数学思想方法及例题

合集下载

高中数学思想与逻辑:11种数学思想方法总结与例题讲解

高中数学思想与逻辑:11种数学思想方法总结与例题讲解

中学数学思想与逻辑:11种数学思想方法总结与例题讲解中学数学转化化归思想与逻辑划分思想例题讲解在转化过程中,应遵循三个原则:1、熟识化原则,即将生疏的问题转化为熟识的问题;2、简洁化原则,即将困难问题转化为简洁问题;3、直观化原则,即将抽象总是详细化.策略一:正向向逆向转化一个命题的题设和结论是因果关系的辨证统一,解题时,假如从下面入手思维受阻,不妨从它的正面动身,逆向思维,往往会另有捷径.例1 :四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不共面的取法共有__________种.A、150B、147C、144D、141分析:本题正面入手,状况困难,若从反面去考虑,先求四点共面的取法总数再用补集思想,就简洁多了.10个点中任取4个点取法有种,其中面ABC内的6个点中任取4点都共面有种,同理其余3个面内也有种,又,每条棱与相对棱中点共面也有6种,各棱中点4点共面的有3种,不共面取法有种,应选(D).策略二:局部向整体的转化从局部入手,按部就班地分析问题,是常用思维方法,但对较困难的数学问题却须要从总体上去把握事物,不纠缠细微环节,从系统中去分析问题,不单打独斗.例2:一个四面体全部棱长都是,四个顶点在同一球面上,则此球表面积为( )A、B、C、D、分析:若利用正四面体外接球的性质,构造直角三角形去求解,过程冗长,简洁出错,但把正四面体补形成正方体,那么正四面体,正方体的中心与其外接球的球心共一点,因为正四面体棱长为,所以正方体棱长为1,从而外接球半径为,应选(A).策略三:未知向已知转化又称类比转化,它是一种培育学问迁移实力的重要学习方法,解题中,若能抓住题目中已知关键信息,锁定相像性,奇妙进行类比转换,答案就会应运而生.例3:在等差数列中,若,则有等式( 成立,类比上述性质,在等比数列中,,则有等式_________成立.分析:等差数列中,,必有,故有类比等比数列,因为,故成立.二、逻辑划分思想例题1、已知集合A= ,B= ,若B A,求实数a 取值的集合.解A= :分两种状况探讨(1)B=¢,此时a=0;(2)B为一元集合,B= ,此时又分两种状况探讨:(i) B={-1},则=-1,a=-1(ii)B={1},则=1,a=1.(二级分类)综合上述所求集合为.例题2、设函数f(x)=ax -2x+2,对于满意1x4的一切x值都有f(x) 0,求实数a的取值范围.例题3、已知,试比较的大小.于是可以知道解本题必需分类探讨,其划分点为.小结:分类探讨的一般步骤:(1)明确探讨对象及对象的范围P.(即对哪一个参数进行探讨);(2)确定分类标准,将P进行合理分类,标准统一、不重不漏,不越级探讨.;(3)逐类探讨,获得阶段性结果.(化整为零,各个击破);(4)归纳小结,综合得出结论.(主元求并,副元分类作答).十一种数学思想方法总结与详解数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。

第4讲智用推理——巧填竖式-二年级数学上册数学思想方法系列(人教版)(含解析)

第4讲智用推理——巧填竖式-二年级数学上册数学思想方法系列(人教版)(含解析)

第4讲智用推理——巧填竖式-二年级数学上册数学思想方法系列(人教版)(含解析)第4讲智用推理——巧填竖式-二年级数学上册数学思想方法系列(人教版)第4讲智用推理巧填竖式填竖式的未知数时,要认真分析算式的特点,不仅要充分运用加、减法之间的关系,也要分析和推理出是否是进位加法或退位减法,合理正确地安排每一个数,就能很快求出方格里应填的数字。

最后还要按填好的数验算一下,看算式是否成立。

【例题1】1.在里填上合适的数。

【例题2】2.在□里填合适的数,使整式成立。

【例题3】3.下面算式中的“爱”“数”“学”三个字各代表几?(1)(2)1.找出藏着的数字。

4.下面藏着几?填一填。

5.小花下面藏着几?填一填。

2.在□里填上合适的数。

6.在□里填上合适的数。

3.图形代表数。

7.每种小花各代表几?填一填。

8.下面每种图形分别代表数字几?=( ) =( )4.从混合运算的竖式中分析出未知数9.下面竖式中的水果各代表什么数字?=( ) =( ) =( )10.填上适当的数。

