辅助圆解决中考压轴题
2024中考压轴题05 圆的综合(5题型+解题模板+技巧精讲)(原卷版)

压轴题05圆的综合目录题型一切线的判定题型二圆中求线段长度题型三圆中的最值问题题型四圆中的阴影部分面积题型五圆中的比值(相似)问题下图为二次函数图象性质与几何问题中各题型的题型一切线的判定解题模板:技巧:有切点,连半径,证垂直(根据题意,可以证角为90°,如已有90°角,可以尝试证平行) 没切点,作垂直,证半径(通常为证全等,也可以通过计算得到与半径相等)【例1】1.(2023-四川攀枝花-中考真题)如图,AB 为O 的直径,如果圆上的点D 恰使ADC B ∠=∠,求证:直线CD 与O 相切.【变式1-1】(2023-辽宁-中考真题)如图,ABC 内接于O ,AB 是O 的直径,CE 平分ACB ∠交O 于点E ,过点E 作EF AB ∥,交CA 的延长线于点F .求证:EF 与O 相切;【变式1-2】(2023-辽宁-中考真题)如图,AB 是O 的直径,点C E ,在O 上,2CAB EAB ∠=∠,点F 在线段AB 的延长线上,且AFE ABC ∠=∠.(1)求证:EF与O相切;(2)若41sin5BF AFE=∠=,,求BC的长.【变式1-3】(2023-湖北鄂州-中考真题)如图,AB为O的直径,E为O上一点,点C为EB的中点,过点C作CD AE⊥,交AE的延长线于点D,延长DC交AB的延长线于点F.(1)求证:CD是O的切线;题型二圆中求线段长度解题模板:【例2】(2023-西藏-中考真题)如图,已知AB为O的直径,点C为圆上一点,AD垂直于过点C的直线,交O于点E,垂足为点D,AC平分BAD∠.(1)求证:CD 是O 的切线; (2)若8AC =,6BC =,求DE 的长.【变式2-1】(2023-内蒙古-中考真题)如图,AB 是⊙O 的直径,E 为⊙O 上的一点,点C 是AE 的中点,连接BC ,过点C 的直线垂直于BE 的延长线于点D ,交BA 的延长线于点P .(1)求证:PC 为⊙O 的切线;(2)若PC =,10PB =,求BE 的长.【变式2-2】(2023-辽宁大连-中考真题)如图1,在O 中,AB 为O 的直径,点C 为O 上一点,AD 为CAB ∠的平分线交O 于点D ,连接OD 交BC 于点E .(1)求BED ∠的度数;(2)如图2,过点A 作O 的切线交BC 延长线于点F ,过点D 作DG AF ∥交AB 于点G .若AD =4DE =,求DG 的长.【变式2-3】(2023-湖北恩施-中考真题)如图,ABC 是等腰直角三角形,90ACB ∠=︒,点O 为AB 的中点,连接CO 交O 于点E ,O 与AC 相切于点D .(1)求证:BC是O的切线;(2)延长CO交O于点G,连接AG交O于点F,若AC FG的长.题型三圆中的最值问题解题模板:技巧精讲:1、辅助圆模型【例3】(2023-湖南长沙-三模)如图1:在O 中,AB 为直径,C 是O 上一点,3,4AC BC ==.过O 分别作OH BC ⊥于点H ,OD AC ⊥于点D ,点E 、F 分别在线段BC AC 、上运动(不含端点),且保持90EOF ∠=︒.(1)OC =______;四边形CDOH 是______(填矩形/菱形/正方形); CDOH S =四边形______; (2)当F 和D 不重合时,求证:OFD OEH ∽;(3)⊙在图1中,P 是CEO 的外接圆,设P 面积为S ,求S 的最小值,并说明理由;⊙如图2:若Q 是线段AB 上一动点,且1QAQB n =∶∶,90EQF ∠=︒,M 是四边形CEQF 的外接圆,则当n 为何值时,M 的面积最小?最小值为多少?请直接写出答案.【变式3-1】(2023-安徽-模拟预测)如图,半圆的直径4AB =,弦CD AB ∥,连接,,,AC BD AD BC .(1)求证:ADC BCD △≌△;(2)当ACD 的面积最大时,求CAD ∠的度数.【变式3-2】(2023-四川-中考真题)如图1,已知线段AB ,AC ,线段AC 绕点A 在直线AB 上方旋转,连接BC ,以BC 为边在BC 上方作Rt BDC ,且30DBC ∠=︒.(1)若=90BDC ∠︒,以AB 为边在AB 上方作Rt BAE △,且90AEB ∠=︒,30EBA ∠=︒,连接DE ,用等式表示线段AC 与DE 的数量关系是 ;(2)如图2,在(1)的条件下,若DE AB ⊥,4AB =,2AC =,求BC 的长;(3)如图3,若90BCD ∠=︒,4AB =,2AC =,当AD 的值最大时,求此时tan CBA ∠的值.【变式3-3】(2023-陕西西安-模拟预测)【问题情境】如图1,在ABC 中,120A ∠=︒,AB AC =,BC =ABC 的外接圆的半径值为______; 【问题解决】如图2,点P 为正方形ABCD 内一点,且90BPC ∠=︒,若4AB =,求AP 的最小值; 【问题解决】如图3,正方形ABCD 是一个边长为的书展区域设计图,CE 为大门,点E 在边BC 上,CE =,点P 是正方形ABCD 内设立的一个活动治安点,到B 、E 的张角为120︒,即120BPE ∠=︒,点A 、D 为另两个固定治安点,现需在展览区域内部设置一个补水供给点Q ,使得Q 到A 、D 、P 三个治安点的距离和最小,试求QA QD QP ++的最小值.(结果精确到0.1m 1.7≈,214.3205≈)题型四 圆中的阴影部分面积【例4】(2024-西藏拉萨-一模)如图,等腰ABC 的顶点A ,C 在O 上, BC 边经过圆心0且与O 交于D 点,30B ∠=︒.(1)求证:AB 是O 的切线; (2)若6AB =,求阴影部分的面积【变式4-1】(2023-陕西西安-一模)如图,正六边形ABCDEF 内接于O .(1)若P 是CD 上的动点,连接BP ,FP ,求BPF ∠的度数;(2)已知ADF △的面积为O 的面积.【变式4-2】(2023-浙江衢州-中考真题)如图,在Rt ABC △中,90,ACB O ∠=︒为AC 边上一点,连结OB .以OC 为半径的半圆与AB 边相切于点D ,交AC 边于点E .(1)求证:BC BD =.(2)若,2OB OA AE ==.⊙求半圆O 的半径.⊙求图中阴影部分的面积.【变式4-3】(2023-辽宁阜新-中考真题)如图,AB 是O 的直径,点C ,D 是O 上AB 异侧的两点,DE CB ⊥,交CB 的延长线于点E ,且BD 平分ABE ∠.(1)求证:DE 是O 的切线.(2)若60ABC ∠=︒,4AB =,求图中阴影部分的面积.【变式4-4】(2023-山东枣庄-中考真题)如图,AB 为O 的直径,点C 是AD 的中点,过点C 做射线BD 的垂线,垂足为E .(1)求证:CE 是O 切线;(2)若34BE AB ==,,求BC 的长;(3)在(2)的条件下,求阴影部分的面积(用含有π的式子表示).题型五 圆中的比值(相似)问题 技巧精讲:【例5】(2024-陕西西安-模拟预测)如图,AB 为O 的直径, 点 D 为O 上一点, 过点 B 作O 切线交AD 延长线于点 C ,CE 平分ACB ∠,CE BD ,交于F .(1)求证:BE BF =;(2)若O 半径为2,3sin 5A =,求DF 的长度. 【变式5-1】(2023-湖南湘西-二模)如图,AB 是O 的直径,点C ,D 在O 上,AD 平分CAB ∠,交BC 于点E ,连接BD .(1)求证:BED ABD △△.(2)当3tan 4ABC ∠=,且10AB =时,求线段BD 的长.(3)点G 为线段AE 上一点,且BG 平分ABC ∠,若GE =,3BG =,求CE 的长.【变式5-2】(2024-陕西西安-一模)如图,AB 是O 的直径CD 与O 相切于点C ,与BA 的延长线交于点D ,连接BC ,点E 在线段OB 上,过点E 作BD 的垂线交DC 的延长线于点F ,交BC 于点G .(1)求证:FC FG =;(2)若220AO AD ==,点E 为OB 的中点,求GE 的长.【变式5-3】(2024-陕西西安-一模)如图,AB 是O 的直径,点D 在直径AB 上(D 与,A B 不重合),CD AB ⊥且CD AB =,连接CB ,与O 交于点F ,在CD 上取一点E ,使EF 与O 相切.(1)求证:EF EC =;(2)若D 是OA 的中点,4AB =,求BF 的长.一、解答题1.(2024-云南-模拟预测)如图,四边形ABCD 内接于O ,对角线AC 是O 的直径,过点C 作AC 的垂线交AD 的延长线于点E ,F 为CE 的中点,连接BD ,DF ,BD 与AC 交于点P .(1)求证:DF 是O 的切线;(2)若45DPC ∠=︒,228PD PB +=,求AC 的长.2.(2024-湖北黄冈-模拟预测)如图,PO 平分APD ∠,PA 与⊙O 相切于点A ,延长AO 交PD 于点C ,过点O 作OB PD ⊥,垂足为B .(1)求证:PB 是⊙O 的切线;(2)若⊙O 的半径为4,5OC =,求PA 的长.3.(2024-江苏淮安-模拟预测)如图,已知直线l 与O 相离,OA l ⊥于点A ,交O 于点 P ,点 B 是O 上一点,连接BP 并延长,交直线l 于点 C ,使得AB AC =.(1)判断直线AB 与O 的位置关系并说明理由;(2)4PC OA ==,求线段 PB 的长.4.(2024-四川凉山-模拟预测)如图,CD 是O 的直径,点P 是CD 延长线上一点,且AP 与O 相切于点A ,弦AB CD ⊥于点F ,过D 点作DE AP ⊥于点E .(1)求证:∠∠EAD FAD =;(2)若4PA =,2PD =,求O 的半径和DE 的长.5.(2024-四川凉山-模拟预测)如图,在Rt ABC △中,90ACB ∠=︒,以AC 为直径的O 交AB 于点D ,E 为BC 的中点,连接DE 并延长交AC 的延长线于点F .(1)求证:DE 是O 的切线;(2)若30A ∠=︒,3DF =,求CE 长.6.(2024-山东泰安-一模)如图,AB CD ,是O 的两条直径,过点C 的O 的切线交AB 的延长线于点E ,连接AC BD ,.(1)求证:ABD CAB ∠=∠;(2)若B 是OE 的中点,12AC =,求O 的半径.7.(2024-福建南平-一模)如图1,点D 是ABC 的边AB 上一点.AD AC =,CAB α∠=,O 是BCD △的外接圆,点E 在DBC 上(不与点C ,点D 重合),且90CED α∠=︒-.(1)求证:ABC 是直角三角形;(2)如图2,若CE 是⊙O 的直径,且2CE =,折线ADF 是由折线ACE 绕点A 顺时针旋转α得到. ⊙当30α=︒时,求CDE 的面积;⊙求证:点C ,D ,F 三点共线.8.(2023-四川甘孜-中考真题)如图,在Rt ABC △中,=90ABC ∠︒,以BC 为直径的O 交AC 边于点D ,过点C 作O 的切线,交BD 的延长线于点E .(1)求证:=DCE DBC ∠∠;(2)若=2AB ,=3CE ,求O 的半径.9.(2023-湖北黄石-中考真题)如图,AB 为O 的直径,DA 和O 相交于点F ,AC 平分DAB ∠,点C 在O 上,且CD DA ⊥,AC 交BF 于点P .(1)求证:CD 是O 的切线;(2)求证:2AC PC BC ⋅=;(3)已知23BC FP DC =⋅,求AF AB的值.10.(2023-辽宁鞍山-中考真题)如图,四边形ABCD 内接于O ,AB 为O 的直径,过点D 作DF BC ⊥,交BC 的延长线于点F ,交BA 的延长线于点E ,连接BD .若180EAD BDF ∠+∠=︒.(1)求证:EF 为O 的切线.(2)若10BE =,2sin 3BDC ∠=,求O 的半径.11.(2023-湖南湘西-中考真题)如图,点D ,E 在以AC 为直径的O 上,ADC ∠的平分线交O 于点B ,连接BA ,EC ,EA ,过点E 作EH AC ⊥,垂足为H ,交AD 于点F .(1)求证:2AE AF AD =⋅;(2)若sin 5ABD AB ∠==,求AD 的长. 12.(2023-辽宁沈阳-中考真题)如图,AB 是O 的直径,点C 是O 上的一点(点C 不与点A ,B 重合),连接AC 、BC ,点D 是AB 上的一点,AC AD =,BE 交CD 的延长线于点E ,且BE BC =.(1)求证:BE 是O 的切线;(2)若O 的半径为5,1tan 2E =,则BE 的长为______ .13.(2023-黑龙江大庆-中考真题)如图,AB 是O 的直径,点C 是圆上的一点,CD AD ⊥于点D ,AD 交O 于点F ,连接AC ,若AC 平分DAB ∠,过点F 作FG AB ⊥于点G ,交AC 于点H ,延长AB ,DC 交于点E .(1)求证:CD 是O 的切线;(2)求证:AF AC AE AH ⋅=⋅;(3)若4sin 5DEA ∠=,求AH FH的值.14.(2023-四川雅安-中考真题)如图,在Rt ABC △中,90ABC ∠=︒,以AB 为直径的O 与AC 交于点D ,点E 是BC 的中点,连接BD ,DE .(1)求证:DE 是O 的切线;(2)若2DE =,1tan 2BAC ∠=,求AD 的长;(3)在(2)的条件下,点P 是O 上一动点,求PA PB +的最大值.15.(2023-辽宁营口-中考真题)如图,在ABC 中,AB BC =,以BC 为直径作O 与AC 交于点D ,过点D 作DE AB ⊥,交CB 延长线于点F ,垂足为点E .(1)求证:DF 为O 的切线;(2)若3BE =,4cos 5C =,求BF 的长.。
2023年中考数学专题复习《圆综合压轴题》解答题专题提升训练+

