

颅内血肿磁共振信号变化

脑出血后血肿的病理演变过程为:红细胞悬液-血液浓缩-血凝块形成和收缩-红细胞溶解-低蛋白血肿液。

血肿内血红蛋白的演变过程为:氧和血红蛋白(HB02)-脱氧血红蛋白(DHB)-高铁血红蛋白(MHB)-含铁血黄素(H-S),其中可出现互相重叠现象。

根据脑血肿的病理及血红蛋白变化规律,将脑血肿大致分为5个阶段:超急性期(<24小时),急性期(1-3天),亚急性早期(4-7天),亚急性晚期(8-14天)和慢性期(>2周)。

各期脑血肿的病理生化演变MR信号表现规律为:

①超急性期,血肿初为红细胞悬液,逐渐浓缩而凝聚,红细胞内同时含有HB02和DHB,但以DHB为多,T1加权像上呈等或略高信号,T2加权像呈高信号(血肿内主要为完整红细胞内的含氧血红蛋白(HBO2),HBO2基本上属于非顺磁性物质。该期血肿的信号主要由血红蛋白的浓度决定:出血初2~3h相当于全血,蛋白浓度较低,MRI表现为长T1和长T2信号;出血3~12h血浆渐吸收,蛋白浓度增高,产生短T1效应,MRI表现为略短T1长T2信号;出血12~24h,血浆进一步吸收,血肿的T1、T2值接近于正常脑组织,MRI可表现为等T1、等T2信号改变)

②急性期,血凝块形成和收缩,红细胞内DHB占大多数(72.9%),同时有少量MHB形成,T1加权像呈等或高信号,T2加权像呈低信号(或部分高信号)(血肿主要由完整细胞内脱氧血红蛋白(DHB)组成,DHB具有顺磁性,但不具有PEDD PRE效应,由于完整红细胞内DHB分布不均匀,可引起T2PRE效应,从而使T2缩短,这种效应与外加磁场的平方成正比,所以该期血肿在高场强MRI 中T2WI呈明显低信号,在低场强的MRI中可不呈低信号。由于氢质子密度、蛋白浓度及受损组织氧分压等因素影响,使低场强MRI中的脑血肿T2WI表现多样。)③亚急性早期,血凝块中有部分红细胞溶解,MHB含量增多,T1加权像呈等或高信号,T2加权像呈低信号或高信号。(出血第4~5天,血肿除完整红细胞内DHB外,还有一部分转化为完整红细胞内的正铁血红蛋白(MHB),由于MHB 在红细胞内分布不均匀,可同时产生PEDD PRE效应和T2 PRE效应,高场强MRI表现为短T1短T2信号,同样由于低场强MR T2PRE效应不明显,T2WI低信号可不明显。)

④亚急性晚期,大部分已溶血(红细胞破裂),MHB含量高达90%,T1和T2加权像均呈高信号。(第6~8天红细胞开始破坏、溶解,血肿内由游离未稀释的MHB组成,由于MHB分布均匀,T2PRE效应消失,MHB具有短T1长T2作用,故T1WI和T2WI均呈高信号,高信号由周边开始逐渐向中心发展,高信号充填血肿所需时间与血肿大小有关)

⑤慢性期,完全溶血,晚期形成低蛋白囊腔,并有吞噬H-S的吞噬细胞沉积在血肿壁上,T1和T2加权像均呈高信号,其周围见H-S低信号环影。(出血2周以上,红细胞均已溶解,由稀释的游离MHB组成,在所有序列均呈高信号,此期含铁血黄素出现沉积,再一次引起沉积处磁化率差异,使T2明显缩短,T2WI 上血肿与周围水肿间出现低信号环。这种作用同样受外磁场强度的影响,低场强MRI含铁血黄素的低信号环相对不明显。)

注:该期血肿周边水肿逐渐减轻。以后随着血肿的进一步发展,慢性血肿最终有

两种表现:①血肿中央的铁被吞噬细胞运走,只留下胆红素,血肿呈长T1长T2信号;②稀释游离的MHB被完全吸收,仅留下一个含铁血黄素衬边的残腔,T1WI 呈低信号,T2WI呈明显低信号,由于含铁血黄素具有T2PRE效应,使T2缩短,所以T2WI显示血肿残腔最清晰,范围也最大。低场强MR显示血肿残腔相对要小,且不甚清晰。

在临床研究中,通过对108例各期龄脑血肿MR信号特征的观察研究,结果表明,各期脑血磁共振成像(MRI)表现规律基本与本动物实验研究的结论相同,为临床上MRI脑血肿的分期诊断及指导治疗提供了坚实的理论基础。

脑出血在20ml以上时才出现以上典型的变化过程。由于MRI能显示具有流空效应的异常血管,如动脉瘤、血管畸形等,能显示含铁血黄素沉积,对了解出血的原因很有帮助。Gd-DTPA不能进入红细胞内,但可经破裂的血管漏出,也可通过不完整的血脑屏障进入红细胞外间隙,使血肿产生轻度强化,慢性血肿由于周围毛细血管增生,可产生环状强化,为新生血管的血管内增强。

结合文献和资料,将低强度MR对脑出血的诊断价值和限度归纳如下:①亚急性期和慢性期开始阶段脑出血,T1WI出现高信号,MRI具有特征性,可明确诊断;②由于MRI能显示具有流空效应的异常血管和含铁血黄素沉积,对了解出血的原因很有帮助;③可多方位成像,对血肿定位准确;④无骨质伪像,对近颅底脑组织出血能清晰显示;⑤超急性期和急性期出血在低场强MRI上缺乏特征性;