11.在□里填上合适的数字。

12.算一算,填一填。

13.在□里填上合适的数。

试卷第1页,共3页试卷第1页,共3页参考答案:1.见详解【分析】根据加减法的互逆关系和计算方法,在里填上合适的数即可。

【详解】规范解答:【点睛】熟练掌握100以内数的加减法是解决此题的关键。

2.见详解【分析】(1)第一个加数是:82-37=45,差的个位数字是:12-9=3,据此填数即可。

(2)差的个位数字是:12-6=6,减数的个位数字是:12-6=6,被减数是:26+46=72,据此填数即可。

(3)9+6=15,所以和的个位数字是5,减数的个位数字是:9-4=5,被减数是:39+35=74,据此填数即可。

【详解】【点睛】本题考查学生对100以内整数加减法运算的运用。

3.(1)“爱”代表8;(2)“数”代表4,“学”代表5【分析】(1)从个位上想,两个相同的数相加,和的个位是6,那么“爱”可能是3,也可能是8。

初中数学十大思想方法-待定系数法

初中数学十大思想方法-待定系数法

初中数学思想方法——待定系数法在数学问题中,若得知所求结果具有某种确定的形式,则可设定一些尚待确定的系数(或参数)来表示这样的结果,这些待确定的系数(或参数),称作待定系数。

然后根据已知条件,选用恰当的方法,来确定这些系数,这种解决问题的方法叫待定系数法。

待定系数法是数学中的基本方法之一。

它渗透于初中数学教材的各个部分,在全国各地中考中有着广泛应用。

应用待定系数法解题以多项式的恒等知识为理论基础,通常有三种方法:比较系数法;代入特殊值法;消除待定系数法。

比较系数法通过比较等式两端项的系数而得到方程(组),从而使问题获解。

例如:“已知x2-3=(1-A)·x2+Bx+C,求A,B,C的值”,解答此题,并不困难,只需将右式与左式的多项式中对应项的系数加以比较后,就可得到A,B,C的值。

这里的A,B,C就是有待于确定的系数。

代入特殊值法通过代入特殊值而得到方程(组),从而使问题获解。

例如:“点(2,﹣3)在正比例函数图象上,求此正比例函数”,解答此题,只需设定正比例函数为y=kx,将(2,﹣3)代入即可得到k的值,从而求得正比例函数解析式。

这里的k就是有待于确定的系数。

消除待定系数法通过设定待定参数,把相关变量用它表示,代入所求,从而使问题获解。

例如:“已知b2a3=,求a ba b-+的值”,解答此题,只需设定b2=ka3=,则a=3k b=2k,,代入a ba b-+即可求解。

这里的k就是消除的待定参数。

应用待定系数法解题的一般步骤是:(1)确定所求问题的待定系数,建立条件与结果含有待定的系数的恒等式;(2)根据恒等式列出含有待定的系数的方程(组);(3)解方程(组)或消去待定系数,从而使问题得到解决。

在初中阶段和中考中应用待定系数法解题常常使用在代数式变型、分式求值、因式分解、求函数解析式、求解规律性问题、几何问题等方面。

下面通过2011年和2012年全国各地中考的实例探讨其应用。

一.待定系数法在代数式变型中的应用:在应用待定系数法解有关代数式变型的问题中,根据右式与左式多项式中对应项的系数相等的原理列出方程(组),解出方程(组)即可求得答案。

数学解题中的思想方法——正向思维与逆向思维

数学解题中的思想方法——正向思维与逆向思维

3 2
1,例Leabharlann 2、已知函数yax2
(2a
1) x
3在
3 2
,2
上的最大值为
1,求实数
a
的值。
答案: 3 或 3 2 42
例 3、在 ABC中,E 为 BC 中点,过 E 作 BC 的垂线交 AC 于 F,交 BA 的延长线于 G,
且 EF=FG。(1)求证: sin A 3sin(B C) ;(2)求证: GA: GB 为常数。
答案:略
3、已知 a1, a2 ,b1,b2 为正数,求证: a1 b1a2 b2 a1a2 b1b2
答案:略
4、设正数数列 an 满足 2 Sn an 1,求 an 。
答案: an 2n 1
5、已知 a,b, c 0,1,求证: 1 ab,1 bc,1 ca 中不能都大于 1 。
4
x
y
答案:略
8、设 0 a,b, c, d 1,又设 x 4a(1 b), y 4b(1 c), z 4c(1 d),t 4d(1 a) ,求证:
x, y, z,t 这四个数中,至少有一个不大于 1.
答案:略
9、对于集合 A x x2 2ax 4a 3 0 , B x x2 2 2ax a2 a 2 0 ,问是否
3 例 5、如图,平行六面体 AC1 的底面 ABCD是菱形,且 C1CB C1CD BCD 60
(1)求证: C1C BD ;
(2)当
CD CC1
的值为多少时,能使
A1C
平面 C1BD
?请给出证明。
答案:(1)略;(2)1.
例 6、已知关于 x 的实系数二次方程 x2 ax b 0 有两个实数根, ,求证:

