化学镀镍磷合金英文文献

合集下载

SiCp/Al复合材料化学镀镍-磷的工艺研究

SiCp/Al复合材料化学镀镍-磷的工艺研究
f or c e, be l o ngi n g t O me d i u m p ho s ph or ou s c oa t i n g.
摘要 : 采用钯盐对 S i C / A l 复合材料表 面进行活化 , 化 学 镀 后 在 复 合 材 料 表 面获 得 Ni — P镀 层 。利 用 扫 描 电镜 ( S E M) 、 能 谱 成分分析仪 ( E D S ) 、 极 化曲线 、 x射线衍射仪 ( X R D ) 以及 热 震 测 试 等 手 段 对 镀 层 的 性 能 进 行 了研 究 ,并 观 察 了镀 覆 过 程 中镀 层 表 面形 貌 的 变化 。 结 果表 明 : 钯 盐 的 活化 作 用 较 好 , 钯 原 子 优 先 在 复 合 材 料 的基 体 晶界 、 S i C 。 / Al 界面及 S i C 。 表 面粗糙 处 形 成催化活化 中心; 铝合金基体与 S i C 。增 强 相 表 面均 被 镀 覆 , 且镀层光亮 、 致密 、 连 续, 耐蚀性好 , 结合 力 高 , 属 于 中磷 镀 层 。 关键词 : S i C 。 / Al 复合材 料 ; 化 学 镀 ;钯 ;N i — P镀 层 ; 耐 蚀 性
a n d t h e c h a n g e s o f t h e c o a t i n g s u r f a c e mo r p h o l o g y d u r i n g p l a t i h e r e s u l t s s h o w t h a t t h e c o mp o s i t e ma t e r i a l i s we l l a c t i v a t e d b y P d,P d a t o ms p r e f e r e n t i a l l y f o r mi n g a c a t a l y t i c a n d a c t i v e c e n t r e i n t h e g r a i n b o u n d a r y o f a l u mi n u m

化学镀沉积镍磷合金:耐腐蚀机理

化学镀沉积镍磷合金:耐腐蚀机理

外文资料译文化学镀沉积镍磷合金:耐腐蚀机理Bernhard Elsener/Maura Crobu/Mariano Andrea Scorciapino/Antonella Rossi摘要在各种各样的化学基体上可以进行化学镀镍磷合金。

他们表现出的耐腐蚀性优于纯镍,但由纯镍形成的氧化镍(钝化膜)除外,已经提出来许多理论来解释这一优越的腐蚀性,但还尚未达成共识。

在这一领域的研究中使用了电化学中的XPS表面电化学分析方法,以更深入的了解化学镀镍磷合金的耐腐蚀性,磷的含量在18%到22%。

在酸性和近中性溶液中其极化曲线与电流密度有一定的关系。

在恒电位极化过程,根据曲线衰减指数大约为-0.5可以推论扩散过程限制了镍的解离。

在XPS / XAES后通过测量恒电位极化显示磷在反应过程中存在三种不同的状态。

根据钴参与化学反应的不同,磷主要存在于反应合金、磷酸盐和磷的中间化合产物中。

通过XPS分析表明,磷元素富集在了合金之间的界面和最外层表面与腐蚀溶液接触面,由此提出以下结论:镍元素在溶液中的扩散机制限制了磷元素在介质表面的富集解释了Ni-P合金的高耐蚀性。

一个尚未证实的补充说明是耐高腐蚀性Ni-P合金可能是以镍元素的电离态存在的。

关键词:电位极化扩散,磷,富集, XPS图,衍射参数§1 简介对纳米晶体材料的关注增加使人们对于镍磷合金研究加深,尤其是在具有挑战性的技术应用方面[1,2]。

这些过去主要用作防腐涂料的合金构成了最早的工业应用是在x射线的非晶和纳米晶体材料上,这项技术可以追溯到1946年[3-5]。

现在产生了对三元系镍磷合金的研究[6,7]和共沉积金刚石[8]或聚四氟乙烯颗粒[9],以获得为生产量身定制的功能化表面。

镍磷合金中P元素大约是20%(接近共晶组合)时表现出了比镍更好的耐腐蚀性,同时得到的纯镍在阳极溶液附近镍酸的溶解更加容易[10-22]。

这一现象在化学镀[13-16]或电沉积[17-21]镍磷合金的金属熔体[10-12]时常见到。

化学镀镍磷专利技术综述

化学镀镍磷专利技术综述

业的进步,极大地促进了化学镀镍的应用和研究。

图1专利申请产出国分布世纪80年代后,化学镀镍技术有了很大的突破,是化学镀镍、开发和应用飞速发展时期。

如图1所示为从化学镀镍技术出现至今各国专利申请量(项)分布,日本、中国、欧洲(包括英国法国及EP)、美国的专利申请量分别位于第一~第四。

据不完全统目前世界上至少有两百种以上的成熟化学镀镍配方,一些有代表性出售镀液的公司有:美国的M&T Chemicals Ltd.,Allied-Kelite Chemical Corp.,Enthone Inc.,Shipley Company,Hidility-Cote International Inc.,英国的W.Canning MaterialsChemicals Limited,德国的Friedr.Blasberg GmbH.&Co.K,2009。