⑥成像速度慢。

第七节 磁共振信号的空间定位

第七节磁共振信号的空间定位 在前面的章节我们已经知道,对于二维MR成像来说,接收线圈采集的MR信号含有全层的信息,我们必须对MR信号进行空间定位编码,让采集到MR信号中带有空间定位信息,通过数学转换解码,就可以将MR信号分配到各个像素中。MR信号的空间定位包括层面和层厚的选择、频率编码、相位编码。MR信号的空间定位编码是由梯度场来完成的,我们将以头颅横断面为例介绍MR信号的空间定位。 一、层面的选择和层厚的决定 我们通过控制层面选择梯度场和射频脉冲来完成MR图像层面和层厚的选择。以1.5 T 磁共振仪为例,在1.5 T的场强下,质子的进动频率约为64MHZ。图15所示为人头正面像,我们将进行横断面扫描,要进行层面的选择,必须在上下方向(即Z轴方向)上施加一个梯度场,Z轴梯度线圈中点位置(G0)由于磁场强度仍为1.5 T,因而该水平质子的进动频率保持在64MHZ。从G0向头侧磁场强度逐渐降低,因而质子进动频率逐渐变慢,头顶部组织内质子的进动频率最低;从G0向足侧磁场强度逐渐增高,则质子进动频率逐渐加快,下颌部最高。单位长度内质子进动频率差别的大小与施加的梯度场强度有关,施加梯度场强越大,单位长度内质子进动频率的差别越大。如果我们施加的梯度场造成质子进动频率的差别为1MHZ/cm,而我们所用的射频脉冲的频率为63.5 64.5MHZ,那么被激发的层面的位置(层中心)就在Z轴梯度线圈中点(G0),层厚为1cm,即层厚范围包括了Z轴梯度线圈中点上下各0.5cm的范围(图15a)。 G0 c d 图15 层面和层厚选择示意图图中横实线表示层中心位置;两条虚横线之间距离表示层厚。图a示梯度场强造成的质子进动频率差别1 MHZ/cm,射频脉冲的频率范围为63.4-64.5 MHZ,则层中心在梯度场中点(G0),层厚1 cm;图b示梯度场保持不变,射频脉冲的频率范围为64.5-65.5 MHZ,则层厚保持1 cm,

机械工程测试技术第二章信号分析基础习题

第二章 信号分析基础 (一)填空题 1、 测试的基本任务是获取有用的信息,而信息总是蕴涵在某些物理量之中,并依靠它们来 传输的。这些物理量就是 ,其中目前应用最广泛的是电信号。 2、 信号的时域描述,以 为独立变量;而信号的频域描述,以 为独立变量。 3、 周期信号的频谱具有三个特 点: , , 。 4、 非周期信号包括 信号和 信号。 5、 描述随机信号的时域特征参数有 、 、 。 6、 对信号的双边谱而言,实频谱(幅频谱)总是 对称,虚频谱(相频谱)总是 对 称。 7、信号x(t)的均值μx 表示信号的 分量,方差2 x σ描述信号的 。 7、 当延时τ=0时,信号的自相关函数R x (0)= 均方值 ,且为R x (τ)的 最大 值。 9、 周期信号的自相关函数是 周期信号,但不具备原信号的 信息。 10、 为了识别信号类型,常用的信号分析方法有 概率密度函数 、和 自相关函数 。 11、为了获得测试信号的频谱,常用的信号分析方法有 傅立叶变换法 、 和 滤波器法 12、 设某一信号的自相关函数为)cos(ωτA ,则该信号的均方值为2 x ψ= ,均方根值为x rms = 。 (二)判断对错题(用√或×表示) 1、 各态历经随机过程一定是平稳随机过程。(√)p39-40 2、 信号的时域描述与频域描述包含相同的信息量。( √ ) 3、 非周期信号的频谱一定是连续的。( ×)(离散傅立叶变换) 4、 非周期信号幅频谱与周期信号幅值谱的量纲一样。(×) 5、 随机信号的频域描述为功率谱。(√) 6、 互相关函数是偶实函数。( × ) (三)单项选择题 1、下列信号中功率信号是( B )。 A.指数衰减信号 B.正弦信号、 C.三角脉冲信号 D.矩形脉冲信号 2、周期信号x(t) = sin(t/3)的周期为(B )。 A. 2π/3 B. 6π C. π/3 D. 2π

于博士信号完整性分析入门-初稿

于博士信号完整性分析入门 于争博士 https://www.360docs.net/doc/1712222366.html, 整理:runnphoenix

什么是信号完整性? 如果你发现,以前低速时代积累的设计经验现在似乎都不灵了,同样的设计,以前没问题,可是现在却无法工作,那么恭喜你,你碰到了硬件设计中最核心的问题:信号完整性。早一天遇到,对你来说是好事。 在过去的低速时代,电平跳变时信号上升时间较长,通常几个ns。器件间的互连线不至于影响电路的功能,没必要关心信号完整性问题。但在今天的高速时代,随着IC输出开关速度的提高,很多都在皮秒级,不管信号周期如何,几乎所有设计都遇到了信号完整性问题。另外,对低功耗追求使得内核电压越来越低,1.2v内核电压已经很常见了。因此系统能容忍的噪声余量越来越小,这也使得信号完整性问题更加突出。 广义上讲,信号完整性是指在电路设计中互连线引起的所有问题,它主要研究互连线的电气特性参数与数字信号的电压电流波形相互作用后,如何影响到产品性能的问题。主要表现在对时序的影响、信号振铃、信号反射、近端串扰、远端串扰、开关噪声、非单调性、地弹、电源反弹、衰减、容性负载、电磁辐射、电磁干扰等。 信号完整性问题的根源在于信号上升时间的减小。即使布线拓扑结构没有变化,如果采用了信号上升时间很小的IC芯片,现有设计也将处于临界状态或者停止工作。 下面谈谈几种常见的信号完整性问题。 反射: 图1显示了信号反射引起的波形畸变。看起来就像振铃,拿出你制作的电路板,测一测各种信号,比如时钟输出或是高速数据线输出,看看是不是存在这种波形。如果有,那么你该对信号完整性问题有个感性的认识了,对,这就是一种信号完整性问题。 很多硬件工程师都会在时钟输出信号上串接一个小电阻,至于为什么,他们中很多人都说不清楚,他们会说,很多成熟设计上都有,照着做的。或许你知道,可是确实很多人说不清这个小小电阻的作用,包括很多有了三四年经验的硬件工程师,很惊讶么?可这确实是事实,我碰到过很多。其实这个小电阻的作用就是为了解决信号反射问题。而且随着电阻的加大,振铃会消失,但你会发现信号上升沿不再那么陡峭了。这个解决方法叫阻抗匹配,奥,对了,一定要注意阻抗匹配,阻抗在信号完整性问题中占据着极其重要的