2022-2023学年九年级数学中考复习《圆综合压轴题》解答题专题提升训练(附答案)1.如图,以线段AB为直径作⊙O,交射线AC于点C,AD平分∠CAB交⊙O于点D,过点D作直线DE⊥AC于点E,交AB的延长线于点F.连接BD并延长交AC于点M.(1)求证:直线DE是⊙O的切线;(2)求证:AB=AM;(3)若ME=1,∠F=30°,求BF的长.2.如图,在⊙O中,AB为⊙O的直径,点E在⊙O上,D为的中点,连接AE,BD并延长交于点C.连接OD,在OD的延长线上取一点F,连接BF,使∠CBF=∠BAC.(1)求证:BF为⊙O的切线;(2)若AE=4,OF=,求⊙O的半径.3.已知:如图,AB为⊙O的直径,CD与⊙O相切于点C,交AB延长线于点D,连接AC,BC,∠D=30°,CE平分∠ACB交⊙O于点E,过点B作BF⊥CE,垂足为F.(1)求证:CA=CD;(2)若AB=12,求线段BF的长.4.如图,在半径为10cm的⊙O中,AB是⊙O的直径,CD是过⊙O上一点C的直线,且AD⊥DC于点D,AC平分∠BAD,点E是BC的中点,OE=6cm.(1)求证:CD是⊙O的切线;(2)求AD的长.5.如图,在△ABC中,AB=AC.以AB为直径的⊙O与线段BC交于点D,过点D作DE ⊥AC,垂足为E,ED的延长线与AB的延长线交于点P.(1)求证:直线PE是⊙O的切线;(2)若⊙O的半径为6,∠P=30°,求CE的长.6.如图,点O是△ABC的边AC上一点,以点O为圆心,OA为半径作⊙O,与BC相切于点E,交AB于点D,连接OE,连接OD并延长交CB的延长线于点F,∠AOD=∠EOD.(1)连接AF,求证:AF是⊙O的切线;(2)若FC=10,AC=6,求FD的长.7.如图,P为⊙O外一点,P A、PB为⊙O的切线,切点分别为A、B,直线PO交⊙O于点D、E,交AB于点C.(1)求证:∠ADE=∠P AE.(2)若∠ADE=30°,求证:AE=PE.(3)若PE=4,CD=6,求CE的长.8.如图,△ABC中,AB=AC,D为AC上一点,以CD为直径的⊙O与AB相切于点E,交BC于点F,FG⊥AB,垂足为G.(1)求证:FG是⊙O的切线;(2)若BG=1,BF=3,求CF的长.9.如图,AB为⊙O的直径,过圆上一点D作⊙O的切线CD交BA的延长线于点C,过点O作OE∥AD交CD于点E,连接BE.(1)直线BE与⊙O相切吗?并说明理由;(2)若CA=2,CD=4,求DE的长.10.如图,AB是⊙O的直径,CD是⊙O的弦,AB⊥CD,垂足是点H,过点C作直线分别与AB,AD的延长线交于点E,F,且∠ECD=2∠BAD.(1)求证:CF是⊙O的切线;(2)如果AB=10,CD=6,①求AE的长;②求△AEF的面积.11.如图,DP是⊙O的切线,D为切点,弦AB∥DP,连接BO并延长,与⊙O交于点C,与DP交于点E,连接AC并延长,与DP交于点F,连接OD.(1)求证:AF∥OD;(2)若OD=5,AB=8,求线段EF的长.12.如图,△ABC内接于⊙O,AB=AC,AD是⊙O的直径,交BC于点E,过点D作DF ∥BC,交AB的延长线于点F,连接BD.(1)求证:DF是⊙O的切线;(2)已知AC=12,AF=15,求DF的长.13.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,过点C作CE⊥AD交AD的延长线于点E,延长EC,AB交于点F,∠ECD=∠BCF.(1)求证:CE为⊙O的切线;(2)若DE=1,CD=3,求⊙O的半径.14.如图,已知:AB为⊙O的直径,⊙O分别交△ABC的边AC、BC于点D、E,点F为AC的延长线上一点,且∠CBF=∠BOE.(1)求证:BF是⊙O的切线;(2)若AB=4,∠CBF=45°,BE=2EC,求AD和CF的长.15.如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,点D是的中点,DE∥BC交AC的延长线于点E.(1)求证:直线DE与⊙O相切;(2)若⊙O的直径是10,∠A=45°,求CE的长.16.如图,以等边三角形ABC的BC边为直径画圆,交AC于点D,DF⊥AB于点F,连接OF,且AF=1.(1)求证:DF是⊙O的切线;(2)求线段OF的长度.17.如图,已知△ABC内接于⊙O,AB是⊙O的直径,∠CAB的平分线交BC于点D,交⊙O于点E,连接EB,作∠BEF=∠CAE,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)若BF=10,EF=20,求⊙O的半径和AD的长.18.如图,AB为⊙O直径,D为⊙O上一点,BC⊥CD于点C,交⊙O于点E,CD与BA 的延长线交于点F,BD平分∠ABC.(1)求证:CD是⊙O的切线;(2)若AB=10,CE=1,求CD和DF的长.19.如图,在Rt△ABC中,∠ACB=90°,延长CA到点D,以AD为直径作⊙O,交BA 的延长线于点E,延长BC到点F,使BF=EF.(1)求证:EF是⊙O的切线;(2)若OC=9,AC=4,AE=8,求BF的长.20.如图,在Rt△ABC中,∠C=90°,D是AB上的一点,以AD为直径的⊙O与BC相切于点E,连接AE,DE.(1)求证:AE平分∠BAC;(2)若∠B=30°,求的值.参考答案1.(1)证明:连接OD,则OD=OA,∴∠ODA=∠OAD,∵AD平分∠CAB,∴∠OAD=∠DAC,∴∠ODA=∠DAC,∴OD∥AC,∵DE⊥AC,∴∠ODF=∠AED=90°,∵OD是⊙O的半径,且DE⊥OD,∴直线DE是⊙O的切线.(2)证明:∵线段AB是⊙O的直径,∴∠ADB=90°,∴∠ADM=180°﹣∠ADB=90°,∴∠M+∠DAM=90°,∠ABM+∠DAB=90°,∵∠DAM=∠DAB,∴∠M=∠ABM,∴AB=AM.(3)解:∵∠AEF=90°,∠F=30°,∴∠BAM=60°,∴△ABM是等边三角形,∴∠M=60°,∵∠DEM=90°,ME=1,∴∠EDM=30°,∴MD=2ME=2,∴BD=MD=2,∵∠BDF=∠EDM=30°,∴∠BDF=∠F,∴BF=BD=2.2.(1)证明:如图,连接AD,AB是圆的直径,则∠ADB=90°,D为的中点,则∠BAD=∠CAD=∠BAC,∵,∴∠CBF=∠BAD,∵∠BAD+∠ABD=90°,∴∠ABF=∠ABD+∠CBF=90°,∴AB⊥BF,∵OB是⊙O的半径,∴BF是⊙O的切线;(2)解:如图,连接BE,AB是圆的直径,则∠AEB=90°,∵∠BOD=2∠BAD,∠BAC=2∠BAD,∴∠BOD=∠BAC,又∵∠ABF=∠AEB=90°,∴△OBF∽△AEB,∴OB:AE=OF:AB,∴OB:4=:2OB,OB2=9,OB>0,则OB=3,∴⊙O的半径为3.3.(1)证明:连接OC,∵CD与⊙O相切于点C,∴∠OCD=90°,∵∠D=30°,∴∠COD=90°﹣∠D=60°,∴∠A=∠COD=30°,∴∠A=∠D=30°,∴CA=CD;(2)解:∵AB为⊙O的直径,∴∠ACB=90°,∵∠A=30°,AB=12,∴BC=AB=6,∵CE平分∠ACB,∴∠BCE=∠ACB=45°,∵BF⊥CE,∴∠BFC=90°,∴BF=BC•sin45°=6×=3,∴线段BF的长为3.4.(1)证明:连接OC,如图:∵AC平分∠BAD,∴∠DAC=∠CAO,∵OA=OC,∴∠CAO=∠OCA,∴∠DAC=∠OCA,∴AD∥OC,∵AD⊥DC,∴CO⊥DC,∵OC是⊙O的半径,∴CD是⊙O的切线;(2)解:∵E是BC的中点,且OA=OB,∴OE是△ABC的中位线,AC=2OE,∵OE=6cm,∴AC=12cm,∵AB是⊙O的直径,∴∠ACB=90°=∠ADC,又∠DAC=∠CAB,∴△DAC∽△CAB,∴,即=,∴AD=cm.5.(1)证明:连接OD,如图:∵AB=AC,∴∠ABC=∠ACB,∵OB=OD,∴∠ABC=∠ODB,∴∠ACB=∠ODB,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,即PE⊥OD,∵OD是⊙O的半径,∴PE是⊙O的切线;(2)解:连接AD,连接OD,如图:∵DE⊥AC,∴∠AEP=90°,∵∠P=30°,∴∠P AE=60°,∵AB=AC,∴△ABC是等边三角形,∴∠C=60°,∵⊙O的半径为6,∴BC=AB=12,∵AB是⊙O的直径,∴∠ADB=90°,∴BD=CD=BC=6,在Rt△CDE中,CE=CD•cos C=6×cos60°=3,答:CE的长是3.6.(1)证明:在△AOF和△EOF中,,∴△AOF≌△EOF(SAS),∴∠OAF=∠OEF,∵BC与⊙O相切,∴OE⊥FC,∴∠OAF=∠OEF=90°,即OA⊥AF,∵OA是⊙O的半径,∴AF是⊙O的切线;(2)解:在Rt△CAF中,∠CAF=90°,FC=10,AC=6,∴AF==8,∵∠OCE=∠FCA,∠OEC=∠F AC=90°,∴△OEC∽△F AC,∴,设⊙O的半径为r,则,解得r=,在Rt△F AO中,∠F AO=90°,AF=8,AO=,∴OF==,∴FD=OF﹣OD=﹣,即FD的长为﹣.7.(1)证明:连接OA,如图,∵P A为⊙O的切线,∴AO⊥P A,∴∠OAE+∠P AE=90°.∵DE是⊙O的直径,∴∠DAE=90°,∴∠ADE+∠AED=90°.∵OA=OE,∴∠OAE=∠AED,∴∠ADE=∠P AE;(2)证明:由(1)知:∠ADE=∠P AE=30°,∵∠DAE=90°,∴∠AED=90°﹣∠ADE=60°.∵∠AED=∠P AE+∠APE,∴∠APE=∠P AE=30°,∴AE=PE;(3)解:设CE=x,则DE=CD+CE=6+x,∴OA=OE=,∴OC=OE﹣CE=,OP=OE+PE=.∵P A、PB为⊙O的切线,∴P A=PB,PO平分∠APB,∴PO⊥AB.∵P A为⊙O的切线,∴AO⊥P A,∴△OAC∽△OP A,∴,∴,即:x2+10x﹣24=0.解得:x=2或﹣12(不合题意,舍去),∴CE=2.8.(1)证明:如图,连接OF,∵AB=AC,∴∠B=∠C,∵OF=OC,∴∠C=∠OFC,∴∠OFC=∠B,∴OF∥AB,∵FG⊥AB,∴FG⊥OF,又∵OF是半径,∴GF是⊙O的切线;(2)解:如图,连接OE,过点O作OH⊥CF于H,∵BG=1,BF=3,∠BGF=90°,∴FG===2,∵⊙O与AB相切于点E,∴OE⊥AB,又∵AB⊥GF,OF⊥GF,∴四边形GFOE是矩形,∴OE=GF=2,∴OF=OC=2,又∵OH⊥CF,∴CH=FH,∵cos C=cos B=,∴,∴CH=,∴CF=.9.解:(1)直线BE与⊙O相切,理由:连接OD,∵CD与⊙O相切于点D,∴∠ODE=90°,∵AD∥OE,∴∠ADO=∠DOE,∠DAO=∠EOB,∵OD=OA,∴∠ADO=∠DAO,∴∠DOE=∠EOB,∵OD=OB,OE=OE,∴△DOE≌△BOE(SAS),∴∠OBE=∠ODE=90°,∵OB是⊙O的半径,∴直线BE与⊙O相切;(2)解法一:设⊙O的半径为r,在Rt△ODC中,OD2+DC2=OC2,∴r2+42=(r+2)2,∴r=3,∴AB=2r=6,∴BC=AC+AB=2+6=8,由(1)得:△DOE≌△BOE,∴DE=BE,在Rt△BCE中,BC2+BE2=CE2,∴82+BE2=(4+DE)2,∴64+DE2=(4+DE)2,∴DE=6;解法二:设⊙O的半径为r,在Rt△ODC中,OD2+DC2=OC2,∴r2+42=(r+2)2,∴r=3,∴OA=3,∵AD∥OE,∴=,∴=,∴DE=6,∴DE的长为6.10.(1)证明:连接OC,如图,∵AB是⊙O的直径,AB⊥CD,∴,∴∠CAB=∠DAB.∵∠COB=2∠CAB,∴∠COB=2∠BAD.∵∠ECD=2∠BAD,∴∠ECD=∠COB.∵AB⊥CD,∴∠COB+∠OCH=90°,∴∠OCH+∠ECD=90°,∴∠OCE=90°.∴OC⊥CF.∵OC是⊙O的半径,∴CF是⊙O的切线;(2)解:①∵AB=10,∴OA=OB=OC=5,∵AB是⊙O的直径,AB⊥CD,∴CH=DH=CD=3.∴OH==4,∵OC⊥CF,CH⊥OE,∴△OCH∽△OEC,∴,∴,∴OE=.∴AE=OA+OE=5+=;②过点F作FG⊥AB,交AB的延长线于点G,如图,∵∠OCF=∠FGE=90°,∠CEO=∠GEF,∴△OCE∽△FGE.∴,设FG=4k,则FE=5k,∴EG==3k,∵DH⊥AB,FG⊥AB,∴DH∥FG.∴,∴,解得:k=.∴FG=4k=5.∴△AEF的面积=×AE•FG=.11.(1)证明:延长DO交AB于点H,∵DP是⊙O的切线,∴OD⊥DP,∵AB∥DP,∴HD⊥AB,∵BC为⊙O的直径,∴∠BAC=90°,∴AF∥OD;(2)∵OH⊥AB,AB=8,∴BH=AH=4,∴OH===3,∵BH∥ED,∴△BOH∽△EOD,∴=,即=,解得:ED=,∵∠BAC=90°,DH⊥AB,DH⊥DP,∴四边形AFDH为矩形,∴DF=AH=4,∴EF=ED﹣DF=﹣4=.12.(1)证明:∵AD是⊙O的直径,∴∠ABD=90°,即∠ABC+∠CBD=90°,∵AB=AC,∴∠ABC=∠C,∵∠ADB=∠C,∴∠ABC=∠ADB,∵BC∥DF,∴∠CBD=∠FDB,∴∠ADB+∠FDB=90°,即∠ADF=90°,∴AD⊥DF,又∵OD是⊙O的半径,∴DF是⊙O的切线;(2)解:∵AB=AC=12,AF=15,∴BF=AF﹣AB=3,∵∠F=∠F,∠FBD=∠FDA=90°,∴△FBD∽△FDA,∴BF:DF=DF:AF,∴DF2=BF×AF=3×15=45,∴DF==3.13.(1)证明:如图1,连接OC,∵OB=OC,∴∠OCB=∠OBC,∵四边形ABCD内接于⊙O,∴∠CDE=∠OBC,∵CE⊥AD,∴∠E=∠CDE+∠ECD=90°,∵∠ECD=∠BCF,∴∠OCB+∠BCF=90°,∴∠OCE=90°,即OC⊥EF,∵OC是⊙O的半径,∴CE为⊙O的切线;(2)解:如图2,过点O作OG⊥AE于G,连接OC,OD,则∠OGE=90°,∵∠E=∠OCE=90°,∴四边形OGEC是矩形,∴OC=EG,OG=EC,设⊙O的半径为x,Rt△CDE中,CD=3,DE=1,∴EC==2,∴OG=2,GD=x﹣1,OD=x,由勾股定理得:OD2=OG2+DG2,∴x2=(2)2+(x﹣1)2,解得:x=4.5,∴⊙O的半径是4.5.14.(1)证明:连结AE,OE,∵∠BAE=∠BOE,∠CBF=∠BOE,∴∠BAE=∠CBF,∵AB为⊙O的直径,∴∠AEB=90°,∴∠BAE+∠ABE=90°,∴∠ABE+∠CBF=90°,即∠ABF=90°,∴BF⊥AB,∴BF是⊙O的切线;(2)解:过点C作CG⊥BF于点G,连结BD,∵∠CBF=45°,∴∠ABE=90°﹣∠CBF=45°,在Rt△ABE中,AB=4,∴AE=BE=4×sin45°=4,∵BE=2EC,∴EC=2,BC=6,在Rt△CBG中,∠CBG=45°,BC=6,∴CG=BG=3,∵CG⊥BF,BF⊥AB,∴AB∥CG,∴△FCG∽△F AB,∴=,∴=,∴FG=9,∴BF=12,在Rt△FCG中,CF==6,在Rt△ABF中,AF==8,∵AB为⊙O的直径,∴∠ADB=90°,又∵∠BAD=∠BAF,∴cos∠BAD=cos∠BAF,即=,∴=,∴AD=.15.(1)证明:连接OD,如图,∵点D是的中点,∴OD⊥BC,∵DE∥BC,∴OD⊥DE,∴直线DE与⊙O相切;(2)解:∵AC是⊙O的直径,∴∠B=90°,∵∠A=45°,∴∠ACB=45°,∵BC∥DE,∴∠E=45°,而∠ODE=90°,∴△ODE为等腰直角三角形,∴OE=OD=5,∴CE=OE﹣OC=5﹣5.16.(1)证明:连接OD,∵△ABC是等边三角形,∴∠C=∠A=60o,∵OC=OD,∴△OCD是等边三角形,∴∠CDO=∠A=60o,∴OD∥AB,∵DF⊥AB,∴∠FDO=∠AFD=90°,∴OD⊥DF,∴DF是⊙O的切线;(2)解:∵OD∥AB,OC=OB,∴OD是△ABC的中位线,∵∠AFD=90°,∠A=60o,∴∠ADF=30°,∵AF=1∴CD=OD=AD=2AF=2,在Rt△ADF中,由勾股定理得DF2=AD2﹣AF2=3,在Rt△ODF中,由勾股定理得OF=,∴线段OF的长为.17.(1)证明:连接OE,∵AB是⊙O的直径,∴∠AEB=90°,即∠AEO+∠OEB=90°,∵AE平分∠CAB,∴∠CAE=∠BAE,∵∠BEF=∠CAE,∴∠BEF=∠BAE,∵OA=OE,∴∠BAE=∠AEO,∴∠BEF=∠AEO,∴∠BEF+∠OEB=90°,∴∠OEF=90°,∴OE⊥EF,∵OE是⊙O的半径,∴EF是⊙O的切线;(2)解:如图,设⊙O的半径为x,则OE=OB=x,∴OF=x+10,在Rt△OEF中,由勾股定理得:OE2+EF2=OF2,∴x2+202=(x+10)2,解得:x=15,∴⊙O的半径为15;∵∠BEF=∠BAE,∠F=∠F,∴△EBF∽△AEF,∴==,设BE=a,则AE=2a,由勾股定理得:AE2+BE2=AB2,即a2+(2a)2=302,解得:a=6,∴AE=2a=12,∵∠CAE=∠BAE,∴,∴OE⊥BC,∵OE⊥EF,∴BC∥EF,∴,即,∴AD=9.18.(1)证明:连接OD,∵BD平分∠ABC.∴∠ABD=∠DBC,又∵OB=OD,∴∠OBD=∠ODB,∴∠DBC=∠ODB,又∵BC⊥CD,∴∠C=90°,∴∠DBC+∠BDC=90°,∴∠ODB+∠BDC=90°,即OD⊥DC,∴CD是⊙O的切线;(2)解:连接AE交OD于点H,∵AB为⊙O直径,∴∠AEB=90°,∴∠HEC=90°,∵BC⊥CD,OD⊥DC,∴∠ODC=∠C=90°,∴四边形HECD是矩形,∴DH=CE=1,HE=CD,∠EHD=90°,HE∥CD,∴OD⊥AE,∴AH=HE,∵AB=10,∴OA=OD=5,∴OH=OD﹣DH=5﹣1=4,∴AH=,∴HE=AH=3,∴CD=HE=3,∵HE∥CD,∴△OAH∽△OFD,∴,∴,∴DF=.19.证明:(1)连接OE,∵OA=OE,∴∠OEA=∠OAE,在Rt△ABC中,∠ACB=90°,∴∠BAC+∠B=90°,∵BF=EF,∴∠B=∠BEF,∵∠OAE=∠BAC,∴∠OEA=∠BAC,∴∠OEF=∠OEA+∠BEF=∠BAC+∠B=90°,∴OE⊥EF,∵OE是⊙O的半径,∴EF是⊙O的切线;(2)解:连接DE,∵OC=9,AC=4,∴OA=OC﹣AC=5,∵AD=2OA,∴AD=10,∵AD是⊙O的直径,∴∠AED=90°,在Rt△ADE中,∵DE===6,∴cos∠DAE===,在Rt△ABC中,cos∠BAC==,∵∠BAC=∠DAE,∴=,∴AB=5,∴BE=AB+AE=5+8=13,∵OD=OE,∴∠ODE=∠OED,∵EF是⊙O的切线,∴∠FEO=90°,∵∠OED+∠OEA=90°,∠FEB+∠OEA=90°,∴∠FEB=∠OED,∴∠B=∠FEB=∠OED=∠ODE,∴△FBE∽△ODE,∴=,∴=,∴BF=.方法二:解:连接DE,∵OC=9,AC=4,∴OA=OC﹣AC=5,∵AD=2OA,∴AD=10,∵AD是⊙O的直径,∴∠AED=90°,在Rt△ADE中,∵DE===6,∴cos∠DAE===,在Rt△ABC中,cos∠BAC==,∵∠BAC=∠DAE,∴=,∴AB=5,∴BE=AB+AE=5+8=13,过F作FH⊥BE于F,则BH=6.5,∵∠B的余弦等于0.6,∴BF=6.5÷0.6=.20.(1)证明:连接OE,∵BC是⊙O的切线,∴OE⊥BC,即∠OEB=90°,∵∠C=90°,∴OE∥AC,∴∠OEA=∠EAC,∵OE=OA,∴∠OEA=∠OAE,∴∠OAE=∠EAC,即AE平分∠BAC;(2)解:∵AD为⊙O的直径,∴∠AED=90°,∵∠OAE=∠EAC,∠C=90°,∴△DAE∽△EAC,∴=,∵∠C=90°,∠B=30°,∴∠BAC=90°﹣30°=60°,∴∠DAE=∠BAC=30°,∵cos∠DAE=,cos30°=,∴==.。
