2008高考四川延考卷理科数学试题及答案(全word版)

合集下载

2008年普通高等学校招生全国统一考试理科数学试题及答案-四川卷

2008年普通高等学校招生全国统一考试理科数学试题及答案-四川卷

2008年普通高等学校招生全国统一考试(四川卷)数 学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页。

全卷满分150分,考试时间120分钟。

考生注意事项:1. 答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致。

2. 答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动、用橡皮擦干净后,再选涂其他答案标号。

3. 答第Ⅱ卷时,必须用0.5毫米黑色墨水签字笔在答题卡上.....书写。

在试题卷上作答无效.........。

4. 考试结束,监考员将试题卷和答题卡一并收回。

参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径()()()P A B P A P B ⋅=⋅ 球的体积公式如果事件A 在一次实验中发生的概率是p ,那么 343V R π=n 次独立重复实验中事件A 恰好发生k 次的概率 其中R 表示球的半径()()()1,0,1,2,,n kk kn n P k C p p k n -=-=第Ⅰ卷一.选择题:1.设集合{}{}{}1,2,3,4,5,1,2,3,2,3,4U A B ===,则()U A B = ð( )(A){}2,3 (B){}1,4,5 (C){}4,5 (D){}1,5 2.复数()221i i +=( )(A)4- (B)4 (C)4i - (D)4i 3.()2tan cot cos x x x +=( )(A)tan x (B)sin x (C)cos x (D)cot x 4.直线3y x =绕原点逆时针旋转090,再向右平移1个单位,所得到的直线为( ) (A)1133y x =-+ (B)113y x =-+ (C)33y x =- (D)113y x =+5.设02,sin απαα≤≤>若,则α的取值范围是:( )(A),32ππ⎛⎫⎪⎝⎭ (B),3ππ⎛⎫ ⎪⎝⎭ (C)4,33ππ⎛⎫ ⎪⎝⎭ (D)3,32ππ⎛⎫⎪⎝⎭6.从甲、乙等10个同学中挑选4名参加某项公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有( )(A)70种 (B)112种 (C)140种 (D)168种 7.已知等比数列{}n a 中21a =,则其前3项的和3S 的取值范围是( ) (A)(],1-∞- (B)()(),01,-∞+∞ (C)[)3,+∞ (D)(](),13,-∞-+∞8.设,M N 是球O 半径OP 上的两点,且NP MN OM ==,分别过,,N M O 作垂直于OP 的平面,截球面得三个圆,则这三个圆的面积之比为:( ) (A)3:5:6 (B)3:6:8 (C)5:7:9 (D)5:8:99.直线l ⊂平面α,经过平面α外一点A 与,l α都成030角的直线有且只有:( )(A)1条 (B)2条 (C)3条 (D)4条10.设()()sin f x x ωϕ=+,其中0ω>,则()f x 是偶函数的充要条件是( ) (A)()01f = (B)()00f = (C)()'01f=(D)()'00f=11.设定义在R 上的函数()f x 满足()()213f x f x ⋅+=,若()12f =,则()99f =( ) (A)13 (B)2 (C)132 (D)21312.已知抛物线2:8C y x =的焦点为F ,准线与x 轴的交点为K ,点A 在C 上且AK AF =,则AFK ∆的面积为( )(A)4 (B)8 (C)16 (D)32第Ⅱ卷二.填空题:本大题共4个小题,每小题4分,共16分。

2008高考全国卷Ⅰ数学理科试题含答案(全word版)

2008高考全国卷Ⅰ数学理科试题含答案(全word版)

2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至9页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意: 1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k k n kn nP k C P P k n -=-=,,,一、选择题1.函数y =)A .{}|0x x ≥ B .{}|1x x ≥ C .{}{}|10x x ≥D .{}|01x x ≤≤2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )23.在ABC △中,AB =c ,AC =b .若点D 满足2BD DC =,则AD =( ) A .2133+b cB .5233-c b C .2133-b cD .1233+b c 4.设a ∈R ,且2()a i i +为正实数,则a =( ) A .2B .1C .0D .1-5.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( ) A .138B .135C .95D .236.若函数(1)y f x =-的图像与函数1y =的图像关于直线y x =对称,则()f x =( ) A .21x e-B .2xeC .21x e+D .22x e+7.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2B .12C .12- D .2-8.为得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像,只需将函数sin 2y x =的图像( ) A .向左平移5π12个长度单位B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位9.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( )A .(10)(1)-+∞,,B .(1)(01)-∞-,,C .(1)(1)-∞-+∞,,D .(10)(01)-,,10.若直线1x ya b+=通过点(cos sin )M αα,,则( ) A .221a b +≤ B .221a b +≥ C .22111a b+≤D .22111a b+≥ 11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为A .B .C .D .ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( )A .13BCD .2312.如图,一环形花坛分成A B C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( ) A .96 B .84 C .60 D .482008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共7页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.......... 3.本卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效.........) 13.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .15.在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .16.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为3,M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 .4三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) (注意:在试题卷上作答无效.........) 设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且3cos cos 5a Bb Ac -=. (Ⅰ)求tan cot A B 的值; (Ⅱ)求tan()A B -的最大值. 18.(本小题满分12分) (注意:在试题卷上作答无效.........) 四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,CD =AB AC =.(Ⅰ)证明:AD CE ⊥;(Ⅱ)设CE 与平面ABE 所成的角为45,求二面角C AD E --的大小.19.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围. 20.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法: 方案甲:逐个化验,直到能确定患病动物为止.CDE AB方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率; (Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望. 21.(本小题满分12分)(注意:在试题卷上作答无效.........) 双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA 同向. (Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程. 22.(本小题满分12分)(注意:在试题卷上作答无效.........) 设函数()ln f x x x x =-.数列{}n a 满足101a <<,1()n n a f a +=.(Ⅰ)证明:函数()f x 在区间(01),是增函数; (Ⅱ)证明:11n n a a +<<; (Ⅲ)设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k a b +>.62008年普通高等学校招生全国统一考试 理科数学(必修+选修Ⅰ)参考答案1. C. 由()10,0,1,0;x x x x x -≥≥≥=得或2. A .根据汽车加速行驶212s at =,匀速行驶s vt =,减速行驶212s at =-结合函数图像可知;3. A. 由()2AD AB AC AD -=-,322AD AB AC c b =+=+,1233AD c b =+; 4. D. ()()()22221210,1a i i a ai i a a i a +=+-=-+->=-;5. C. 由243511014,104,3,104595a a a a a d S a d +=+=⇒=-==+=; 6. B. 由()()()()212121,1,y x x y x e f x e f x e --=⇒=-==;7.D.由()3212211,','|,2,21121x x y y y a a x x x =+==+=-=--==----; 8.A.55cos 2sin 2sin 2,3612y x x x πππ⎛⎫⎛⎫⎛⎫=+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭只需将函数sin 2y x =的图像向左平移5π12个单位得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像. 9.D .由奇函数()f x 可知()()2()0f x f x f x x x--=<,而(1)0f =,则(1)(1)0f f -=-=,当0x >时,()0(1)f x f <=;当0x <时,()0(1)f x f >=-,又()f x 在(0)+∞,上为增函数,则奇函数()f x 在(,0)-∞上为增函数,01,10x x <<-<<或.10.D .由题意知直线1x ya b+=与圆221x y +=22111a b +1,≥. 另解:设向量11(cos ,sin ),(,)a bααm =n =,由题意知cos sin 1a bαα+= 由⋅≤m n m n可得cos sin 1a b αα=+11.C .由题意知三棱锥1A ABC -为正四面体,设棱长为a,则1AB =,棱柱的高13AO ===(即点1B 到底面ABC 的距离),故1AB 与底面ABC所成角的正弦值为113AO AB =另解:设1,,AB AC AA 为空间向量的一组基底,1,,AB AC AA 的两两间的夹角为060 长度均为a ,平面ABC 的法向量为111133OA AA AB AC =--,11AB AB AA =+ 2111126,,33OA AB a OA AB ⋅===则1AB 与底面ABC 所成角的正弦值为111123OA AB AO AB ⋅=. 12.B.分三类:种两种花有24A 种种法;种三种花有342A 种种法;种四种花有44A 种种法.共有234444284A A A ++=.另解:按A B C D ---顺序种花,可分A C 、同色与不同色有43(1322)84⨯⨯⨯+⨯= 13.答案:9.如图,作出可行域,作出直线0:20l x y -=,将0l 平移至过点A 处 时,函数2z x y =-有最大值9.14. 答案:2.由抛物线21y ax =-的焦点坐标为1(0,1)4a -为坐标原点得,14a =,则2114y x =- 与坐标轴的交点为(0,1),(2,0),(2,0)--,则以这三点围成的三角形的面积为14122⨯⨯= 15.答案:38.设1AB BC ==,7cos 18B =-则222252cos 9AC AB BC AB BC B =+-⋅⋅=53AC =,582321,21,3328c a c e a =+====. 16.答案:16.设2AB =,作CO ABDE ⊥面, OHAB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D --cos 1CH OH CH CHO =⋅∠=,结合等边三角形ABC8与正方形ABDE可知此四棱锥为正四棱锥,则AN EM CH ===11(),22AN AC AB EM AC AE =+=-,11()()22AN EM AB AC AC AE ⋅=+⋅-=12故EM AN ,所成角的余弦值16AN EMANEM ⋅=另解:以O 为坐标原点,建立如图所示的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),A B E C ----,1111(,,),(,,222222M N ---,则3121321(,,),(,,),,322222AN EM AN EM AN EM ==-⋅===,故EM AN ,所成角的余弦值16AN EM AN EM ⋅=.17.解析:(Ⅰ)在ABC △中,由正弦定理及3cos cos 5a Bb Ac -= 可得3333sin cos sin cos sin sin()sin cos cos sin 5555A B B A C A B A B A B -==+=+ 即sin cos 4cos sin A B A B =,则tan cot 4A B =; (Ⅱ)由tan cot 4A B =得tan 4tan 0A B =>2tan tan 3tan 3tan()1tan tan 14tan cot 4tan A B B A B A B B B B --===+++≤34当且仅当14tan cot ,tan ,tan 22B B B A ===时,等号成立,故当1tan 2,tan 2A B ==时,tan()A B -的最大值为34.18.解:(1)取BC 中点F ,连接DF 交CE 于点O ,AB AC =,∴AF BC ⊥,又面ABC ⊥面BCDE ,∴AF ⊥面BCDE ,∴AF CE ⊥. tan tan 2CED FDC ∠=∠=, ∴90OED ODE ∠+∠=,90DOE ∴∠=,即CE DF ⊥,CE ∴⊥面ADF ,CE AD ∴⊥.(2)在面ACD 内过C 点作AD 的垂线,垂足为G .CG AD ⊥,CE AD ⊥,AD ∴⊥面CEG ,EG AD ∴⊥,则CGE ∠即为所求二面角的平面角.23AC CD CG AD ==,DG =,EG==,CE =222cos 2CG GE CE CGE CG GE +-∠==, πarccos CGE ∴∠=-⎝⎭,即二面角CAD E --的大小πarccos -⎝⎭.19. 解:(1)32()1f x x ax x =+++求导:2()321f x x ax '=++ 当23a≤时,0∆≤,()0f x '≥,()f x 在R 上递增当23a >,()0fx '=求得两根为x =即()f x 在⎛-∞⎝⎭递增,⎝⎭递减,3a ⎛⎫-++∞⎪ ⎪⎝⎭递增 (2)23313a ⎧---⎪⎪-,且23a>解得:74a ≥20.解:对于乙:0.20.4⨯+.(Ⅱ)ξ表示依方案乙所需化验次数,ξ的期望为20.430.440.2 2.8E ξ=⨯+⨯+⨯=. 21. 解:(Ⅰ)设OA m d =-,AB m =,OB m d =+ 由勾股定理可得:222()()m d m m d -+=+ 得:14d m =,tan b AOF a ∠=,4tan tan 23AB AOB AOF OA ∠=∠==10由倍角公式∴22431ba b a =⎛⎫- ⎪⎝⎭,解得12b a =,则离心率e = (Ⅱ)过F 直线方程为()a y x c b =--,与双曲线方程22221x y a b-=联立将2a b =,c =代入,化简有22152104x x b b-+=124x =-=将数值代入,有4=解得3b = 故所求的双曲线方程为221369x y -=。