磁共振介绍

一、简介 磁共振扫描仪(MRI)是利用磁振造影的原理,将人体置于强大均匀的静磁场中,透过特定的无线电波脉冲来改变区域磁场,借此激发人体组织内的氢原子核产生共振现象,而发生磁矩变化讯号。因为身体中有不同的组织及成份,性质也各异,所以会产生大小不同的讯号,再经由计算机运算及变换为影像,将人体的剖面组织构造及病灶呈现为各种切面的断层影像。MRI的成像原理不同于X线检查及核医学检查,不依靠射线穿透人体成像,因而避免了射线辐射对人体的损害,属于无创性检查。 MRI的软组织分辨力高于CT,可以很好地区分脑的灰、白质,前列腺的外周带与中央带,子宫的内膜层与肌层等,并可使关节软骨、肌肉、韧带、椎间盘、半月板等直接显影。 MRI具有任意方位断层的能力,可在患者体位不变的情况下行横断位、矢状位、冠状位及任意角度断层扫描,无观察死角,显示病变全面、立体,可为诊断提供更多的信息。 MRI无需造影剂就可使心血管系统清楚显影,可与DSA(数字减影血管造影)媲美。免除了患者在插管和静脉注射造影剂时所承担的痛苦和危险。 MRI无骨性伪影,对于脑后颅窝的病变,CT常因有骨性伪影干扰而影响观察,MRI则无此忧虑,图像质量和对病变的诊断显著优于CT。 基于MRI的上述优点,MRI特别适合于中枢神经系统、心血管系统、关节软组织、盆腔脏器等病变的检查,对于头颈部、纵隔、腹腔实性脏器的检查也很优越。 磁共振成像MRI的 优点: 1、软组织分辨率高,明显优于CT。 2、成像参数多,图像变化多,提供信息量大。 3、可以多轴面直接成像,病变定位准确。 4、磁共振频谱(MRS)还可以反映组织的生化改变,弥散成像(Diffision)可反映 水分子布郎运动。 5、磁共振血管成像(MRA)可不用造影剂直接显示血管的影像,磁共振水成像(MRCP、 MRU、MRM)可不用造影剂显示胆管、输尿管、椎管。 6、可直接显示心肌和心腔各房室的情况。 7、颅底无骨伪影。 8、对人体无放射损伤。 缺点: 1.和CT一样,MRI也是影像诊断,很多病变单凭MRI仍难以确诊,不像内窥镜可同时获得影像和病理两方面的诊断; 2.对肺部的检查不优于X线或CT检查,对肝脏、胰腺、肾上腺、前列腺的检查不比CT优越,但费用要高昂得多; 3.对胃肠道的病变不如内窥镜检查; 4.体内留有金属物品者不宜接受MRI。 5. 危重病人不能做 6. 妊娠3个月内的 7. 带有心脏起搏器的

信号完整性分析基础系列之一——眼图测量

信号完整性分析基础系列之一 ——关于眼图测量(上) 汪进进美国力科公司深圳代表处 内容提要:本文将从作者习惯的无厘头漫话风格起篇,从四个方面介绍了眼图测量的相关知识:一、串行数据的背景知识; 二、眼图的基本概念; 三、眼图测量方法; 四、力科示波器在眼图测量方面的特点和优势。全分为上、下两篇。上篇包括一、二部分。下篇包括三、四部分。 您知道吗?眼图的历史可以追溯到大约47年前。在力科于2002年发明基 于连续比特位的方法来测量眼图之前,1962年-2002的40年间,眼图的测量是基 于采样示波器的传统方法。 您相信吗?在长期的培训和技术支持工作中,我们发现很少有工程师能完整地准确地理解眼图的测量原理。很多工程师们往往满足于各种标准权威机构提供的测量向导,Step by Step,满足于用“万能”的Sigtest软件测量出来的眼图给出的Pass or Fail结论。这种对于Sigtest的迷恋甚至使有些工程师忘记了眼图是 可以作为一项重要的调试工具的。 在我2004年来力科面试前,我也从来没有听说过眼图。那天面试时,老板反复强调力科在眼图测量方面的优势,但我不知所云。之后我Google“眼图”, 看到网络上有限的几篇文章,但仍不知所云。刚刚我再次Google“眼图”,仍然 没有找到哪怕一篇文章讲透了眼图测量。 网络上搜到的关于眼图的文字,出现频率最多的如下,表达得似乎非常地专业,但却在拒绝我们的阅读兴趣。 “在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰 对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元 定时同步时,适当调整相位,使波形的中心对准取样时刻,在示波器上显示的图形很象人的眼睛,因此被称为眼图(Eye Map)。 二进制信号传输时的眼图只有一只“眼睛”,当传输三元码时,会显示两 只“眼睛”。眼图是由各段码元波形叠加而成的,眼图中央的垂直线表示最佳抽样时刻,位于两峰值中间的水平线是判决门限电平。 在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。当有码

颅内血肿磁共振信号变化(附图)