图2主要申请人排名图3各国专利申请发展情况1化学镀镍磷机理化学镀Ni-P(镍磷)合金是一种在不加外电流的情况下,利用还原剂在活化零件表面上自催化还原沉积得到Ni-P镀层的方法。

关于化学沉积Ni-P合金镀层的理论有许多种,但C·Cutzeit的催化理论为大多数人所接受。

该理论可用以下几个过程来描述。

(1)通过金属的催化作用,放出初生态原子氢:H2PO2-→PO2-+2(H)PO2-+H2O→HPO32-+H+或H2PO2-+H2O→HPO32-+H++2[H](2)初生态原子氢被吸附在催化金属表面上而使其活化,使镀液中的镍阳离子还原,在催化金属表面上沉积金属镍:Ni2++2[H]→Ni0+2H-(3)在催化金属表面上的初生态原子氢使次亚磷酸根还原成磷;同时,由于催化作用使次亚磷酸根分解,形成亚磷酸和分子态氢:年取得东华大学材料科学与工程学院硕士学位,任职于国家知识产权局专利局专利审查协作江苏中319Science&Technology Vision科技视界图4国内镁合金化学镀镍磷专利趋势图5在华申请人分布类型图6在华申请人高校排名图7国内化学镀镍磷技术演进图从技术演进图7可以看出,在具有自催化性质的钢铁等基体上的化学镀镍工艺已经很成熟,而在另外一些基体上(如镁及镁合金、钕铁Science &Technology Vision 科技视界工艺操作条件碱性除油水洗酸性浸蚀A.含铝合金室温:0.5~2minCrO 3120g/LHNO 3(68%)110ml/L B.其他合金CrO 360g/L HNO 3(68%)90ml/L水洗活化A.铝含量大于5%合金室温:10minHF(70%)220ml/L B.其他合金HF(70%)54ml/L 水洗化学镀镍HF(70%)5ml/L 77~82℃pH=4.5~6.82NiCO 3·3Ni(OH)2·4H 2O 10g/LNaH 2PO 2·H 2O 20g/L C 6H 8O 75g/L NH 4HF 210g/LNH 4OH(30%)30ml/L硼材料)的化学镀镍至今仍然在继续研究,寻求突破性进展。

化学镀镍磷合金机理初探

化学镀镍磷合金机理初探

参考文献:[1] 李建三.低温化学镀镍工艺研究及机理探讨[D].广州:华南理工大学,1997.[2] 李建三,等.低温化学镀镍工艺及镀层性能的研究[J].新技术新工艺,2002,(2).[3] 徐红娣,等.常用电镀溶液的分析[M].北京:机械工业出版社,1996.[4] 韩克平,方景礼.氟离子对化学镀镍的加速机理[J].电镀与环保,1996,(3):21223.收稿日期:2002203207化学镀镍磷合金机理初探A Study of the Mechanism of E lectroless Nickel Plating曾建皇, 陈范才, 周小平, 朱卫东 (湖南大学化学化工学院,长沙410082)ZENG Jian2huang, CHEN F an2cai, ZH OU Xiao2ping, ZHU Wei2dong(College of Chemistry&Chemical Engrg.Hunan Univ.,Changsha410082)摘要: 采用电化学方法对碱性化学镀镍的阴、阳极过程进行了研究,并在此基础上对化学镀镍的可能机理进行了初步探讨。

关键词: 化学镀镍;机理Abstract: A research is made electrochemically on the cathodic and anodic processes in alkali electroless nickel plating.On this ba2 sis,a possible mechanism of electroless nickel plating is suggested.K ey w ords: E lectroless nickel plating;Mechanism中图分类号:TQ153.1 文献标识码:A 文章编号:100024742(2002)05200192041 前言自美国A.Brenner和G.Riddell首次发现化学镀镍以来[1],人们对化学镀镍工艺已经进行了广泛而深入的探讨[2~4]。

化学镀镍磷合金工艺的研究文献综述(二)(2024)

化学镀镍磷合金工艺的研究文献综述(二)(2024)

引言概述:
化学镀镍磷合金工艺是一种常用的金属表面处理方法,具有较高的耐腐蚀性和耐磨性。

本文旨在综述相关的研究文献,深入探讨化学镀镍磷合金工艺的研究进展、工艺参数优化、合金特性及其应用领域。

正文内容:
1.工艺研究进展
1.1传统化学镀镍磷合金工艺
1.2改进型化学镀镍磷合金工艺
2.工艺参数优化
2.1镀液成分优化
2.2温度和镀液pH值优化
2.3电流密度和镀液搅拌速度优化
2.4镀液中添加剂优化
3.合金特性研究
3.1镀层结构和成分分析
3.2镀层显微硬度和耐磨性研究
3.3镀层的结晶性质和晶体生长机制
4.应用领域
4.1电子电镀应用
4.2汽车工业应用
4.3航空航天应用
4.4冶金工业应用
4.5其他领域应用
5.工艺优缺点及未来发展趋势
5.1工艺优点
5.2工艺缺点
5.3未来发展趋势
总结:
综合上述研究文献,化学镀镍磷合金工艺在金属表面处理中具有广泛的应用前景。

