简化剩余系和欧拉函数共19页

合集下载

《初等数论(闵嗣鹤、严士健)》第三版习题解答

《初等数论(闵嗣鹤、严士健)》第三版习题解答

第一章 整数的可除性§1 整除的概念·带余除法 1.证明定理3定理3 若12n a a a ,,,都是m 得倍数,12n q q q ,,,是任意n 个整数,则1122n n q a q a q a +++是m 得倍数.证明:12,,n a a a 都是m 的倍数。

∴ 存在n 个整数12,,n p p p 使 1122,,,n n a p m a p m a p m ===又12,,,n q q q 是任意n 个整数1122n nq a q a q a ∴+++1122n n q p m q p m q p m =+++1122()n n p q q p q p m =+++即1122n n q a q a q a +++是m 的整数2.证明 3|(1)(21)n n n ++ 证明(1)(21)(1)(21)n n n n n n n ++=+++-(1)(2)(1)(1)n n n n n n =+++-+ 又(1)(2)n n n ++,(1)(2)n n n -+是连续的三个整数故3|(1)(2),3|(1)(1)n n n n n n ++-+3|(1)(2)(1)(1)n n n n n n ∴+++-+从而可知3|(1)(21)n n n ++3.若00ax by +是形如ax by +(x ,y 是任意整数,a ,b 是两不全为零的整数)的数中最小整数,则00()|()ax by ax by ++.证:,a b 不全为0∴在整数集合{}|,S ax by x y Z =+∈中存在正整数,因而有形如ax by +的最小整数00ax by +,x y Z ∀∈,由带余除法有0000(),0ax by ax by q r r ax by +=++≤<+则00()()r x x q a y y q b S =-+-∈,由00ax by +是S 中的最小整数知0r =00|ax by ax by ∴++00|ax by ax by ++ (,x y 为任意整数) 0000|,|ax by a ax by b ∴++ 00|(,).ax by a b ∴+ 又有(,)|a b a ,(,)|a b b00(,)|a b ax by ∴+ 故00(,)ax by a b +=4.若a ,b 是任意二整数,且0b ≠,证明:存在两个整数s ,t 使得||,||2b a bs t t =+≤成立,并且当b 是奇数时,s ,t 是唯一存在的.当b 是偶数时结果如何? 证:作序列33,,,,0,,,,2222b b b b b b ---则a 必在此序列的某两项之间即存在一个整数q ,使122q q b a b +≤<成立 ()i 当q 为偶数时,若0.b >则令,22q qs t a bs a b ==-=-,则有 02222b q q qa bs t ab a b b t ≤-==-=-<∴<若0b < 则令,22q qs t a bs a b =-=-=+,则同样有2b t <()ii 当q 为奇数时,若0b >则令11,22q q s t a bs a b ++==-=-,则有若 0b <,则令11,22q q s t a bs a b ++=-=-=+,则同样有2b t ≤,综上所述,存在性得证.下证唯一性当b 为奇数时,设11a bs t bs t =+=+则11()t t b s s b -=-> 而111,22b bt t t t t t b ≤≤∴-≤+≤ 矛盾 故11,s s t t == 当b 为偶数时,,s t 不唯一,举例如下:此时2b为整数 11312(),,22222b b b b b b b t t ⋅=⋅+=⋅+-=≤§2 最大公因数与辗转相除法 1.证明推论4.1推论4.1 a ,b 的公因数与(a ,b )的因数相同. 证:设d '是a ,b 的任一公因数,∴d '|a ,d '|b 由带余除法111222111111,,,,,0n n n n n n n n n n a bq r b r q r r r q r r r q r r r r b---++-=+=+=+==≤<<<<∴(,)n a b r =∴d '|1a bq -1r =, d '|122b r q r -=,┄, d '|21(,)n n n n r r q r a b --=+=,即d '是(,)a b 的因数。

