奥数:加法、乘法原理(小学4-6年级专用)
(完整版)小学奥数——乘法原理与加法原理

乘法原理与加法原理在日常生活中常常会遇到这样一些问题,就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法,要知道完成这件事一共有多少种方法,就用我们将讨论的乘法原理来解决.例如某人要从北京到大连拿一份资料,之后再到天津开会.其中,他从北京到大连可以乘长途汽车、火车或飞机,而他从大连到天津却只想乘船.那么,他从北京经大连到天津共有多少种不同的走法?分析这个问题发现,某人从北京到天津要分两步走.第一步是从北京到大连,可以有三种走法,即:第二步是从大连到天津,只选择乘船这一种走法,所以他从北京到天津共有下面的三种走法:3×1=3.如果此人到大连后,可以乘船或飞机到天津,那么他从北京到天津则有以下的走法: 共有六种走法,注意到3×2=6. 在上面讨论问题的过程中,我们把所有可能的办法一一列举出来.这种方法叫穷举法.穷举法对于讨论方法数不太多的问题是很有效的. 在上面的例子中,完成一件事要分两个步骤.由穷举法得到的结论看到,用第一步所有的可能方法数乘以第二步所有的可能方法数,就是完成这件事所有的方法数.一般地,如果完成一件事需要个步骤,其中,做第一步有种不同的方法,做第二步有n m1种不同的方法,…,做第步有种不同的方法,那么,完成这件事一共有m2 n m n种不同的方法.N=m1×m2×……×m n这就是乘法原理.例1.某人到食堂去买饭,主食有三种,副食有五种,他主食和副食各买一种,共有多少种不同的买法? 补充说明:由例题可以看出,乘法原理运用的范围是:①这件事要分几个彼此互不影响的独立步骤来完成;②每个步骤各有若干种不同的方法来完成.这样的问题就可以使用乘法原理解决问题.例2.右图中有7个点和十条线段,一只甲虫要从A点沿着线段爬到B点,要求任何线段和点不得重复经过.问:这只甲虫最多有几种不同的走法?例3.书架上有6本不同的外语书,4本不同的语文书,从中任取外语、语文书各一本,有多少种不同的取法?例4.王英、赵明、李刚三人约好每人报名参加学校运动会的跳远、跳高、100米跑、200米跑四项中的一项比赛,问:报名的结果会出现多少种不同的情形?例5.由数字0、1、2、3组成三位数,问: ①可组成多少个不相等的三位数? ②可组成多少个没有重复数字的三位数?分析 在确定由0、1、2、3组成的三位数的过程中,应该一位一位地去确定.所以,每个问题都可以看成是分三个步骤来完成. ①要求组成不相等的三位数.所以,数字可以重复使用,百位上,不能取0,故有3种不同的取法;十位上,可以在四个数字中任取一个,有4种不同的取法;个位上,也有4种不同的取法. ②要求组成的三位数中没有重复数字,百位上,不能取0,有3种不同的取法;十位上,由于百位已在1、2、3中取走一个,故只剩下0和其余两个数字,故有3种取法;个位上,由于百位和十位已各取走一个数字,故只能在剩下的两个数字中取,有2种取法.例6.由数字1、2、3、4、5、6共可组成多少个没有重复数字的四位奇数?分析 要组成四位数,需一位一位地确定各个数位上的数字,即分四步完成,由于要求组成的数是奇数,故个位上只有能取1、3、5中的一个,有3种不同的取法;十位上,可以从余下的五个数字中取一个,有5种取法;百位上有4种取法;千位上有3种取法,故可由乘法原理解决.例7.右图中共有16个方格,要把A 、B 、C 、D 四个不同的棋子放在方格里,并使每行每列只能出现一个棋子.问:共有多少种不同的放法?分析 由于四个棋子要一个一个地放入方格内.故可看成是分四步完成这件事.第一步放棋子A ,A 可以放在16个方格中的任意一个中,故有16种不同的放法;第二步放棋子B ,由于A 已放定,那么放A 的那一行和一列中的其他方格内也不能放B ,故还剩下9个方格可以放B ,B 有9种放法;第三步放C ,再去掉B 所在的行和列的方格,还剩下四个方格可以放C ,C 有4种放法;最后一步放D ,再去掉C 所在的行和列的方格,只剩下一个方格可以放D ,D 有1种放法,本题要由乘法原理解决.例8.现有一角的人民币4张,贰角的人民币2张,壹元的人民币3张,如果从中至少取一张,至多取9张,那么,共可以配成多少种不同的钱数?分析 要从三种面值的人民币中任取几张,构成一个钱数,需一步一步地来做.如先取一角的,再取贰角的,最后取壹元的.