2008高考四川数学理科试卷和答案(全word版)

2008高考四川数学理科试卷和答案(全word版)

2008年普通高等学校招生全国统一考试(四川卷)数 学(理工农医类)及逐题详解本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页。

全卷满分150分,考试时间120分钟。

考生注意事项:1. 答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致。

2. 答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动、用橡皮擦干净后,再选涂其他答案标号。

3. 答第Ⅱ卷时,必须用0.5毫米黑色墨水签字笔在答题卡上.....书写。

在试题卷上作答无效.........。

4. 考试结束,监考员将试题卷和答题卡一并收回。

参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径()()()P A B P A P B ⋅=⋅ 球的体积公式如果事件A 在一次实验中发生的概率是p ,那么 343V R π=n 次独立重复实验中事件A 恰好发生k 次的概率 其中R 表示球的半径()()()1,0,1,2,,n kk kn n P k C p p k n -=-=第Ⅰ卷一.选择题:1.设集合{}{}{}1,2,3,4,5,1,2,3,2,3,4U A B ===,则()U A B = ð( B )(A){}2,3 (B){}1,4,5 (C){}4,5 (D){}1,5 【解】:∵{}{}1,2,3,2,3,4A B == ∴{}2,3A B =又∵{}1,2,3,4,5U = ∴(){}1,4,5U A B = ð 故选B ; 【考点】:此题重点考察集合的交集,补集的运算; 【突破】:画韦恩氏图,数形结合; 2.复数()221i i +=( A )(A)4- (B)4 (C)4i - (D)4i【解】:∵()()222121212244i i i i i i i +=+-=⨯==- 故选A ;【点评】:此题重点考复数的运算;【突破】:熟悉乘法公式,以及注意21i =-; 3.()2tan cot cos x x x +=( D )(A)tan x (B)sin x (C)cos x (D)cot x【解】:∵()22222sin cos sin cos tan cot cos cos cos cos sin sin cos x x x x x x x x x x x x x +⎛⎫+=+=⋅ ⎪⎝⎭cos cot sin xx x== 故选D ; 【点评】:此题重点考察各三角函数的关系;【突破】:熟悉三角公式,化切为弦;以及注意22sin cos sin cos 1,tan ,cot cos sin x xx x x x x x+===; 4.直线3y x =绕原点逆时针旋转090,再向右平移1个单位,所得到的直线为( A )(A)1133y x =-+ (B)113y x =-+ (C)33y x =- (D)113y x =+ 【解】:∵直线3y x =绕原点逆时针旋转090的直线为13y x =-,从而淘汰(C),(D )又∵将13y x =-向右平移1个单位得()113y x =--,即1133y x =-+ 故选A ;【点评】:此题重点考察互相垂直的直线关系,以及直线平移问题;【突破】:熟悉互相垂直的直线斜率互为负倒数,过原点的直线无常数项;重视平移方法:“左加右减”;5.若02,sin απαα≤≤>,则α的取值范围是:( C ) (A),32ππ⎛⎫⎪⎝⎭ (B),3ππ⎛⎫ ⎪⎝⎭ (C)4,33ππ⎛⎫ ⎪⎝⎭ (D)3,32ππ⎛⎫⎪⎝⎭【解】:∵sin αα ∴sin 0αα> ,即12sin 2sin 023πααα⎛⎫⎛⎫=-> ⎪ ⎪ ⎪⎝⎭⎝⎭又∵02απ≤≤ ∴5333πππα-≤-≤,∴03παπ≤-≤ ,即4,33x ππ⎛⎫∈ ⎪⎝⎭故选C ; 【考点】:此题重点考察三角函数中两角和与差的正余弦公式逆用,以及正余弦函数的图象; 【突破】:熟练进行三角公式的化简,画出图象数形结合得答案;6.从甲、乙等10个同学中挑选4名参加某项公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有( C )(A)70种 (B)112种 (C)140种 (D)168种 【解】:∵从10个同学中挑选4名参加某项公益活动有410C 种不同挑选方法;从甲、乙之外的8个同学中挑选4名参加某项公益活动有48C 种不同挑选方法;∴甲、乙中至少有1人参加,则不同的挑选方法共有4410821070140C C -=-=种不同挑选方法 故选C ;【考点】:此题重点考察组合的意义和组合数公式;【突破】:从参加 “某项”切入,选中的无区别,从而为组合问题;由“至少”从反面排除易于解决;7.已知等比数列()n a 中21a =,则其前3项的和3S 的取值范围是(D ) (A)(],1-∞- (B)()(),01,-∞+∞ (C)[)3,+∞ (D)(][),13,-∞-+∞【解1】:∵等比数列()n a 中21a = ∴当公比为1时,1231a a a ===,33S = ; 当公比为1-时,1231,1,1a a a =-==-,31S =- 从而淘汰(A)(B)(C)故选D ;【解2】:∵等比数列()n a 中21a = ∴312321111S a a a a q q q q⎛⎫=++=++=++ ⎪⎝⎭∴当公比0q >时,31113S q q =++≥+=;当公比0q <时,31111S q q ⎛⎫=---≤-=- ⎪⎝⎭ ∴(][)3,13,S ∈-∞-+∞ 故选D ;【考点】:此题重点考察等比数列前n 项和的意义,等比数列的通项公式,以及均值不等式的应用;【突破】:特殊数列入手淘汰;重视等比数列的通项公式,前n 项和,以及均值不等式的应用,特别是均值不等式使用的条件;8.设,M N 是球心O 的半径OP 上的两点,且NP MN OM ==,分别过,,N M O 作垂线于OP 的面截球得三个圆,则这三个圆的面积之比为:( D )(A)3,5,6 (B)3,6,8 (C)5,7,9 (D)5,8,9【解】:设分别过,,N M O 作垂线于OP 的面截球得三个圆的半径为123,,r r r ,球半径为R ,则:22222222222212325182,,39393r R R R r R R R r R R R ⎛⎫⎛⎫⎛⎫=-==-==-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∴222123::5:8:9r r r = ∴这三个圆的面积之比为:5,8,9 故选D【点评】:此题重点考察球中截面圆半径,球半径之间的关系; 【突破】:画图数形结合,提高空间想象能力,利用勾股定理;9.设直线l ⊂平面α,过平面α外一点A 与,l α都成030角的直线有且只有:( D ) (A)1条 (B)2条 (C)3条 (D)4条 【解】:如图,当030AOC ACB ∠=∠=时,直线AC 满足条件; 同理,当030AOB ABC ∠=∠=时,直线AB 满足条件;又由图形的对称性,知在另一侧存在两条满足条件与直线l 成异面直线的直线 故选D 【点评】:此题重点考察线线角,线面角的关系,以及空间想象能力,图形的对称性;【突破】:数形结合,利用圆锥的母线与底面所成的交角不变画图,重视空间想象能力和图形的对称性;10.设()()sin f x x ωϕ=+,其中0ω>,则()f x 是偶函数的充要条件是( D ) (A)()01f = (B)()00f = (C)()'01f =(D)()'00f=【解】:∵()()sin f x x ωϕ=+是偶函数∴由函数()()sin f x x ωϕ=+图象特征可知0x =必是()f x 的极值点, ∴()'00f= 故选D【点评】:此题重点考察正弦型函数的图象特征,函数的奇偶性,函数的极值点与函数导数的关系;【突破】:画出函数图象草图,数形结合,利用图象的对称性以及偶函数图象关于y 轴对称的要求,分析出0x =必是()f x 的极值点,从而()'00f=;11.设定义在R 上的函数()f x 满足()()213f x f x ⋅+=,若()12f =,则()99f =( C ) (A)13 (B)2 (C)132 (D)213【解】:∵()()213f x f x ⋅+=且()12f = ∴()12f =,()()1313312f f ==, ()()13523f f ==,()()1313752f f ==,()()13925f f ==, , ∴()221132n f n n ⎧⎪-=⎨⎪⎩为奇数为偶数,∴()()1399210012f f =⨯-=故选C【点评】:此题重点考察递推关系下的函数求值;【突破】:此类题的解决方法一般是求出函数解析式后代值,或者得到函数的周期性求解; 12.已知抛物线2:8C y x =的焦点为F ,准线与x 轴的交点为K ,点A 在C 上且A K A F =,则AFK ∆的面积为(B )(A)4 (B)8 (C)16 (D)32 【解】:∵抛物线2:8C y x =的焦点为()20F ,,准线为2x =- ∴()20K -, 设()00A x y ,,过A 点向准线作垂线AB ,则()02B y -,∵AK =,又()0022AF AB x x ==--=+∴由222BK AK AB =-得()22002y x =+,即()20082x x =+,解得()24A ±,∴AFK ∆的面积为01144822KF y ⋅=⨯⨯= 故选B 【点评】:此题重点考察双曲线的第二定义,双曲线中与焦点,准线有关三角形问题; 【突破】:由题意准确化出图象,利用离心率转化位置,在ABK ∆中集中条件求出0x 是关键;第Ⅱ卷二.填空题:本大题共4个小题,每小题4分,共16分。