数论线性同余方程,欧拉函数》

数论线性同余方程,欧拉函数》

欧拉定理与费马小定理
• 若(k,m)=1,则 k m 1modm 。
• 对于素数p和任意的整数a,有 a amod p
p
• 反过来若a和p满足上面的式子,则p几乎一 定是素数(可以用来做素数测试)。
其他公式
若p是一个质数,则:
0mod p (1 k p 1) C 1mod p (k 0或k p)
一元线性同余方程组 与中国剩余定理
问题: 如果m1、m2、…、mk两两互质这个条件不满 足,怎么办?
一元线性同余方程组 与中国剩余定理
如果已知一元线性同余方程组:
x a2 mod m2 ... x ak 1 mod mk 1 x a1 mod m1 x%m1 a1 x%m2 a2 ... x%mk 1 ak 1
商的模与乘法逆元
那么还剩下的问题就是(b,m)=m时的状况。 • 一种策略是想办法得到a和b包含的m因子的个数 ,当a和b都是一列数的连乘时,这个方法是可行 的:
– 首先对m做因式分解。设 若 ,则只需 s k e a ai m mi 要将每个ai包含的mi的因子个数累加一下,最后就能得 i 1 i 1 到a包含的m因子的个数了,并且还可以知道a除开这些 因子之外的部分累乘的积模m的结果。 – 于是当a包含的m的个数大于b时,(a/b)%m=0 – 否则他们包含的m因子的个数一定相等。可以设 b=b’*mk,a=a’*mk ,此时(a/b)%m=(a’/b’)%m,且 b’%m<>0,于是就可以用前几页的方法了。
回到了一元线性同余方程上面来了。 我们已经知道这个同余方程有解当且仅当 (b,m)|a成立,且当此成立时一定有无穷多个 以m/(b,m)为公差的解,且给出一个解就能够 得到所有的解,而要得到一个解只需要用扩 展欧几里德辗转相除法就行。

第二章--同余---第七节--简化剩余系(2)

第二章--同余---第七节--简化剩余系(2)

初 等 数 论 (16)(第二章 同余 第七节 简化剩余系(2))一、复习二、例题例2 什么样的正整数满足ϕ (2x ) = ϕ (3x )解 设x =2a 3b y ,其中ab 为非负整数,y |6/。

若b > 0,(a 、b 大于或等于0)则ϕ (2x ) =ϕ (2a +1) ϕ (3b ) ϕ (y ) =2a ×3b -1×(3-1)ϕ (y )ϕ (3x ) =ϕ (2a ) ϕ (3b +1) ϕ (y ) =2a -1×3b ×(3-1)ϕ (y )这时ϕ (2x )和ϕ (3x )不会相等。

所以在ϕ (2x ) =ϕ (3x )时,b = 0,x =2a y 。

这时,ϕ (2x ) =2a ×ϕ (y ),ϕ (3x ) =2×ϕ (2a )×ϕ (y )由ϕ (2x ) = ϕ (3x )得ϕ (2a ) =2a -1, (a > 0)故 x =2a y ,a 为正整数,y |6/。

例如 x = 215×35,则ϕ (2×215×35) =215×ϕ (35)ϕ (3×215×35) =(3 - 1)×214×ϕ (35)例3 证明:n n 41)(=ϕ不可能成立。

证明 若n n 41)(=ϕ,则n 4。

设 k p p p n αααα 21212=,其中p i 为奇质数,a ≥ 2,则k k p p p n αααα 21212241-=)1()1(2)(111211121--=----k k p p p p p n k ααααϕ,于是 )1()1)(1(22121---=k k p p p p p p上式右边为偶数,左边为奇数,矛盾。

故不存在n ,使得n n 41)(=ϕ。

例4 设m 与n 是正整数,证明:ϕ (mn )ϕ ((m ,n )) = (m ,n )ϕ (m )ϕ (n )。

完系、简系、剩余类(讲稿)

完系、简系、剩余类(讲稿)