但注意到,取2张一角的人民币和取1张贰角的人民币,得到的钱数是相同的.这就会产生重复,如何解决这一问题呢?我们可以把壹角的人民币4张和贰角的人民币2张统一起来考虑.即从中取出几张组成一种面值,看共可以组成多少种.分析知,共可以组成从壹角到捌角间的任何一种面值,共8种情况.(即取两张壹角的人民币与取一张贰角的人民币是一种情况;取4张壹角的人民币与取2张贰角的人民币是一种情况.)这样一来,可以把它们看成是8张壹角的人民币.整个问题就变成了从8张壹角的人民币和3张壹元的人民币中分别取钱.这样,第一步,从8张壹角的人民币中取;第二步,从3张壹元的人民币中取共4种取法,即0、1、2、3.但要注意,要求“至少取一张”.生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用我们将讨论的加法原理来解决. 例如某人从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不同的走法? 分析这个问题发现,此人去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法.上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法. 在上面的问题中,完成一件事有两大类不同的方法.在具体做的时候,只要采用一类中的一种方法就可以完成.并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数. 一般地,如果完成一件事有类方法,第一类方法中有种不同做法,第二类方法中有种 k m 1 m 2 不同做法,…,第类方法中有种不同的做法,则完成这件事共有种 k m k N =m 1+m 2+……+m k 不同的方法. 这就是加法原理.例1.学校组织读书活动,要求每个同学读一本书.小明到图书馆借书时,图书馆有不同的外语书150本,不同的科技书200本,不同的小说100本.那么,小明借一本书可以有多少种不同的选法?例2.一个口袋内装有3个小球,另一个口袋内装有8个小球,所有这些小球颜色各不相同.问:①从两个口袋内任取一个小球,有多少种不同的取法?②从两个口袋内各取一个小球,有多少种不同的取法?补充说明:由本题应注意加法原理和乘法原理的区别及使用范围的不同,乘法原理中,做完一件事要分成若干个步骤,一步接一步地去做才能完成这件事;加法原理中,做完一件事可以有几类方法,每一类方法中的一种做法都可以完成这件事.事实上,往往有许多事情是有几大类方法来做的,而每一类方法又要由几步来完成,这就要熟悉加法原理和乘法原理的内容,综合使用这两个原理.例3.如右图,从甲地到乙地有4条路可走,从乙地到丙地有2条路可走,从甲地到丙地有3条路可走.那么,从甲地到丙地共有多少种走法?分析 从甲地到丙地共有两大类不同的走法. 第一类,由甲地途经乙地到丙地. 第二类,由甲地直接到丙地.例4.如下页图,一只小甲虫要从A 点出发沿着线段爬到B 点,要求任何点和线段不可重复经过.问:这只甲虫有多少种不同的走法?分析 从A 点 到B 点有两类走法,一类是从A 点先经过C 点到B 点,一类是从A 点先经过D 点到B 点.两类中的每一种具体走法都要分两步完成,所以每一类中,都要用乘法原理,而最后计算从A 到B 的全部走法时,只要用加法原理求和即可.例5.有两个相同的正方体,每个正方体的六个面上分别标有数字1、2、3、4、5、6.将两个正方体放到桌面上,向上的一面数字之和为偶数的有多少种情形?分析 要使两个数字之和为偶数,只要这两个数字的奇偶性相同,即这两个数字要么同为奇数,要么同为偶数,所以,要分两大类来考虑.例6.从1到500的所有自然数中,不含有数字4的自然数有多少个?分析 从1到500的所有自然数可分为三大类,即一位数,两位数,三位数. 一位数中,不含4的有8个,它们是1、2、3、5、6、7、8、9; 要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理. 要确定一个三位数,可以先取百位数,再取十位数,最后取个位数,应用乘法原理.补充说明:这道题也可以这样想:把一位数看成是前面有两个0的三位数,如:把1看成是001.把两位数看成是前面有一个0的三位数.如:把11看成011.