【历年高考经典】2008年理科数学试题及答案-四川卷

【历年高考经典】2008年理科数学试题及答案-四川卷

2008年普通高等学校招生全国统一考试(四川卷)数 学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页。

全卷满分150分,考试时间120分钟。

考生注意事项:1. 答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致。

2. 答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动、用橡皮擦干净后,再选涂其他答案标号。

3. 答第Ⅱ卷时,必须用0.5毫米黑色墨水签字笔在答题卡上.....书写。

在试题卷上作答无效.........。

4. 考试结束,监考员将试题卷和答题卡一并收回。

参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径()()()P A B P A P B ⋅=⋅ 球的体积公式如果事件A 在一次实验中发生的概率是p ,那么 343V R π=n 次独立重复实验中事件A 恰好发生k 次的概率 其中R 表示球的半径()()()1,0,1,2,,n kk kn n P k C p p k n -=-=第Ⅰ卷一.选择题:1.设集合{}{}{}1,2,3,4,5,1,2,3,2,3,4U A B ===,则()U AB =ð( )(A){}2,3 (B){}1,4,5 (C){}4,5 (D){}1,5 2.复数()221i i +=( )(A)4- (B)4 (C)4i - (D)4i 3.()2tan cot cos x x x +=( )(A)tan x (B)sin x (C)cos x (D)cot x 4.直线3y x =绕原点逆时针旋转090,再向右平移1个单位,所得到的直线为( ) (A)1133y x =-+ (B)113y x =-+ (C)33y x =- (D)113y x =+5.设02,sin απαα≤≤>若,则α的取值范围是:( )(A),32ππ⎛⎫⎪⎝⎭ (B),3ππ⎛⎫ ⎪⎝⎭ (C)4,33ππ⎛⎫ ⎪⎝⎭ (D)3,32ππ⎛⎫⎪⎝⎭6.从甲、乙等10个同学中挑选4名参加某项公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有( )(A)70种 (B)112种 (C)140种 (D)168种 7.已知等比数列{}n a 中21a =,则其前3项的和3S 的取值范围是( ) (A)(],1-∞- (B)()(),01,-∞+∞(C)[)3,+∞ (D)(](),13,-∞-+∞8.设,M N 是球O 半径OP 上的两点,且NP MN OM ==,分别过,,N M O 作垂直于OP 的平面,截球面得三个圆,则这三个圆的面积之比为:( ) (A)3:5:6 (B)3:6:8 (C)5:7:9 (D)5:8:99.直线l ⊂平面α,经过平面α外一点A 与,l α都成030角的直线有且只有:( )(A)1条 (B)2条 (C)3条 (D)4条10.设()()sin f x x ωϕ=+,其中0ω>,则()f x 是偶函数的充要条件是( ) (A)()01f = (B)()00f = (C)()'01f=(D)()'00f=11.设定义在R 上的函数()f x 满足()()213f x f x ⋅+=,若()12f =,则()99f =( ) (A)13 (B)2 (C)132 (D)21312.已知抛物线2:8C y x =的焦点为F ,准线与x 轴的交点为K ,点A 在C 上且AK AF =,则AFK ∆的面积为( )(A)4 (B)8 (C)16 (D)32第Ⅱ卷二.填空题:本大题共4个小题,每小题4分,共16分。

2008年普通高等学校招生全国统一考试理科数学(四川卷)

2008年普通高等学校招生全国统一考试理科数学(四川卷)

9. 设 () A.
是球心 的半径 上的两点,且 B.
,分别过
作垂线于 的面截球得三个圆,则这三个圆的面积之比为
C.
D.
10. 设直线 平面 ,过平面 外一点 与 都成 角的直线有且只有:()
A.1条
B.2条
C.3条
D.4条
11. 设
,其中
,则
是偶函数的充要条件是()
A.
B.
C.
D.
12. 设定义在 上的函数
16. 设等差数列 的前 项和为 ,若

,则 的最大值为 .
四、解答题
17. (本小题满分12分) 求函数
的最大值与最小值。
18. 已知 是函数 (Ⅰ)求 ; (Ⅱ)求函数 的单调区间; (Ⅲ)若直线 与函数
的一个极值点. 的图象有3个交点,求 的取值范围.
19. 设数列{an}的前n项和为Sn,已知ban-2n=(b-1)Sn. (1)证明:当b=2时,{an-n·2n-1}是等比数列; (2)求{an}的通项公式.
21. 如图,平面
(Ⅰ)证明:
平面
,四边形

四点共面;

都是直角梯形,

(Ⅱ)设
,求二面角
的大小.
22. 设椭圆 (Ⅰ)若
的左右焦点分别为
,离心率
,右准线为 ,
是 上的两个动点,

,求 的值;
(Ⅱ)证明:当
取最小值时,
与 共线.
满足
,若
,则
A.
B.
C.
D.
13. 已知抛物线 : A.4
的焦点为 ,准线与 轴的交点为 ,点 在 上且
B.8
C.16