中考数学专题复习圆压轴八大模型题-弧中点的运用

圆压轴题八大模型题(一)市七中佳彼学校易建洪引言:与圆有关的证明与计算的综合解答题,往往位于许多省市中老题中的倒数第二题的位責上,是试卷中综合性与难度都比较大的习题。
一般都会在固定习题模型的基础上变化与括展,本文结合近年来各省市中考题,整理了这些习题的常见的结论,破题的要点,常用技巧。
把握了这些方法与技巧,就能台阶性地帮助考生解决问题。
类型1弧中点的运用在OO中,点O是处的中点,CE1AB于点£(1)在图】中,你会发现这些结论吗?CP= FP\② CH= AD\©AC^ = AP- AD=CF・ CB=AE・ SB.(2)在图2中,你能找出所有与相似的三角形吗?【分析】(1)①由等弧所对的圆周角相等及同角或等角的余角相等得:ZCAD= LAC巳/_ PCF= Z 所以AP= CP= FP.(1)②由垂径定理和弧中点的性质得,DC= AC= AH, 再由弧脅加得:CH^AD^X CH= AD.⑴③由共边角相似易证:\ACEs、ABC4ACPs“ADC4ACFs、BCA送而得AC1 =AE AB^ACr^APAaACr^CF CB:(2)垂径定理的推论得:CO丄SD易证:RtA/45C<^RtA C55^>RtA BD2 RtAZCG^RtACG^此外还有RtA/4^£^RtAZOG^RtA^5D^RtAC^G.运用这些相似三角形可以解决相关的计算与证明题.建议:将下列所有例题与习题转化到图】或图2上观察、比较、思考和总结。
【典例】(2018 •永州)如图,线段处为OO的直径,点C F在OO上,BC=CE, CQ丄S3,垂足为点O连接BE、弦3F与线段CQ相交于点F.(1)求证:CF= BF\⑵若COSZ/I5F=A,在S3的延长线上取一点M使购=4, OO的半径为6.求证:5・・ •专业【分析】(1)延长OQ 与圆相交,由垂径定理得到缸 =BG,再由BC=CE^到五=血=无,等弧所对的 角相等,等角对等边。
中考圆的压轴题解题技巧

中考圆的压轴题解题技巧《中考圆的压轴题解题技巧:我的“独门秘籍”》嘿,各位小伙伴们!今天咱就来唠唠中考圆的压轴题解题技巧。
要知道,这可是不少同学心中的“大老虎”啊,但别怕,今天我就跟大家分享我的那些“独门秘籍”,让你轻松打虎!首先呢,咱得有个好心态。
看见圆的压轴题别慌别懵别乱了阵脚,就把它当成你的朋友,虽然有点难搞,但咱有办法对付不是。
心态稳住了,接下来就上干货喽!第一招,“火眼金睛”找关键。
那圆里面弯弯绕绕的线条可多了去了,咱得瞪大眼睛把那些重要的条件、半径啦、圆心角啦、弦啦等等都给揪出来。
别放过任何一个小细节,有时候一个小小的条件就是解题的关键钥匙。
第二招,“搭积木”建模型。
圆的知识点就像一块块小积木,咱得把它们巧妙地搭建成我们需要的模型。
比如看到直径就想到直角三角形,看到弧就想到等量关系等等。
这就好比我们盖房子,得有稳固的结构才行。
然后呢,要善于使用各种辅助线。
这辅助线就像是咱的秘密武器,画好了那效果可是杠杠的。
比如说遇到弦咱就画个垂直平分线,遇到切线就赶紧把切点连起来。
还有哦,要多做题,但不是瞎做,得学会总结归纳。
把做错的题整理出来,分析分析自己为啥错了,下次遇到类似的可就不能再犯了。
说到这我想起我曾经做圆的压轴题时的搞笑事儿。
有一次我信心满满地去做一道题,结果半天找不到头绪,急得我抓耳挠腮的,最后才发现是自己把一个角度给看错了,懊恼得我呀!不过吃一堑长一智,从那以后我做题就更仔细了。
总之,面对中考圆的压轴题,我们既要勇敢又要有策略。
记住咱们的技巧,多练习多总结,相信大家都能把这只“大老虎”给拿下!加油吧,小伙伴们!让我们在考场上自信满满地与圆的压轴题过过招,赢得漂亮!。
压轴题 圆的五种考法(解析版)--九年级数学常考压轴题

压轴题圆的五种考法目录解题知识必备压轴题型讲练类型一、四点共圆类型二、圆中最值问题类型三、定点定长构造辅助圆类型四、定弦定角构造辅助圆类型五、对角互补构造辅助圆压轴能力测评(10题)类型一、四点共圆一.填空题1.(2022秋•大丰区期中)如图,ΔABC中,AD⊥BC,∠B=45°,∠C=30°.以AD为弦的圆分别交AB、AC于E、F两点.点G在AC边上,且满足∠EDG=120°.若CD=4+22,则ΔDEG的面积的最小值是.【分析】连接EF,利用四点共圆和同弧所对的圆周角相等证明EF⎳DG,从而得到SΔEDG=S△EDG,当FG最小时,ΔDFG的面积就最小,作ΔDFG的外接圆O,过O点作OH⊥FG交于点H,连接OF、OG,DO+OH=12+22FG,当DO+OH最小时,FG就最小,当D、O、H三点共线时,DO+OH最小,此时DH⊥FG,在RtΔFHO中,(2FH)2=FH2+(2+2-2FH)2,求出FH=2,可得FG的最小值为22,再求SΔDFG =22+2,即ΔDEG的面积的最小值为22+2.【解答】解:连接EF,AD⊥BC,∠B=45°,∠C=30°,∴∠B=45°,∠DAC=60°,∵∠BAC=105°,∵A、E、F、D四点共圆,∴∠EDF=75°,∵∠EDG=120°,∴∠FDG=45°,∵ED =ED ,∴∠EFD =∠FDG ,∴EF ⎳DG ,∴S ΔEDG =S △EDG ,∵CD =4+22,∠C =30°,∴AC =833+463,AD =433+263,∴AC 边上的高=AD ⋅DC AC=2+2,∴当FG 最小时,ΔDFG 的面积就最小,作ΔDFG 的外接圆O ,过O 点作OH ⊥FG 交于点H ,连接OF 、OG ,∵∠FDG =45°,∴∠FOG =90°,∵OF =GO ,∴ΔFOG 是等腰直角三角形,∵∠FOH =12∠FOG =45°,∴ΔFOH 是等腰直角三角形,∴FH =OH =12FG ,FO =2FH ,∴DO +OH =22FG +12FG =12+22FG ,∴当DO +OH 最小时,FG 就最小,∵DO +OH ≥DH ,∴当D 、O 、H 三点共线时,DO +OH 最小,此时DH ⊥FG ,∴DH =2+2,在Rt ΔFHO 中,(2FH )2=FH 2+(2+2-2FH )2,解得FH =2或FH =4+32,∵OH =2+2=FH +FO ,∴FH =2,∴FG 的最小值为22,∴S ΔDFG =12×22×(2+2)=22+2,∴ΔDEG 的面积的最小值为22+2,故答案为:22+2.【点评】本题考查圆的综合应用,熟练掌握圆心角与圆周角的关系,四点共圆的性质,三角形外接圆的性质是解题的关键.二.解答题2.(2022秋•建湖县期中)如图,在⊙O 的内接四边形ABCD 中,DB =DC ,∠DAE 是四边形ABCD 的一个外角.(1)若∠DAE =75°,则∠DAC =°;(2)过点D 作DE ⊥AB 于E ,判断AB 、AE 、AC 之间的数量关系并证明;(3)若AB =6、AE =2,求BD 2-AD 2的值.【分析】(1)根据四边形外接圆的性质,同弧所对的圆周角相等,可得∠DCB=∠DBC=∠DAC=75°;(2)过点D作DF⊥AC于点F,可证明ΔBDE≅ΔCDF(AAS),ΔADE≅ΔADF(AAS),则AC=AF+FC= AE+BE=AE+AE+AB=2AE+AB;(3)在RtΔBDE中,BD2=64+DE2,在RtΔAED中,AD2=4+ED2,再求解即可.【解答】解:(1)∵四边形ABCD是圆O的内接四边形,∴∠BCD+∠BAD=180°,∵∠DAE是四边形ABCD的一个外角,∴∠DAE=∠BCD,∵BD=CD,∴∠CBD=∠DCB,∵弧CD所对的圆周角分别为∠CAD、∠CBD,∴∠CBD=∠CAD,∵∠DAE=75°,∴∠DCB=∠DBC=∠DAC=75°,故答案为:75;(2)过点D作DF⊥AC于点F,∵DE⊥AB,∴∠DEA=90°,∵∠ABD=∠ACD,BD=CD,∠E=∠DFC=90°,∴ΔBDE≅ΔCDF(AAS),∴DE=DF,AE=CF,∴∠ADE=∠ADF,又∵∠E=∠AFD,AD=AD,∴ΔADE≅ΔADF(AAS),∴AE=AF,∴AC=AF+FC=AE+BE=AE+AE+AB=2AE+AB,即AC=2AE+AB;(3)在RtΔBDE中,BD2=BE2+DE2,在RtΔAED中,AD2=AE2+ED2,∵AB=6,AE=2,∴BE=8,∴BD2=64+DE2,AD2=4+ED2,∴BD2-AD2=60.【点评】本题考查圆的综合应用,熟练掌握同弧所对的圆周角相等,四点共圆的性质,直角三角形勾股定理,三角形全等的判定及性质是解题的关键.3.(2023秋•鄞州区期中)如图,在△ABC 中,点D ,E 为AB ,AC 上的点,BE =CD ,DC ,BE 交于F ,△BDF 与△CEF 的外接圆相交于点G (异于F ),H 1,H 2分别为△ABC 和△ADE 的垂心.证明:(1)GF 平分∠BFC ;(2)H 1,H 2,G 三点共线.(注:利用坐标系、复数解题者不给分)【分析】(1)通过证明△BGE ≅△DGC 得出DG =BG ,然后由BG =DG 推导出∠BFG +∠DFG =180°,再由邻补角的性质得出∠BFG =∠GFC ,即可证明结论;(2)根据题意构造B 、E 、B ′、E ′四点共⊙P ,以及D 、C 、D ′、C ′四点共⊙Q ,然后由相似三角形推导出点H 1、H 2对于⊙P 和⊙Q 等幂,再由根轴的性质得出H 1H 2是PQ 的垂直平分线,最后根据GP =GQ 得到GM ⊥PQ ,进而证得三点共线.【解答】(1)证明:在△BGE 和△DGC 中,∠GBE =∠GDC ,BE =CD ,∠GEB =∠GCD ,∴△BGE ≅△DGC (ASA ).∴DG =BG ,∴BG =DG ,∵DBG +DG =2πR (R 为△BDF 的外接圆半径).∴∠BFG +∠DFG =180°.又∵∠GFC +∠DFG =180°,∴∠BFG =∠GFC ,∴GF 平分∠BFC .(2)证明:连接BH 1、DH 2并延长分别交AC 于B ′、D ′,连接CH 1、EH 2并延长交AB 于C ′、E ′.BE 中点为P ,CD 中点为Q .∵BB ′⊥AC ,EE ′⊥AB ,∴B 、E 、B ′、E ′四点共⊙P .∵DD ′⊥AC ,CC ′⊥AB ,∴D 、C 、D ′、C ′四点共⊙Q .∵∠DE ′H 2=∠ED ′H 2,∠DH 2E ′∽△EH 2D ′,∴△DE ′H2∽△ED ′H 2,∴DH 2:EH 2=E ′H 2:D ′H 2,∴DH 2⋅D ′H 2=EH 2⋅E ′H 2.同理得CH 1⋅C ′H 1=BH 1⋅B ′H 1.∴H 1,H 2在⊙P 和⊙Q 的根轴上.∵⊙P 和⊙Q 的根轴是过两圆的交点的直线.∴H 1,H 2在⊙P 和⊙Q 的公共弦JK 上.又∵BE =CD ,即⊙P 和⊙Q 是等圆,∴四边形PJQK 为菱形.∴H 1H 2是PQ 的垂直平分线,M 为PQ 中点.由(1)知△BGE ≅△DGC ,∵GP 、GQ 分别为△BGE 和△DGC 的对应边上的中线,∴GP =GQ ,∴点G 在PQ 的垂直平分线上.∴H 1,H 2,G 三点共线.【点评】本题考查了全等三角形的判定和性质,圆周角定理,圆幂定理,菱形的性质,等腰三角形的性质等.本题辅助线繁多,综合性强,通过四点共圆判断出H 1、H 2两点对于⊙P 和⊙Q 等幂是解答本题的关键.4.(2022秋•沙坪坝区校级期中)在ΔABC 中,已知AB =AC ,作AM ⊥BC ,D 是AM 上一点,∠DBC =30°,连接BD 、CD ,在BD 上截取DE =AD ,连接AE .(1)如图1所示,若∠BAC =90°,AD =3,求ΔABE 的周长;(2)如图2所示,若分别取AE 、AC 的中点N 、H ,连接MN 、MH ,求证:MN =MH ;(3)如图3所示,∠BAC =90°,BC =2,将AC 沿着直线AP 翻折得到AQ ,连接BQ ,直线BQ 交AP 于点P ,N 为AE 中点,当PN 取得最小值时,请直接写出ΔAPN 的面积.【分析】(1)过点D 作DL ⊥AE 于L ,则∠ALD =∠ELD =90°,由∠DBC =30°,可得BD =2DM ,设DM =x ,则BD =2x ,由勾股定理可得BM =3x ,AM =x +3,可得BM =CM =AM =33+32,AB =2BM =2×33+32=36+322,利用勾股定理可得AL =AD 2-DL 2=(3)2-32 2=32,进而可得AE =2AL =2×32=3,即可求得答案;(2)延长AM 至F ,使MF =AM ,在DF 上截取DT =DE ,连接EF ,ET ,设∠ABM =α,则∠BAM =90°-α,可证得ΔDET 是等边三角形,得出:DT =ET =DE =AD ,∠DTE =60°,再证得ΔABD ≅ΔEFT (SAS ),可得AB =EF =AC ,利用三角形中位线定理可得MN =12EF ,再由直角三角形性质可得MH =12AC ,即可证得结论;(3)连接CP ,先证得点P 在ΔABC 的外接圆⊙M 上,当且仅当点P 为半径MP 经过点N 时,PN 取得最小值,连接DN ,过点N 作NG ⊥AM 于G ,利用解直角三角形可得DM =BM ⋅tan30°=33,AD =DE =1-33,AN =EN =32AD =321-33 ,NG =12AN =12×321-33 =3-14,AG =3NG =3-34,GM =AM -AG =1-3-34=1+34,由勾股定理可得MN =GM 2+NG 2=1+34 2+3-14 2=22,PN =MP -MN =1-22,再利用S ΔAPN S ΔAMN =PN MN=2-1,即可求得答案.