完系、简系、剩余类定义1.剩余类:把关于模m同余的数归于一类,每类称为一个模m的剩余类. 即由关于模m同余的数组成的集合,每一个集合叫做关于模m的一个剩余类(又叫同余类).共有m个剩余类.设K r是余数为r的剩余类, 则K r={qm+r| m是模, r是余数, q∈Z}={a |a∈Z且a≡r(mod m)}.剩余类的性质:⑴Z=K0∪K1∪K2∪…∪K m−1,当i≠j时,K i∩K j=Ø;⑵对于∨−n∈Z,有唯一的r∈{0, 1, 2, …, m−1},使得n∈K r;⑶对∨−a, b∈Z,a, b∈K r ⇔a≡b (mod m)定义2.完系:设K0,K1,…,K m−1是模m的m个剩余类,从K r中各取一数a r 作为代表,则这样的m个数a0,a1,…,a m−1称为模m的一个完全剩余系,简称m的完系. 例如:1, 2, 3, …, m.若一组数y1, y2, …, y s满足:对任意整数a有且仅有一个y j,使得a≡y j (mod m),则y1, y2, …, y s是模m的完全剩余系.模m的完全剩余系有无穷多个,但最常用的是下面两个:①最小非负剩余系:0, 1, 2, 3, …, m−1;②最小绝对值剩余系:(随m的奇偶性略有区别) 当m=2k+1时,为−k, −k+1, …, −1, 0, 1, 2, …, k−1, k;当m=2k时,为−k+1, −k+2, …, −1, 0, 1, 2, …, k或−k, −k+1, …, −1, 0, 1, 2, …, k−2, k−1.例如,集合{0, 6, 7, 13, 24}是模5的一个完全剩余系,集合{0, 1, 2, 3, 4}是模5的最小非负完全剩余系.性质:(i) m个整数构成模m的一完全剩余系⇔两两对模m不同余;(ii) 若(a, m)=1,则x与ax+b同时跑遍模m的完全剩余系.完全剩余系的判断方法:定理1:a1, a2,…, a m是模m的一个完全剩余系⇔a i≡/a j (mod m), i≠j;定理2:设(a, m)=1, b∈Z, 若x1, x2, , x m是模m的一个完全剩余系,则ax1+b, ax2+b, …, ax m+b也是模m的一个完全剩余系;特别地,m个连续的整数构成模m的一个完系.设K r是模的一个剩余类, 若a, b∈K r,则a≡b(mod m), 于是(a, m)=(b, m).因此,若(a, m)=1,则K r中的任一数均与m互质, 这样,又可给出如下定义:定义3.简系:如果r与m互质,那么K r中每一个数均与m互质,称K r为与模m互质的剩余类.这样的剩余类共有φ(m)个,从中各取一个代表(共取φ(m)个),它们称为模m的简化剩余系,简称简系.当m为质数p时,简系由p−1个数组成.又如:m=6,在模6的六个剩余类中:K1={…, −11, −5, 1, 7, 13,…} K5={…, −7, −1, 5, 11, 17,…}是与模6互质的剩余类,数组1, 5;7, −7;1, −1;等等都是模6的简系.性质:①K r与模m互质⇔K r中有一个数与m互质;②与模m互质的剩余类的个数等于φ(m);③若(a, m)=1, 则x与ax同时跑遍模m的简化剩余系.简化剩余系的判断方法:定理3:a1,a2,…,aφ(m)是模m的简化剩余系⇔(a i, m)=1, 且a i≡/a j(mod m) (i≠j, i, j=1, 2, …, φ(m)).定理4:在模m的一个完全剩余系中,取出所有与m互质的数组成的数组,就是一个模m的简化剩余系.定理5:设(k, m)=1, 若a1, a2, …, aφ(m)是模m的简系, 则ka1, ka2, …, kaφ(m)也是模m的简系.这三个定理中,定理3与定理5是简化剩余系的判别方法,定理4是它的构造方法. 显然,模m的简化剩余系有无穷多个,但常用的是“最小简化剩余系”,即由1,2,…,m -1中与m 互质的那些数组成的数组.说明:由于任何整数都属于模m 的某一剩余类,所以,在研究某些整数性质时,选取适当的(模)m ,然后在模m 的每个剩余类中取一个“代表数”(即组成一个完全剩余系),当弄清了这些代表数的性质后,就可弄清对应的剩余类中所有数的性质,进而弄清全体整数的性质,这就是引入剩余类和完全剩余系的目的.例1、设n 为偶数,a 1, a 2,…, a n 与b 1, b 2,…, b n 均为模n 的完全剩余系,试证:a 1+b 1, a 2+b 2,…, a n +b n 不是模的完全剩余系.