08全国理数四川卷带答案

08全国理数四川卷带答案

08全国理数四川卷带答案本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March2008年普通高等学校招生全国统一考试(四川卷)理科数学说明:2008年是四川省高考自主命题的第三年,因突遭特大地震灾害,四川六市州40县延考,本卷为非延考卷.一、选择题:(5'1260'⨯=)1.若集合{1,2,3,4,5}U =,{1,3}A =2,,{234}B =,,,则()U C A B =( ) A .{2,3} B .{1,4,5} C .{4,5} D .{1,5}解析:选B .离散型集合的交并补,送分题.难度为三年来最低,究其原因,盖汶川地震之故. 2.复数22(1)i i +=( )A .-4B .4C .-4iD .4i解析:选A .计算题,无任何陷阱,徒送分耳.2008四川考生因祸得福. 3.2(tan cot )cos x x x +=( )A .tan xB .sin xC .cos xD .cot x 解析: 原式32sin cos cos ()cos sin cos cos sin sin x x x x x x x x x =+=+ 23sin cos cos sin x x x x +=22cos (sin cos )sin x x x x +=cos sin x x=cot x =, 选D .同角三角函数基本关系式,切化弦技巧等,属三角恒等变换范畴,辅以常规的代数变形.中等生无忧.4.直线3y x =绕原点逆时针旋转90︒,再向右平移1个单位后所得的直线为( )A .1133y x =-+B .113y x =-+C .33y x =-D .113y x =+解析:本题有新意,审题是关键.旋转90︒则与原直线垂直,故旋转后斜率为13-.再右移1得1(1)3y x =--.选A .本题一考两直线垂直的充要条件,二考平移法则.辅以平几背景之旋转变换.5.若02απ≤<,sin αα>,则α的取值范围是( )A .(,)32ππB .(,)3ππC .4(,)33ππD .3(,)32ππ解析:sin αα>,即sin 0αα>,即2sin()03πα->,即sin()03πα->;又由02απ≤<,得5333πππα-≤-<;综上,03παπ≤-<,即433ππα≤<.选C .本题考到了正弦函数的正负区间.除三角函数的定义域、值域和最值、单调性、奇偶性、周期性之外,还要记对称轴、对称中心、正负区间.3,4,5题是本卷第一个坡,是中差生需消耗时间的地方.6.从包括甲、乙共10人中选4人去参加公益活动,要求甲、乙至少有1人参加,则不同的选法有( )A .70B .112C .140D .168解析:审题后针对题目中的至少二字,首选排除法.4410821070140C C -=-=.选C .本题应注意解题策略.7.已知等比数列{}n a 中,21a =,则该数列前三项和3S 的取值范围是( )A .(,1]-∞-B .(,0)(1,)-∞+∞C .[3,)+∞D .(,1][3,)-∞-+∞解析:311S x x =++(0)x ≠.由双勾函数1y x x =+的图象知,12x x +≥或12x x+≤-,故本题选D .本题主要考查等比数列的相关概念和双勾函数的图象和性质.以上诸题,基本功扎实的同学耗时不多. 8.设M 、N 是球O 的半径OP 上的两点,且NP MN OM ==,分别过N 、M 、O 作垂直于OP 的面截球得三个圆,则这三个圆的面积之比为( )A .3:5:6B .3:6:8C .5:7:9D .5:8:9解析:由题知,M 、N 是OP 的三等分点,三个圆的面积之比即为半径的平方之比.在球的轴载面图中易求得:2228()39R R R -=,22225()39R R R -=,故三个圆的半径的平方之比为:22285::99R R R ,故本题选D .本题着意考查空间想象能力.9.设直线l ⊂平面α,过平面α外一点A 且与l 、α都成30︒角的直线有且只有( )A .1条B .2条C .3条D .4条解析:所求直线在平面α内的射影必与直线l 平行,这样的直线只有两条,选B .本题考查空间角的概念和空间想象能力.10.设()sin()f x x ωϕ=+,其中0ϕ>,则函数()f x 是偶函数的充分必要条件是( )A .(0)0f =B .(0)1f =C .'(0)1f =D .'(0)0f = 解析:本题考查理性思维和综合推理能力.函数()f x 是偶函数,则2k πϕπ=+,(0)1f =±,故排除A ,B .又'()cos()f x x ωωϕ=+,2k πϕπ=+,'(0)0f =.选D .此为一般化思路.也可走特殊化思路,取1ω=,2πϕ=±验证.11.定义在R 上的函数()f x 满足:()(2)13f x f x ⋅+=,(1)2f =,则(99)f =( )A .13B .2C .132D .213解析:由()(2)13f x f x ⋅+=,知(2)(4)13f x f x +⋅+=,所以(4)()f x f x +=,即()f x 是周期函数,周期为4.所以1313(99)(3424)(3)(1)2f f f f =+⨯===.选C .题着意考查抽象函数的性质.赋值、迭代、构造是解抽象函数问题不可或缺的三招.本题看似艰深,实为抽象函数问题中的常规题型,优生要笑了.12.设抛物线2:8C y x =的焦点为F ,准线与x 轴相交于点K ,点A 在C 上且AK AF =,则AFK∆的面积为( )A .4B .8C .16D .32解析:解几常规题压轴,不怕.边读题边画图.28y x =的焦点(2,0)F ,准线2x =-,(2,0)K -.设(,)A x y ,由AK ==2222(2)2[(2)]x y x y ++=-+.化简得:22124y x x =-+-,与28y x =联立求解,解得:2x =,4y =±.1144822AFK A S FK y ∆=⋅⋅=⋅⋅=,选B .本题的难度仅体现在对运算的准确性和快捷性上. 点评:(1)纵观12道选择题,没有真正意义上的压轴题,这是大众数学时代的来临呢,还是沾了2008地震的光(2)真正体现了多考点想,少考点算的一套试题,做到了言而有信.(3)进一步体现了回归教材的意图,在高三复习中,题海战术应被教材串讲取而代之.(4)全面考查双基,基础扎实的同学受益,走难偏深押题路线的策略得不偿失.(5)周考月考的命题意图命题方向命题难度值得反思.二、填空题:(4'416'⨯=)13.34(12)(1)x x +-的展开式中2x 项的系数是 答案:6-.解析:二项式定理再现,难度高于文科.341221223344(12)(1)(124)(1)x x C x C x C x C x +-=+⋅+⋅+-++2x 项的系数是2112434324624126C C C C -+=-+=-.这是中档略偏难的常规题.中差生在准确性和快捷性上有缺陷.14.已知直线:60l x y -+=,圆22:(1)(1)2C x y -+-=,则圆C 上各点到直线l 的距离的最小值是答案:解析:由数想形,所求最小值=圆心到到直线的距离-圆的半径.圆心(1,1)到直线60x y -+=的距离d ===15,则该正四棱柱的体积是 . 答案:2.解析:由题意,2226cos 3a a h θ⎧++=⎪⎨==⎪⎩,12a h =⎧⇒⎨=⎩,22V a h ⇒== 16.设等差数列{}n a 的前n 项和为n S ,410S ≥,515S ≤,则4a 的最大值是 .答案:4.解析:由题意,11434102545152a d a d ⨯⎧+≥⎪⎪⎨⨯⎪+≤⎪⎩,即11461051015a d a d +≥⎧⎨+≤⎩,1123523a d a d +≥⎧⎨+≤⎩,413a a d =+.这是加了包装的线性规划,有意思.建立平面直角坐标系1a od ,画出可行域1123523a d a d +≥⎧⎨+≤⎩(图略),画出目标函数即直线413a a d =+,由图知,当直线413a a d =+过可行域内(1,1)点时截距最大,此时目标函数取最大值44a =.本题明为数列,实为线性规划,着力考查了转化化归和数形结合思想.掌握线性规划问题"画-移-求-答"四步曲,理解线性规划解题程序的实质是根本.这是本题的命题意图.因约束条件只有两个,本题也可走不等式路线.设111213(23)(2)a d a d a d λλ+=+++,由121221323λλλλ+=⎧⎨+=⎩解得1213λλ=-⎧⎨=⎩,∴1113(23)3(2)a d a d a d +=-+++,由不等式的性质得:1123523a d a d +≥⎧⎨+≤⎩ 11(23)53(2)9a d a d -+≤-⎧⇒⎨+≤⎩ 11(23)3(2)4a d a d ⇒-+++≤,即4134a a d =+≤,4a 的最大值是4.从解题效率来看,不等式路线为佳,尽管命题者的意图为线性规划路线.本题解题策略的选择至关重要. 点评:(1)二项式定理,直线和圆的方程,正四棱柱,数列几个知识点均为前两年未考点.(2)无多选压轴题.无开放性压轴题.易入手,考不好考生只能怪自已.题出得基础,出得好,出得妙.尤其是第16题.三、解答题:(12'12'12'12'12'14'76'+++++=)解答应写出文字说明,证明过程或演算步骤. 17.求函数2474sin cos 4cos 4cos y x x x x =-+-的最大值和最小值.解析:2474sin cos 4cos 4cos y x x x x =-+-2484sin cos 14cos 4cos x x x x =--+- 2284sin cos (12cos )x x x =--- 282sin 2cos 2x x =-- 282sin 2(1sin 2)x x =--- 272sin 2sin 2x x =-+ 26(1sin 2)x =+- max 10y =,min 6y =.解析:2474sin cos 4cos 4cos y x x x x =-+-2272sin 24cos (1cos )x x x =-+-2272sin 24cos sin x x x =-+ 272sin 2sin 2x x =-+ 26(1sin 2)x =+- max 10y =,min 6y =.点评:一考三角恒等变换,二考三角函数与二次函数相结合,意在避开前几年固定套路.由此观之,一味追前两年高考试题套路之风有踏空之嫌,立足考点回归教材方为根本.18.设进入某商场的每一位顾客购买甲商品的概率,购买乙商品的概率为,且顾客购买甲商品与购买乙商品相互独立,每位顾客间购买商品也相互独立.