【解答】(1)解:过点D 作DL ⊥AE 于L ,则∠ALD =∠ELD =90°,∵∠BAC =90°,AB =AC ,AM ⊥BC ,∴AM =BM =CM ,∠BMD =90°,∠ABM =∠BAM =45°,∵∠DBC =30°,∴BD =2DM ,设DM =x ,则BD =2x ,∴BM =BD 2-DM 2=(2x )2-x 2=3x ,AM =x +3,∴3x =x +3,∴x =3+32,∴BM =CM =AM =33+32,∴AB =2BM =2×33+32=36+322,∵DE =AD ,∴∠DAE =∠DEA ,∵∠DAE +∠DEA =∠BDM =90°-30°=60°,∴∠DAE =∠DEA =30°,∴∠BAE =∠BAM -∠DAE =45°-30°=15°,∵∠ABD =∠ABM -∠DBC =45°-30°=15°,∴∠BAE =∠ABD ,∴AE =BE ,在Rt ΔADL 中,DL =12AD =32,∴AL =AD 2-DL 2=(3)2-322=32,∵DE =AD ,DL ⊥AE ,∴AE =2AL =2×32=3,∴ΔABE 的周长=AB +AE +BE =36+322+3+3=36+32+122;(2)证明:延长AM 至F ,使MF =AM ,在DF 上截取DT =DE ,连接EF ,ET ,设∠ABM =α,则∠BAM =90°-α,∵∠DBC =30°,∴∠BDT =60°,∠ABD =α-30°,BD =2DM ,∵DE =AD ,∴∠AED =∠DAE =30°,∴ΔDET 是等边三角形,∴DT =ET =DE =AD ,∠DTE=60°,∵AF =2(AD +DM )=AT +FT ,∴FT =2DM =BD ,∵∠EDT =∠ETD =60°,∴∠ADB =180°-60°=120°=∠ETF ,在ΔABD 和ΔEFT 中,AD =ET∠ADB =∠ETF BD =FT,∴ΔABD ≅ΔEFT (SAS ),∴AB =EF ,∵AB =AC ,∴EF =AC ,∵N 、M 分别是AE 、AF 的中点,∴MN =12EF ,∵点H 是Rt ΔACM 斜边AC 的中点,∴MH =12AC ,∴MN =MH ;(3)解:如图,连接CP ,由翻折得:∠ACP =∠AQP ,AC =AQ ,∵AB =AC ,∠BAC =90°,BC =2,AM ⊥BC ,∴AB =AQ ,AM =BM =CM =1,∴∠ABP =∠AQB ,∵∠AQB +∠AQP =180°,∴∠ABP +∠ACP =180°,∴点P 在ΔABC 的外接圆⊙M 上,当且仅当点P 为半径MP 经过点N 时,PN 取得最小值,如图,连接DN ,过点N 作NG ⊥AM 于G ,∵∠DBC =30°,∴DM =BM ⋅tan30°=33,∴AD =DE =1-33,∴AN =EN =32AD =321-33,∵∠AGN =90°,∠NAG =30°,∴NG =12AN =12×321-33 =3-14,∴AG =3NG =3-34,∴GM =AM -AG =1-3-34=1+34,在Rt ΔMNG 中,MN =GM 2+NG 2=1+342+3-14 2=22,∴PN =MP -MN =1-22,∴SΔAPNSΔAMN=PNMN=1-2222=2-1,∵SΔAMN=12AM⋅NG=12×1×3-14=3-18,∴SΔAPN=(2-1)SΔAMN=(2-1)×3-18=6-3-2+18.【点评】本题是几何综合题,考查了等腰三角形性质,等腰直角三角形性质,直角三角形性质,等边三角形性质,全等三角形的判定和性质,勾股定理,圆内接四边形的判定,三角形面积等,涉及知识点多,难度大,添加适当的辅助线是解题的关键与难点.5.(2022秋•鼓楼区期中)以下是“四点共圆”的几个结论,你能证明并运用它们吗?Ⅰ.若两个直角三角形有公共斜边,则这两个三角形的4个顶点共圆(图1、2);Ⅱ.若四边形的一组对角互补,则这个四边形的4个顶点共圆(图3);Ⅲ.若线段同侧两点与线段两端点连线的夹角相等,则这两点和线段两端点共圆(图4).(1)在图1、2中,取AC的中点O,根据得OA=OB=OC=OD,即A,B,C,D共圆;(2)在图3中,画⊙O经过点A,B,D(图5).假设点C落在⊙O外,BC交⊙O于点E,连接DE,可得=180°,所以∠BED=,得出矛盾;同理点C也不会落在⊙O内,即A,B,C,D共圆.结论Ⅲ同理可证.(3)利用四点共圆证明锐角三角形的三条高交于一点.已知:如图6,锐角三角形ABC的高BD,CE相交于点H,射线AH交BC于点F.求证:AF是ΔABC的高.(补全以下证明框图,并在图上作必要标注)(4)如图7,点P是ΔABC外部一点,过P作直线AB,BC,CA的垂线,垂足分别为E,F,D,且点D,E,F在同一条直线上.求证:点P在ΔABC的外接圆上.【分析】(1)根据直角三角形斜边中线的性质可得结论;(2)由圆周角的性质可得∠BED+∠A=180°,再结合题干条件,得出矛盾,由此可得出结论;(3)如图,连接DE,由点B、C、D、E四点共圆得∠BDE=∠ECB,由点A、D、H、E四点共圆得∠BDE=∠BAF,从而证明∠BAF+∠ABF=90°即可;(4)连接BP和CP,由点A,E,P,F四点共圆可得,∠BEF=∠BPF,由点C,P,D,F四点共圆可得∠CDF =∠CPF,再由外角的性质及角的和差可得∠BAC=∠BPC,由此可得点A,B,C,P四点共圆,即点P在ΔABC的外接圆上.【解答】解:(1)在图1、2中,取AC的中点O,根据直角三角形斜边上的中线等于斜边的一半,得OA=OB= OC=OD,即A,B,C,D共圆;故答案为:直角三角形斜边上的中线等于斜边的一半;(2)在图3中,画⊙O经过点A,B,D(图5).假设点C落在⊙O外,BC交⊙O于点E,连接DE,可得∠BED+∠A=180°,∴∠BED=180°-∠A,得出矛盾;同理点C也不会落在⊙O内,即A,B,C,D共圆.结论Ⅲ同理可证.故答案为:∠BED+∠A;180°-∠A;(3)如图6,连接DE,由点B、C、D、E四点共圆得∠BDE=∠ECB,由点A、D、H、E四点共圆得∠BDE=∠BAF,∴∠ECB=∠BAF,∵∠BEC=90°,∴∠ECB+∠ABF=90°,∴∠BAF+∠ABF=90°,∴∠BFA=90°,∴AF为ΔABC的边BC上的高.(4)如图7,连接BP和CP,由点A,E,P,F四点共圆可得∠BEF=∠BPF,由点C,P,D,F四点共圆可得∠CDF=∠CPF,∵∠ADE=∠CDF,∴∠ADE=∠CPF,∵∠BAC=∠BEF+∠ADE,∠BPC=∠BPF+∠CPF,∴∠BAC=∠BPC,∴点A,B,C,P四点共圆,即点P在ΔABC的外接圆上.【点评】本题考查了圆的定义,直角三角形斜边上的中线等于斜边一半,圆内接四边形对角互补,圆周角定理,内心的定义.第(3)(4)题解题关键是选取适当的四点证明共圆,再利用圆周角定理证明角相等.类型二、圆中最值问题一.填空题6.(2022秋•长沙期中)如图,⊙O 的半径为1,P A ,PB 为⊙O 的切线,切点为A ,B ,∠APB =60°,点M 为劣弧AB 上一动点,过点M 作⊙O 的切线,分别交P A ,PB 于点E ,F ,EF 的最小值是.【分析】由切线的性质定理,全等三角形的判定和性质,三角形外心的性质,可以求解.【解答】解:连接OA ,OE ,OM ,OF ,OB ,∵P A ,PB 为⊙O 的切线,EF 切⊙O 于M ,∴OA ⊥P A ,OB ⊥PB ,OM ⊥EF ,∵四边形PBOA 内角和是360°,∴∠P +∠AOB =360°-∠P AB -∠PBA =180°,∴∠AOB =180°-∠P =120°,∵OE =OE ,OA =OM ,∴Rt ΔOAE ≅Rt ΔOME (HL ),∴∠AOE =∠MOE ,同理:∠MOF =∠BOF ,∴∠EOF =∠EOM +∠FOM =12∠AOB =60°,设ΔOEF 的外心是点C ,作CH ⊥EF 于H ,连接CO ,CE ,CF ,OM ,∵点C 是ΔOEF 的外心,∴OC =EC =FC ,∴∠CEF =∠CFE ,EH =FH ,∵∠ECF =2∠EOF =120°,∴∠CEF =30°,∴CH =12CE =12OC ,∵OC +CH ≥OM ,∴3CH ≥1,∴CH ≥13,∵tan ∠CEH =CH EH,∴EH =3CH ,∴EF =2EH =23CH ,∴EF ≥233,∴EF 的最小值是233,故答案为:233.【点评】本题考查有关圆的最值问题,关键是掌握切线的性质定理,全等三角形的判定和性质,三角形外心的性二.解答题7.(2022秋•东城区校级期中)对于平面直角坐标系xOy中的图形G和点P给出如下定义;Q为图形G上任意一点,若P,Q两点间距离的最大值和最小值都存在,且最大值是最小值的k倍,则称点P为图形G 的“k分点”.已知点N(3,0),A(1,0),B(0,3),C(1,-1).(1)①在点A,B,C中,线段ON的“2分点”是;②点D(a,0),若点C为线段OD的“二分点”,求a的值;(2)以点O为圆心,r为半径画图,若线段AN上存在⊙O的“二分点”,直接写出r的取值范围.【分析】(1)①分别求出点A、B、C到线段ON的最小值和最大值,看是否满足“2分点”定义即可,②对a的取值分情况讨论:0<a≤1,1<a≤2,a>2和a<0,根据“二分点”的定义可求解,(2)设线段AN上存在⊙O的“二分点”为M(m,0)(1≤m≤3).对r的取值分情况讨论0<r≤1,1<r<3且m<r,1<r<3且m>r,r≥3,根据二分点的定义可求解.【解答】(1)解:①如图,∵点A在ON上,故最小值为0,不符合题意,点B到ON的最小值为OB=3,最大值为BN=32+32=32,∴点B是线段ON的“2分点”,点C到ON的最小值为1,最大值为CN=22+12=5∴点C不是线段ON的“2分点”,故答案为:点B;②当0<a≤1时,点C到OD的最小值为CD=(1-a)2+(-1)2=2-2a+a2,点C到OD的最大值为CO=12+(-1)2=2,∴2=22-2a+a2,即2a2-4a+3=0,∵△<0,故无解,舍去;当1<a≤2时,点C到OD的最小值为1,点C到OD的最大值为CO=12+(-1)2=2,最大值不是最小值的2倍,所以舍去,当a>2时,点C到OD的最小值为1,点C到OD的最大值为CD=(a-1)2+(0-1)2=a2-2a+2,∵点C为线段OD的“二分点”,∴a2-2a+2=2×1,a1=1+3,a2=1-3(舍去),当a<0时,点C到OD的最小值为CO=12+(-1)2=2,点C到OD的最大值为CD=(1-a)2+(-1-0)2=a2-2a+2,∵点C为线段OD的“二分点”,同0<a≤1时,无解,舍去;综上,a=1+3.(2)如图所示,设线段AN上存在⊙O的“二分点”为M(m,0)(1≤m≤3),当0<r≤1时,最小值为:m-r,最大值为:m+r,m,∴2(m-r)=m+r,即r=13∵1≤m≤3,≤r≤1,∴13当1<r<3且m<r时,最小值为:r-m,最大值为r+m,∴2(r-m)=r+m,即r=3m,∵1≤m≤3,∴3≤r≤9,∵1<r<3,∴r不存在,当1<r<3且m>r时,最小值为:m-r,最大值为:m+r,m,∴2(m-r)=r+m,即r=13≤r≤1,∴13∵1<r<3,∴r 不存在.当r ≥3时,最小值为:r -m ,最大值为:m +r ,∴2(r -m )=r +m ,即r =3m ,∴3≤r ≤9.综上所述,r 的取值范围为13≤r ≤1或3≤r ≤9.【点评】本题考查坐标上的两点距离,勾股定理,点到圆的距离.根据题目所给条件,掌握“k 分点”的定义是解题的关键.8.(2022秋•江阴市期中)如图,在平面直角坐标系中,点A 的坐标为(-3,0),点B 在y 轴的正半轴上,且∠ABO =30°,以点B 为圆心,1为半径画⊙B ,与y 轴交于点C (点C 在点B 的下方),点Q 是AB 的中点,点P 是⊙B 上的一个动点,从点C 开始以5度/秒的速度沿圆周逆时针运动一周,设运动时间为t 秒.(1)如图1,连接OQ ,当OQ ⎳BP 时,求t 的值;(2)如图2,点P 在运动过程中,连接AP ,以AP 为边在左侧作等边ΔAPD ,①当t =12秒时,求点D 的坐标;②连接DQ ,当DQ 最大时,求此时t 的值和这个最大值.【分析】(1)如图,过点B 作BP ⎳OQ ,交⊙B 于点P 1,P 2,由平行得出点P 的旋转角,进而可得出时间t ;(2)①将线段AB 绕点A 逆时针旋转60°到线段AB ′,连接B ′D ,易证△AB ′D ≅ΔABP (SAS ),所以B ′D =BP =1,∠AB ′D =∠ABP =90°;过点B ′作B ′N ⊥x 轴于点N ,过点D 作DM ⊥B ′N 于点M ,所以∠M =∠ANB ′=90°,由互余可知,∠MBD ′=∠B ′AN ,所以∠B ′AB =60°,∠BAO =60°,所以∠B ′AN =60°,AN =3,B ′N =3,则MB ′=12,MD =32,进而可得点D 的坐标;②由旋转可知,点D 在以点B ′为圆心,1长为半径的圆上运动,当DQ 最大时,点D ,B ′,Q 三点共线,设⊙B与y 轴的另一个交点为C ′,则C ′(0,4),OC ′=4,由点Q 是AB 的中点可知,Q -32,32,B ′(-23,3),进而可得B ′Q =3,所以DQ =4,易证△AB ′Q ≅ΔABO (SSS ),进而可得ΔADQ ≅△AC ′O (SAS ),所以AD =AC ′,即此时点P 与点C ′重合,所以t =180°5°=36.【解答】解:(1)如图:∵ΔABO 是直角三角形,Q 是AB 中点,∴OQ =QA =QB ,∴∠BOQ =∠ABO =30°,又∵OQ ⎳BP 1,∴∠OBP 1=∠BOQ =30°,∴点P 的轨迹是⊙B 中30°圆心角所对的弧,∴t =30°5°=6,∵当点P 运动到P 1B 延长线与⊙B 的交点P 2时,点P 的轨迹是⊙B 中180°+30°=210°圆心角所对的弧,∴t =210°5°=42.故t 的值为6或42;(2)①如图,∵∠ABO =30°,OA =3,∴OB =3,AB =23,当t =12时,∠CBP =60°,∴∠ABP =90°,将线段AB 绕点A 逆时针旋转60°到线段AB ′,连接B ′D ,由旋转可知,∠BAB ′=60°,AB =AB ′=23,∵ΔADP 是等边三角形,∴∠DAP =60°,AD =AP ,∴∠B ′AD =∠BAP ,∴△AB ′D ≅ΔABP (SAS ),∴B ′D =BP =1,∠AB ′D =∠ABP =90°,过点B ′作B ′N ⊥x 轴于点N ,过点D 作DM ⊥B ′N 于点M ,∴∠M =∠ANB ′=90°,∴∠AB ′N +∠B ′AN =90°,∠MB ′D +∠AB ′N =90°,∴∠MB ′D =∠B ′AN ,∵∠B ′AB =60°,∠BAO =60°,∴∠B ′AN =60°,AN =3,B ′N =3,∴∠MB ′D =60°,∴MB ′=12,MD =32,∴MN =72.∴D -332,72;②由旋转可知,点D 在以点B ′为圆心,1长为半径的圆上运动,∴当DQ 最大时,点D ,B ′,Q 三点共线,如图所示,设⊙B 与y 轴的另一个交点为C ′,∴C ′(0,4),∴OC ′=4,∵点Q 为AB 的中点,∴AQ =BQ =3,AB ′=AB =23,由①可知,B (0,3),∴Q -32,32,B ′(-23,3),∴DQ =4,∴B ′Q =BO ,AQ =BQ =3,AB ′=AB =23,∴△AB ′Q ≅ΔABO (SSS ),∴∠AQB ′=∠AOB =90°,∵DQ =OC ′,AQ =AO ,∴ΔADQ ≅△AC ′O (SAS ),∴AD =AC ′,即此时点P 与点C ′重合,∴t =180°5°=36.