证明:假设a 1+b 1, a 2+b 2,…, a n +b n 是模的完全剩余系. ∴1(1)()1+2++(mod )22n i i i n n n a b n n =++≡≡≡∑ ∵a 1, a 2,…, a n 也是模的完全剩余系. ∴11(1)(mod )22n n i i i n n n a i n ==+≡=≡∑∑,同理有:1(mod )2n i i n b n =≡∑ 1()0(mod )n i i i a b n n =∴+≡≡∑,∴n |n2, 矛盾!故假设不成立,从而原命题成立.例2、设m >1, (a , m )=1,b ∈Z , 求和:∑-=+⋅10}{m i mb i a , 其中{x }为x 的小数部分. 解:∵i 取遍模m 的完系,令x i =a ·i +b ,则也取遍模m 的完系.故11110000111{}{}{}(1)22m m m m i i i k k x a i b k k m m m m m m m m ----====⋅+-====⨯-=∑∑∑∑总结:若a 1, a 2,…, a m 是模m 的一个完系,则①a 1+a 2+…+a m ≡1+2+…+m (mod m );②a 1·a 2·……·a m ≡1·2·…·m (mod m ); ③(a 1)n +(a 2)n +…+(a m )n ≡1n +2n +…+m n (mod m ).例3、已知m , n 为正整数, 且m 为奇数, (m , 2n -1)=1. 证明:m |∑=m k n k1.证明:∵1, 2, …, m 构成模m 的完系, (m , 2)=1,∴2, 4, …, 2m 也构成模m 的完系.∴)(mod )2(11m k k m k n m k n ∑∑==≡,即)(mod 0)12(1m k m k n n ≡-∑=. ∵(m , 2n -1)=1,∴∑=m k n k m 1|得证. 例4、求八个整数n 1, n 2,…, n 8满足:对每个整数k (-2014<k <2014),有八个整数a 1, a 2,…, a n ∈{−1, 0, 1},使得k =a 1n 1+a 2n 2+…+a 8n 8解:令G ={k | k =a 1+a 2·2+a 3·32+…+a n +1·3n ,a i ∈{−1, 0, 1},i =1,2,…,n +1}.显然max G =1+3+32+…+3n =3n +1-12(记为H ),min G =-1-3-32+…-3n =-H . 且G 中的元素个数有3n +1=2H +1个, 又∵G 中任意两数之差的绝对值不超过2H ,∴G 中的数对模2H +1不同余,∴G 的元素恰好是模2H +1的一个绝对值最小的完系,于是凡满足-H ≢k ≢H 的任意整数都属于G ,且可唯一地表示为a 1+a 2·2+a 3·32+…+a n +1·3n 形式,当n =7时,H =3208>2014,而n =6时,H =1043<2014,故n 1=1,n 2=3,…,n 8=37为所求.例5、已知p 为大于3的质数,且112+122+132+…+1(p -1)2=a b,a ,b ∈N *. (a , b )=1,证明:p a . 证明:对于不超过p −1的自然数k ,由于(k , p )=1,所以存在唯一的不超过p −1的自然数x ,满足1(mod )kx p ≡而且,当k =1或p −1有x =1或p −1,当22k p ≤≤-时,有22,x p x k ≤≤-≠,故当k 取遍1,2,……,p −1时,x 也取遍1,2,……,p −1,因为(,(1)!)1,1(mod )p p kx p -=≡由可得到(1)!(1)!(1)!(mod )(1)!(mod ),p p kx p p p x p k--≡--≡或所以 2211222211((1)!)((1)!)(1)(21)((1)!)((1)!)(mod )6p p k x p a p p p p p x p p b k --==----=≡-≡-∑∑ 因为p 是大于3的素数,所以p −1不小于4,所以(p −1)!