不论是传统工艺还是改进工艺,都可以通过优化工艺参数来提高镀层的性能。

相关的合金特性研究有助于深入了解镀层的显微硬度、耐磨性等性能指标。

不同领域都可以找到该工艺的应用,例如电子电镀、汽车工业和航空航天等。

该工艺也存在一些缺点,如镀层中可能含有杂质等。

未来的发展趋势应该在提高工艺的经济性、环境友好性和镀层性能方面进行进一步的研究与改进。

化学镀镍磷合金工艺研究

化学镀镍磷合金工艺研究

化学镀镍磷合金工艺研究王孝镕顾慰中摘要化学镀镍磷合金由于其优良的性能在工业上得到了广泛应用。

为改进传统工艺所存在的不足,采用乳酸-柠檬酸混合络合剂体系研究了络合剂、温度、pH值及稳定剂对沉积速度的影响。

优选出一种最佳工艺。

该工艺稳定、沉积速度高、成本低,所得镀层平整、光亮、孔隙率低、硬度高,具有很好的应用价值。

关键词: 化学镀镍磷合金Study of Electroless Nickel-Phosphorus Plating ProcessWANG Xiaorong GU WeizhongAbstract: Electroless nickel-phosphorus alloy deposits have been widely adopted in industries for theirexcellent properties. In view of the weaknesses of traditional techniques, acidic system with mixed complexant of latic acid and sodium citrate was adopted. The effect of complexant, temperature, pH value and stabilizer on deposition rate was studied. A process has been optimized with strengths such as high stability, fast plating rate, low cost, smooth and bright deposits, low porosity and high hardness.Keywords: electroless plating, nickel-phosphorus1 引言化学镀镍磷含金由于其优良的耐磨、耐蚀、磁屏蔽性以及适用于各种材料(包括非金属材料)的复杂零件的施镀,已广泛应用于航空、航天、电子、石油和化工等工业。

化学镀Ni_P_石墨复合镀层的特性_英文_

化学镀Ni_P_石墨复合镀层的特性_英文_

【研究报告】 收稿日期:2005-09-02 修回日期:2005-11-07 作者简介:S K ARTH I KEY AN (1975-),male,graduated with goldmedal in M.Sc (Che m istry )fr om A lagappa university,Karaikudi,I ndia and obtained his PhD Degree in industrial che m istry (Electr oless p lating )fr om the sa me university in the year 2002.He has published 26research papers in leading nati onal and internati onal j ournls and se m inars .He is having 6years teaching experience .H is research interest includes electr oless p lating of metals &composites,electr op lating and corr osi on inhibiuon . 作者联系方式:(Email )skarthikeyanphd@yahoo .co .in 。

Character isti cs of electroless N i 2P 2graph iteco m posite coa ti n gsS K ARTH I KEY AN , M A NEELAK ANDAN(Depart m ent of Che m istry,Nati onal Engineering College,Kovil patti 628503,Ta m il Nadu,I ndia )Abstract:The p resent work pertains t o the study of electr o 2less N i 2P 2graphite composite coatings,which have i mp r oved mechanical p roperties compared with that of electr oless N i 2P deposits and are suitable for engineering app lications .The deposits are obtained fr om a bath based on nickel sulphate,s odiu m hypophos phite,succinic acid,surfactant and stabi 2lizers .The maxi mum weight percentage of graphite incorpo 2rated in electroless deposit is obtained at a concentration of 15g/L.The electr oless N i 2P deposits containing graphite particles are characterized by V icker’s hardness tester,Taber abrasi on tester, A.C i mpedance studies and SE M tech 2niques .The hardness,wear and corr osi on resistance in 2crease with an increase in weight percent of graphite embed 2ded in the deposit .Keywords:composite p lating;electr oless p lating;N i 2P 2graphite coatings;hardness;wear resistance 化学镀N i 2P 2石墨复合镀层的特性//S K ARTH I KEY 2AN,M A NEELAK ANDAN摘 要:与化学镀N i 2P 镀层比较,化学镀N i 2P 2石墨复合镀层的机械性能得到了改进,适合于工程方面的应用。