颅内血肿磁共振信号变化 脑出血后血肿的病理演变过程为:红细胞悬液-血液浓缩-血凝块形成和收缩-红细胞溶解-低蛋白血肿液。 血肿内血红蛋白的演变过程为:氧和血红蛋白(HB02)-脱氧血红蛋白(DHB)-高铁血红蛋白(MHB)-含铁血黄素(H-S),其中可出现互相重叠现象。 根据脑血肿的病理及血红蛋白变化规律,将脑血肿大致分为5个阶段:超急性期(<24小时),急性期(1-3天),亚急性早期(4-7天),亚急性晚期(8-14天)和慢性期(>2周)。 各期脑血肿的病理生化演变MR信号表现规律为: ①超急性期,血肿初为红细胞悬液,逐渐浓缩而凝聚,红细胞内同时含有HB02和DHB,但以DHB为多,T1加权像上呈等或略高信号,T2加权像呈高信号(血肿内主要为完整红细胞内的含氧血红蛋白(HBO2),HBO2基本上属于非顺磁性物质。该期血肿的信号主要由血红蛋白的浓度决定:出血初2~3h相当于全血,蛋白浓度较低,MRI表现为长T1和长T2信号;出血3~12h血浆渐吸收,蛋白浓度增高,产生短T1效应,MRI表现为略短T1长T2信号;出血12~24h,血浆进一步吸收,血肿的T1、T2值接近于正常脑组织,MRI可表现为等T1、等T2信号改变) ②急性期,血凝块形成和收缩,红细胞内DHB占大多数(72.9%),同时有少量MHB形成,T1加权像呈等或高信号,T2加权像呈低信号(或部分高信号)(血肿主要由完整细胞内脱氧血红蛋白(DHB)组成,DHB具有顺磁性,但不具有PEDD PRE效应,由于完整红细胞内DHB分布不均匀,可引起T2PRE效应,从而使T2缩短,这种效应与外加磁场的平方成正比,所以该期血肿在高场强MRI 中T2WI呈明显低信号,在低场强的MRI中可不呈低信号。由于氢质子密度、蛋白浓度及受损组织氧分压等因素影响,使低场强MRI中的脑血肿T2WI表现多样。)③亚急性早期,血凝块中有部分红细胞溶解,MHB含量增多,T1加权像呈等或高信号,T2加权像呈低信号或高信号。(出血第4~5天,血肿除完整红细胞内DHB外,还有一部分转化为完整红细胞内的正铁血红蛋白(MHB),由于MHB 在红细胞内分布不均匀,可同时产生PEDD PRE效应和T2 PRE效应,高场强MRI表现为短T1短T2信号,同样由于低场强MR T2PRE效应不明显,T2WI低信号可不明显。) ④亚急性晚期,大部分已溶血(红细胞破裂),MHB含量高达90%,T1和T2加权像均呈高信号。(第6~8天红细胞开始破坏、溶解,血肿内由游离未稀释的MHB组成,由于MHB分布均匀,T2PRE效应消失,MHB具有短T1长T2作用,故T1WI和T2WI均呈高信号,高信号由周边开始逐渐向中心发展,高信号充填血肿所需时间与血肿大小有关) ⑤慢性期,完全溶血,晚期形成低蛋白囊腔,并有吞噬H-S的吞噬细胞沉积在血肿壁上,T1和T2加权像均呈高信号,其周围见H-S低信号环影。(出血2周以上,红细胞均已溶解,由稀释的游离MHB组成,在所有序列均呈高信号,此期含铁血黄素出现沉积,再一次引起沉积处磁化率差异,使T2明显缩短,T2WI 上血肿与周围水肿间出现低信号环。这种作用同样受外磁场强度的影响,低场强MRI含铁血黄素的低信号环相对不明显。) 注:该期血肿周边水肿逐渐减轻。以后随着血肿的进一步发展,慢性血肿最终有

于博士信号完整性分析入门(修改)

于博士信号完整性分析入门 于争 博士 https://www.360docs.net/doc/1712222366.html, for more information,please refer to https://www.360docs.net/doc/1712222366.html, 电设计网欢迎您

什么是信号完整性? 如果你发现,以前低速时代积累的设计经验现在似乎都不灵了,同样的设计,以前没问题,可是现在却无法工作,那么恭喜你,你碰到了硬件设计中最核心的问题:信号完整性。早一天遇到,对你来说是好事。 在过去的低速时代,电平跳变时信号上升时间较长,通常几个ns。器件间的互连线不至于影响电路的功能,没必要关心信号完整性问题。但在今天的高速时代,随着IC输出开关速度的提高,很多都在皮秒级,不管信号周期如何,几乎所有设计都遇到了信号完整性问题。另外,对低功耗追求使得内核电压越来越低,1.2v内核电压已经很常见了。因此系统能容忍的噪声余量越来越小,这也使得信号完整性问题更加突出。 广义上讲,信号完整性是指在电路设计中互连线引起的所有问题,它主要研究互连线的电气特性参数与数字信号的电压电流波形相互作用后,如何影响到产品性能的问题。主要表现在对时序的影响、信号振铃、信号反射、近端串扰、远端串扰、开关噪声、非单调性、地弹、电源反弹、衰减、容性负载、电磁辐射、电磁干扰等。 信号完整性问题的根源在于信号上升时间的减小。即使布线拓扑结构没有变化,如果采用了信号上升时间很小的IC芯片,现有设计也将处于临界状态或者停止工作。 下面谈谈几种常见的信号完整性问题。 反射: 图1显示了信号反射引起的波形畸变。看起来就像振铃,拿出你制作的电路板,测一测各种信号,比如时钟输出或是高速数据线输出,看看是不是存在这种波形。如果有,那么你该对信号完整性问题有个感性的认识了,对,这就是一种信号完整性问题。 很多硬件工程师都会在时钟输出信号上串接一个小电阻,至于为什么,他们中很多人都说不清楚,他们会说,很多成熟设计上都有,照着做的。或许你知道,可是确实很多人说不清这个小小电阻的作用,包括很多有了三四年经验的硬件工程师,很惊讶么?可这确实是事实,我碰到过很多。其实这个小电阻的作用就是为了解决信号反射问题。而且随着电阻的加大,振铃会消失,但你会发现信号上升沿不再那么陡峭了。这个解决方法叫阻抗匹配,奥,对了,一定要注意阻抗匹配,阻抗在信号完整性问题中占据着极其重要的