(Ⅰ)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率; (Ⅱ)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;(Ⅲ)设ξ是进入商场的3位顾客至少购买甲、乙商品中一种的人数,求ξ的分布列及期望. 解析:题目这么容易,估计今年的评分标准要偏严了. (Ⅰ)0.5(10.6)(10.5)0.6P =⨯-+-⨯0.20.30.5=+= (Ⅱ)1(10.5)(10.6)0.8P =---= (Ⅲ)ξ可取0,1,2,3.033(0)(10.8)0.008P C ξ==⨯-= 123(1)(10.8)0.80.096P C ξ==⨯-⨯= 223(2)(10.8)0.80.384P C ξ==⨯-⨯= 333(3)0.80.512P C ξ==⨯=ξξ30.8 2.4E ξ=⨯=.点评:返朴归真,教材难度,审题无障碍.平和中正之风宜大力提倡.19.如图,面ABEF ⊥面ABCD ,四边形ABEF 与ABCD 都是直角梯形,90BAD BAF ∠=∠=︒,BC //=12AD ,BE //=12AF . (Ⅰ)求证:C 、D 、E 、F 四点共面;(Ⅱ)若BA BC BE ==,求二面角A ED B --的大小.解析:不是会不会的问题,而是熟不熟的问题,答题时间是最大问题.(Ⅰ)∵面ABEF ⊥面ABCD ,90AF AB ⊥=︒∴AF ⊥面ABCD .∴以A 为原点,以AB ,AD ,AF 所在直线为x 轴,y 轴,z 轴, 建立如图所示的空间直角坐标系A xyz -.B ACDE F不妨设AB a=,则AF cAD b=,2=,2(0,0,0)A ,(,0,0)B a ,(,,0)C a b ,(0,2,0)D b ,(,0,)E a c ,(0,0,2)F c . ∴(0,2,2)DF b c =-,(0,,)CE b c =-,∴2DF CE =,∴//DF CE ,∵E DF ∉,∴//DF CE , ∴C 、D 、E 、F 四点共面.(Ⅱ)设1AB =,则1BC BE ==,∴(1,0,0)B ,(0,2,0)D ,(1,0,1)E .设平面AED 的法向量为1111(,,)n x y z =,由110n AE n AD ⎧⋅=⎪⎨⋅=⎪⎩,得111020x z y +=⎧⎨=⎩,1(1,0,1)n =-设平面BED 的法向量为2222(,,)n x y z =由2100n BE n BD ⎧⋅=⎪⎨⋅=⎪⎩,得222020z x y =⎧⎨-+=⎩,2(2,1,0)n =12cos ,n n <>1212n n n n ⋅=⋅==由图知,二面角A ED B --为锐角,∴其大小为. 点评:证共面就是证平行,求二面角转为求法向量夹角,时间问题是本题的困惑处.心浮气燥会在计算、书写、时间上丢分.因建系容易,提倡用向量法.本时耗时要超过17题与18题用时之和.20.设数列{}n a 满足:2(1)n n n ba b S -=-.(Ⅰ)当2b =时,求证:1{2}n n a n --⋅是等比数列; (Ⅱ)求n a 通项公式.解析:由题意,在2(1)n n n ba b S -=-中,令1n =,得112(1)ba b a -=-,12a =. 由2(1)n n n ba b S -=-得1112(1)n n n ba b S ----=-(2,*)n n N ≥∈ 两式相减得:11()2(1)n n n n b a a b a ----=-即112n n n a ba --=+(2,*)n n N ≥∈ …………① (Ⅰ)当2b =时,由①知,1122n n n a a --=+ 于是11122(1)2n n n n a n a n ----⋅=--⋅212[(1)2]n n a n --=--⋅(2,*)n n N ≥∈又1111210a --⋅=≠,所以1{2}n n a n --⋅是首项为1,公比为2的等比数列. (Ⅰ)变:当2b =时,求n a 的通项公式.解法如下: 解:当2b =时,由①知,1122n n n a a --=+两边同时除以2n 得111222n n n n a a --=+(2,*)n n N ≥∈ 111222n n n n a a ---=(2,*)n n N ≥∈ ∴{}2n n a 是等差数列,公差为12,首项为112a = ∴111(1)(1)222n n a n n =+-=+∴1(1)2n n a n -=+(∴1122n n n a n ---⋅=,∴1{2}n n a n --⋅是等比数列,首项为1,公比为2)(Ⅱ)当2b =时,由(Ⅰ)知,1122n n n a n ---⋅=,即1(1)2n n a n -=+⋅当2b ≠时,由①:112n n n a ba --=+两边同时除以2n 得1112222n n n n a a b --=⋅+ 可设11()222n n n n a a b λλ--+=⋅+ …………② 展开②得1122222n n n n a a b b λ---=⋅+⋅,与1112222n n n n a a b --=⋅+比较, 得2122b λ-⋅=,∴12b λ=-. ∴1111()22222n n n n a a b b b --+=⋅+-- ∴1{}22n n a b +-是等比数列,公比为2b ,首项为11122b b b -+=-- ∴111()2222n n n a b b b b --+=⋅-- ∴111()2222n n n a b b b b --=⋅--- ∴11112(1)22()2222n nn n n b b b b a b b b -----⎡⎤=⋅-=⎢⎥---⎣⎦ 点评:这是第一道考查"会不会"的问题.如若不会,对不起,请先绕道走.对大多数考生而言,此题是一道拦路虎.可能比压轴题还让人头痛.原因是两个小题分别考到了两种重要的递推方法.递推数列中对递推方法的考查,有30年历史了,现在只是陈题翻新而已.不过此题对考生有不公平之嫌.大中城市参加过竞赛培训的优生占便宜了.解题有套方为高啊.21.设椭圆22221(0)x y a b a b+=>>的左、右焦点分别是1F 、2F,离心率2e =,右准线l 上的两动点M 、N ,且120FM F N ⋅=. (Ⅰ)若1225F M F N ==,求a 、b 的值;(Ⅱ)当MN 最小时,求证12FM FN +与12F F 共线. 解析:数列和解几位列倒数第三和第二,意料之中.开始挤牙膏吧.(Ⅰ)由已知,1(,0)F c -,2(,0)F c .由e =,2212c a =,∴222a c =.又222a b c =+,∴22b c =,222a b =.∴l :2222a c x c c c===,1(2,)M c y ,2(2,)N c y . 延长2NF 交1MF 于P ,记右准线l 交x 轴于Q .∵120FM F N ⋅=,∴12F M F N ⊥.12F M F N ⊥ 由平几知识易证1Rt MQF ∆≌2Rt F QN ∆ ∴13QN FQ c ==,2QM F Q c == 即1y c =,23y c =.∵1225F M F N ==,∴22920c c +=,22c =,22b =,24a =.∴2a=,b=(Ⅰ)另解:∵120FM F N ⋅=,∴12(3,)(,)0c y c y ⋅=,21230y y c =-<. 又1225F M F N ==联立212221222392020y y c c y c y ⎧=-⎪+=⎨⎪+=⎩,消去1y 、2y 得:222(209)(20)9c c c --=,整理得:4292094000c c -+=,22(2)(9200)0c c --=.解得22c =.但解此方程组要考倒不少人.(Ⅱ)∵1212(3,)(,)0FM F N c y c y ⋅=⋅=,∴21230y y c =-<. 22222121212121212222412MN y y y y y y y y y y y y c =-=+-≥--=-=. 当且仅当123y y c =-=或213y y c =-=时,取等号.此时MN 取最小值.此时1212(3,3)(,3)(4,0)2FM F N c c c c c F F +=±+==. ∴12FM F N +与12F F 共线. (Ⅱ)另解:∵120FM F N ⋅=,∴12(3,)(,)0c y c y ⋅=,2123y y c =-. 设1MF ,2NF 的斜率分别为k ,1k -. 由1()32y k x c y kc x c =+⎧⇒=⎨=⎩,由21()2y x c c y k k xc ⎧=--⎪⇒=-⎨⎪=⎩ 1213MN y y c k k =-=⋅+≥.当且仅当13k k =即213k =,k =时取等号. 即当MN 最小时,k =, 此时1212(3,3)(,)(3,3)(,3)(4,0)2c F M F N c kc c c c c c c F F k+=+-=±+==. ∴12FM F N +与12F F 共线. 点评:本题第一问又用到了平面几何.看来,与平面几何有联系的难题真是四川风格啊.注意平面几何可与三角向量解几沾边,应加强对含平面几何背景的试题的研究.本题好得好,出得活,出得妙!均值定理,放缩技巧,永恒的考点.22.已知3x =是函数2()ln(1)10f x a x x x =++-的一个极值点.(Ⅰ)求a 的值;(Ⅱ)求函数()f x 的单调区间;(Ⅲ)当直线y b =与函数()y f x =的图像有3个交点,求b 的取值范围.解析:似曾相识.通览后三题,找感觉,先熟后生,先易后难,分步得分.本卷后三难中,压轴题最熟最易入手.(Ⅰ)2()ln(1)10f x a x x x =++-'()2101a f x x x=+-+ 3x =是函数2()ln(1)10f x a x x x =++-的一个极值点.'(3)404a f =-= 16a =(Ⅱ)由(Ⅰ)2()16ln(1)10f x x x x =++-,(1,)x ∈-+∞.2162862(1)(3)'()210111x x x x f x x x x x -+--=+-==+++ 令'()0f x =,得1x =,3x =. ff (Ⅲ)由(Ⅱ)知,()f x 在(1,1)-上单调递增,在(3,)+∞上单调递增,在(1,3)上单调递减. ∴()(1)16ln 29f x f ==-极大,()(3)32ln 221f x f ==-极小.又1x +→-时,()f x →-∞;x →+∞时,()f x →+∞;可据此画出函数()y f x =的草图(图略),由图可知,当直线y b =与函数()y f x =的图像有3个交点时,b 的取值范围为(32ln 221,16ln 29)--. 点评:压轴题是这种难度吗与前两年相比档次降得太多了.太常规了,难度尚不及20题和21题.天上掉馅饼了吗此题当为漏掉定义域者戒.。