化学镀镍磷合金工艺中问题与探讨

化学镀镍磷合金工艺中问题与探讨

学镀镍磷合金工艺中的主要问题和研究方向 。
[ 关键词 ] 化学镀 ; 镀镍磷合金 ; 镀层性能 ; 镀液中离子浓度 [ 中图分类号 ]TQ153. 1 2 [ 文献标识码 ]B [ 文章编号 ]1001 - 3660 (2002) 03 - 44 - 03
+
0 引 言
化学镀镍磷合金 ,自 50 年代开始用于工业生产中 , 80 年代进入鼎盛时期 , 由于其工艺的特殊优点和镀层 优异的防腐性和耐磨性 , 目前已成为一种应用更为广 泛的表面处理技术 。 近年来 ,化学镀镍研究工作主要围绕开发新的镀 种包括多元合金和复合镀层 、 镀液中离子浓度测定 、 提 高沉积速度和稳定性 、 提高镀层性能 、 延长镀液使用寿 [1 ] 命 ,降低生产成本等 。当前应用及研究最广泛和透彻 的还是镍磷合金化学镀 。本文主要讨论化学镀镍磷合 金的不同工艺类型及镀液中各成分对镀液和镀层性能 的影响 ,同时介绍镀液中离子浓度测定的常用方法 , 使 之对化学镀镍磷合金的科研生产有一定的指导作用 。
低磷工艺 (LP) : 镀层中磷的质量分数为 0. 5 % ~
5 % ,低磷镀层有特殊的机械性能 , 如镀态硬度高 , 耐磨
性好 ,韧性高 ,应力低 。低磷镀层在碱性介质中的耐腐 蚀性能也优于中磷和高磷镀层 。
2 化学镀 Ni2P 合金镀层性能的影响因素
化学镀 Ni2P 合金通常应用如下工艺流程 ( 以钢铁 [2 ] 件为例) : 化学除油 → 热水 → 化学除锈 → 水清洗 → 活化 → 水 清洗 → 化学镀 Ni2P 合金 → 回收 → 冷水 → 钝化 → 冷水 → 吹干 化学镀工艺中前处理及镀液中各成分对镀层性能 [3 ] 影响很大 ,比如前处理中镀前试样除锈方法不同 、 抛 [4 ] 光与否 都使镀层的耐蚀性能存在差异 。在这里主要 讨论镀液中各组分对镀层性能的影响 。 化学镀镍溶液的成分包括镍盐 、 还原剂 、 络合剂 、 稳定剂 、 其他添加剂等 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