小学数学思想方法解读及教学案例

小学数学思想方法解读及教学案例

小学数学思想方法解读及教学案例
一、小学数学思想方法解读
1、解决问题的思想方法
小学数学思想方法旨在培养学生解决问题的能力,引导学生通过计算、推理、比较、综合等方法解决实际问题,培养学生的分析思考、解决问题的能力。

2、归纳总结的思想方法
小学数学思想方法旨在培养学生归纳总结的能力,引导学生通过总结性抽象、归纳总结、把握规律的方法,解决实际问题,培养学生的归纳总结、把握规律的能力。

3、探究发现的思想方法
小学数学思想方法旨在培养学生探究发现的能力,引导学生通过观察、比较、实验、推理、探究等方法,探究发现实际问题,培养学生的探究发现、创新思维的能力。

二、小学数学思想方法教学案例
1、解决问题的思想方法
教学案例:
教学内容:计算圆的面积
教学目标:
1)知识目标:了解圆的定义,掌握圆的面积的计算方法。

2)能力目标:能够解决实际问题,计算圆的面积。

教学步骤:
1)复习:复习圆的定义和圆的面积的计算方法。

2)活动:让学生解决实际问题,计算圆的面积。

3)讨论:让学生进行小组讨论,分享解决问题的经验。

4)总结:总结计算圆的面积的方法,并结合实际问题,巩固学习成果。

数学整体思想与无关例题及答案

数学整体思想与无关例题及答案

数学整体思想与无关例题及答案整体思想方法在代数式的化简与求值、解方程(组)、几何解证等方面都有广泛的应用,整体代入、叠加叠乘处理、整体运算、整体设元、整体处理、几何中的补形等都是整体思想方法在解数学问题中的具体运用。

整体思想,方程思想及例题含答案例题:一个四位数,其首位上的数字为1,若把首位移作末位,则新的四位数是原数的4被还多1971,试求原数的四位数。

解答:(设百位数字为X,十位数字为Y,个位为P)4*(1000+100x+10y+p)+1971=1000x+100y+10p+1解得100x+10y+p=597从而推得X=5,Y=9,P=7所以原数为1597。

方程的思想,是对于一个问题用方程解决的应用,也是对方程概念本质的认识,是分析数学问题中变量间的等量关系,构建方程或方程组,或利用方程的性质去分析、转换、解决问题。

要善用方程和方程组观点来观察处理问题。

方程思想是动中求静,研究运动中的等量关系。

当一个问题可能与某个方程建立关联时,可以构造方程并对方程的性质进行研究以解决这个问题。

例如证明柯西不等式的时候,就可以把柯西不等式转化成一个二次方程的判别式。

方程与函数关系密切,方程问题也可以转换为函数问题来求解,反之亦然。

函数与不等式也能相互转化。

例题:A,B两地相距60千米,甲,乙两人分别从A,B两地骑车出发,相向而行,甲比乙迟出发20分钟,每小时比乙多行3千米,在甲出发1小时40分钟后两人相遇,问甲,乙两人每小时各行多少千米?解答:设甲的速度为x千米/小时,则乙的速度为(x-3)千米/小时,甲走了1小时40分钟,即5/3小时,而乙比甲早出发20分钟,所以乙走了2小时,所以:5x/3+2*(x-3)=60x=18x-3=15所以甲的速度为18千米/小时,乙的速度为15千米/小时。

2021年中考中的数学思想方法---分类讨论思想(方法指导及例题解析)

2021年中考中的数学思想方法---分类讨论思想(方法指导及例题解析)

中考中的数学思想方法----分类讨论思想一、概述:当我们面对一大堆杂乱的人民币时;我们一般会先分10元;5元;2元;1元;5角;…… 等不同面值把人民币整理成一叠叠的;再分别数出各叠钱数;最后把各叠的钱数加起来得出这一堆人民币的总值。

这样做;比随意一张张地数的方法要快且准确的多;因为这种方法里渗透了分类讨论的思想。

在数学中;分类思想是根据数学本质属性的相同点和不同点;把数学的研究对象区分为不同种类的一种数学思想;正确应用分类思想;是完整解题的基础。

而在中考中;分类讨论思想也贯穿其中;几乎在全国各地的重考试卷中都会有这类试题;命题者经常利用分类讨论题来加大试卷的区分度;很多压轴题也都涉及分类讨论;由此可见分类思想的重要性;下面精选了几道有代表性的试题予以说明。