2008高考四川数学理科试卷含详细解答(全word版)

2008高考四川数学理科试卷含详细解答(全word版)

2008年普通高等学校招生全国统一考试(四川卷)数 学(理工农医类)及逐题详解本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页。

全卷满分150分,考试时间120分钟。

考生注意事项:1. 答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致。

2. 答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动、用橡皮擦干净后,再选涂其他答案标号。

3. 答第Ⅱ卷时,必须用0.5毫米黑色墨水签字笔在答题卡上.....书写。

在试题卷上作答无效.........。

4. 考试结束,监考员将试题卷和答题卡一并收回。

参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径()()()P A B P A P B ⋅=⋅ 球的体积公式如果事件A 在一次实验中发生的概率是p ,那么 343V R π=n 次独立重复实验中事件A 恰好发生k 次的概率 其中R 表示球的半径()()()1,0,1,2,,n kk kn n P k C p p k n -=-=第Ⅰ卷一.选择题:1.设集合{}{}{}1,2,3,4,5,1,2,3,2,3,4U A B ===,则()U A B = ð( B )(A){}2,3 (B){}1,4,5 (C){}4,5 (D){}1,5 【解】:∵{}{}1,2,3,2,3,4A B == ∴{}2,3A B =又∵{}1,2,3,4,5U = ∴(){}1,4,5U A B = ð 故选B ; 【考点】:此题重点考察集合的交集,补集的运算; 【突破】:画韦恩氏图,数形结合; 2.复数()221i i +=( A )(A)4- (B)4 (C)4i - (D)4i【解】:∵()()222121212244i i i i i i i +=+-=⨯==- 故选A ;【点评】:此题重点考复数的运算;【突破】:熟悉乘法公式,以及注意21i =-; 3.()2tan cot cos x x x +=( D )(A)tan x (B)sin x (C)cos x (D)cot x【解】:∵()22222sin cos sin cos tan cot cos cos cos cos sin sin cos x x x x x x x x x x x x x +⎛⎫+=+=⋅ ⎪⎝⎭cos cot sin xx x== 故选D ; 【点评】:此题重点考察各三角函数的关系;【突破】:熟悉三角公式,化切为弦;以及注意22sin cos sin cos 1,tan ,cot cos sin x xx x x x x x+===; 4.直线3y x =绕原点逆时针旋转090,再向右平移1个单位,所得到的直线为( A )(A)1133y x =-+ (B)113y x =-+ (C)33y x =- (D)113y x =+ 【解】:∵直线3y x =绕原点逆时针旋转090的直线为13y x =-,从而淘汰(C),(D )又∵将13y x =-向右平移1个单位得()113y x =--,即1133y x =-+ 故选A ;【点评】:此题重点考察互相垂直的直线关系,以及直线平移问题;【突破】:熟悉互相垂直的直线斜率互为负倒数,过原点的直线无常数项;重视平移方法:“左加右减”;5.若02,sin απαα≤≤>,则α的取值范围是:( C ) (A),32ππ⎛⎫⎪⎝⎭ (B),3ππ⎛⎫ ⎪⎝⎭ (C)4,33ππ⎛⎫ ⎪⎝⎭ (D)3,32ππ⎛⎫⎪⎝⎭【解】:∵sin αα ∴sin 0αα> ,即12sin 2sin 023πααα⎛⎫⎛⎫=-> ⎪ ⎪ ⎪⎝⎭⎝⎭又∵02απ≤≤ ∴5333πππα-≤-≤,∴03παπ≤-≤ ,即4,33x ππ⎛⎫∈ ⎪⎝⎭故选C ; 【考点】:此题重点考察三角函数中两角和与差的正余弦公式逆用,以及正余弦函数的图象; 【突破】:熟练进行三角公式的化简,画出图象数形结合得答案;6.从甲、乙等10个同学中挑选4名参加某项公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有( C )(A)70种 (B)112种 (C)140种 (D)168种 【解】:∵从10个同学中挑选4名参加某项公益活动有410C 种不同挑选方法;从甲、乙之外的8个同学中挑选4名参加某项公益活动有48C 种不同挑选方法;∴甲、乙中至少有1人参加,则不同的挑选方法共有4410821070140C C -=-=种不同挑选方法 故选C ;【考点】:此题重点考察组合的意义和组合数公式;【突破】:从参加 “某项”切入,选中的无区别,从而为组合问题;由“至少”从反面排除易于解决;7.已知等比数列()n a 中21a =,则其前3项的和3S 的取值范围是(D ) (A)(],1-∞- (B)()(),01,-∞+∞ (C)[)3,+∞ (D)(][),13,-∞-+∞【解1】:∵等比数列()n a 中21a = ∴当公比为1时,1231a a a ===,33S = ; 当公比为1-时,1231,1,1a a a =-==-,31S =- 从而淘汰(A)(B)(C)故选D ;【解2】:∵等比数列()n a 中21a = ∴312321111S a a a a q q q q⎛⎫=++=++=++ ⎪⎝⎭∴当公比0q >时,31113S q q =++≥+=;当公比0q <时,31111S q q ⎛⎫=---≤-=- ⎪⎝⎭ ∴(][)3,13,S ∈-∞-+∞ 故选D ;【考点】:此题重点考察等比数列前n 项和的意义,等比数列的通项公式,以及均值不等式的应用;【突破】:特殊数列入手淘汰;重视等比数列的通项公式,前n 项和,以及均值不等式的应用,特别是均值不等式使用的条件;8.设,M N 是球心O 的半径OP 上的两点,且NP MN OM ==,分别过,,N M O 作垂线于OP 的面截球得三个圆,则这三个圆的面积之比为:( D )(A)3,5,6 (B)3,6,8 (C)5,7,9 (D)5,8,9【解】:设分别过,,N M O 作垂线于OP 的面截球得三个圆的半径为123,,r r r ,球半径为R ,则:22222222222212325182,,39393r R R R r R R R r R R R ⎛⎫⎛⎫⎛⎫=-==-==-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∴222123::5:8:9r r r = ∴这三个圆的面积之比为:5,8,9 故选D【点评】:此题重点考察球中截面圆半径,球半径之间的关系; 【突破】:画图数形结合,提高空间想象能力,利用勾股定理;9.设直线l ⊂平面α,过平面α外一点A 与,l α都成030角的直线有且只有:( D ) (A)1条 (B)2条 (C)3条 (D)4条 【解】:如图,当030AOC ACB ∠=∠=时,直线AC 满足条件; 同理,当030AOB ABC ∠=∠=时,直线AB 满足条件;又由图形的对称性,知在另一侧存在两条满足条件与直线l 成异面直线的直线 故选D 【点评】:此题重点考察线线角,线面角的关系,以及空间想象能力,图形的对称性;【突破】:数形结合,利用圆锥的母线与底面所成的交角不变画图,重视空间想象能力和图形的对称性;10.设()()sin f x x ωϕ=+,其中0ω>,则()f x 是偶函数的充要条件是( D ) (A)()01f = (B)()00f = (C)()'01f =(D)()'00f=【解】:∵()()sin f x x ωϕ=+是偶函数∴由函数()()sin f x x ωϕ=+图象特征可知0x =必是()f x 的极值点, ∴()'00f= 故选D【点评】:此题重点考察正弦型函数的图象特征,函数的奇偶性,函数的极值点与函数导数的关系;【突破】:画出函数图象草图,数形结合,利用图象的对称性以及偶函数图象关于y 轴对称的要求,分析出0x =必是()f x 的极值点,从而()'00f=;11.设定义在R 上的函数()f x 满足()()213f x f x ⋅+=,若()12f =,则()99f =( C ) (A)13 (B)2 (C)132 (D)213【解】:∵()()213f x f x ⋅+=且()12f = ∴()12f =,()()1313312f f ==, ()()13523f f ==,()()1313752f f ==,()()13925f f ==, , ∴()221132n f n n ⎧⎪-=⎨⎪⎩为奇数为偶数,∴()()1399210012f f =⨯-=故选C【点评】:此题重点考察递推关系下的函数求值;【突破】:此类题的解决方法一般是求出函数解析式后代值,或者得到函数的周期性求解; 12.已知抛物线2:8C y x =的焦点为F ,准线与x 轴的交点为K ,点A 在C 上且A K A F =,则AFK ∆的面积为(B )(A)4 (B)8 (C)16 (D)32 【解】:∵抛物线2:8C y x =的焦点为()20F ,,准线为2x =- ∴()20K -, 设()00A x y ,,过A 点向准线作垂线AB ,则()02B y -,∵AK =,又()0022AF AB x x ==--=+∴由222BK AK AB =-得()22002y x =+,即()20082x x =+,解得()24A ±,∴AFK ∆的面积为01144822KF y ⋅=⨯⨯= 故选B 【点评】:此题重点考察双曲线的第二定义,双曲线中与焦点,准线有关三角形问题; 【突破】:由题意准确化出图象,利用离心率转化位置,在ABK ∆中集中条件求出0x 是关键;第Ⅱ卷二.填空题:本大题共4个小题,每小题4分,共16分。

2008年普通高等学校招生全国统一考试数学(四川卷·理科)(附答案,完全word版)

2008年普通高等学校招生全国统一考试数学(四川卷·理科)(附答案,完全word版)