综上,t =36,DQ 最大值是4.【点评】本题属于圆的综合题,涉及考查旋转的性质,等边三角形的性质,全等三角形的性质与判定,相似三角形的相似与判定,含30°的直角三角形的三边关系,根据题意得出点D 的轨迹是解题关键.类型三、定点定长构造辅助圆一.填空题9.(2023秋•常州期中)如图,点A ,B 的坐标分别为A (4,0),B (0,4),C 为坐标平面内一点,BC =2,点M 为线段AC 的中点,连接OM ,OM 的最大值为.【分析】先判断出点C 的运动轨迹是在半径为2的⊙B 上,再取OD =OA =4,连接OD ,则OM 是ΔACD 的中位线,OM =12CD ,进而可得OM 最大值时,CD 取最大值,此时D 、B 、C 三点共线,计算即可求出结果.【解答】解:∵C 为坐标平面内一点,BC =2,∴点C 的运动轨迹是在半径为2的⊙B 上,如图,取OD =OA =4,连接OD ,∵点M 为线段AC 的中点,∴OM 是ΔACD 的中位线,∴OM =12CD ,∴OM 最大值时,CD 取最大值,此时D 、B 、C 三点共线,此时在Rt ΔOBD 中,BD =42+42=42,∴CD =2+42,∴OM 的最大值是1+22.故答案为:1+22.【点评】本题考查了坐标和三角形的中位线,定点定长构造辅助圆等,解题关键是确定点C 的运动轨迹.二.解答题10.(2022秋•秀洲区期中)如图,ΔABC 中,AC =BC =4,∠ACB =90°,过点C 任作一条直线CD ,将线段BC 沿直线CD 翻折得线段CE ,直线AE 交直线CD 于点F .(1)小智同学通过思考推得当点E 在AB 上方时,∠AEB 的角度是不变的,请按小智的思路帮助小智完成以下推理过程:∵AC =BC =EC ,∴A 、B 、E 三点在以C 为圆心以AC 为半径的圆上.∴∠AEB =∠ACB =°.(2)若BE =2,求CF 的长.(3)线段AE 最大值为;若取BC 的中点M ,则线段MF 的最小值为.【分析】(1)根据AC =BC =EC ,得A 、B 、E 三点在以C 为圆心以AC 为半径的圆上,根据圆周角定理可知∠AEB 的度数;(2)由ΔEFG 是等腰三角形可求出FG =1,利用勾股定理求出CG 的长,从而得出答案;(3)根据直径是圆中最大的弦知当AE 经过圆心C 时,线段AE 的最大值为2AC =8,取AB 的中点O ,连接OF ,可证∠AFB =90°,则点F 在以AB 为直径的圆O 上,当OF 经过点M 时,MF 最短,此时OF ⊥BC ,从而解决问题.【解答】解:(1)∵AC =BC =EC ,∴A 、B 、E 三点在以C 为圆心以AC 为半径的圆上,∴∠AEB =12∠ACB =45°,故答案为:12,45;(2)由折叠可知,CD 垂直平分BE ,∴BE ⊥CD ,设CD 、BE 交于点G ,则GE =BG =12BE =1,∴∠FGE =90°,∵∠AEB =45°,∴FG =GE =1,在Rt ΔCEG 中,由勾股定理得,CG =CE 2-DE 2=15,∴CF =CG -FG =15-1;当点E 在AB 的下方时,如图,∵AC =BC =EC ,∴A 、B 、E 三点在以C 为圆心以AC 为半径的圆上,∴∠EAB +∠EBA =12∠ACB =45°,即∠BEF =45°,由翻折可知,∠EGF=90°,EG=GB 12BE=1,∴ΔEGF是等腰直角三角形,∴GF=EG=1,在RtΔCEG中,CG=CE2-EG2=42-12=15,∴CF=15+1,综上所述,CF的长为15-1或15+1;(3)∵A,B,E,三点在以C为圆心,以AC为半径的圆上,∴当AE经过圆心C时,线段AE的最大值为2AC=8,在RtΔABC中,AC=BC=4,∠ACB=90°,∴AB=AC2+BC2=42,BM=CM=12BC=2,∠ABC=∠BAC=45°,连接BF,取AB的中点O,连接OF,如图,∵CD垂直平分BE,∠AEB=45°,∴BF=EF,∴∠EBF=∠AEB=45°,∴∠EFB=90°,∴∠AFB=90°,∴OF=12AB=OA=OB=22,∴点F在以点O为圆心,AB为直径的圆上,∵∠ACB=90°,∴点C在⊙O上,∴当OF经过点M时,MF最短,此时OF⊥BC,∴OM=BM⋅tan∠ABC=2×1=2,∴MF=OF-OM=22-2,即线段MF的最小值为22-2,故答案为:8;22-2.【点评】本题是圆的综合题,主要考查了等腰直角三角形的性质,线段垂直平分线的性质,圆周角定理,利用定点定长构造辅助圆是解题的关键.类型四、定弦定角构造辅助圆一.填空题11.(2023春•梁子湖区期中)如图,矩形ABCD的边AB=8,AD=6,M为BC的中点,P是矩形内部一动点,且满足∠ADP=∠P AB,N为边CD上的一个动点,连接PN,MN,则PN+MN的最小值为.【分析】先找出点P 的运动路线为以AD 为直径的圆,设圆心为O ,作点M 关于直线DC 的对称点M ′,连接OM ′交⊙O 于点P ′,可推出M ′P ′的长即为PN +MN 的最小值,再求出M ′P ′的长即可.【解答】解:∵四边形ABCD 是矩形,∴∠BAD =90°,∵∠ADP =∠P AB ,∴∠ADP +∠P AD =∠P AB +∠P AD =∠BAD =90°,∴点P 的运动路线为以AD 为直径的圆,作以AD 为直径的⊙O ,作点M 关于直线DC 的对称点M ′,连接OM ′交⊙O 于点P ′,连接M ′N ,OP ,则OP =OP ′=3,M ′N =MN ,∴PN +MN =PN +M ′N =PN +M ′N +OP -OP ′≥OM ′-OP ′=OM ′-3,∴PN +MN 的最小值为OM ′-3;连接OM ,∵四边形ABCD 是矩形,点O 是AD 的中点,点M 为BC 的中点,∴OD =12AD =12BC =CM =3,OD ⎳CM ,∠ODC =90°,∴四边形OMCD 是矩形,∴OM =DC =AB =8,∵点M 关于直线DC 的对称点M ′,∴M ′M =2MC =6,在Rt △M ′OM 中,由勾股定理,得OM ′=OM 2+M ′M 2=82+62=10,∴PN +MN 的最小值为OM ′-3=10-3=7,故答案为:7.【点评】本题考查轴对称-最短路线问题,矩形的性质,勾股定理,能利用一条线段的长表示两线段的和的最小值是解题的关键.二.解答题小赵同学在学习完“圆”这一章内容后,感觉到一些几何问题,如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.我们把这个过程称为“化隐圆为显圆”.①已知:如图1,OA =OB =OC ,若∠AOB =50°,求∠ACB 的度数.解:若以点O 为圆心,OA 为半径作辅助圆,∠AOB 是⊙O 的圆心角,而∠ACB 是圆周角,从而可容易得到∠ACB = °.②如图2,点P 为正方形ABCD 内一点,且∠BPC =90°,若AB =4,求AP 的最小值.解:∵BC =4,∠BPC =90°,∴点P 在以BC 为直径的圆上,设圆心为点O ,则O 、P 、A 三点共线时AP 最小,最小值为 .(2)【问题解决】①如图3,在平行四边形ABCD 中,已知AB =4,BC =6,∠ABC =60°,点P 是BC 边上一动点(点P 不与B ,C 重合),连接AP ,作点B 关于直线AP 的对称点Q ,则线段QC 的最小值为 .②如图4,△ABC 中,∠BAC =90°,AB =4,AC =3,D 为AC 上一动点,以AD 为直径的⊙O 交BD 于E ,求线段CE 的最小值.(3)【问题拓展】如图5,在平面直角坐标系中,已知两点A (2,3),B (6,7),x 轴上有一动点P ,当∠APB 最大时,直接写出点P 的坐标 .【分析】(1)①利用圆周角定理即可求得答案;②由正方形性质可得:∠ABC =90°,BC =AB =4,OB =12BC =2,由勾股定理得:AO =25,推出点P 在以BC 为直径的⊙O 上,则O 、P 、A 三点共线时AP 最小,即可求得答案;(2)①过点A 作AH ⊥BC 于H ,利用解直角三角形得AH =AB ⋅sin ∠ABC =23,BH =AB ⋅cos ∠ABC =2,CH =BC -BH =4,由勾股定理得AC =27,再由AQ =AB =4,可得点Q 在以A 为圆心AB 为半径的⊙A 上,即当C 、Q 、A 三点共线时QC 最小,QC 的最小值=AC -AQ =27-4;②连接AE ,由AD 是⊙O 的直径,可得∠AED =90°,推出∠AEB =90°,即点E 在以AB 为直径的圆上,进而可得当C 、E 、Q 三点共线时,CE 最小,运用勾股定理即可求得答案;(3)当∠APB 最大时,过A 、B 两点的⊙O ′与x 轴相切,利用待定系数法可得直线AB 的解析式为y =x +1,线段AB 的垂直平分线为y =-x +9,设O ′(m ,-m +9),根据O ′A =O ′B =O ′P ,建立方程求解即可得出答【解答】解:(1)①如图1,以点O为圆心,OA为半径作辅助圆⊙O,∵AB =AB ,∠AOB=50°,∠AOB=25°,∴∠ACB=12故答案为:25.②点P为正方形ABCD内一点,且∠BPC=90°,若AB=4,求AP的最小值.如图②,以BC为直径作⊙O,∵四边形ABCD是正方形,∴∠ABC=90°,BC=AB=4,BC=2,∴OB=12在Rt△ABO中,AO=AB2+OB2=42+22=25,∵BC=4,∠BPC=90°,∴点P在以BC为直径的⊙O上,则O、P、A三点共线时AP最小,∴AP的最小值=AO-OP=25-2,故答案为:25-2.(2)①如图3,过点A作AH⊥BC于H,∵AB=4,BC=6,∠ABC=60°,则AH=AB⋅sin∠ABC=4sin60°=23,BH=AB⋅cos∠ABC=4cos60°=2,∴CH=BC-BH=6-2=4,在Rt△ACH中,AC=AH2+CH2=(23)2+42=27,∵点B与点Q关于直线AP对称,∴AQ=AB=4,∴点Q在以A为圆心AB为半径的⊙A上,∴当C、Q、A三点共线时QC最小,QC的最小值=AC-AQ=27-4,故答案为:27-4.②如图4,连接AE,∵AD是⊙O的直径,∴∠AED=90°,∴∠AEB=180°-∠AED=90°,以AB 为直径作⊙Q ,交⊙O 于E ,当C 、E 、Q 三点共线时,CE 最小,∵△ABC 中,∠BAC =90°,AB =4,AC =3,∴QE =AQ =12AB =2,∴CQ =AC 2+AQ 2=32+22=13,∴CE =CQ -QE =13-2,故线段CE 的最小值为13-2.(3)当∠APB 最大时,过A 、B 两点的⊙O ′与x 轴相切,设直线AB 的解析式为y =kx +b ,把A (2,3),B (6,7)代入,得:2k +b =36k +b =7 ,解得:k =1b =1 ,∴直线AB 的解析式为y =x +1,∵线段AB 的中点坐标为(4,5),圆心O ′在AB 的垂直平分线上,∴线段AB 的垂直平分线为y =-x +9,设O ′(m ,-m +9),∵O ′A =O ′B =O ′P ,∴(m -2)2+(-m +9-3)2=(-m +9)2,解得:m =42-1或m =-42-1(舍去),∴点P 的坐标为(42-1,0),故答案为:42-1.【点评】本题是圆的综合题,考查了圆的有关知识,正方形的性质,平行四边形的性质,解直角三角形等知识,灵活运用这些性质解决问题是解题的关键.13.(2022秋•泗洪县期中)已知:⊙O 和⊙O 外一点P .(1)如图甲,P A 和PB 是⊙O 的两条切线,A 、B 分别为切点,求证:P A =PB .(2)尺规作图:在图乙中,过P 点画⊙O 的两条切线PE 、PF ,E 、F 为切点(要求:保留作图痕迹,不写作法).【分析】(1)如图,连接OP、OA、OB.只要证明RtΔP AO≅RtΔPBO(HL),可得P A=PB.(2)以OP为直径作⊙O′,两圆交于点E、F,直线PE、PF即为所求;【解答】解:(1)如图,连接OP、OA、OB.∵P A、PB是切线,∴P A⊥OA,PB⊥OB,∴∠P AO=∠PBO=90°,在RtΔP AO和RtΔPBO中,OP=OP,OA=OB∴RtΔP AO≅RtΔPBO,∴P A=PB.(2)以OP为直径作⊙O′,两圆交于点E、F,直线PE、PF即为所求;【点评】本题考查切线的性质、全等三角形的判定和性质,直径的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用辅助圆解决问题,属于中考常考题型.类型五、对角互补构造辅助圆14.(2021秋•越秀区校级期中)如图1,在ΔABC中,∠ACB=90°,CD平分∠ACB,且AD⊥BD于点D.(1)判断ΔABD的形状;(2)如图2,在(1)的结论下,若BQ=22,DQ=3,∠BQD=75°,求AQ的长;(3)如图3,在(1)的结论下,若将DB绕着点D顺时针旋转α(0°<α<90°)得到DP,连接BP,作DE⊥BP交AP于点F.试探究AF与DE的数量关系,并说明理由.【分析】(1)由∠ACB+∠ADB=90°+90°=180°,知点A、C、B、D上四点共圆,则∠ACD=∠ABD=45°,即可得出结论;(2)将ΔADQ绕点D顺时针旋转90°得ΔBDE,连接EQ,过点B作EQ的垂线,交EQ的延长线于H,得ΔQDE是等腰直角三角形,从而可解直角三角形BQH,在RtΔBEH中,利用勾股定理得可求出BE的长度,从而解决问题;(3)在AF上截取AM=PF,利用SAS证明ΔADM≅ΔPDF,得∠ADM=∠PDE,DM=DF,可证明ΔMDF、ΔPEF是等腰直角三角形,从而解决问题.【解答】解:(1)∵∠ACB=90°,CD平分∠ACB,∴∠ACD=45°,∵∠ACB+∠ADB=90°+90°=180°,∴点A、C、B、D上四点共圆,∴∠ACD=∠ABD=45°,∴∠BAD=∠ABD=45°,∴ΔABD是等腰直角三角形;(2)将ΔADQ绕点D顺时针旋转90°得ΔBDE,连接EQ,过点B作EQ的垂线,交EQ的延长线于H,∴DQ=DE,∠QDE=90°,AQ=BE,∴ΔQDE是等腰直角三角形,∴∠DQE=45°,∴QE=2DQ=32,∵∠BQD=75°,∴∠BQE=∠BQD+∠DQE=120°,∴∠BQH=60°,BQ=2,BH=6,∴QH=12在RtΔBEH中,由勾股定理得BE=BH2+EH2=(42)2+(6)2=38,∴AQ=BE=38;(3)AF=2DE.,理由如下:如图,在AF上截取AM=PF,∵DA=DP,∴∠DAM=∠DPF,∴ΔADM≅ΔPDF(SAS),∴∠ADM=∠PDE,DM=DF,∵BD=DP,DE⊥BP,∴∠BDE=∠PDE,∴∠ADM=∠BDE,∴ΔMDF是等腰直角三角形,∴∠MFD=45°,MF=2DF,∴∠EFP=45°,∴ΔPEF是等腰直角三角形,∴PF=2EF,∴AF=2DE.【点评】本题主要考查了等腰直角三角形的判定与性质,全等三角形的判定与性质,等腰三角形的性质,含30°角的直角三角形的性质,勾股定理,四点共圆等知识,作辅助线构造全等三角形是解题的关键.15.(2021秋•西城区校级期中)如图,ΔABC为等边三角形,点P是线段AC上一动点(点P不与A,C重合),连接BP,过点A作直线BP的垂线段,垂足为点D,将线段AD绕点A逆时针旋转60°得到线段AE,连接DE,CE.(1)求证:BD=CE;(2)延长ED交BC于点F,求证:F为BC的中点;(3)若ΔABC的边长为1,直接写出EF的最大值.