含有因数6, 从而2(1)(21)((1)!)0(mod )6p p p p p ---≡,即2((1)!)0(mod )p a p b -≡, 因为(,(1)!)1p p -=,所以2(,((1)!))1p p -=,从而0(mod )0(mod )a p a p b≡⇒≡ 例6、(2003克罗地亚奥林匹克) 对于所有奇质数p 和正整数n (n ≣p ),试证:p n C ≡[n p] (mod p)例7、(第26届IMO) 设n 为正整数,整数k 与n 互质,且0<k <n . 令M ={1, 2, …, n −1}(n ≣3), 给M 中每个数染上黑白两种染色中的一种,染法如下:⑴对M 中的每个i ,i 与n −i 同色,⑵对M 中每个i ,i ≠k ,i 与|k −i |同色,试证:M 中所有的数必为同色.证明:∵(k , n )=1且0,1,2,…,n −1是一个模n 的最小非负完系,∴0·k ,1·k ,2·k ,…,(n −1)·k 也是一个模n 的完全剩余系.若设r j ≡j ·k (mod n )(其中1≢r j ≢n -1,j =1,2,…,n -1) ,则M ={1,2,…,n −1}={121,,,-n r r r } 下面只要证明r j 与r j +1(j =1,2,…,n −2)同色即可. 因为若如此,当r 1颜色确定后,M 中所有的数都r 1与同色. 由于(j +1)k ≡r j +1(mod n ),则r j +k ≡r j +1(mod n ),因此若r j +k <n ,则r j +1=r j +k ,由条件⑵知r j +1与| r j +1-k |=r j 同色;若r j +k >n ,由r j +1=r j +k -n ,由条件⑴知k -r j +1=n —r j 与n -(n —r j )=r j 同色,即k -r j +1与r j 同色, 由条件⑵知k -r j +1与|k -(k -r j +1)|=r j +1同色,因此r j +1与r j 同色.综上:此r j +1与r j 同色. 故M 中所有的数必为同色.例8、(2001第42届IMO)设n 为奇数且大于1,k 1, k 2,…, k n 为给定的整数,对于1, 2, …, n 的n !个排列中的每一个排列a =(a 1, a 2,…, a n ),记S (a )=∑=n i i ia k 1,试证:有两个排列b 和c ,使得n !| S (b )-S (c ).证明:假设对任意两个不同的b 和c ,均有S (b )≡/S (c )(mod n !),则当a 取遍所有1,2,…,n 的n !个排列时, S (a )也取遍模n !的一个完全剩余系,且每个剩余系恰好经过一次,所以()aS a ∑≡1+2+3+…+n !(mod n !)≡12(n !+1)n !≡n !2×n !+n !2≡n !2(mod n !) (n >1)其中()a S a ∑表示对取遍个排列求和(下同),下面用另一种方法计算1()()ni i a a i S a k a ==∑∑∑:对于k 1,i ∈{1,2,…,n },a i =1时,剩n -1个数,有(n -1)!个排列,a i =2时,有(n -1)!个排列,…∴k 1的系数为(n -1)!·(1+2+…+n )=12(n +1)!. ∴()a S a ∑=(1)!2n +1n i i k =∑ 但()a S a ∑=(1)!2n +1n i i k =∑≡0(mod n !) (∵n 为奇数),∴n !2≡0(mod n !), 矛盾. ∴n !| S (b )-S (c ).例9、设m 是给定的整数. 求证:存在整数a ,b 和k . 其中a ,b 均为奇数,k ≣0,使得2m =a 19+b 99+k ·21999.另解:设x ,y 为奇数,若x ≡/y (mod 21999),则x 19-y 19=(x -y )(x 18+x 17y +…+xy 17+y 18),∵x 18+x 17y +…+xy 17+y 18为奇数,∴x 18+x 17y +…+xy 17+y 18与21999互质,∴x 19≡/y 19(mod 21999)故当a 取遍模21999的简化剩余系时,a 19也取遍模21999的简化剩余系,∴一定存在a ,使得a 19≡2m -1(mod 21999),并且有无穷多个这样的a ,故2m -1-a 19=k ·21999令b =1,则2m =a 19+b 99+k ·21999. 当a 足够小时,不难知k ≣0.。