2008年普通高等学校招生全国统一考试(四川卷)数 学(理工农医类)第I 卷本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =g g球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(012)k kn k n n P k C p p k n -=-=L ,,,,一、选择题1.设集合{12345}U =,,,,,{123}A =,,,{234}B =,,,则()U A B =I ð( ) A .{23},B .{145},,C .{45},D .{15},2.复数22i(1i)+=( ) A .4-B .4C .4i -D .4i3.2(tan cot )cos x x x +=( ) A .tan xB .sin xC .cos xD .cot x4.将直线3y x =绕原点逆时针旋转90°,再向右平移1个单位,所得到的直线为( ) A .1133y x =-+ B .113y x =-+ C .33y x =-D .113y x =+5.设02πα<≤,若sin αα>,则α的取值范围是( ) A .ππ32⎛⎫ ⎪⎝⎭,B .ππ3⎛⎫ ⎪⎝⎭,C .π4π33⎛⎫ ⎪⎝⎭,D .π3π32⎛⎫ ⎪⎝⎭,6.从甲、乙等10名同学中挑选4名参加某项公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有( ) A .70种 B .112种 C .140种 D .168种 7.已知等比数列{}n a 中21a =,则其前3项的和3S 的取值范围是( ) A .(1]-∞-, B .(0)(1)-∞+∞U ,,C .[3)+∞,D .(1][3)-∞-+∞U ,,8.设M N ,是球O 半径OP 上的两点,且NP MN OM ==,分别过N M O ,,作垂直于OP 的平面,截球面得三个圆,则这三个圆的面积之比为( ) A .3∶5∶6 B .3∶6∶8 C .5∶7∶9 D .5∶8∶9 9.直线l ⊂平面α,经过α外一点A 与l α,都成30°角的直线有且只有( ) A .1条 B .2条 C .3条 D .4条 10.设()sin()f x x ωϕ=+,其中0ω>,则()f x 是偶函数的充要条件是( ) A .(0)1f =B .(0)0f =C .(0)1f '=D .(0)0f '=11.设定义在R 上的函数()f x 满足()(2)13f x f x +=g .若(1)2f =,则(99)f =( ) A .13B .2C .132D .21312.已知抛物线28C y x =:的焦点为F ,准线与x 轴的交点为K ,点A 在C 上且|||AK AF =,则AFK △的面积为( )A .4B .8C .16D .32第Ⅱ卷本卷共10小题,共90分.二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.34(12)(1)x x +-展开式中2x 的系数为 .14.已知直线40l x y -+=:与圆22(1)(1)2C x y -+-=:,则C 上各点到l 距离的最小值为 .15,且对角线与底面所成角的余弦值为3,则该正四棱柱的体积等于 .16.设等差数列{}n a 的前n 项和为n S ,若451015S S ≥,≤,则4a 的最大值为 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 求函数2474sin cos 4cos 4cos y x x x x =-+-的最大值与最小值.18.(本小题满分12分)设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的. (Ⅰ)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率; (Ⅱ)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;(Ⅲ)记ξ表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求ξ的分布列及期望. 19.(本小题满分12分)如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯形,90BAD FAB ∠=∠=o ,12BC AD∥,12BE AF ∥. (Ⅰ)证明:C D F E ,,,四点共面;(Ⅱ)设AB BC BE ==,求二面角A ED B --的大小.20.(本小题满分12分)设数列{}n a 的前n 项和为n S ,已知2(1)nn n ba b S -=-. (Ⅰ)证明:当2b =时,1{2}n n a n --g 是等比数列;(Ⅱ)求{}n a 的通项公式.FABCD E21.(本小题满分12分)设椭圆22221x y a b+=(0a b >>)的左、右焦点分别为12F F ,,离心率2e =,右准线为l ,M N ,是l 上的两个动点,120F M F N =u u u u r u u u u rg .(Ⅰ)若12F M F N ==u u u u r u u u u ra b ,的值;(Ⅱ)证明:当MN u u u u r 取最小值时,12FM F N +u u u u r u u u u r 与12F F u u u u r共线.22.(本小题满分14分)已知3x =是函数2()ln(1)10f x a x x x =++-的一个极值点. (Ⅰ)求a ;(Ⅱ)求函数()f x 的单调区间;(Ⅲ)若直线y b =与函数()y f x =的图像有3个交点,求b 的取值范围.2008年普通高等学校招生全国统一考试(四川卷)数 学(理工农医类)参考答案一、选择题1.B 2.A 3.D 4.A 5.C 6.C 7.D 8.D 9.B 10.D 11.C 12.B 二、填空题13.6- 1415.2 16.4三、解答题17.解:2474sin cos 4cos 4cos y x x x x =-+- 2272sin 24cos (1cos )x x x =-+- 2272sin 24cos sin x x x =-+ 272sin 2sin 2x x =-+ 2(1sin 2)6x =-+.由于函数2(1)6z u =-+在[11]-,中的最大值为2max (11)610z =--+=,最小值为2min (11)66z =-+=.故当sin 21x =-时y 取得最大值10;当sin 21x =时y 取得最小值6. 18.解:记A 表示事件:进入商场的1位顾客购买甲种商品, B 表示事件:进入商场的1位顾客购买乙种商品,C 表示事件:进入商场的1位顾客购买甲、乙两种商品中的一种,D 表示事件:进入商场的1位顾客至少购买甲、乙两种商品中的一种. (Ⅰ)C A B A B =+g g .()()P C P A B A B =+g g()()P A B P A B =+g g()()()()P A P B P A P B =+g g 0.50.40.50.6=⨯+⨯ 0.5=. (Ⅱ)D A B =g .()()P D P A B =g()()P A P B =g0.50.4=⨯ 0.2=.()1()0.8P D P D =-=.(Ⅲ)(30.8)B ξ-,,故ξ的分布列为3(0)0.20.008P ξ===,123(1)C 0.80.20.096P ξ==⨯⨯=, 223(2)C 0.80.20.384P ξ==⨯⨯=,3(3)0.80.512P ξ===.所以30.8 2.4E ξ=⨯=. 19.解法一:(Ⅰ)延长DC 交AB 的延长线于点G ,由12BC AD∥得 12GB GC BC GA GD AD ===, 延长FE 交交AB 的延长线于点G '.同理可得12G E G B BE G F G A AF ''===''. 故G B GBG A GA'=',即G '与G 重合. 因此直线CD EF ,相交于点G ,即C D F E ,,,四点共面. (Ⅱ)设1AB =,则1BC BE ==,2AD =.取AE 中点M ,则BM AE ⊥.又由已知得,AD ⊥平面ABEF . 故AD BM ⊥,BM 与平面ADE 内两相交直线AD AE ,都垂直. 所以BM ⊥平面ADE ,作MN DE ⊥,垂足为N ,连结BN .由三垂线定理知BN ED ⊥,BNM ∠为二面角A ED B --的平面角.F A B C EG (')M N1223AD AE BM MN DE ⨯===g .故tan 2BM BNM MN ∠==. 所以二面角A DE B --的大小为arctan2. 解法二:由平面ABEF ⊥平面ABCD ,AF AB ⊥,得FA ⊥平面ABCD ,以A 为坐标原点,射线AB 为x 轴正半轴,建立如图所示的直角坐标系A xyz -.(Ⅰ)设AB a BC b BE c ===,,,则(00)(0)(0)B a C a b E a c ,,,,,,,,,(020)D b ,,,(002)F c ,,. (0)EC b c =-u u u r ,,,(022)FD b c =-u u u r,,故12EC FD =u u u r u u u r,从而由点E FD ∉,得EC FD ∥.故C D F E ,,,四点共面.(Ⅱ)设1AB =,则1BC BE ==,则(100)(110)(020)(101)B C D E ,,,,,,,,,,,.在DE 上取点M ,使5DM ME =u u u u r u u u r ,则515636M ⎛⎫ ⎪⎝⎭,,,从而115636MB ⎛⎫=-- ⎪⎝⎭u u u r ,,. 又(121)DE =-u u u r,,,0MB DE =u u u r u u u r g ,MB DE ⊥. 在DE 上取点N ,使2DN NE =u u u r u u u r ,则222333N ⎛⎫ ⎪⎝⎭,,,从而222333NA ⎛⎫=--- ⎪⎝⎭u u u r ,,,0NA DE =u u ur u u u r g ,NA DE ⊥. 故MB u u u r 与NA u u ur 的夹角等于二面角A DE B --A 的平面角,cos 5||||MB NA MB NA MB NA <>==u u u r u u u ru u u r u u u r g u u ur u u u r g ,.所以二面角A DE B --的大小为arccos 5. 20.解:由题意知,12a =,且2(1)n n n ba b S -=-, 1112(1)n n n ba b S +++-=-两式相减得11()2(1)nn n n b a a b a ++--=-,即12nn n a ba +=+. ①(Ⅰ)当2b =时,由①知,122nn n a a +=+.于是1(1)222(1)2n n n n n a n a n +-+=+-+g g 12(2)n n a n -=-g .又1111210a --=≠g ,所以1{2}n n a n --g 是首项为1,公比为2的等比数列.(Ⅱ)当2b =时,由(Ⅰ)知,1122n n n a n ---=g ,即1(1)2n n a n -=+.当2b ≠时,由①得1111122222n n n n n a ba b b+++-=+---g g 22n n bba b =--g1(2)2n n b a b=--g .因此1111112(2)22n n n a b a b b++-=---g g2(1)2n b b b -=-g .得1211[2(22)]22n n n n a b b n b -=⎧⎪=⎨+-⎪-⎩,,,≥. 21.解:由222a b c -=与2c e a ==,得222a b =.102F a ⎛⎫- ⎪ ⎪⎝⎭,,202F a ⎛⎫ ⎪ ⎪⎝⎭,,l的方程为x =.设12))M y N y ,,,则112F M y ⎛⎫= ⎪ ⎪⎝⎭u u u u r ,,222F N a y ⎛⎫= ⎪ ⎪⎝⎭u u u u r ,,由120F M F N =u u u u r u u u u r g得 212302y y a =-<g . ①(Ⅰ)由12F M F N ==u u u u r u u u u r= ②= ③ 由①、②、③三式,消去12y y ,,并求得24a =. 故2a =,b ==. (Ⅱ)22222121212121212()22246MN y y y y y y y y y y y y a =-=+---=-=u u u u r ≥,当且仅当12y y =-=或21y y =-=时,MN u u u u r.此时,12121212)0)222F M F N a y a y y y F F ⎛⎫⎛⎫+=+=+== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭u u u u r u u u u r u u u u r ,,,,.故12FM F N +u u u u r u u u u r 与12F F u u u u r 共线. 22.解:(Ⅰ)因为()2101af x x x'=+-+, 所以(3)61004af '=+-=. 因此16a =.(Ⅱ)由(Ⅰ)知,2()16ln(1)10f x x x x =++-,(1)x ∈-+∞,,22(43)()1x x f x x-+'=+.当(11)(3)x ∈-+∞U ,,时,()0f x '>, 当(13)x ∈,时,()0f x '<,所以()f x 的单调增区间是(11)(3)-+∞,,,,()f x 的单调减区间是(13),.(Ⅲ)由(Ⅱ)知,()f x 在(11)-,内单调增加,在(13),内单调减少,在(3)+∞,上单调增加,且当1x =或3x =时,()0f x '=,所以()f x 的极大值为(1)16ln 29f =-,极小值为(3)32ln 221f =-. 因为2(16)16101616ln 29(1)f f >-⨯>-=,2(e 1)321121(3)f f --<-+=-<,所以在()f x 的三个单调区间(11)-,,(13),,(3)+∞,直线y b =与()y f x =的图像各有一个交点,当且仅当(3)(1)f b f <<.因此,b 的取值范围为(32ln 22116ln 29)--,.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2008年普通高等学校招生全国统一考试(四川延考卷)数 学(理科)一.选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)集合{1,0,1}A =-,A 的子集中,含有元素0的子集共有 (A )2个 (B )4个 (C )6个 (D )8个【解析】【方法一】组合数讨论法:A 的子集共328=个,含有元素0的和不含元素0的子集各占一半,有4个.选B .【方法二】分类讨论:①只含一个元素的集合{}0②含二个元素的集合{}{}1,00,1-③含三个元素的集合{}1,0,1-(2)已知复数(3)(3)2i i z i+-=-,则||z =(A )5 (B )5(C (D )【解析】 (3)(3)10(2)2(2)422(2)(2)i i i z i i i i i +-+===+=+--+||z ⇒==选D .(3)41(1)(1)x x++的展开式中含2x 的项的系数为(A )4 (B )6 (C )10 (D )12【解析】41223344411(1)(1)(1)(1)x C x C x C x xx++=+++++ 展开式中含2x 项的系数为234410C C +=.选C .(4)已知*n N ∈,则不等式220.011nn -<+的解集为 (A ){|n n ≥199,*}n N ∈ (B ){|n n ≥200,*}n N ∈(C ){|n n ≥201,*}n N ∈ (D ){|n n ≥202,*}n N ∈【解析】 22220.0111200n n n -=<=++*199200,n n n N ⇒>⇒≥∈.选B .(5)已知1tan 2α=,则2(sin cos )cos 2ααα+= (A )2 (B )2- (C )3 (D )3-【解析】 22(sin cos )(sin cos )sin cos 1tan cos 2(sin cos )(cos sin )cos sin 1tan ααααααααααααααα++++===+---,1123112+==-。

选C .(6)一个正三棱锥的底面边长等于一个球的半径,该正三棱锥的高等于这个球的直径,则球的体积与正三棱锥体积的比值为 (A(B(C(D) 【解析】设球的半径为r 3143V r π⇒=;正三棱锥的底面面积2S =,2h r =,232123V r ⇒=⨯=。