磁共振的基本原理

磁共振基本原理 磁共振成像的依据是与人体生理、生化有关的人体组织密度对核磁共振的反映不同。要理解这个问题,就必须知道核磁共振和核磁共振的特性。 一、核磁共振与核磁共振吸收的宏观描述 由力学中可知,发生共振的条件有二: 一是必须满足频率条件,二是要满足位相条件。 原子核是自旋的,它绕某个轴旋转(颇像个陀螺)。旋转时产生一定的微弱磁场和磁矩。将自旋的原子核放在一个均匀的静磁场中,受磁场作用,原子核的自旋轴会被强制定向,或与磁场方向相同,或与磁场方向相反。重新定向的过程中,原子核的自旋轴将类似旋转陀螺般的发生进动。不同类的原子核有不同的进动性质,这种性质就是旋转比(非零自旋的核具有特定的旋转比),用γ表示。进动的角频率ω一方面同旋转比有关;另一方面同静磁场的磁场强度 B 有关。其关系有拉莫尔(Larmor)公式(ω又称拉莫尔频率) : ω=γ·B (6-1) 静磁场中的原子核自旋时形成一定的微弱势能。当一个频率也为ω的交变电磁场作用到自旋的原子核时,自旋轴被强制倾倒,并带有较强的势能;当交变电磁场消除后,原子核的自旋轴将向原先的方向进动,并释放其势能。这种现象就是核磁共振现象(换言之,当电磁辐射的圆频率和外磁场满足拉莫尔公式时,原子核就对电磁辐射发生共振吸收),这一过程也称为弛豫过程,释放势能所产生的电压信号就是核磁共振信号.也被称为衰减信号(FID)。显然,核磁共振信号是一频率为ω的交变信号,其幅度随进动过程的减小而衰减。 图6-1表示几种原子核的共振频率与磁场强度的关系。这些频率是在电磁波谱的频带之内,这样的频率大大低于 X 线的频率,甚至低于可见光的频率。可见它是无能力破坏生物系统的分子的。在实际情况下,由于所研究的对象都是由大量原子核组成的组合体,因此在转入讨论大量原子核在磁场中的集体行为时,有必要引人一个反映系统磁化程度的物理量来描述核系统的宏观特性及其运动规律。这个物理量叫静磁化强度矢量,用 M表示。由大量原子核组成的系统,相当于一大堆小磁铁,在无外界磁场时,原子核磁矩μ的方向是随机的,系统的总磁矩矢量为 (6-2) 如果在系统的 Z 轴方向外加一个强静磁场B。,原子核磁矩受到外磁场的作用,在自身转动的同时又以 B。为轴进动,核磁矩取平行于 BO 的方向。按照波尔兹曼分布,在平衡状态下,处于不同能级的原子核数目不相等,使得原子核磁矩不能完全互相抵消,从而有 (6-3) 此时可以说系统被磁化了,可见 M 是量度原子核系统被磁化程度的量,是表示单位体积中全部原子核磁矩的矢量和。 图6-1几种原子核的共振频率与磁场强度的关系 1

信号完整性分析基础系列之二十四

信号完整性分析基础系列之二十四——关于抖动(上) 美国力科公司深圳代表处汪进进 写在前面的话 抖动话题是示波器测量的最高境界,也是最风云变换的一个话题,这是因为抖动是示波器测量的诸多功能中最和“数学”相关的。玩数学似乎是需要一定境界的。 “力科示波器是怎么测量抖动的?”,“这台示波器抖动测量准不准?”,“时钟抖动和数据抖动测量方法为什么不一样?”,“总体抖动和峰峰值抖动有什么区别? ”,“余辉方法测量抖动不是最方便吗?”,“抖动和眼图,浴盆曲线之间是什么?”,…… 关于抖动的问题层出不穷。这么多年来,在完成了“关于触发(上)、(下)”和“关于眼图(上)、(下)”,“关于S参数(上)(下)”等三篇拙作后,我一直希望有一篇“关于抖动”的文章问世,但每每下笔又忐忑而止,怕有谬误遗毒。今天,当我鼓起勇气来写关于抖动的时候,我需要特别说明,这是未定稿,恳请斧正。 抖动和波形余辉的关系 有一种比较传统的测量抖动的方法,就是利用余辉来查看信号边沿的变化,然后再用光标测量变化的大小(如图1所示),后来更进了一步,可以利用示波器的“余辉直方图”和相关参数自动测量出余辉的变化范围,这样测量的结果就被称为“抖动”。这个方法是在示波器还没有“测量统计”功能之前的方法,但在90年代初力科发明了测量统计功能之后,这个方法就逐渐被淘汰了。 图1 传统的抖动测量方法 这种传统的方法有下面这些缺点:(1)总会引入触发抖动,因此测量的结果很不准确。(2)只能测量某种参数的抖动,譬如触发上升沿,测量下降沿的余辉变化,反应了宽度的抖动,触发上升沿,测量相邻的上升沿的余辉变化,反应了周期的抖动。显然还有很多类型的抖动特别是最重要的TIE抖动无法测量出来。(3)抖动产生的因果关系的信息也无从得知。 定义抖动的四个维度 和抖动相关的名词非常多:时钟抖动,数据抖动; 周期抖动,TIE抖动,相位抖动,cycle-cycle抖动; 峰峰值抖动(pk-pk jitter),有效值抖动(rms jitter);总体抖动(Tj),随机抖动(Rj),固有抖动(Dj);周期性抖动,DCD抖动,ISI抖动,数据相关性抖动; 定时抖动,基于误码率的抖动; 水平线以上的抖动和水平线以下的抖动…… 这些名词反应了定义抖动的不同维度。 回到“什么是抖动”的定义吧。其实抖动的定义一直没有统一,这可能也是因为需要表达清楚这个概念的维度比较多的原因。目前引用得比较多的定义是: Jitter is defined as the short-term variations of a digital signal’s significant instants from their ideal positions in time. 就是说抖动是信号在电平转换时,其边沿与理想位置之间的偏移量。如图2所示,红色的是表示理想信号,实际信号的边沿和红色信号边沿之间的偏差就是抖动。什么是“理想位置”,“理想位置”是怎么得到的?这是被问到后最不好回答的问题。