3 简化剩余系与欧拉函数

3 简化剩余系与欧拉函数

§3 简化剩余系与欧拉函数定义 欧拉函数()n ϕ是一个定义在正整数集上的函数,()n ϕ的值等于系列0,1,,1n -中与n 互质的整数的个数。

()()()()11,21,32,42,ϕϕϕϕ====当1n >时,()0.n n ϕ<<当p 为质数时,() 1.p p ϕ=-定义 如果一个模m 的剩余类里的数与m 互质(在模m 的一个剩余类中,只要有其中一个数和m 互质,则该剩余类中所有的数就都与m 互质),就把它叫做一个与m 互质的剩余类. 在与m 互质的全部剩余类中,各取一个数所组成的一组数,叫做模m 的一个简化剩余系.定理1 模m 的一个简化剩余系含有()m ϕ个数. 证 模m 的全部剩余类是011,,,m K K K -. 因为,0,1,,1r r K r m ∈=-,所以对每个()01r r m ≤≤-,r K 是一个与m 互质的剩余类的充要条件是(), 1.r m =因此,在模m 的全部剩余类011,,,m K K K -中,与m 互质的全部剩余类是满足条件()01,,1r m r m ≤≤-=的所有剩余类r K . 这样的剩余类公有()m ϕ个,故由简化剩余系的定义知,模m 的简化剩余系含有()m ϕ个数.定理2 若()1,,m a a ϕ是()m ϕ个与m 互质的整数,则()1,,m a a ϕ是模m 的一个简化剩余系的充要条件是它们两两对模m 不同余.证 必要性 设()12,,,m a a a ϕ是模m 的一个简化剩余系,则由简化剩余系的定义,这()m ϕ个数是取自模m 的不同剩余类的,故这()m ϕ个数两两对模m 不同余.充分性 设与m 互质的()m ϕ个整数()12,,,m a a a ϕ两两对模不同余. 因每个整数都与m 互质,故每个整数都属于一个与m 互质的剩余类. 因这()m ϕ个整数两两对模m 不同余,故这()m ϕ个整数分别属于不同的与m 互质的剩余类. 另一方面,与m 互质的剩余类共有()m ϕ个,故()12,,,m a a a ϕ分别属于这()m ϕ个与m 互质的剩余类,故()12,,,m a a a ϕ是模m 的一个简化剩余系.定理3 若(),1,a m x =通过模m 的简化剩余系,则ax 也通过模m 的简化剩余系。

简化剩余系与欧拉函数

简化剩余系与欧拉函数
因为n > 4,且n 1与n 1都是奇素数, 所以n是偶数,且n 1 > 3. 所以n 1与n 1都不等于3,也不能被3整除, 所以3n, 因此6n。
1 由结论4, 若6n,则(n) n 3
即可得到结论5。
例3 证明:若m, nN,则(mn) = (m, n)([m, n]); 证: 显然mn与[m, n]有相同的素因数, 设它们是pi(1 i k),则
称为模m的一个简化剩余系(或简称为简化系)。
注:由于选取方式的任意性,模m的简化剩余系 有无穷多个。 例如,集合{9, 5, 3, 1}是模8的简化剩余系; 集合{1, 3, 5, 7}也是模8的简化剩余系. 集合{1, 3, 5, 7}称为最小非负简化剩余系。
二、主要性质 定理1 整数集合A是模m的简化剩余系的充要条件是: ① A中含有(m)个整数; ② A中的任何两个整数对模m不同余; ③ A中的每个整数都与m互素。 说明:简化剩余系是某个完全剩余系中的部分元素 构成的集合,故满足条件2; 由定义1易知满足条件3; 由定义3易知满足条件1。
定理4 设n是正整数,p1, p2, , pk是它的全部素因数,
1 1 则 ( n) n(1 )(1 ) p1 p2
i n p 证 设n的标准分解式是 i
k i 1
i
1 1 (1 ) n (1 ). pk p p|n k
( n ) ( p 由定理3推论得到 i)
定义2 对于正整数k,令函数(k)的值等于模k的所有 简化剩余类的个数,称(k)为Euler函数。 容易验证:(2) = 1,(3) = 2,(4) = 2,(7) = 6。 注:(m)就是在m的一个完全剩余系中与m互素的 整数的个数,且 1 ( m ) m . 定义3 对于正整数m,从模m的每个简化剩余类中 各取一个数xi,构成一个集合{x1, x2, ,x(m)},