所以123V V =,选A .(7)若点(2,0)P 到双曲线22221x y a b-=(A(B(C) (D)【解析】设过一象限的渐近线倾斜角为αsin 4512k αα⇒=⇒=⇒= 所以b y x x a =±=±a b ⇒=,因此,cc e a===A .(8)在一次读书活动中,一同学从4本不同的科技书和2本不同的文艺书中任选3本,则所选的书中既有科技书又有文艺书的概率为 (A )15 (B )12 (C )23 (D )45【解析】【方法一】因文艺书只有2本,所以选3本必有科技书。

问题等价于选3本书有文艺书的概率:343644()1()11205C P A P A C =-=-=-=。

选D .【方法二】分类讨论:①只有一本文艺书有1224C C 种选法;②有二本文艺书有2124C C 种选法。

(9)过点(1,1)的直线与圆22(2)(3)9x y -+-=相交于,A B 两点,则||AB 的最小值为 (A) (B )4 (C) (D )5【解析】||AB的最小值为4=.(10)已知两个单位向量a 与b 的夹角为135︒,则||1a b λ+>的充要条件是(A)λ∈ (B)(λ∈(C)(,0))λ∈-∞+∞ (D)(,)λ∈-∞+∞ 【解析】22222||121211cos13511a b a a b b λλλλλλ+>⇔++=++⨯⨯⨯=+>200λλλ⇔>⇔<或 C(11)设函数()y f x =()x R ∈的图象关于直线0x =及直线1x =对称,且[0,1]x ∈时,2()f x x =,则3()2f -=(A )12 (B )14 (C )34 (D )94【解析】23311111()()(1)(1)()()2222224f f f f f -==+=-===.选B .(12)一个正方体的展开图如图所示,,,B C D为原正方体的顶点,A为原正方体一条棱的中点。

在原来的正方体中,CD与AB所成角的余弦值为(A)10(B)5(C)5(D)10【解析】还原正方体如右图所示设1AD=,则AB=1,AF=BE EF==,3AE=,CD与AB所成角等于BE与AB所成角,所以余弦值为cos ABE∠==D.【方法二】用空间向量求。

二.填空题:本大题共4小题,每小题4分,共16分。

把答案填在题中模式横线上。

(13)函数11xy e+=-()x R∈的反函数为l n(1)1y x=+-(1)x>-.解:11111ln(1)x xy e e y x y++=-⇒=+⇒+=+,所以反函数ln(1)1(1)y x x=+->-.(14)设等差数列{}na的前n项和为nS,且55S a=。

若4a≠,则74aa= 3 .解:【方法一】直接法:由已知551234142300S a a a a a a a a a=⇒+++=⇒+=+=,71436323232ddadaa d-+=-⇒==-+。

【方法二】特殊值法:551234142300S a a a a a a a a a=⇒+++=⇒+=+=,取特殊值令231,1,a a==-43a⇒=-74129a a a=-=-,所以743aa=.(15)已知函数()sin()6f x xπω=-(0)ω>在4(0,)3π单调增加,在4(,2)3ππ单调减少,则ω=12.解:由题意44()sin()1336f πππω=-=4312,36222k k k Z πππωπω⇒-=+⇒=+∈ 又0ω>,令0k =得12ω=.(由已知2T π>。

如0k >,则2ω≥,T π≤与已知矛盾).(16)已知90AOB ∠=︒,C 为空间中一点,且60AOC BOC ∠=∠=︒,则直线OC 与平面AOB 所成角的正弦值为2. 解:由对称性点C 在平面AOB 内的射影D 必在AOB ∠的平分线上作DE OA ⊥于E ,连结CE 则由三垂线定理CE OE ⊥,设1DE =1,OE OD ⇒==,又60,2COE CE OE OC ∠=⊥⇒= ,所以CD =,因此直线OC 与平面AOB 所成角的正弦值sin 2COD ∠=.三.解答题:本大题共6个小题,共74分。

解答应写出文字说明,证明过程或演算步骤。

(17)(本小题满分12分)在△ABC 中,内角,,A B C 对边的边长分别是,,a b c ,已知2222a c b +=。

(Ⅰ)若4B π=,且A 为钝角,求内角A 与C 的大小;(Ⅱ)若2b =,求△ABC 面积的最大值.【解】(Ⅰ)由题设及正弦定理,有222sin sin sin 1A C B +==.故22sin cos C A =.因A 为钝角,所以sin cos C A =-.由cos cos()4A C ππ=--,可得sin sin()4C C π=-,得8C π=,58A π=. (Ⅱ)由余弦定理及条件2221()2b a c =+,有22cos 4a c B ac+=,故cos B ≥12.由于△ABC 面积1sin 2ac B =,又ac ≤221()42a c +=,sin B ≤2, 当a c =时,两个不等式中等号同时成立,所以△ABC 面积的最大值为142⨯=(18)(本小题满分12分)一条生产线上生产的产品按质量情况分为三类:A 类、B 类、C 类.检验员定时从该生产线上任取2件产品进行一次抽检,若发现其中含有C 类产品或2件都是B 类产品,就需要调整设备,否则不需要调整.已知该生产线上生产的每件产品为A 类品,B 类品和C 类品的概率分别为0.9,0.05和0.05,且各件产品的质量情况互不影响. (Ⅰ)求在一次抽检后,设备不需要调整的概率;(Ⅱ)若检验员一天抽检3次,以ξ表示一天中需要调整设备的次数,求ξ的分布列和数学期望. 【解】(Ⅰ)设i A 表示事件“在一次抽检中抽到的第i 件产品为A 类品”,1,2.i =i B 表示事件“在一次抽检中抽到的第i 件产品为B 类品”,1,2.i = C 表示事件“一次抽检后,设备不需要调整”.则121212C A A A B B A =⋅+⋅+⋅. 由已知()0.9i P A =,()0.05i P B = 1,2.i =所以,所求的概率为121212()()()()P C P A A P A B P B A =⋅+⋅+⋅20.920.90.050.9=+⨯⨯=. (Ⅱ)由(Ⅰ)知一次抽检后,设备需要调整的概率为 ()10.90.1p P C ==-=,依题意知~(3,0.1)B ξ,ξ的分布列为ξ0 1 2 3 p0.7290.2430.0270.00130.10.3E np ξ==⨯=.(19)(本小题满分12分)如图,一张平行四边形的硬纸片0ABC D 中,1AD BD ==,AB =.沿它的对角线BD把△0BDC 折起,使点0C 到达平面0ABC D 外点C 的位置.(Ⅰ)证明:平面0ABC D ⊥平面0CBC ;(Ⅱ)如果△ABC 为等腰三角形,求二面角A BD C --的大小.【解】(Ⅰ)证明:因为01AD BC BD ===,0AB C D =090DBC ∠=︒,90ADB ∠=︒.因为折叠过程中,090DBC DBC ∠=∠=︒,所以DB BC ⊥,又0DB BC ⊥, 故DB ⊥平面0CBC . 又DB ⊂平面0ABC D , 所以平面0ABC D ⊥平面0CBC .(Ⅱ)解法一:如图,延长0C B 到E ,使0BE C B =,连结AE ,CE .因为ADBE ,1BE =,1DB =,90DBE ∠=︒,所以AEBD 为正方形,1AE =. 由于AE ,DB 都与平面0CBC 垂直, 所以AE CE ⊥,可知1AC >.因此只有AC AB ==△ABC 为等腰三角形.在Rt △AEC 中,1CE ==,又1BC =,所以△CEB 为等边三角形,60CBE ∠=︒. 由(Ⅰ)可知,,CB BD EB BD ⊥ ⊥, 所以CBE ∠为二面角A BD C --的平面角, 即二面角A BD C --的大小为60︒.解法二:以D 为坐标原点,射线DA ,DB 分别为x 轴正半轴和y 轴正半轴,建立如图的空间直角坐标系D xyz -,则(1,0,0)A ,(0,1,0)B ,(0,0,0)D .由(Ⅰ)可设点C 的坐标为(,1,)x z ,其中0z >,则有221x z +=. ①因为△ABC 为等腰三角形,所以1AC =或AC =. 若1AC =,则有22(1)11x z -++=. 由此得1x =,0z =,不合题意.若AC =22(1)12x z -++=. ②联立①和②得12x =,2z =.故点C 的坐标为1(,1,)22. 由于DA BD ⊥,BC BD ⊥,所以DA 与BC夹角的大小等于二面角A BD C --的大小.又(1,0,0)DA = ,1(2BC = ,1cos ,.2||||DA BC DA BC DA BC ⋅<>==所以,60DA BC <>=︒.即二面角A BD C --的大小为60︒.(20)(本小题满分12分)在数列{}n a 中,11a =,2112(1)n n a a n+=+. (Ⅰ)求{}n a 的通项公式; (Ⅱ)令112n n n b a a +=-,求数列{}n b 的前n 项和n S ; (Ⅲ)求数列{}n a 的前n 项和n T . 【解】(Ⅰ)由条件得1221(1)2n na a n n +=⋅+,又1n =时,21n a n =, 故数列2{}n a n 构成首项为1,公式为12的等比数列.从而2112n n a n -=,即212n n n a -=.(Ⅱ)由22(1)21222n n n n n n n b ++=-=得23521222n n n S +=+++ , 231135212122222n n n n n S +-+=++++ , 两式相减得 :23113111212()222222n n n n S ++=++++- , 所以 2552n nn S +=-.(Ⅲ)由231121()()2n n n S a a a a a a +=+++-+++ 得1112n n n n T a a T S +-+-=.所以11222n n n T S a a +=+-2146122n n n -++=-.(21)(本小题满分12分)已知椭圆1C 的中心和抛物线2C 的顶点都在坐标原点O ,1C 和2C 有公共焦点F ,点F 在x 轴正半轴上,且1C 的长轴长、短轴长及点F 到1C 右准线的距离成等比数列. (Ⅰ)当2C 的准线与1C 右准线间的距离为15时,求1C 及2C 的方程;(Ⅱ)设点F 且斜率为1的直线l 交1C 于P ,Q 两点,交2C 于M ,N 两点。

相关文档
最新文档