MRI也就是核磁共振成像

MRI也就是核磁共振成像,英文全称是:nuclear magnetic resonance imaging,之所以后来不称为核磁共振而改称磁共振,是因为日本科学家提出其国家备受核武器伤害,为表示尊重,就把核字去掉了。 核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域,到1973年才将它用于医学临床检测。为了避免与核医学中放射成像混淆,把它称为核磁共振成像术(MR)。 MR是一种生物磁自旋成像技术,它是利用原子核自旋运动的特点,在外加磁场内,经射频脉冲激后产生信号,用探测器检测并输入计算机,经过处理转换在屏幕上显示图像。 MR提供的信息量不但大于医学影像学中的其他许多成像术,而且不同于已有的成像术,因此,它对疾病的诊断具有很大的潜在优越性。它可以直接作出横断面、矢状面、冠状面和各种斜面的体层图像,不会产生CT检测中的伪影;不需注射造影剂;无电离辐射,对机体没有不良影响。MR对检测脑内血肿、脑外血肿、脑肿瘤、颅内动脉瘤、动静脉血管畸形、脑缺血、椎管内肿瘤、脊髓空洞症和脊髓积水等颅脑常见疾病非常有效,同时对腰椎椎间盘后突、原发性肝癌等疾病的诊断也很有效。 MR也存在不足之处。它的空间分辨率不及CT,带有心脏起搏器的患者或有某些金属异物的部位不能作MR的检查,另外价格比较昂贵。 磁共振成像是断层成像的一种,它利用磁共振现象从人体中获得电磁信号,并重建出人体信息。1946年斯坦福大学的Flelix Bloch和哈佛大学的Edward Purcell各自独立的发现了核磁共振现象。磁共振成像技术正是基于这一物理现象。1972年Paul Lauterbur 发展了一套对核磁共振信号进行空间编码的方法,这种方法可以重建出人体图像。 磁共振成像技术与其它断层成像技术(如CT)有一些共同点,比如它们都可以显示某种物理量(如密度)在空间中的分布;同时也有它自身的特色,磁共振成像可以得到任何方向的断层图像,三维体图像,甚至可以得到空间-波谱分布的四维图像。

信号完整性分析基础之八——抖动的频域分析

在上两篇文章中,我们分别介绍了直方图(统计域分析)和抖动追踪(时域分析)在抖动分析中的应用。从抖动的直方图和抖动追踪波形上我们可以得到抖动的主要构成成分以及抖动参数的变化趋势。如需对抖动的构成做进一步的分析,还需要从频域角度去进一步分析抖动的跟踪波形。 抖动的频谱即是对抖动追踪(jitter track)波形做FFT运算。如下图1所示 为一个时钟周期测量参数的追踪、频谱分析步骤及效果,在抖动频谱图上可以清楚的看出某两个频率值点抖动比较大: 图1 抖动频谱 黄色为实际采集到的时钟波形(C1通道) P1测量C1通道时钟信号的时钟周期 F7函数对P1测量参数进行跟踪 F6对F7进行FFT分析 下图2所示为一典型的串行信号抖动追踪频谱图,从图中可看出各种抖动成分;DDj和Pj为窄带频谱(三角形谱或者谱线)但是DDj和Pj的区别是由于DDj是和码型相关的,其频率fDDJ一般会是数据位率的整数倍,如果Pj的频率fPJ正好等于fDDJ,那么从抖动的频谱图里面是很难将DDj和Pj精确的分开的,所以通常在抖动分解的过程中一般通过时域平均的方法来分解DDj;BUj主要由于串扰等因素引起的,一般分为两种,一种是窄带,但幅度较高,很显然这类BUJ也是很难和PJ区分开的,除非我们知道引起BUJ的源头,知道其频率,所以说我们在抖动测试时得到的PJ一般会包含这类BUJ(所以通常情况下对这类BUJ不加区分,直接算做PJ,而将BUJ分类为PJ和OBUJ,在之前的抖动分类文章中有提及);另外一类是宽带的BUJ(很多时候也叫OBUJ,other bounded uncorrelated jitter),幅度很小,基本会埋没到RJ中去,这类抖动很容易被误算作RJ,目前使用在示波器上的抖动分解软件只有Lecroy最近推出的SDAII(基于NQ-SCALE抖动分解理论)能够较好的将这类抖动从Rj中剥离出来;RJ是 宽带频谱,幅度很小。

随机信号分析基础作业题

第一章 1、有朋自远方来,她乘火车、轮船、汽车或飞机的概率分别是0.3,0.2,0.1和0.4。如果她乘火车、轮船或者汽车来,迟到的概率分别是0.25,0.4和0.1,但她乘飞机来则不会迟到。如果她迟到了,问她最可能搭乘的是哪种交通工具? 解:()0.3P A = ()0.2P B = ()0.1P C = ()0.4 P D = E -迟到,由已知可得 (|)0.25 (|)0.4 (|)0.1(|)0 P E A P E B P E C P E D ==== 全概率公式: ()()()()()P E P EA P EB P EC P ED =+++ 贝叶斯公式: ()(|)()0.075 (|)0.455()()0.165(|)()0.08 (|)0.485 ()0.165 (|)()0.01 (|)0.06 ()0.165(|)() (|)0 ()P EA P E A P A P A E P E P E P E B P B P B E P E P E C P C P C E P E P E D P D P D E P E ?= ===?===?===?== 综上:坐轮船 3、设随机变量X 服从瑞利分布,其概率密度函数为2 2 22,0 ()0,0X x x X x e x f x x σσ-??>=?? ,求期望()E X 和方差()D X 。 考察: 已知()x f x ,如何求()E X 和()D X ?