二、例题导解:1、(上海市中考题)直角三角形的两条边长分别为6和8,那么这个三角形的外接圆半径等于 .③解:①当6、8是直角三角形的两条直角边时;斜边长为10;此时这个三角形的外接圆半径等于21╳ 10 =5②当6是这个三角形的直角边;8是斜边时;此时这个三角形的外接圆半径等于21╳ 8=42、(北京市中考题)在△ABC 中;∠B =25°;AD 是BC 边上的高;并且AD BD DC 2·;则∠BCA 的度数为____________。

解:①如图1;当△ABC 是锐角三角形时; ∠BCA=90°-25°=65°①如图2;当△ABC 是钝角三角形时; ∠BCA=90°+25°=115°图1 图2这是一道比较基础却很典型的分类 讨论题;关键是要注意题设中的“两条边长”。

这是一道非常容易出错的题目;很多同学由于看惯了图1所示的图形而漏解;一些难度并不很大的题目频频十分很多时候就是由于缺乏分类思想。

3、(济南市中考题)如图1;已知Rt ABC △中;30CAB ∠=;5BC =.过点A 作AE AB ⊥;且15AE =;连接BE 交AC 于点P . (1)求PA 的长:(2)以点A 为圆心;AP 为半径作⊙A;试判断BE 与⊙A 是否相切;并说明理由:(3)如图2;过点C 作CD AE ⊥;垂足为D .以点A 为圆心;r 为半径作⊙A :以点C 为圆心;R 为半径作⊙C .若r 和R 的大小是可变化的;并且在变化过程中保持⊙A 和⊙C 相切..;且使D 点在⊙A 的内部;B 点在⊙A 的外部;求r 和R 的变化范围.(1)在Rt ABC △中;305CAB BC ∠==,;210AC BC ∴==.AE BC ∥;APE CPB ∴△∽△. ::3:1PA PC AE BC ∴==. :3:4PA AC ∴=;3101542PA ⨯==. (2)BE 与⊙A 相切.在Rt ABE △中;AB =15AE =;tan AE ABE AB ∴∠===60ABE ∴∠=. 又30PAB ∠=;9090ABE PAB APB ∴∠+∠=∴∠=,;BE ∴与⊙A 相切.(3)因为5AD AB ==,所以r的变化范围为5r <<当⊙A 与⊙C 外切时;10R r +=;所以R的变化范围为105R -<<: 当⊙A 与⊙C 内切时;10R r -=;所以R的变化范围为1510R <<+CD 图1 图24、(上海市普陀区中考模拟题)直角坐标系中;已知点P (-2;-1); 点T (t ;0)是x 轴上的一个动点.(1) 求点P 关于原点的对称点P '的坐标: (2) 当t 取何值时;△P 'TO 是等腰三角形? 解:(1)点P 关于原点的对称点P '的坐标为(2;1). (2)5='P O .(a )动点T 在原点左侧.当51='=O P O T 时;△TO P '是等腰三角形∴点)0,5(1-T .(b )动点T 在原点右侧.①当P T O T '=22时;△TO P '是等腰三角形.得:)0,45(2T .② 当O P O T '=3时;△TO P '是等腰三角形. 得:点)0,5(3T .③ 当O P P T '='4时;△TO P '是等腰三角形. 得:点)0,4(4T .综上所述;符合条件的t 的值为4,5,45,5-. 5、如图,平面直角坐标系中,直线AB 与x 轴,y 轴分别交于A (3,0),B (0,3)两点, ,点C 为线段AB 上的一动点,过这是济南市的中考数学压轴题;其中第(3)小题涉及圆的位置关系分类讨论;须分内切和外切两种情况加以讨论;只要解题时注意读题;“相切..”两字是正确解题的关键字。

第二讲:数学思想方法之枚举法

第二讲:数学思想方法之枚举法

第二讲:数学思想、方法之枚举的思想
内容概述
在计数问题中经常会用到枚举法。

枚举法简单的说就是一个一个去数的方法,其关键之处在于找到合适的分类标准。

例题1. 15个相同的乒乓球放入4个相同的盒子中,要求每个盒子中至少都有一个且每个盒子中的乒乓球的数量都不相同,一共有多少种这样的分法?
例题2. 某商店甲、乙、丙三种商品的价格分别是2元、3元、5元。