【分析】(1)利用SAS证明ΔBAD≅ΔCAE,即可得出结论;(2)过点C作CG⎳BP交DF的延长线于点G,利用等角对等边可得CG=CE,由(1)ΔBAD≅ΔCAE,得BD=CE,再利用AAS证明ΔBDF≅ΔCGF,从而解决问题;(3)由(2)知∠AFC=∠AEC=90°,则点A,F,C,E四点在以AC为直径的圆上,故EF的最大值为直径.【解答】(1)证明:∵线段AD绕点A逆时针旋转60°得到线段AE,∴ΔADE是等边三角形,∴AD=AE,∠DAE=60°,∵ΔABC是等边三角形,∴AB=AC,∠BAC=60°,∴∠BAC=∠DAE,∴∠BAD=∠CAE,在ΔBAD和ΔCAE中,AB=AC∠BAD=∠CAE AD=AE,∴ΔBAD≅ΔCAE(SAS),∴BD=CE;(2)证明:如图,过点C作CG⎳BP交DF的延长线于点G,∴∠G=∠BDF,∴∠G =30°,由(1)可知,BD =CE ,∠CEA =∠BDA ,∵AD ⊥BP ,∴∠BDA =90°,∴∠CEA =90°,∵∠AED =60°,∴∠CED =30°=∠G ,∴CE =CG ,∴BD =CG ,在ΔBDF 和ΔCGF 中,∠BDF =∠G∠BFD =∠CFG BD =CG,∴ΔBDF ≅ΔCGF (AAS ),∴BF =FC ,即F 为BC 的中点;(3)解:如图,连接AF ,∵ΔABC 是等边三角形,BF =FC ,∴AF ⊥BC ,∴∠AFC =90°,∴∠AFC =∠AEC =90°,∴点A ,F ,C ,E 四点在以AC 为直径的圆上,∴EF 的最大值为直径,即最大值为1.【点评】本题主要考查了等边三角形的性质,全等三角形的判定与性质,四点共圆等知识,作辅助线构造全等三角形是解题的关键.16.(2023秋•东城区校级期中)如图1,在Rt ΔABC 中,∠ABC =90°,BA =BC ,直线MN 是过点A 的直线CD ⊥MN 于点D ,连接BD .(1)观察猜想张老师在课堂上提出问题:线段DC ,AD ,BD 之间有什么数量关系.经过观察思考,小明出一种思路:如图1,过点B 作BE ⊥BD ,交MN 于点E ,进而得出:DC +AD =BD .(2)探究证明将直线MN 绕点A 顺时针旋转到图2的位置写出此时线段DC ,AD ,BD之间的数量关系,并证明(3)拓展延伸在直线MN 绕点A 旋转的过程中,当ΔABD 面积取得最大值时,若CD 长为1,请直接写BD 的长.【分析】(1)由题意:ΔBAE≅ΔBCD,推出AE=CD,BE=BD,推出CD+AD=AD+AE=DE,ΔBDE是等腰直角三角形,推出DE=2BD,可得DC+AD=2BD;(2)结论:AD-DC=2BD.过点B作BE⊥BD,交MN于点E.AD交BC于O.只要证明ΔCDB≅ΔAEB,即可解决问题;(3)如图3中,当点D在线段AB的垂直平分线上且在AB的右侧时,ΔABD的面积最大.【解答】解:(1)如图1中,由题意:ΔBAE≅ΔBCD,∴AE=CD,BE=BD,∴CD+AD=AD+AE=DE,∵ΔBDE是等腰直角三角形,∴DE=2BD,∴DC+AD=2BD,故答案为2.(2)AD-DC=2BD.证明:如图,过点B作BE⊥BD,交MN于点E.AD交BC于O.∵∠ABC=∠DBE=90°,∴∠ABE+∠EBC=∠CBD+∠EBC,∴∠ABE=∠CBD.∵∠BAE+∠AOB=90°,∠BCD+∠COD=90°,∠AOB=∠COD,∴∠BAE=∠BCD,∴∠ABE=∠DBC.又∵AB=CB,∴ΔCDB≅ΔAEB,∴CD=AE,EB=BD,∴△BD为等腰直角三角形,DE=2BD.∵DE=AD-AE=AD-CD,∴AD-CD=2BD.(3)如图3中,易知A、B、C、D四点共圆,当点D在线段AB的垂直平分线上且在AB的右侧时,ΔABD的面积最大.。
深圳中考数学压轴专题题突破-三爪图之动点问题

中考数学压轴题突破-三爪图之动点问题
模型介绍:
爪子模型:共顶点引发的三条(多)条线段
一、破解策略:
1、辅助圆
2、旋转:
当三条线段不等时或题目隐含等边时,遇多少度旋转多少度,构造手拉手模型(全等或相似)来解决问题。
二、例题赏析:
题型一:辅助圆类
例题赏析:
题型二:旋转全等类(由边导角,由角导边)等边三角形内含三爪图。
题型三:变式:正方形内含三爪图
题型四:矩形含三爪图(旋转相似)
小结:
题目中遇到公共端点的三爪(多)图时,旋转是它的克星,通过旋转把分散的条件(线段或角)整合在一个三角形内解决。
旋转时明确旋转中心和旋转角。
因此,当我们再遇到类似问题时,首先考虑旋转来解决。
譬如解决经典的费马点问题。
四、练习反馈:
1、已知:P是边长为1的正方形ABCD内的一点,求PA+PB+PC的
最小值.
2、已知:P是边长为1的等边三角形ABC内的一点,求PA+PB+PC的最小值.
3、阅读下面材料:
如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值。
提示:利用变换和等边三角形将边的位置重新组合.他的方法是以点B为旋转中心将△ABP逆时针旋转60°得到△A’BC,连接,当点A落在上时,此题可解(如图2).请你回答:AP的最大值是.
4、如图3,等腰Rt△ABC.边AB=4,P为△ABC内部一点,
则AP+BP+CP的最小值是 .(结果可以不化简)。
辅助圆三大类

目标:解决中考填空压轴题,部分大题压轴 对象:中考尖子105/120,圆相关知识全部学完 三种圆: 一:圆定义(等线段,共端点)+例题1 二:三点共圆(定线段对定角度)+例题2 三:四点共圆(对角互补、同弦等角)+例题3、 例题4
前言: 辅助圆是一种思想,是一个 工具!不利用辅助圆我们照样可 以完成题目,但是利用辅助圆可 以使得我们更方便快捷解题!
辅助圆基本类型: 一、利用定义:等线段,共端 点
例题1:在边长为2的菱形中,∠A=60°,M是AD边上的 中点,N是AB边上的一个动点,将△AMN沿着MN所在直线 翻折,得到△A’MN,连接A’C,则A’C的最小值是多少?
辅助圆基本类型: 二、三点共圆:定线段对定角 度ቤተ መጻሕፍቲ ባይዱ
例题2:在△ABC中,∠C=45° ,AB=2,求△ABC,面积的最 大值.
辅助圆基本类型: 三、四点共圆:对角互补,同弦等 角
∠A+∠C=180°
∠D=∠C
例题3:如图,等边△PQR内接于正方形ABCD,其中,点 P、Q、R分别在边AD、AB、DC上,M是QR的中点,求证: 不论等边△PQR怎样运动,点M为不动点.
例题4:如图点E是正方形ABCD的边AB上的一点,过点E 做DE的垂线交∠ABC的外角平分线与点F; 求证:FE=DE
2024年中考数学高频压轴题训练——圆的综合题含参考答案

2024年中考数学高频压轴题训练——圆的综合题1.如图,在ABC 中,AB AC =,以AB 为直径的O 分别与,BC AC 交于点,D E ,过点D 作DF AC ⊥,垂足为点F .(1)求证:直线DF 是O 的切线;(2)求证:24BC CF AC =⋅;(3)若O 的半径为4,15CDF ∠=︒,求阴影部分的面积.2.如图,AB 为⊙O 的直径,点C 是⊙O 上一点,CD 与⊙O 相切于点C ,过点A 作AD ⊥DC ,连接AC ,BC.(1)求证:AC 是∠DAB 的角平分线;(2)若AD =2,AB =3,求AC 的长.3.如图,在ABC 中,AB AC =,以AB 为直径的O 交BC 于点D ,DE AC ⊥交BA 的延长线于点E ,交AC 于点F .(1)求证:DE 是O 的切线;(2)若364AC tanE ==,,求AF 的长.4.如图,⊙O 是Rt △ABC 的外接圆,AB 为直径,∠ABC=30°,CD 是⊙O 的切线,ED ⊥AB 于F ,(1)求证:△CDE 是等腰三角形;(2)若AB=4,)21AE =,求证:△OBC ≌△DCE .5.已知锐角△ABC 内接于圆O ,D 为弧AC 上一点,分别连接AD 、BD 、CD ,且∠ACB =90°﹣12∠BAD .(1)如图1,求证:AB =AD ;(2)如图2,在CD 延长线上取点E ,连接AE ,使AE =AD ,过E 作EF 垂直BD 的延长线于点F ,过C 作CG ⊥EC 交EF 延长线于点G ,设圆O 半径为r ,求证:EG =2r ;(3)如图3,在(2)的条件下,连接DG ,若AC =BC ,DE =4CD ,当△ACD 的面积为10时,求DG 的长度.6.如图,已知AB 是O 的直径,AC 是O 的弦,点E 在O 外,连接CE ,ACB ∠的平分线交O 于点D .(1)若BCE BAC ∠=∠,求证:CE 是O 的切线;(2)若4AD =,3BC =,求弦AC 的长.7.如图,在Rt △ABC 中,∠ABC =90o ,以BC 为直径的半圆⊙O 交AC 于点D ,点E 是AB 的中点,连接DE 并延长,交CB 延长线于点F .(1)判断直线DF 与⊙O 的位置关系,并说明理由;(2)若CF =8,DF =4,求⊙O 的半径和AC 的长.8.在平面直角坐标系xOy 中,当图形W 上的点P 的横坐标和纵坐标相等时,则称点P 为图形W 的“梦之点”.(1)已知⊙O 的半径为1.①在点E (1,1),F (22,-22),M(-2,-2)中,⊙O 的“梦之点”为;②若点P 位于⊙O 内部,且为双曲线y =k x (k≠0)的“梦之点”,求k 的取值范围.(2)已知点C 的坐标为(1,t ),⊙C 的半径为,若在⊙C 上存在“梦之点”P ,直接写出t 的取值范围.(3)若二次函数21y ax ax =-+的图象上存在两个“梦之点”()11A x y ,,()22B x y ,,且122x x -=,求二次函数图象的顶点坐标.9.如图,点A 是⊙O 直径BD 延长线上的一点,AC 是⊙O 的切线,C 为切点.AD =CD ,(1)求证:AC =BC ;(2)若⊙O 的半径为1,求△ABC 的面积.10.如图,△ABC 中,∠ACB =90°,BO 为△ABC 的角平分线,以点O 为圆心,OC 为半径作⊙O 与线段AC 交于点D.(1)求证:AB 为⊙O 的切线;(2)若tanA =34,AD =2,求BO 的长.11.如图①,A 是O 外一点,AB 与O 相切于点B ,AO 的延长线交O 于点C ,过点B 作//BD AC ,交O 于点D ,连接DO ,并延长DO 交O 于点E ,连接AE .已知2BD =,O 的半径为3.(1)求证:AE 是O 的切线;(2)求AE 的长;(3)如图②,若点M 是O 上一点,且3BM =,过A 作//AN BM ,交弧ME 于点N ,连接ME ,交AN 于点G ,连接OG ,则OG 的长度是.12.我们把三角形三边上的高产生的三个垂足组成的三角形称为该三角形的垂足三角形.(1)如图1,△ABC 中,AB =AC =8,BC =6,△DEF 是△ABC 的垂足三角形,求DE 的长.(2)如图2,圆内接三角形ABC 中,AB =AC =x ,BC =6,△ABC 的垂足三角形DEF 的周长为y .①求y 与x 的关系式;②若△DEF 的周长为19225时,求⊙O 的半径.13.如图,⊙O 是Rt △ABC 的外接圆,∠ABC =90°,D 为圆上一点,且B ,D 两点位于AC 异侧,连接BD ,交AC 于E ,点F 为BD 延长线上一点,连接AF ,使得∠DAF =∠ABD.(1)求证:AF 为⊙O 的切线;(2)当点D 为EF 的中点时,求证:AD 2=AO•AE ;(3)在(2)的条件下,若sin ∠BAC =13,AF =2,求BF 的长.14.如图,△ABC 内接于⊙O ,直径BD 交AC 于E ,过O 作FG ⊥AB ,交AC 于F ,交AB 于H ,交⊙O 于G .(1)求证:OF•DE=2OE•OH ;(2)若⊙O 的半径为12,且OE :OF :OD=2:3:6,求阴影部分的面积.(结果保留根号)15.如图,点P 是圆O 直径CA 延长线上的一点,PB 切圆O 于点B ,点D 是圆上的一点,连接AB ,AD ,BD ,CD ,∠P=30°.(1)求证:PB=BC ;(2)若AD=6,tan∠DCA=34,求BD的长.16.在矩形ABCD中,AB=6,BC=8,BE⊥AC于点E,点O是线段AC上的一点,以AO为半径作圆O 交线段AC于点G,设AO=m.(1)直接写出AE的长:AE=;(2)取BC中点P,连接PE O与△BPE一边所在的直线相切时,求出m的长;(3)设圆O交BE于点F,连接AF并延长交BC于点H.①连接GH,当BF=BH时,求△BFH的面积;②连接DG,当tan∠HFB=3时,直接写出DG的长,DG.17.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=1,以边AC上一点O为圆心,OA为半径的⊙O 经过点B.(1)求⊙O的半径;(2)点P为 AB中点,作PQ⊥AC,垂足为Q,求OQ的长;(3)在(2)的条件下,连接PC ,求tan ∠PCA 的值.18.О 直径12AB cm AM =,和BN 是О 的切线,DC 切О 于点E 且交AM 于点D ,交BN 于点C ,设AD x BC y ==,.(1)求y 与x 之间的关系式;(2)x y ,是关于t 的一元二次方程22300t t m -+=的两个根,求x y ,的值;(3)在(2)的条件下,求COD ∆的面积.19.(1)问题发现:如图1,ABC 内接于半径为4的O ,若60C ∠=︒,则AB =;(2)问题探究:如图2,四边形ABCD 内接于半径为6的O ,若120B ∠=︒,求四边形ABCD 的面积最大值;(3)解决问题:如图3,一块空地由三条直路(线段AD 、AB 、BC )和一条弧形道路CD 围成,点M 是AB 道路上的一个地铁站口,已知AD BM =1=千米,2AM BC ==千米,60A B ∠=∠=︒,CD 的半径为1千米,市政府准备将这块空地规划为一个公园,主入口在点M 处,另外三个入口分别在点C 、D 、P 处,其中点P 在CD 上,并在公园中修四条慢跑道,即图中的线段DM 、MC 、CP 、PD ,是否存在一种规划方案,使得四条慢跑道总长度(即四边形DMCP 的周长)最大?若存在,求其最大值;若不存在,说明理由.20.在平面直角坐标系xOy 中,给定圆C 和点P ,若过点P 最多可以作出k 条不同的直线,且这些直线被圆C 所截得的线段长度为正整数,则称点P 关于圆C 的特征值为.k 已知圆O 的半径为2,(1)若点M 的坐标为()11,,则经过点M 的直线被圆O 截得的弦长的最小值为,点M 关于圆O 的特征值为;(2)直线y x b =+分别与x ,y 轴交于点A ,B ,若线段AB 上总存在关于圆O 的特征值为4的点,求b 的取值范围;(3)点T 是x 轴正半轴上一点,圆T 的半径为1,点R ,S 分别在圆O 与圆T 上,点R 关于圆T 的特征值记为r ,点S 关于圆O 的特征值记为.s 当点T 在x 轴正轴上运动时,若存在点R ,S ,使得3r s +=,直接写出点T 的横坐标t 的取值范围.21.如图,AB 是⊙O 的直径,DO ⊥AB 于点O ,连接DA 交⊙O 于点C ,过点C 作⊙O 的切线交DO 于点E ,连接BC 交DO 于点F .(1)求证:CE=EF ;(2)连接AF 并延长,交⊙O 于点G .填空:①当∠D 的度数为时,四边形ECFG 为菱形;②当∠D 的度数为时,四边形ECOG 为正方形.22.如图,四边形ABCD 内接于O ,O 的半径为4,90ADC AB BC ∠=︒=,,对角线AC 、BD 相交于点P.过点P 分别作PE AD ⊥于点E ,PF CD ⊥于点F.(1)求证:四边形DEPF 为正方形;(2)若 2AD CD =,求正方形DEPF 的边长;(3)设PC的长为x,图中阴影部分的面积为y,求y与x之间的函数关系式,并写出y的最大值.