22 222 2()()()[()]()()()()()()()x x E X x f x dx D X E X m X m f x dx D X E X E X E X x f x dx ∞ -∞ ∞ -∞∞ -∞ =?=-=-=-?=???? 6、已知随机变量X 与Y ,有1,3,()4,()16,0.5XY EX EY D X D Y ρ=====,令 3,2,U X Y V X Y =+=-试求EU 、EV 、()D U 、()D V 和(,)Cov U V 。 考察随机变量函数的数字特征 思路: 协方差:(,)()()()Cov X Y E XY E X E Y =-? 相关系数: 22()()() ()()()2(,) XY E aX bY aE X bE Y D aX bY a D X b D Y abCov X Y ρ= +=++=++ ()6 ()5()76()52(,)40E U E V D U D V Cov U V ==-===- 11、设随机变量X 的均值为3,方差为2。令新的随机变量622Y X =-+,问:随机变量X 与Y 是否正交、不相关?为什么? 考察正交、不相关的概念 ()0 E XY =??≠? 0正交,非0不正交 XY ρ=?? ≠? 0不相关,非0相关 ()0E XY = 正交 (,)0Cov X Y ≠ 相关

信号完整性分析

信号完整性背景 信号完整性问题引起人们的注意,最早起源于一次奇怪的设计失败现象。当时,美国硅谷一家著名的影像探测系统制造商早在7 年前就已经成功设计、制造并上市的产品,却在最近从生产线下线的产品中出现了问题,新产品无法正常运行,这是个20MHz 的系统设计,似乎无须考虑高速设计方面的问题,更为让产品设计工程师们困惑的是新产品没有任何设计上的修改,甚至采用的元器件型号也与原始设计的要求一致,唯一的区别是 IC 制造技术的进步,新采购的电子元器件实现了小型化、快速化。新的器件工艺技术使得新生产的每一个芯片都成为高速器件,也正是这些高速器件应用中的信号完整性问题导致了系统的失败。随着集成电路(IC)开关速度的提高,信号的上升和下降时间迅速缩减,不管信号频率如何,系统都将成为高速系统并且会出现各种各样的信号完整性问题。在高速PCB 系统设计方面信号完整性问题主要体现为:工作频率的提高和信号上升/下降时间的缩短,会使系统的时序余量减小甚至出现时序方面的问题;传输线效应导致信号在传输过程中的噪声容限、单调性甚至逻辑错误;信号间的串扰随着信号沿的时间减少而加剧;以及当信号沿的时间接近0.5ns 及以下时,电源系统的稳定性下降和出现电磁干扰问题。

信号完整性含义 信号完整性(Signal Integrity)简称SI,指信号从驱动端沿传输线到达接收端后波形的完整程度。即信号在电路中以正确的时序和电压作出响应的能力。如果电路中信号能够以要求的时序、持续时间和电压幅度到达IC,则该电路具有较好的信号完整性。反之,当信号不能正常响应时,就出现了信号完整性问题。从广义上讲,信号完整性问题指的是在高速产品中由互连线引起的所有问题,主要表现为五个方面:

信号完整性分析基础系列之一__关于眼图测量(全)

信号完整性分析基础系列之一_——关于眼图测量(全) 您知道吗?眼图的历史可以追溯到大约47年前。在力科于2002年发明基于连续比特位的方法来测量眼图之前,1962年-2002的40年间,眼图的测量是基于采样示波器的传统方法。 您相信吗?在长期的培训和技术支持工作中,我们发现很少有工程师能完整地准确地理解眼图的测量原理。很多工程师们往往满足于各种标准权威机构提供的测量向导,Step by Step,满足于用“万能”的Sigtest软件测量出来的眼图给出的Pass or Fail结论。这种对于Sigtest 的迷恋甚至使有些工程师忘记了眼图是可以作为一项重要的调试工具的。 在我2004年来力科面试前,我也从来没有听说过眼图。那天面试时,老板反复强调力科在眼图测量方面的优势,但我不知所云。之后我Google“眼图”,看到网络上有限的几篇文章,但仍不知所云。刚刚我再次Google“眼图”,仍然没有找到哪怕一篇文章讲透了眼图测量。 网络上搜到的关于眼图的文字,出现频率最多的如下,表达得似乎非常地专业,但却在拒绝我们的阅读兴趣。 “在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,适当调整相位,使波形的中心对准取样时刻,在示波器上显示的图形很象人的眼睛,因此被称为眼图(Eye Map)。 二进制信号传输时的眼图只有一只“眼睛”,当传输三元码时,会显示两只“眼睛”。眼图是由各段码元波形叠加而成的,眼图中央的垂直线表示最佳抽样时刻,位于两峰值中间的水平线是判决门限电平。 在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。通常眼图可以用下图所示的图形来描述,由此图可以看出:(1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。显然,最佳抽样时刻应选在眼睛张开最大的时刻。 (2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。