某人买了这三种商品每种若干件,共付钱20元,此人发现其中一种商品买多了,退还两件这样的商品,但营业员只有10元一张的钱,没有零钱退,此人只好将其他两种商品购买的数量调整,使总价钱不变,此时,此人购买的三种商品中,乙种商品的数量是多少?
例题3. 将1分、2分、5分和1角的硬币投入19个盒子中,使每个盒子里都有硬币,且任何两个盒子里的硬币的钱数都不相同,问:至少需要投入多少硬币?这时,所有盒子里的硬币总数至少是多少?(12届华杯)
练习
1、小明和小红玩掷骰子的游戏,共有两枚骰子,一起掷出。

若两枚骰子的点数和为7,则小明胜;若点数和为8,则小红胜。

试判断他们两人谁获胜的可能性大。

2、数一数,右图中有多少个三角形。

3、小明的暑假作业有语文、算术、外语三门,他准备每天做一门,且相邻两天不做同一门。

如果小明第一天做语文,第五天也做语文,那么,这五天作业他共有多少种不同的安排?
4、在1,2,3,.......,100这100个自然数中,取两个不同的数,使得它们的和是7的倍数,共有多少种不同的取法?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学思想方法及例题
一、化归思想
“化归”就是将未知的问题转化成我们已经解决的问题,将复杂的问题转化成简单的问题,也就是将“未知”的问题“已知化”,“复杂”的问题“简单化”.化归思想是解决问题的常见思想方法.
【例1】△ABC为等边三角形,三边的长均已在图中标出,求的值.
分析:因为△ABC为等边三角形,故AB=BC=CA,所以2x-8=x+6=3y+2,稍加组合可得2x-8=x+6,可以求出x的值,然后回代又可求出y的值.
解:因为△ABC为等边三角形,故AB=BC=CA,所以2x-8=x+6=3y+2,
又因为2x-8=x+6,解得,x=14,将x=14代入x+6=3y+2,
解得,y=6,将x=14 y=6代入
点评:本题利用“化归”的思想,将三角形的三边的长转化成一元一次方程,此处应注意的是方程的组合,不同的组合可能得到的是二元一次方程组,从而加大了计算量和解答难度.
二、分类讨论思想
有时将问题看成一个整体时,则无从下手,若分而治之,各个击破,则能柳暗花明,分类讨论正是这一种思想,也是一种重要是数学思想方法,为了解决问题,将问题说涉及的是对象不遗漏地分成若干类问题,然后逐一解决,从而最终解决整个问题的目的.
【例2】(五城市联赛题)若ab>0,求的值.
分析:因为ab>0,则a>0,b>0或a<0,b<0,于是将问题分成两种情况进行讨论,不难得到结果.
解:因为ab>0,则a>0,b>0或a<0,b<0,

当a>0,b>0时,,,
==1+1-1=1.

当a<0,b<0时,,,
==-1-1-1=-3.
故当ab>0,=1或-3.
点评:在分类讨论时,应注意不遗漏地将问题所涉级的各种情况作出讨论,最后应总结各种讨论的结果.
三、整体思想
与分解,分步处理问题相反,整体思想是将问题看成一个完整的整体,从大处着眼,由整体入手,突出对问题的整体结构的分析和改造,把一些彼此孤立实际上紧密联系的量作为整体考虑.在整体思想中,往往能够找到问题的捷径.
分析:若将问题中的x看成一个未知数,将其求出,然后代入后式中求值,显然计算复杂繁琐,计算量偏大,但将看成一个整体,通过通分得到,继而看作整体,求其倒数得到,对比联想,容易找到解决问题的思路.
点评:本题若不运用整体的思想方法解题,则计算复杂繁琐,而整体思想的运用,化难为易,整体思想是一种技巧,也是一种重要的思想方法.
四、数形结合思想
数形结合思想,是一种重要的思想,有时力图用图形来直观体现数量的关系,将抽象复杂的'数(量),利用图形的直观表达,然后利用图形的性质(特征),分析解决问题,有时力图用数(量)来体现图形的关系,将图形的性质(特征),利用数(量)的关系来加以解决的思想方法,也是一种重要的思想方法.
【例4】(北京市“迎春杯”数学竞赛题)已知:a>0,b<0,且a+b<0,那么有理数a,b,-a,的大小关系是(用“<”连接).
解析:因为b<0,=-b,因为a>0,b<0且a+b<0,根据有理数加法法则,可得,<,以形辅数,在数轴上表示它们的位置关系,又根据相反数的定义,可以得到a,b,-a,-b的位置关系.
故b<-a<a<-b,即b<-a<a<.。

相关文档
最新文档