答案解析部分1.【答案】(1)证明:如图所示,连接OD ,∵AB AC =,∴ABC C ∠=∠,而OB OD =,∴ODB ABC C ∠=∠=∠,∵DF AC ⊥,∴90CDF C ∠+∠=︒,∴90CDF ODB ∠+∠=︒,∴90ODF ∠=︒,∴直线DF 是O 的切线(2)证明:连接AD ,则AD BC ⊥,则AB AC =,则12DB DC BC ==,∵90CDF C ∠+∠=︒,90C DAC ∠+∠=︒,∴CDF DCA ∠=∠,而90DFC ADC ∠=∠=︒,∴CFD CDA ∽,∴2CD CF AC =⋅,即24BC CF AC=⋅(3)解:连接OE ,∵15,75CDF C ∠=︒∠=︒,∴30OAE OEA ∠=︒=∠,∴120AOE ∠=︒,11sin 2cos sin 422OAE S AE OE OEA OE OEA OE OEA =⨯∠=⨯⨯∠⨯∠= ,21201643603OAE S OAE S S ππ︒︒=-=⨯-- 阴影部分扇形2.【答案】(1)证明:连接OC,如图,∵CD与⊙O相切于点C,∴∠OCD=90°,∴∠ACD+∠ACO=90°,∵AD⊥DC,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∴∠ACO=∠DAC,∵OA=OC,∴∠OAC=∠OCA,∴∠DAC=∠OAC,∴AC是∠DAB的角平分线;(2)∵AB是⊙O的直径,∴∠ACB=90°,∴∠D=∠ACB=90°,∵∠DAC=∠BAC,∴Rt△ADC∽Rt△ACB,∴AD ACAC AB,∴AC2=AD•AB=2×3=6,∴AC=3.【答案】(1)证明:如下图,连接OD,∵AB AC =,OB OD =,∴B C ∠=∠,B ODB ∠=∠,∴ODB C ∠=∠,∴//OD AC ,∴ODE CFD ∠∠=,又∵DE AC ⊥,∴90CFD ∠= ,∴90ODE ∠= ,∴DE 是O 的切线.(2)解:∵AC=6,∴11322OD OB AB AC ====,在Rt ODE 中,34OD tanE ED ==,∴4ED =,5OE ==,∴532AE OE OB =-=-=,又∵90AEF OED AFE ODE ∠∠∠∠=== ,,∴AFE ODE ~ ,∴AE AF OE OD =,即2=53AF ,∴65AF =.4.【答案】(1)证明:∵AB 为直径,∴∠ACB=90°,又∠ABC=30°,∴∠BAC=60°,又∵OA=OC ,∴△AOC 是正三角形,又∵CD 是⊙O 的切线,∴∠OCD=90°,∴∠DCE=180°﹣60°﹣90°=30°,又∵ED ⊥AB 于F ,∴∠DEC=90°﹣∠BAC=30°,∴∠DCE=∠DEC ,故△CDE 为等腰三角形(2)证明:在Rt △ABC 中,∵AB=4,AC=AO=2,∴BC ==,而)212CE =+-=,∴BC=CE ,又∵∠OBC=∠OCB=∠DCE=∠DEC=30°,∴△OBC ≌△DCE (ASA )5.【答案】(1)证明:如图1中,∵∠ADB =∠ACB ,∠ACB =90°﹣12∠BAD ,∴∠ADB =90°﹣12BAD ,∵∠ABD =180°﹣∠BAD ﹣(90°﹣12∠BAD )=90°﹣12∠BAD ,∴∠ABD =∠ADB ,∴AB =AD (2)证明:如图2中,连接BE 交AC 于L ,连接AO ,延长AO 交BD 于J ,交BE 于T ,连接CO ,延长CO 交⊙O 于K ,连接BK .∵AE =AD ,∴∠ADE =∠AED ,∵∠ADE+∠ADC =180°,∠ADC+∠ABC =180°,∴∠ADE =∠ABC =∠AED ,∵AB =AD ,∴ AB AD ,∴∠ACB =∠ACE ,AJ ⊥BD ,∵AC =AC ,∴△ACB ≌△ACE (AAS ),∴CB =CE ,∵AB =AE ,∴AC ⊥BE ,∴∠ALB =∠AJB =90°,∵∠ATL =∠BTJ ,∴∠TAL =∠TBJ ,∵AB =AD =AE ,∴∠BED =12∠BAD =∠BAJ ,∵∠EDF =∠DBE+∠DEB ,∴∠EDF =∠BAC ,∵∠K =∠BAC ,∴∠K =∠EDF ,∵CG ⊥CE .EG ⊥BF ,∴∠DFE =∠GCG =90°,∵∠DEF+∠EDF =90°,∠DEF+∠G =90°,∴∠G =∠EDF =∠K ,∵∠CBK =∠GCE =90°,∴△CBK ≌△ECG (AAS ),∴EG =CK =2r(3)解:如图3中,在图2的基础上作AH ⊥DE 于H .∵DE =4CD ,∴可以假设CD =k ,DE =4k ,则CE =CB =CA =5k ,∵AE =AD ,AH ⊥DE ,∴DH =EH =2k ,CH =CD+DH =3k ,∴AH =4k =,AD ==∵S △ACD =12•CD•AH =12•k•4k =10,∴k =(负根舍弃),∴CD =,AC =BC =EC =5,AD =AB =10,设CK 交AB 于J ,OA =OC =r ,则BJ =AJ =5,CJ =10==在Rt △AOJ 中,则有r 2=52+(10﹣r )2,解得r =254,∴EG =2r =252,∴CG =552==∴DG =2=6.【答案】(1)证明:连接OC ,∵AB 是O 的直径,∴∠ACB=90︒,∵OA=OC ,∴∠OAC=∠OCA ,∵∠BCE=∠BAC ,∴∠BCE=∠BAC=∠OCA ,∵∠OCA+∠OCB=90︒,∴∠BCE +∠OCB=90︒,∴∠OCE=90︒,∴CE 是⊙O 的切线;(2)解:连接DB ,∵AB 是⊙O 的直径,∴∠ADB=90︒,∵CD 平分∠ACB ,∴ AD DB=,∴AD DB =,∴△ADB 为等腰直角三角形,∴AB ==,∵AB 是⊙O 的直径,∴∠ACB=90︒,∴AC ==.7.【答案】(1)解:相切证明:连接OD ,OE∵点E 是AB 中点,点O 是BC 中点∴OE 是△ABC 的中位线,∴OE ∥AC∴∠1=∠4,∠2=∠3∵OC =OD ,∴∠3=∠4,∴∠1=∠2∵OB =OD ,OE =OE ,∴△OBE ≌△ODE∴∠ODE =∠OBE =90o∴OD ⊥DE ,∴直线DF 与⊙O 相切.(2)解:设⊙O 半径为x ,则OD =x ,OF =8-x在Rt △FOD 中,222OD FD OF +=,∴2224(8)x x +=-,∴x =3∴⊙O 半径为3∵∠FBE =∠FDO =90°,∠F =∠F ,∴△FBE ∽△FDO ,∴BF BE DF OD =,∵BF =FC -BC =2,OD =3,DF =4,∴BE =32,∵点E 是AB 中点,∴AB =2BE =3在Rt △ABC 中,AC ==8.【答案】(1)F 解:∵⊙O 的半径为1.∴⊙O 的“梦之点”坐标为2222⎛⎫-- ⎪ ⎪⎝⎭和2222⎛ ⎝⎭,.又∵双曲线k y x=(k≠0)与直线y=x 的交点均为圆的“梦之点”,∴将2222⎛⎫-- ⎪ ⎪⎝⎭代入双曲线表达式中,得,1=2k xy =,∵点P 位于⊙O 内部.∴102k <<(2)解:-1≤t≤3(3)解:由“梦之点”定义可得:()11A x x ,,()22B x x ,.则21x ax ax =-+.整理得,()2110ax a x -++=,解得,11x =,21x a=.把两个根代入122x x -=中,即112a -=,解得,11a =-,213a =.当1a =-时,21y x x =-++,其顶点坐标为1524⎛⎫ ⎪⎝⎭,,当13a =时,211133y x x =-+,其顶点坐标为111.212⎛⎫ ⎪⎝⎭,9.【答案】(1)证明:连接OC ,∵AC 为切线,C 为切点,∴∠ACO =90°,即∠DCO+∠2=90°,又∵BD 是直径,∴∠BCD =90°,即∠DCO+∠1=90°,∴∠1=∠2,∵AD =CD ,OB =OC ,∴∠A =∠2,∠B =∠1,∴∠A =∠B ,∴AC =BC ;(2)解:由题意可得△DCO 是等腰三角形,∵∠CDO =∠A+∠2,∠DOC =∠B+∠1,∴∠CDO =∠DOC ,即△DCO 是等边三角形,∴∠A =∠B =∠1=∠2=30°,CD =AD =1,∴BC ===,在Rt △BCD 中,作CE ⊥AB 于点E ,在Rt △BEC 中,∠B =30°,∴CE =1BC 2=,BE =32,∴S △ABC =1AB CE 2⋅=1324⨯=.10.【答案】(1)证明:过O 作OH ⊥AB 于H ,∵∠ACB =90°,∴OC ⊥BC ,∵BO 为△ABC 的角平分线,OH ⊥AB ,∴OH =OC ,即OH 为⊙O 的半径,∵OH ⊥AB ,∴AB 为⊙O 的切线;(2)解:设⊙O 的半径为3x ,则OH =OD =OC =3x ,在Rt △AOH 中,∵tanA =34,∴OH AH =34,∴3x AH =34,∴AH =4x ,∴AO =22OH AH +=22(3)(4)x x +=5x ,∵AD =2,∴AO =OD+AD =3x+2,∴3x+2=5x ,∴x =1,∴OA =3x+2=5,OH =OD =OC =3x =3,∴AC =OA+OC =5+3=8,在Rt △ABC 中,∵tanA =BC AC ,∴BC =AC•tanA =8×34=6,∴OB =22OC BC +=2236+=35.11.【答案】(1)证明:连接OB∵AB 与O 相切于点B ,∴OB AB ⊥,∴90OBA ∠=︒∵//BD AC ,∴AOE D ∠=∠,AOB OBD ∠=∠∵OB OD =,∴D OBD ∠=∠,∴AOE AOB ∠=∠,∵OE OB =,OA OA =,∴()SAS AOE AOB ≌∴90OEA OBA ∠=∠=︒∴OE AE⊥又∵点E 在圆上,∴AE 是O 的切线.(2)解:过点O 作OH BD ⊥交BD 于点H .∵OH BD ⊥,O 为圆心,∴112DH BD ==,90OHD ∠=︒在Rt OHD 中,OH ==∵OHD AEO ∠=∠,D AOE ∠=∠,∴AOE ODH∽∴AE OH OE DH=∴2231OH OE AE DH ⨯===(3)12.【答案】(1)解:∵AB =AC ,AD ⊥BC ,∴D 是BC 的中点,又∠BEC 是直角,∴DE =12BC =3.(2)解:①如图,连接CE ,同理(1)可得DE =BD =DF =3,∴∠B =∠BED =∠ACB ,∴△BDE ∽△BAC ,∴36BE x =,∴BE =18x ,∴AE =x ﹣18x ,同理可得:AF =x ﹣18x,∴AE =AF ,∵AB =AC ,∴△AEF ∽△ABC ,∴EF AE BC AB =,∴EF =6﹣2108x ,∴y =12﹣2108x ;②当y =19225时,x =5,如图,连接AD ,∵AB =AC ,∴△ABC 的外心O 在线段AD 上,连接BO ,设⊙O 的半径为r ,则32+(4﹣r )2=r 2,∴r =258,即⊙O 的半径为258.13.【答案】(1)证明:连接CD .AC 是直径,90ADC ∴∠=︒,90DAC ACD ∴∠+∠=︒,ABD ACD ∠=∠ ,DAF ABC ∠=∠,DAF ACD ∴∠=∠,90DAF DAC ∴∠+∠=︒,90FAC ∴∠=︒,AF ∴为O 的切线(2)证明:90FAE ∠=︒ ,DF DE =,AD DE DF ∴==,DAE AED ∴∠=∠,OA OD = ,DAO ADO ∴∠=∠,ADO AED ∴∠=∠,OAD DAE ∠=∠ ,ADO AED ∴ ∽,∴AD AO AE AD=,2AD AO AE∴=⋅(3)解:如图,过点B 作BJ EC ⊥于J .AC 是直径,90ABC ∴∠=︒,1sin 3BC BAC AC ∴∠==,∴可以假设BC a =,3AC a =,BJ AC ⊥ ,90AJB ∴∠=︒,90BAC ABJ ∴∠+∠=︒,90ABJ CBJ ∠+∠=︒,CBJ BAC ∴∠=∠,1sin sin 3CJ CBJ BAC BC ∴∠=∠==,13CJ a ∴=,223BJ ∴==,DA DE = ,DAE AED CEB ∴∠=∠=∠,DAE CBE ∠=∠ ,CEB CBE ∴∠=∠,CE CB a ∴==,1233EJ EC CJ a a a ∴=-=-=,2AE AC EC a =-=,//AF BJ ,∴AF AE BJ EJ=,∴222233a a =,a ∴=,AE ∴=,3EJ =,3BJ =,6EF ∴==,2BE ==,628BF EF BE ∴=+=+=14.【答案】(1)证明:∵BD 是直径,∴∠DAB=90°.∵FG ⊥AB ,∴DA ∥FO .∴△FOE ∽△ADE .∴FO OE AD DE=,即OF•DE=OE•AD ∵O 是BD 的中点,DA ∥OH ,∴AD=2OH∴OF•DE=OE•2OH(2)解:∵⊙O 的半径为12,且OE :OF :OD=2:3:6,∴OE=4,ED=8,OF=6代入(1)中OF•DE=OE•AD ,得AD=12.∴OH=12AD=6.在Rt △OHB 中,OB=2OH ,∴∠OBH=30°,∴∠BOH=60°.∴BH=BO•sin60°=122⨯=2OHB GOB 60121=S S =6183602S ππ⨯⨯∴--⨯⨯- 阴影扇形15.【答案】(1)证明:连接OB ,∵PB 是圆O 的切线∴∠OBP=90°∵∠BOP=90°-∠P=90°-30°=60°∵OC=OB∴∠OBC=∠OCB∵∠POB=∠OBC+∠OCB=2∠OCB=60°∴∠OCB=30°=∠P∴PB=BC(2)解:过点A作AE⊥BD于点E ,∴∠AED=∠AEB=90°,∵AC是直径,∴∠ADC=90°在Rt△ADC中,tan∠DCA=634ADDC DC==,解之DC=8∴10 =在Rt△ABC中,∠ACB=30°,∴AB=1110522AC=⨯=在Rt△ADE中,∠ADE=∠ACB=30°∴DE=6×cos30°=AEB=∠ADC,∠ABE=∠ACD∴△ABE∽△CAD∴AB BEAC DC=,即5108BE=解之:BE=4∴DB=DE+BE=16.【答案】(1)AE=18 5(2)解:当圆O与△BPE的BE边相切时,点E和点G重合,则AE⊥BE∴AE是圆O的直径∴m=111892255AE=⨯=;当圆O与△BPE的BP边相切时,切点为F,连接OF∴∠OFC=∠BEC=90°∵∠OCF=∠BCE∴△OFC∽△BCE∴OF OC BE BC=在Rt△ABC中,BE⊥AC∴AB·BC=AC·BE即6×8=10BE解之:BE=245∴102485m m-=解之:m=154;当圆O与△BPE的PE边相切时,交PE的延长线于点F,切点为F,连接OF∴∠OFE=∠BEC=90°∵∠OEF=∠CEP∵点P是Rt△BEC斜边上的中线∴CP=PE∴∠ECP=∠CEP∴∠OEF=∠ECP∴△OFC∽△CBE∴OF OEBE BC=∵圆O的半径为m∴OE=185-m,OF=m∴1852485mm-=解之:m=2720;答:当圆O与△BPE一边所在的直线相切时,95m=,154m=,2720m=(3)过点F作FM⊥AB,过点F作FN⊥BC于点N易证四边形BMFN是矩形∴FN=BM,∵BH=BF∴∠1=∠2,∵∠1=∠5,∠5+∠3=90°,∠2+∠4=90°∴∠3=∠4∴AF平分∠CAB,FE⊥AC,FM⊥AB∴EF=FM在Rt△AEF和Rt△AMF中A=AA=A∴Rt△AEF≌Rt△AMF(HL)∴AE=AM=3.6∴BM=AB-AM=6-3.6=2.4即FN=2.4,∵FM∥BH∴△AFM∽△ABH∴MF AMBH AB=∴3.6365MFBH==,设MF=3x,则BH=BF=5x,在Rt△BMF 中,4x=4x=2.4解之:x=0.6∴BH=5×0.6=3∴S△BFH=11121832255BH FN⋅=⨯⨯=;;1255 17.