那么所有的从1到500的自然数都可以看成是“三位数”,除去500外,考虑不含有4的这样的“三位数”.百位上,有0、1、2、3这四种选法;十位上,有0、1、2、3、5、6、7、8、9这九种选法;个位上,也有九种选法.所以,除500外,有4×9×9=324个不含4的“三位数”.注意到,这里面有一个数是000,应该去掉.而500还没有算进去,应该加进去.所以,从1到500中,不含4的自然数仍有324个. 这是一种特殊的思考问题的方法,注意到当我们对“三位数”重新给予规定之后,问题很简捷地得到解决.例7.如图,要从A 点沿线段走到B ,要求每一步都是向右、向上或者向斜上方.问有多少种不同的走法?分析 观察下页左图,注意到,从A 到B 要一直向右、向上,那么,经过下页右图中C 、D 、E 、F 四点中的某一点的路线一定不再经过其他的点.也就是说从A 到B 点的路线共分为四类,它们是分别经过C 、D 、E 、F 的路线.自我检测1.某罪犯要从甲地途经乙地和丙地逃到丁地,现在知道从甲地到乙地有3条路可以走,从乙地到丙地有2条路可以走,从丙地到丁地有4条路可以走.问,罪犯共有多少种逃走的方法?2.如右图,在三条平行线上分别有一个点,四个点,三个点(且不在同一条直线上的三个点不共线).在每条直线上各取一个点,可以画出一个三角形.问:一共可以画出多少个这样的三角形?3.在自然数中,用两位数做被减数,用一位数做减数.共可以组成多少个不同的减法算式?4.一个篮球队,五名队员A 、B 、C 、D 、E ,由于某种原因,C 不能做中锋,而其余四人可以分配到五个位置的任何一个上.问:共有多少种不同的站位方法?5.由数字1、2、3、4、5、6、7、8可组成多少个①三位数?②三位偶数?③没有重复数字的三位偶数?④百位为8的没有重复数字的三位数?⑤百位为8的没有重复数字的三位偶数?6.某市的电话号码是六位数的,首位不能是0,其余各位数上可以是0~9中的任何一个,并且不同位上的数字可以重复.那么,这个城市最多可容纳多少部电话机?1.如右图,从甲地到乙地有三条路,从乙地到丙地有三条路,从甲地到丁地有两条路,从丁地到丙地有四条路,问:从甲地到丙地共有多少种走法?2.书架上有6本不同的画报和7本不同的书,从中最多拿两本(不能不拿),有多少种不同的拿法?3.如下图中,沿线段从点A 走最短的路线到B ,各有多少种走法?4.在1~1000的自然数中,一共有多少个数字0?5.在1~500的自然数中,不含数字0和1的数有多少个?6.十把钥匙开十把锁,但不知道哪把钥匙开哪把锁,问:最多试开多少次,就能把锁和钥匙配起来?。
小学4年级暑假奥数:加乘原理-讲义-教师版

第1讲 加乘原理【学习目标】1、进一步学习加法原理和乘法原理;2、学会加法原理和乘法原理的解题方法。
【知识梳理】1、加法原理:如果完成一件任务有几类办法,在第一类办法中有1m 种不同方法,在第二类办法中有2m 种不同方法……,在第n 类办法中有n m 种不同方法。
那么完成这件任务共有N =1m +2m +3m +……+n m 种不同的方法。
2、乘法原理(分步):如果完成一件任务需要分成N 个步骤进行,做第1步有1m 种方法,做第2步有2m 种方法,……做第N 步有n m 种方法,那么按照这样的步骤完成这件任务共有N=1m ×2m ×…×n m (种)不同的方法。
【典例精析】【例1】从成都到上海每天有6班火车、3班飞机、1班汽车,请问从成都到上海乘坐这些交通工具有多少种不同的选择?6+3+1=10(种)【趁热打铁-1】老师要求培培在暑假要读一本书,爸爸给小明买了中国4大名著、2本外国名著、3本科普书,培培要从这些书里任选一本书读,请问有多少种不同的选择?4+2+3=9(种)【例2】】海海有红、黄、蓝三件上衣和绿、白两条裤子。
请问他从上衣和裤子中各选一件,有多少种不同的搭配方法?3×2=6(种)【趁热打铁-2】题库中有三种类型的题目,数量分别为 30 道、40 道和 45 道,每次考试要从三种类型的题目中各取一道组成一张试卷。
问:由该题库共可组成多少种不同的试卷?30×40×45=54000(种)【例3】在图中,一只甲虫要从 A 点沿着线段爬到 B 点,要求任何点不得重复经过。