An investigation on effects of heat treatment on corrosion properties of Ni–P electroless nano-coatingsTaher Rabizadeh,Saeed Reza Allahkaram *,Arman ZarebidakiSchool of Metallurgy and Materials Engineering,University College of Engineering,University of Tehran,P.O.Box 11155-4563,Tehran,Irana r t i c l e i n f o Article history:Received 19January 2010Accepted 15February 2010Available online 17February 2010Keywords:C.CoatingC.Heat treatment E.Corrosiona b s t r a c tElectroless Ni–P coatings are recognized for their excellent properties.In the present investigation elec-troless Ni–P nano-crystalline coatings were prepared.X-ray diffraction technique (XRD),scanning elec-tron microscopy (SEM),potentiodynamic polarization and electrochemical impedance spectroscopy (EIS)were utilized to study prior and post-deposition vacuum heat treatment effects on corrosion resis-tance together with the physical properties of the applied coatings.X-ray diffraction (XRD)results indicated that the As-plated had nano-crystalline structure.Heat treat-ment of the coatings produced a mixture of polycrystalline phases.The highest micro-hardness was achieved for the samples annealed at 600°C for 15min due to the formation of an inter-diffusional layer at the substrate/coating interface.Lower corrosion current density values were obtained for the coatings heat treated at 400°C for 1h.EIS results showed that proper heat treatments also enhanced the corrosion resistance,which was attributed to the coatings’structure improvement.Ó2010Elsevier Ltd.All rights reserved.1.IntroductionSince the invention of electroless plating technology in 1946by A.Brenner and G.Riddell,electroless nickel (EN)coatings have been actively and widely studied [1,2].Nano-crystalline Ni–P alloys show a high degree of hardness,wear resistance,low friction coefficient,non-magnetic behavior and high electro-catalytic activity.Today such Ni–P alloys are widely used in the electronic industry as under-layer in thin film memory disks and in a broad range of other evolving technological applications.It is generally accepted that only nano-crystalline al-loys –irrespective of the way of production –show high corrosion resistance.Indeed,electrodeposited Ni–P alloys with crystalline structure (6–11at.%P)showed anodic dissolution in 0.1M NaCl.On nano-crystalline samples (17–28at.%P)a current arrest was found instead [3–5].To explain high corrosion resistance of Ni–P electroless coatings different models have been proposed,but the issue is still under discussion:a protective nickel phosphate film,the barrier action of hypophosphites (called ‘‘chemical passivity”),the presence of phosphides,a stable P-rich amorphous phase or the phosphorus enrichment of the interface alloy-solution were proposed.Note that such phosphorus enrichment at the interface was reportedby some of the authors to explain the outstanding corrosion resis-tance of Fe70Cr10P13C7amorphous alloys [5].Electroless Ni–P alloys are thermodynamically unstable and eventually form stable structures of face-centered cubic (fcc)Ni crystal and body-centered tetragonal (bct)nickel phosphide (Ni 3P)compounds.Different results have been reported regarding the microstructures in the As-deposited condition and the stable phases after heat treatments.For low P and medium P alloys,nickel crystal precipitated firstly and Ni 3P followed;however,Ni 3P and (or)Ni x P y compounds such as Ni 2P,Ni 5P 2,Ni 12P 5,and Ni 7P 3occur firstly in high P alloys [6–8].In general,the hardness of the electroless Ni–P coatings can be improved by appropriate heat treatment,which can be attributed to fine Ni crystallites and hard inter-metallic Ni 3P particles precip-itated during crystallization of the amorphous phase [8–10].The main reasons for heat treatment are:(1)to eliminate any hydrogen embrittlement in the basic metal,(2)to increase deposit hardness or abrasion resistance,(3)to increase deposit adhesion in the case of certain substrate and (4)to increase temporary corro-sion resistance or tarnish resistance [11].The crystallization and phase transformation behavior of elec-troless-plated Ni–P deposits during thermal processing has also been the subject of various investigations;it has been shown that different alloy compositions and heat treatment conditions could affect both the corrosion resistance and crystallization behavior of the deposit [8].0261-3069/$-see front matter Ó2010Elsevier Ltd.All rights reserved.doi:10.1016/j.matdes.2010.02.027*Corresponding author.Tel./fax:+982161114108.E-mail address:akaram@ut.ac.ir (S.R.Allahkaram).Materials and Design 31(2010)3174–3179Contents lists available at ScienceDirectMaterials and Designj o u r n a l h o m e p a g e :w w w.e l s e vier.c om/loc ate/matdesThe aim of this work is to study the post-deposition heat treat-ment effects and corrosion behavior of electroless deposited nano-crystalline Ni–P alloys.The temperature dependence of the coating structures and compositions were also evaluated and discussed.2.Experimental procedures2.1.Deposition of electroless Ni–P coatingThe deposition was performed on API-5L X65steel substrates (30Â25Â15mm)with a composition of(Fe:base,Mn:1.42,Si: 0.199,Cu:0.144,Mo:0.132,C:0.061,Nb:0.0538,Al:0.0417,Sn: 0.0167,Ti:0.0142,Cr:0.0126,P:0.01).The substrate surface was carefully polished with SiC emery papers(from grades#100to #400).All the specimens were subjected to the following pre-treat-ment and plating procedure:1.Ultrasonic cleaning in acetone.2.Rinsing by immersion in distilled water at room tempera-ture(RT)for2min.3.Cleaning in20vol.%H2SO4at RT for30s.4.Rinsing by immersion in distilled water at RT for2min.5.Cleaning in5vol.