【答案】(1)解:连接OB,如图,∵OA=OB,∴∠ABO=∠A=30°,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∴∠OBC=30°,在Rt△OBC中,cosBC OBCOB∠=,即1 cos30OB︒=,解得233 OB=,即⊙O 的半径为23 3(2)解:连接OP,设AB与QP交于点M,∵点P为 AB的中点,∴OP⊥AB,∴∠QPO+∠PMB=90°,∵PQ⊥AC,∴∠A+∠AMQ=90°,又∵∠AMQ=∠PMB,∴∠QPO=∠A=30°,在Rt△OPQ中,sinOQ QPOOP∠=,即sin30233︒=,∴2313323 OQ==(3)解:在Rt△OBC中,∵3OB =,∠OBC=30°,∠ACB=90°∴3sin 30°=3OC OB =⨯,∴233CQ CO OQ =+=,∴tan 2PQ PCA CQ ∠==18.【答案】(1)解:如图,作DF BN ⊥交BC 于F ;AM BN 、与O 切于点A B、AB AM AB BN ∴⊥⊥,.又DF BN ⊥ ,∴BAD ABC BFD ∠=∠=∠=︒,∴四边形ABFD 是矩形,12BF AD x DF AB ∴====,,BC y = ,FC BC BF y x ∴=-=-;DE 切O 于E ,DE DA x CE CB y ∴====,,则DC DE CE x y =+=+,在Rt DFC ∆中,222CD FC DF =+,即222()()12x y y x +=-+,整理为:36y x =,y ∴与x 的函数关系式是36y x=.(2)解:由(1)知36xy =,∵x y ,是方程22300t t m -+=的两个根,∴根据韦达定理知,2m xy =,即72m =;∴原方程为215360t t -+=,解得:12123t t ==,.即=3=12或123x y =⎧⎨=⎩.(3)解:如图,连接OD OE OC ,,,AD BC CD ,,是O 的切线,OE CD AD DE BC CE ∴⊥==,,,AOD ODE OBC COE S S S S ∆∆∆∆∴==,,111==(312)1245222COD COE ODE ABCD S S S S ∆∆∆∴=+⨯⨯+⨯=梯形19.【答案】(1)(2)解:∵∠ABC=120︒,四边形ABCD 内接于O ,∴∠ADC=60︒,∵O 的半径为6,∴由(1)得AC=,如图,连接AC ,作DH ⊥AC,BM ⊥AC,∴四边形ABCD 的面积=111()222AC DH AC BM AC DH BM ⋅⋅+⋅⋅=⋅+,当DH+BM 最大时,四边形ABCD 的面积最大,连接BD ,则BD 是O 的直径,∴BD=2OA=12,BD ⊥AC ,∴四边形ABCD 的面积=111222AC BD ⋅⋅=⨯=.∴四边形ABCD 的面积最大值是(3)解:存在;∵AD BM =1=千米,2AM BC ==千米,60A B ∠=∠=︒,∴△ADM ≌△BMC,∴DM=MC,∠AMD=∠BCM,∵∠BCM+∠BMC=180︒-∠B=120︒,∴∠AMD+∠BMC=120︒,∴∠DMC=60︒,∴△CDM 是等边三角形,∴C 、D 、M 三点共圆,∵点P 在弧CD 上,∴C 、D 、M 、P 四点共圆,∴∠DPC=180︒-∠DMC=120︒,∵CD 弧的半径为1千米,∠DMC=60︒,∴CD=,∵2()0PD PC -≥,∴2()4PD PC PD PC +≥⋅,∴PD PC +≥,∴当PD=PC 时,PD+PC 最大,此时点P 在弧CD 的中点,交DC 于H ,在Rt △DPH 中,∠DHP=90︒,∠DPH=60︒,DH=12DC=32,∴1sin 60DH DP == ,∴四边形DMCP的周长最大值=DM+CM+DP+CP=2+.20.【答案】(1);3的特征值为4的点,(2)解:设点G是O∴经过一点G且弦长为4(最长弦)的直线有1条,弦长为3的直线有2条,弦长为2的直线有且只有1条, 经过点G的直线被O截得的弦长的最小值为2,=,∴关于O的特征值为4的所有点都在以O为半径的圆周上,=+分别与x,y轴交于点A、B,直线y x b()0,,B b∴-,,()A b∴==,OA OB bOBH∴∠=︒,45b>时,线段AB与以O为半径的圆相切时,点G特征值为4,当0设切点为为H,连接OH,则OH=,∴==OB,∴=b,设以O为半径的圆与y轴正半轴的交点记为1B,OB=,则1当线段AB 与以O 1B 时,可得b =,b ≤≤同理可求当0b <时,b ≤≤,综上,b b b ≤≤-≤(3)当372122t -≤≤+时,存在点R ,S ,使得3r s +=21.【答案】(1)证明:连接OC ,如图,.∵CE 为切线,∴OC ⊥CE ,∴∠OCE=90°,即∠1+∠4=90°∵DO ⊥AB ,∴∠3+∠B=90°,而∠2=∠3,∴∠2+∠B=90°,而OB=OC ,∴∠4=∠B ,∴∠1=∠2,∴CE=FE(2)30°;22.5°22.【答案】(1)证明:∵PE AD ⊥,PF DC ⊥,∴90PED PFD ∠∠==︒,∴90ADC PED PFD ∠∠∠===︒,∴四边形DEPF 是矩形,∵90ADC ∠=︒,∴AC 是圆O 的直径,∴90ABC ∠=︒,∵AB BC =,∴45ACB BCA ∠=∠=︒, AB BC=,∴45ADB CDB ∠=∠=︒,∴45DPE ADB ∠∠==︒,∴PE DE =.∴四边形CEPF 是正方形;(2)解:∵ 2AD CD=,AC 是圆O 的直径,∴ AD 的度数为120︒, AD 的度数为60︒,∴30DAC ∠=︒,60DCA ∠=︒,∴12PE sin DAC AP ∠==,3602PF sin DCA sin PC ∠=︒==,∴2AP PE =,233PC PF =,∵2428AC AP PC r =+==⨯=,正方形DEPF 中,PE PF =,∴23283PF PF +=,∴2PF =.(3)解:在ED 上取点G ,使EG CF =,连接PG ,由(1)得:PE PF =,90GEP PFC ∠∠==︒,∴GPE CPF ≌,∴PG PC x ==,GPE FPC ∠∠=,CEP PFC S S = ,∴阴影部分的面积等于APG ABC S S + ,∵90EPF ∠=︒,∴90APE CPF ∠∠+=︒,∴90GPE APE ∠∠+=︒,即90APG ∠=︒,∵8AC =,∴8AP x =-,∴()11822APG S AP PG x x =⋅=- ,∵ABC 是等腰直角三角形,8AC =,∴AB BC ==,∴2111622ABC S AB ==⨯= ,即阴影部分的面积()()21181642422y x x x =-+=--+,∴当4x =时,y 有最大值,最大值为24.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
辅助圆
25.(12分)(2014•陕西)问题探究
(1)如图①,在矩形ABCD中,AB=3,BC=4,如果BC边上存在点P,使△APD为等腰三角形,那么请画出满足条件的一个等腰三角形△APD,并求出此时BP的长;
(2)如图②,在△ABC中,∠ABC=60°,BC=12,AD是BC边上的高,E、F分别为边AB、AC 的中点,当AD=6时,BC边上存在一点Q,使∠EQF=90°,求此时BQ的长;
问题解决
(3)有一山庄,它的平面图为如图③的五边形ABCDE,山庄保卫人员想在线段CD上选一点M安装监控装置,用来监视边AB,现只要使∠AMB大约为60°,就可以让监控装置的效果达到最佳,已知∠A=∠E=∠D=90°,AB=270m,AE=400m,ED=285m,CD=340m,问在线段CD上是否存在点M,使∠AMB=60°若存在,请求出符合条件的DM的长,若不存在,请说明理由.
考点:圆的综合题;全等三角形的判定与性质;等边三角形的性质;勾股定理;三角形中位线定理;矩形的性质;正方形的判定与性质;直线与圆的位置关系;特殊角的三角函数值.
专题:压轴题;存在型.
分析:(1)由于△PAD是等腰三角形,底边不定,需三种情况讨论,运用三角形全等、矩形的性质、勾股定理等知识即可解决问题.
(2)以EF为直径作⊙O,易证⊙O与BC相切,从而得到符合条件的点Q唯一,然后通过添加辅助线,借助于正方形、特殊角的三角函数值等知识即可求出BQ长.
(3)要满足∠AMB=60°,可构造以AB为边的等边三角形的外接圆,该圆与线段CD 的交点就是满足条件的点,然后借助于等边三角形的性质、特殊角的三角函数值等知识,就可算出符合条件的DM长.
解答:解:(1)①作AD的垂直平分线交BC于点P,如图①,
则PA=PD.
∴△PAD是等腰三角形.
∵四边形ABCD是矩形,
∴AB=DC,∠B=∠C=90°.
∵PA=PD,AB=DC,
∴Rt△ABP≌Rt△DCP(HL).
∴BP=CP.
∵BC=4,
∴BP=CP=2.
②以点D为圆心,AD为半径画弧,交BC于点P′,如图①,.
则DA=DP′.
∴△P′AD是等腰三角形.
∵四边形ABCD是矩形,
∴AD=BC,AB=DC,∠C=90°.
∵AB=3,BC=4,
∴DC=3,DP′=4.
∴CP′==.
∴BP′=4﹣.
③点A为圆心,AD为半径画弧,交BC于点P″,如图①,
则AD=AP″.
∴△P″AD是等腰三角形.
同理可得:BP″=.
综上所述:在等腰三角形△ADP中,
若PA=PD,则BP=2;
若DP=DA,则BP=4﹣;
若AP=AD,则BP=.
(2)∵E、F分别为边AB、AC的中点,
∴EF∥BC,EF=BC.
∵BC=12,
∴EF=6.
以EF为直径作⊙O,过点O作OQ⊥BC,垂足为Q,连接EQ、FQ,如图②.∵AD⊥BC,AD=6,
∴EF与BC之间的距离为3.
∴OQ=3
∴OQ=OE=3.
∴⊙O与BC相切,切点为Q.
∵EF为⊙O的直径,
∴∠EQF=90°.
过点E作EG⊥BC,垂足为G,如图②.
∵EG⊥BC,OQ⊥BC,
∴EG∥OQ.
∵EO∥GQ,EG∥OQ,∠EGQ=90°,OE=OQ,
∴四边形OEGQ是正方形.
∴GQ=EO=3,EG=OQ=3.
∵∠B=60°,∠EGB=90°,EG=3,
∴BG=.
∴BQ=GQ+BG=3+.
∴当∠EQF=90°时,BQ的长为3+.
(3)在线段CD上存在点M,使∠AMB=60°.
理由如下:
以AB为边,在AB的右侧作等边三角形ABG,
作GP⊥AB,垂足为P,作AK⊥BG,垂足为K.
设GP与AK交于点O,以点O为圆心,OA为半径作⊙O,
过点O作OH⊥CD,垂足为H,如图③.
则⊙O是△ABG的外接圆,
∵△ABG是等边三角形,GP⊥AB,
∴AP=PB=AB.
∵AB=270,
∴AP=135.
∵ED=285,
∴OH=285﹣135=150.
∵△ABG是等边三角形,AK⊥BG,
∴∠BAK=∠GAK=30°.
∴OP=AP•tan30°
=135×
=45.
∴OA=2OP=90.
∴OH<OA.
∴⊙O与CD相交,设交点为M,连接MA、MB,如图③.
∴∠AMB=∠AGB=60°,OM=OA=90..
∵OH⊥CD,OH=150,OM=90,
∴HM=
=
=30.
∵AE=400,OP=45,
∴DH=400﹣45.
若点M在点H的左边,则DM=DH+HM=400﹣45+30.
∵400﹣45+30>340,
∴DM>CD.
∴点M不在线段CD上,应舍去.
若点M在点H的右边,则DM=DH﹣HM=400﹣45﹣30.
∵400﹣45﹣30<340,
∴DM<CD.
∴点M在线段CD上.
综上所述:在线段CD上存在唯一的点M,使∠AMB=60°,
此时DM的长为(400﹣45﹣30)米.
点评:本题考查了垂直平分线的性质、矩形的性质、等边三角形的性质、正方形的判定与性质、直线与圆的位置关系、圆周角定理、三角形的中位线定理、全等三角形的判定与性质、勾股定理、特殊角的三角函数值等知识,考查了操作、探究等能力,综合性非常强.而构造等边三角形及其外接圆是解决本题的关键.
25.(12分)(2015•陕西)如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.
(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为24 ;
(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小若存在,求出此时cos∠BPC的值;若不存在,请说明理由.
考点:四边形综合题.
专题:综合题.
分析:(1)如图①,过A作AE⊥BC,可得出四边形AECF为矩形,得到EC=AD,BE=BC﹣EC,在直角三角形ABE中,求出AE的长,即为三角形BMC的高,求出三角形BMC面积即可;
(2)如图②,作点C关于直线AD的对称点C′,连接C′N,C′D,C′B交AD于点N′,连接CN′,则BN+NC=BN+NC′≥BC′=BN′+CN′,可得出△BNC周长的最小值为△BN′C的周长=BN′+CN′+BC=BC′+BC,求出即可;
(3)如图③所示,存在点P,使得cos∠BPC的值最小,作BC的中垂线PQ交BC于点Q,交AD于点P,连接BP,CP,作△BPC的外接圆O,圆O与直线PQ交于点N,则PB=PC,圆心O在PN上,根据AD与BC平行,得到圆O与AD相切,根据PQ=DC,判断得到PQ 大于BQ,可得出圆心O在BC上方,在AD上任取一点P′,连接P′B,P′C,P′B 交圆O于点M,连接MC,可得∠BPC=∠BMC≥∠BP′C,即∠BPC最小,cos∠BPC的值最小,连接OB,求出即可.
解答:解:(1)如图①,过A作AE⊥BC,
∴四边形AECD为矩形,
∴EC=AD=8,BE=BC﹣EC=12﹣8=4,
在Rt△ABE中,∠ABE=60°,BE=4,
∴AB=2BE=8,AE==4,
则S△BMC=BC•AE=24;
故答案为:24;
(2)如图②,作点C关于直线AD的对称点C′,连接C′N,C′D,C′B交AD于点N′,连接CN′,则BN+NC=BN+NC′≥BC′=BN′+CN′,
∴△BNC周长的最小值为△BN′C的周长=BN′+CN′+BC=BC′+BC,
∵AD∥BC,AE⊥BC,∠ABC=60°,
∴过点A作AE⊥BC,则CE=AD=8,
∴BE=4,AE=BE•tan60°=4,
∴CC′=2CD=2AE=8,
∵BC=12,
∴BC′==4,
∴△BNC周长的最小值为4+12;
(3)如图③所示,存在点P,使得cos∠BPC的值最小,
作BC的中垂线PQ交BC于点Q,交AD于点P,连接BP,CP,作△BPC的外接圆O,圆O与直线PQ交于点N,则PB=PC,圆心O在PN上,
∵AD∥BC,
∴圆O与AD相切于点P,
∵PQ=DC=4>6,
∴PQ>BQ,
∴∠BPC<90°,圆心O在弦BC的上方,
在AD上任取一点P′,连接P′B,P′C,P′B交圆O于点M,连接MC,
∴∠BPC=∠BMC≥∠BP′C,
∴∠BPC最大,cos∠BPC的值最小,
连接OB,则∠BON=2∠BPN=∠BPC,
∵OB=OP=4﹣OQ,
在Rt△BOQ中,根据勾股定理得:OQ2+62=(4﹣OQ)2,
解得:OQ=,
∴OB=,
∴cos∠BPC=cos∠BOQ==,
则此时cos∠BPC的值为.
点评:此题属于四边形综合题,涉及的知识有:勾股定理,矩形的判定与性质,对称的性质,圆的切线的判定与性质,以及锐角三角函数定义,熟练掌握定理及性质是解本题的关键.。