简化剩余系

简化剩余系
例9 求所有正整数 n, 使得 (2n) (3n)
(Lema) 不存在奇合数
n, 使得
?
(n) | (n 1)
Euler, Fermat 定理 定理6(Euler) 设 m 0, 若
(a, m) 1, 则
a
(m)
1 (mod m)
定理7(Fermat) 设
p 是素数, 则对任意整数a,
2 2 2 p 1 2
例6
证明
61!1 0(mod 71)
定理5 设
p 3 是素数, l 1, c ( p ),以及 l r1 , r2 ,, rc 是模 p 的一个简化剩余系, 则
l

r1r2 rc 1(mod p ) rj , 2 | rj rj l rj p , 2 | r j
r1 rc
1(mod 2 ),l 3.
l
m 1,2,4, p ,2 p (p是奇素数),
l l
模m 的一个简化剩余系的乘积同余-1模m. 其它情形乘积同余1模m.

m p p , p1 , p2 是两个互不相同的奇素数, l1 r1 , r2 ,, rc 是模 p1 的一个简化剩余系, l2 t1 , t2 ,, td 是模 p2 的一个简化剩余系,
剩余类.
给定模 m 的一个简化剩余系
a Z , (a, m) 1, 则 a 恰与其中的一数同余 (mod m).

m 的一个简化剩余系 可从模 m 的一个完全
剩余系中取出.
n 1, 1 到 n中与 n互素的数 的个数, 记为 (n), 称为Euler函数.
定义 设

(1) 1, (2) 1, (3) 2,

人教版B版高中数学选修4-6(B版)剩余系和欧拉函数

人教版B版高中数学选修4-6(B版)剩余系和欧拉函数
即 (x, m1) = 1,(y, m2) = 1。 由此及(m1, m2) = 1得到 (m2x m1y, m1) = (m2x, m1) = 1
(m2x m1y, m2) = (m1y, m2) = 1。
因为m1与m2互素,所以(m2x m1y, m1m2) = 1,
于是m2x m1yR。因此A R。
是模m的简化剩余系,则集合
A = {ax1, ax2, , ax(m)}
也是模m的简化剩余系。
证明 显然,集合A中有(m)个整数。
由于(a, m) = 1,
对于任意的xi(1 i (m)),xiB,
有(axi, m) = (xi, m) = 1。 故A中的每一个数都与m互素。 而且,A中的任何两个不同的整数对模m不同余。
① A中含有(m)个整数;
② A中的任何两个整数对模m不同余; ③ A中的每个整数都与m互素。 说明:简化剩余系是某个完全剩余系中的部分元素 构成的集合,故满足条件2; 由定义1易知满足条件3; 由定义3易知满足条件1。
定理2 设a是整数,(a, m) = 1,B = {x1, x2, , x(m)}
因此,集合{a1, a2, , a(n)}
与集合{n a1, n a2, , n a(n)}是相同的,
故 a1 a2 a(n) = (n a1) (n a2) (n a(n)),
从而,2(a1 a2 a(n)) = n(n),
注意:有重素因子时,上述不等式中等号不成立!
三、应用举例
i 1n(n).
例1 设整数n 2,证明: 1in 2
(i ,n)1
即在数列1, 2, , n中,与n互素的整数之和是
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档