%H2SO4at RT for30s.6.Rinsing by immersion in distilled water at RT for2min.7.Electrocleaning in solution containing75g/l sodiumhydroxide(NaOH),25g/l sodium sulfate(Na2SO4),75g/lsodium carbonate(Na2CO3),at room temperature for20min.The current density applied was10mA/cm2inaccordance to ASTM G1.8.Rinsing by immersion in distilled water at RT for30s.For deposition,the substrates were dipped into commercial electroless nickel bath(SLOTONIP70A from Schlotter)with sodium hypophosphite as reducing agent for2h.This bath provided Ni–P deposits with a medium phosphorous content,9–10%P.Tempera-ture changed within88–93°C and pH changed within 4.5–4.7 range,during coating process.2.2.Heat treatment and hardness measurement of Ni–P coatingsIn order to study thefilm properties,coated samples were ther-mally treated in a vacuum environment.The coatings were isother-mally heat treated at different conditions that gave maximum hardness,i.e.200°C(for2h),400°C(for1h),600°C(for 15min).During heating process,the total pressure in the chamber was maintained below1mbar.Then the samples were allowed to cool down,for at least15min in the high vacuum environment prior to their exposure to the atmosphere.The hardness of coatings was measured using an(AMSLER D-6700)Vickers diamond indenter at a load of100g for a loading time of20s.The average offive repeated measurements is reported.2.3.Morphology and microstructure of Ni–P coatingsThe morphology and microstructure of the coatings were stud-ied using scanning electron microscopy SEM,(CAMSCAN MV2300). X-ray diffraction(XRD)patterns were obtained using Philip’s Xpert pro type X-ray diffractometer with a cobalt target and an incident beam mono-chromator(k=1.7889Å).2.4.Electrochemical measurementsCorrosion behavior of As-plated and heat treated electroless Ni–P coatings was studied by using potentiodynamic polarization test and electrochemical impedance spectroscopy(EIS)in3.5wt.%NaCl solution.The tests were carried out in a standard three-electrode cell using an EG&G potentiostat/galvanostat,model273A.Plati-num plate and Ag/AgCl electrode were used as counter and refer-ence electrodes,respectively.Potentiodynamic polarization test was carried out by sweeping the potential at a scan rate of 1mV sÀ1within the range of±400mV vs.open circuit potential (OCP).The EIS tests were undertaken using a Solartron Model SI 1255HF Frequency Response Analyzer(FRA)coupled to a Princeton Applied Research(PAR)Model273A potentiostat/galva-nostat.The EIS measurements were obtained at(OCP)in a frequency range of0.01Hz–100kHz with an applied AC signal of 5mV(rms)using EIS software model398.The equivalent cir-cuit simulation program(ZView2)was used for data analysis,syn-thesis of the equivalent circuit andfitting of the experimental data.3.Results and discussion3.1.Micrograph and structureFig.1shows the SEM images of the surface morphologies of Ni–P coatings before and after vacuum heat treatment at different con-ditions.As it can be seen heat treatment at different temperatures has not had any significant effect on morphology of the coatings.Fig.2shows the cross section image with line scan analysis of Ni–P coating heat treated at600°C(for15min)which shows the formation of an inter-diffusional layer and its elemental distribu-tion that affects the coating properties.Atoms under low temperature heat treatment(below400°C) can have short-range movement which is called structural relaxa-tion such as annihilation of point defects and dislocations within grains and grain boundary zones rather than long range diffusion [4].The higher the temperature is,the greater the atomic vibration energy is.As the temperature of the metal increases,more vacan-cies are present and more thermal energy is available,and so the diffusion rate is higher at higher temperatures[11].Hence,production of an inter-diffusional layer,formed as a re-sult of inter-diffusion of nickel and phosphorous from the coating to the substrate and iron in the reverse direction from the sub-strate will develop upon heating at600°C.3.2.XRD analyses of Ni–P coatingsFig.3shows XRD patterns of As-deposited and heat treated Ni–P coatings.The results show that both the phase composition and phase transformation behavior of the electroless Ni–P deposits de-pended on the heating temperatures.There was no significant change in XRD patterns observed for the samples treated at200°C and only a single broad amorphous profile was found,indicating that no phase transition took place at this tem-perature.When the heat treatment temperature was increased to 400°C,new XRD peaks corresponding to crystalline fcc Ni and Ni x P y appeared,indicating that the second phase precipitation was initi-ated.At this temperature,the diffraction peaks corresponding to the metastable Ni8P3,fcc nickel and stable Ni3P phases in the XRD profile can be seen.At600°C the fcc Ni and Ni3P peaks intensities in-creased with the heat treatment temperature.Therefore,the Ni8P3 metastable phase was decomposed completely at this temperature. Similar behavior has also been observed by Huangs et al.[12].Regarding the intensities of fcc nickel diffraction peaks,they are increased and the full width at half maximum(FWHM)became narrower with increasing the heat treatment temperature to 600°C.In the case of As-plated condition,using FWHM of 6.4676°and Scherrer equation,the grain size was estimated as1.5nm.T.Rabizadeh et al./Materials and Design31(2010)3174–31793175With regards to the FWHM of 5.496°at 200°C,0.9774at 400°C and 0.4027°at 600°C for fcc nickel peaks,the grain sizes were esti-mated as 1.7,10.9and 26.6nm,respectively.Therefore it can be deduced that the grain size of the crystalline nickel increases sub-stantially with increasing temperature,i.e.reaching to the maxi-mum size of 26.6nm at 600°C.This effect has also been confirmed by other investigators exposing Ni–P coatings to various heat treatment conditions [13,14].3.3.Hardness of electroless Ni–P depositsHardness was measured for the deposits at various annealing temperature.The variations in micro-hardness with annealing temperatures are shown in Fig.4.Heat treatment in the region of 200°C does not bring about any significant changes in the deposit properties.It can be observed that there is a marginal decrease of hardness from 612.3Hv to 525.3Hv between room temperature and 200°C.This small decrease in the hardness may be due to hydrogen embrittlement and internal stress relieving [11].Significant increase of hardness from 625.3Hv to 875.7Hv is observed after haet treatment at 400°C.The dispersion hardening effect may also be a reason for increase in hardness due to heat treatment above 200°C.Between 200°C and 400°C,the precipita-tion of Ni x P y compounds occurs.The precipitation of nickel phos-phides (Ni 3P)can be seen in the heat treated condition (Fig.3).The mechanism involved in the steep increase in hardness may