信号完整性分析与测试

信号完整性分析与测试 信号完整性问题涉及的知识面比较广,我通过这个短期的学习,对信号完整性有了一个初步的认识,本文只是简单介绍和总结了几种常见现象,并对一些常用的测试手段做了相应总结。本文还有很多不足,欢迎各位帮助补充,谢谢! 梁全贵 2011年9月16日

目录 第1章什么是信号完整性------------------------------------------------------------------------------ 3第2章轨道塌陷 ----------------------------------------------------------------------------------------- 5第3章信号上升时间与带宽 --------------------------------------------------------------------------- 6第4章地弹----------------------------------------------------------------------------------------------- 8第5章阻抗与特性阻抗--------------------------------------------------------------------------------- 9 5.1 阻抗 ------------------------------------------------------------------------------------------ 9 5.2 特性阻抗------------------------------------------------------------------------------------- 9第6章反射----------------------------------------------------------------------------------------------11 6.1 反射的定义 ---------------------------------------------------------------------------------11 6.2 反射的测试方法--------------------------------------------------------------------------- 12 6.3 TDR曲线映射着传输线的各点 --------------------------------------------------------- 12 6.4 TDR探头选择 ----------------------------------------------------------------------------- 13 第7章振铃--------------------------------------------------------------------------------------------- 14 第8章串扰--------------------------------------------------------------------------------------------- 16 8.1 串扰的定义 -------------------------------------------------------------------------------- 16 8.2 观测串扰 ----------------------------------------------------------------------------------- 16 第9章信号质量 --------------------------------------------------------------------------------------- 18 9.1 常见的信号质量问题 --------------------------------------------------------------------- 18 第10章信号完整性测试 ----------------------------------------------------------------------------- 21 10.1 波形测试---------------------------------------------------------------------------------- 21 10.2 眼图测试---------------------------------------------------------------------------------- 21 10.3 抖动测试---------------------------------------------------------------------------------- 23 10.3.1 抖动的定义 ------------------------------------------------------------------------ 23 10.3.2 抖动的成因 ------------------------------------------------------------------------ 23 10.3.3 抖动测试 --------------------------------------------------------------------------- 23 10.3.4 典型的抖动测试工具: ---------------------------------------------------------- 24 10.4 TDR测试 --------------------------------------------------------------------------------- 24 10.5 频谱测试---------------------------------------------------------------------------------- 25 10.6 频域阻抗测试 ---------------------------------------------------------------------------- 25 10.7 误码测试---------------------------------------------------------------------------------- 25 10.8 示波器选择与使用要求: -------------------------------------------------------------- 26 10.9 探头选择与使用要求-------------------------------------------------------------------- 26 10.10 测试点的选择--------------------------------------------------------------------------- 27 10.11 数据、地址信号质量测试 ------------------------------------------------------------- 27 10.11.1 简述 ------------------------------------------------------------------------------- 27 10.11.2 测试方法-------------------------------------------------------------------------- 27

磁共振基础解读

第二章(物理学原理)第1-4节(物质基础-核磁弛豫) 地球表面带有电荷并自旋-------形成电流环路------产生感应磁场(地磁)。 磁性原子核特性:以一定的频率自旋,由于表面带有正电荷,即形成电流回路,从而产生磁化矢量。我们把这种带有正电荷的磁性原子核自旋产生的磁场称为(核磁)。 但并非所有原子核均能自旋而产生核磁,即并非所有的原子核都为磁性原子核,条件就是中子数和质子数至少有一项是奇数。 一般指的磁共振图像即为1H的磁共振图像。原因是氢质子1、在人体中的摩尔浓度最高,是人体中最多的原子核;2、磁化率最高; 3、存在于各种组织中,具有生物代表性。 但并非所有的氢质子都能产生MRI信号。常规MRI的信号主要来源于水分子中的氢质子(简称水质子),部分组织的信号也可来源于脂肪中的氢质子(简称脂质子)。 人体中的水分子可以分为自由水和结合水。所谓结合水是指蛋白质大分子周围水化层中的水分子,这些水分子粘附于蛋白质大分子部分基团上,与蛋白质大分子不同程度的结合在一起,因此被称为结合水,其自由运动将受到限制。自由水和结合水在人体组织中可以互换,处于动态平衡。由于化学位移效应,不同分子中的氢质子进动频率存在差别,蛋白质大分子中氢质子的进动频率大多偏离MRI的中心

频率(自由水的进动频率),一般情况下不能被射频脉冲激发,因此不能产生信号。由于自由运动受到限制,蛋白质和结合水的T2值都很短,一般<1ms,常规MRI采集回波信号至少需要数毫秒,还没有来得及采集回波信号,蛋白质和结合水的信号已经全部衰减。因此即便蛋白质和结合水中的氢质子被射频脉冲激发,也不能产生 MRI信号。因此,对于不含脂肪的组织,其MRI信号的直接来源就是自由水;结合水和蛋白质都不能直接产生信号,但结合水和蛋白质可以影响自由水的弛豫,也可通过磁化传递效应,最后也会影响到组织的信号强度。 进入主磁场后处于低能级的氢质子仅比处于高能级的氢质子多出数个ppm(百万分之一),而磁共振成像利用的就是多出来的这少部分氢质子,因此实际上磁共振信号是非常弱的。进入主磁场后低能级氢质子比高能级氢质子多出的量受到温度和主磁场强度的影响。当处于绝对温度时,所有质子的小核磁均与主磁场方向相同,随着温度的升高,处于低能级比处于高能级多出的氢质子将减少。对于人体组织来说,温度相对恒定,因此,处于低能级比高能级多出的氢质子的量主要受主磁场强度的影响,随着主磁场强度升高,多出的氢质子量将几乎成比例增加,磁共振成像时可以利用的有效氢质子就增多,磁共振信号将增高,这就是高场强磁共振图像信噪比之所以比较高的原因。

相关文档
最新文档