be due to the precipitation hardening of a typical supersaturated solid solution,for which the atoms of the solute diffuse to a specific crystallography plane with an atomic arrangement that resembles the array of atoms on a plane in the structure of the precipitate.As the atoms attempt to precipitate,they are forced to conform to the structure of the solvent.This forced coherency between atoms of the solvent and atoms attempting to form the precipitate causes severe localized stresses in the matrix.These stresses areresponsi-Fig.1.SEM morphology images of As-plated and heat treated EN coating:(a)As-plated,(b)HT-200°C (2h),(c)HT-400°C (1h)and (d)HT-600°C (15min)in a vacuum environment.3176T.Rabizadeh et al./Materials and Design 31(2010)3174–3179ble for the increase in hardness.When sufficient numbers of atoms are collected,the structure of the precipitate is formed and thelocalized stresses are relieved,since the forced coherency between the matrix and the precipitated atoms reaches a maximum level [11].Intermediate processes during the formation of inter-metallic compounds can result in precipitation or age hardening.Particles of a precipitate form when sufficient atoms diffuse to aparticularFig.2.Line scan analysis and elemental distribution around inter-diffusional layer of Ni–P coating heat treated at 600°C (for 15min).Fig.3.XRD spectra of electroless Ni–P coatings measured before and after heat treated at differentconditions.Fig.4.Microhardness of As-plated and heat treated Ni–P electroless coatings.T.Rabizadeh et al./Materials and Design 31(2010)3174–31793177location to form a volume of material that has the correct stoichi-ometric composition and that is large enough so that a boundary can form around it.Before the volume of material reaches this crit-ical size,its atomic arrangement and that of the surrounding ma-trix must remain continuous.This coherency between regions having different inter-atomic spacing results in severe straining,which hardens the alloy [11].Around 600°C,the hardness reaches to a maximum value of 938Hv.As it can be seen in XRD patterns of the coatings,the inten-sity peaks of the precipitation phases have increased with raising heat treatment temperature above 400°C.This implies that more precipitation phases have been formed.In addition,the formation of an inter-diffusion layer can enhance the hardness of coating.This layer develops upon heating above 600°C and thickens with increasing annealing time.3.4.Electrochemical results3.4.1.Potentiodynamic polarization studiesFig.5shows the potentiodynamic polarization curves obtained for As-plated and heat treated electroless Ni–P coating in 3.5wt.%NaCl solution.Table 1lists the open circuit and corrosion potential E corr together with the corrosion current density i corr of these coatings.By combining Fig.5and Table 1,the corrosion potential of Ni–P deposits is positively shifted from À0.376to À0.25V with increas-ing the annealing temperature to 600°C.Moreover,the corrosion current density (i corr )of heat treated sample at 400°C is 1Â10À5(A/cm 2)which has the lowest corrosion current density among all the heat treated specimens.It is evident from literature reports on Ni–P coatings that pref-erential dissolution of nickel occurs at open circuit potential,lead-ing to the enrichment of phosphorus on the surface layer [15–20].The enriched phosphorus surface reacts with water to form a layer of adsorbed hypophosphite anions (H 2PO À2).This layer in turn will block the supply of water to the electrode surface,thereby pre-venting the hydration of nickel [15],which is considered to be the first step to form either soluble Ni 2+species or a passive nickel film [19,20].3.4.2.Electrochemical impedance spectroscopy studiesFig.6shows the Nyquist plots obtained for As-plated and heat treated coatings in 3.5%sodium chloride solution at their respec-tive open circuit potentials.All the curves appear to be similar (Ny-quist plots),consisting of a single semi-circle in the high frequency regions signifying the charge controlled reaction.However,it should be noted that though these curves appear to be similar withrespect to their shape,they differ considerably in their size.This indicates that the same fundamental processes must be occurring on all these coatings but over a different effective area in each case [19,20].To account for corrosion behavior of As-plated and heat treated electroless Ni–P coatings in 3.5%sodium chloride solution at their respective open circuit potentials,an equivalent electrical circuit model given in Fig.7has been utilized to simulate the metal/solu-tion interface and to analyze the Nyquist plot [19,20].The charge transfer resistance R ct and double layer capacitance C dl obtained for As-plated and heat treated electroless Ni–P coat-ings are compiled in Table 2.The open circuit potential (OCP),a reliable parameter that indicates the tendency of these systems to corrode,is also included in the same table,along with R ct and C dl values for effective comparison.The occurrence of a single semi-circle in the Nyquist plots indicates that the corrosion pro-cess of these coatings involves a single time constant [19].A similar conclusion of the existence of a single time constant has been reported by Zeller [21],Van DerKouwe [22]and Lo et al.[23]for the corrosion of electroless Ni–P coatings in sodium chloride and sodium hydroxide solutions at the respective open circuit potentials [19].The high values of charge transfer resistance (R ct ),in the range 18,172–52,903X cm 2,obtained for the coatings of presentstudyFig.5.Potentiodynamic polarization curves of As-plated and heat treated electro-less Ni–P coatings in 3.5%sodium chloride solution.Table 1Corrosion characteristics of As-plated and heat treated electroless Ni–P coatings in 3.5%sodium chloride solution by potentiodynamic polarization technique.Type of coating E corr (V vs.Ag/AgCl)i corr (A/cm 2)As-platedÀ0.37610Â10À5HT-200°C,2h À0.355 6.3Â10À5HT-400°C,1h À0.321Â10À5HT-600°C,15minÀ0.252.5Â10À5Fig.7.Equivalent electrical circuit model used to analyze the EIS data of the As-plated and heat treated electroless Ni–P coatings.3178T.Rabizadeh et al./Materials and Design 31(2010)3174–3179imply a better corrosion protective ability of heat treated coatings than the As-plated electroless Ni–P coating.The capacitance value obtained for As-plated and heat treated electroless Ni–P coatings are in the order of23–38l F/cm2.The C dl value is related to the porosity of the coating.The low C dl values confirm that the heat treated electroless Ni–P coatings of present study are relatively less porous in nature.By comparing electrochemical parameters and from EIS data of As-plated and heat treated Ni–P electroless coatings in3.5%so-dium chloride solution and from XRD patterns,it can be see that because As-plated coating is nano-crystalline in nature,it has more grain boundaries,hence it is less protective.By increasing heat treatment temperatures from200°C to600°C coatings become denser and less porous that decreasing C dl value proves this.At 200°C,there is grain growth that reduces grain boundaries and its corrosion properties are better than As-plated sample.At 600°C and400°C it is expected that the alloys consist of two con-stituents:crystals of the nickel-rich phase and the Ni x P y phases. Therefore,it can be observed that alloys are not continuous,be-cause they have surface inhomogeneities(grain boundaries and second phase),which are active sites for corrosion attack.Thus, the mixtures of two phases with two different compositions,prob-ably produces active–passive corrosion cells within the alloy,caus-ing it to suffer sever chemical attack.At400°C formation of second phases of Ni x P y have to decrease the corrosion resistance of coating but grain growth at this temper-ature triumph the formation of second phases and the corrosion resistance increases.After heat treatment at600°C because of increasing second phases’quantity,the corrosion resistance de-creases compare to400°C.4.ConclusionsNano-crystalline Ni–P electroless coatings was deposited on X65steel samples.The heat treatment effects on coating properties were systematically studied.The results show that:(1)As-deposited Ni–P coating has a homogeneous nano-crystal-line structure.(2)By applying heat treatment,second phase precipitationoccurred around400°C.(3)The highest hardness was obtained after heat treatmenttemperature at600°C for15min because of formation of an inter-diffusional layer and Ni3P phase and sealing porosities.(4)Proper heat treatment can significantly improve the corro-sion resistance of these coatings.References[1]Hu YJ,Xiong L,Meng JL.Electron microscopic study on interfacialcharacterization of electroless Ni–W–P plating on aluminium alloy.Appl Surf Sci2007;253:5029–34.[2]Dong D,Chen XH,Xiao WT,Yang GB,Zhang PY.Preparation and properties ofelectroless Ni–P–SiO2composite coatings.Appl Surf Sci2009;255:7051–5. [3]Bozzoni B,Lenardi C,Serra M,Faniglulio M.Electrochemical and X-rayphotoelectron spectroscopy investigation into anodic behaviour of electroless Ni–9Á5wt.%P in acidic chloride environment.Brit Corros J2002;37:173–81. [4]Ashassi-Sorkhabi H,Rafezadeh SH.Effect of coating time and heat treatmenton structures and corrosion characteristics of electroless Ni–P alloy deposits.Surf Coat Technol2004;176:318–26.[5]Crobu M,Scorciapino A,Elsener B,Rossi A.The corrosion resistance ofelectroless deposited nano-crystalline Ni–P alloys.Electrochim Acta 2008;53:3364–70.[6]Jiaqiang G,Yating W,Lei L,Bin S,Wenbin H.Crystallization temperature ofamorphous electroless nickel–phosphorus alloys.Mater Lett2005;59:1665–9.[7]Yu HS,Luo SF,Wang YR.A comparative study on the crystallization behavior ofelectroless Ni–P and Ni–Cu–P deposits.Surf Coat Technol2001;148:143–8. [8]Tachev D,Georgieva J,Armyanov S.Magnetothermal study of nanocrystallineparticle formation in amorphous electroless Ni–P and Ni–Me–P alloys.Electrochim Acta2001;47:359–69.[9]Wang LP,Gao Y,Xu T,Xue QJ.Corrosion resistance and lubricated sliding wearbehaviour of novel Ni–P graded alloys as an alternative to hard Cr deposits.Appl Surf Sci2006;252:7361–72.[10]Yan M,Ying HG,Ma TY.Improved microhardness and wear resistance of theas-deposited electroless Ni–P coating.Surf Coat Technol2008;202:5909–13.[11]Mallory GO,Hajdu JB.Electroless plating:fundamentals and applications.Reprint ed.Florida:AESF;1990.[12]Huang YS,Zeng XT,Hu XF,Liu FM.Heat treatment effects on EN–PTFE–SiCcomposite coatings.Surf Coat Technol2005;198:173–7.[13]Elsener B,Crobu M,Scorciapino MA,Rossi A.Electroless deposited Ni–P alloys:corrosion resistance mechanism.J Appl Electrochem2008;38:1053–60. [14]Re´ve´sz A,Lendvai J,Loranth J,Padar J,Bakonyi IJ.Nanocrystallization studies ofan electroless plated Ni–P amorphous alloy.J Electrochem Soc 2001;148:715–20.[15]Diegle RB,Sorensen NR,Nelson GC.Dissolution of glassy Ni–P alloys in H2SO4and HCl electrolytes.J Electrochem Soc1986;133:1769–76.[16]Diegle RB,Sorensen NR,Clayton CR,Helfand MA,Yu YC.An XPS investigationinto the passivity of an amorphous Ni–20P alloy.J Electrochem Soc 1988;135:1085–92.[17]Carbajal JL,White RE.Electrochemical production and corrosion testing ofamorphous Ni–P.J Electrochem Soc1988;135:2952–7.[18]Habazaki H,Deng SQ,Kashima A,Asami K,Hashimoto K,Inoue A,et al.Theanodic behavior of amorphous Ni–19P alloys in different amorphous states.Corros Sci1989;29:1319–28.[19]Balaraju JN,Sankara Narayanan TSN,Seshadri SK.Evaluation of corrosionresistance of electroless Ni–P and Ni–P composite coatings by electrochemical impedance spectroscopy.J Solid State Electrochem2001;5:334–8.[20]Balaraju JN,Ezhil Selvi V,William Grips VK,Rajam KS.Electrochemical studieson electroless ternary and quaternary Ni–P based alloys.Electrochim Acta 2006;52:1064–74.[21]Zeller III RL.Electrochemical corrosion testing of high phosphorus electrolessnickel in5%NaCl.Corrosion1991;47:692–702.[22]Van Der Kouwe ET.EIS as a means of evaluating electroless nickel deposits.Electrochim Acta1993;38:2093–7.[23]Lo PH,Tsai WT,Lee JT,Hung MP.The electrochemical behavior of electrolessplated Ni–P alloys in concentrated NaOH solution.J Electrochem Soc 1995;142:91–6.Table2Electrochemical parameters from EIS data of As-plated and heat treated Ni–Pelectroless coatings in3.5%sodium chloride solution.Type of coating OCP(mV vs.Ag/AgCl)R ct(X cm2)C dl(l F/cm2)As-platedÀ34313,93438.334HT-200°C,2hÀ32418,17232.952HT-400°C,1hÀ24152,90328.154HT-600°C,15minÀ25627,35223.823T.Rabizadeh et al./Materials and Design31(2010)3174–31793179。

相关文档
最新文档