问:这只甲虫有几种不同走法?3×1×3=9(种)【趁热打铁-3】如图,从甲村去乙村有3条道路,从乙村去丙村有2条道路,从丙村去丁村有4条道路,培培要从甲村经乙村、丙村到丁村共有多少种不同的走法?3×2×4=24(种)【例4】用2、3、4、5、7这5个数字,可以组成多少个无重复数字的五位数?5×4×3×2×1=120(个)【趁热打铁-4】有3、4、5三个数字,能组成____个无重复数字的三位数。
四年级奥数专题 加法原理和乘法原理

二讲加法与乘法原理知识导航加法原理:做一件事情,完成..它有n类办法,在第一类办法中有M1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事情共有m1+m2+……+mn种不同的方法。
运用加法原理计数,关键在于合理分类,不重不漏。
要求每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。
合理分类也是运用加法原理解决问题的难点,不同的问题,分类的标准往往不同,需要积累一定的解题经验。
乘法原理:完成一件工作共需N个步骤:完成第一个步骤有m1种方法,完成第二个步骤有m2种方法,…,完成第N个步骤有mn种方法,那么,完成这件工作共有m1×m2×…×mn种方法。
运用乘法原理计数,关键在于合理分步。
完成这件工作的N个步骤,各个步骤之间是相互联系的,任何一步的一种方法都不能完成此工作,必须连续完成这N步才能完成此工作;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此工作的方法也不同。
精典例题例1:一个口袋内装有3个小球,另一个口袋内装有8个小球,所有这些小球颜色各不相同。
问:①从两个口袋内任取一个小球,有多少种不同的取法?②从两个口袋内各取一个小球,有多少种不同的取法?思路点拨①:从两个口袋中只需取一个小球,则这个小球要么从第一个口袋中取,要么从第二个口袋中取,共有两大类方法。
所以是加法原理的问题。
②:要从两个口袋中各取一个小球,则可看成先从第一个口袋中取一个,再从第二个口袋中取一个,分两步完成,是乘法原理的问题。
模仿练习孙老师的一个口袋内装有60个小球,另一个口袋内装有80个小球,所有这些小球颜色各不相同。
问:(1)从两个口袋内任取一个小球,有多少种不同的取法?(2)从两个口袋内各取一个小球,有多少种不同的取法?例2:一把钥匙只能开一把锁,淘气有7把钥匙和7把锁全部都搞乱了,最多要试验多少次才能全部配好锁和相应的钥匙?思路点拨要求“最多”多少次配好锁和钥匙,就要从最糟糕的情况开始考虑:第1把钥匙要配到锁,最多要试6次(如果6次配对失败,第7把锁就一定是这把钥匙,不用再试);同理,第2把钥匙最多要试5次;……第6把锁最多试1次,最好一把锁不用试。
小学四年级奥数(乘法原理和加法原理)

小学四年级奥数第4讲乘法原理和加法原理知识方法…………………………………………………在现实生活中,经常要将两种或两种以上的事物进行搭配。
如果完成一件工作有几种不同的方法,每种方法又有很多种不同的方法,而且这些方法彼此互斥,那么完成这件工作的方法总数就是等于各类完成这件工作的综合。
这种方法我们称之为加法原理,也叫分类计数原理。
如果完成一件工作需要很多步骤,每个步骤中又有很多种不同的方法,那么完成这件工作的方法,就是把每一个步骤中的不同方法连乘起来。
这种方法我们称之为乘法原理,又叫做分步计数原理。
重点点拨…………………………………………………【例1】小军、小兰和小红三个小朋友排成一排照相,有多少种不同的排法?分析我们可以把他们所排列的位置分为一、二、三号位。
把他们的排列分成三个步骤。
从一号位开始可以有三个选择,这时二号位只能有两个选择(因为一号位已经站了一个人),这时三号位只能有一个选择。
这样我们可以根据乘法原理进行解决。
解答2×3=6(种)答:有6种不同的排法【例2】书架上有5本不同的科技书,6本不同的故事书,8本不同的英语书。
如果从中各取一本科技书、一本故事书和一本英语书,那么共有多少种取法?分析完成这件工作可以分三步完成,第一步取科技书有5种取法,再取一本故事书有6种取法,最后取一本英语书有8种取法,根据乗法原理可以求出所有的取法。
解答5×6×8=240(种)答:共有240种取法。
【例3】一个盒子里装有5个小球,另一个盒子里装有9个小球,所有这些小球颜色各不相同。
(1)从两个盒子任取一个小球,有多少种不同的取法?(2)从两个盒子里各取个球,有多少种不同的取法?分析 (1)从两个盒子里任取一个球,可以从第一个金子里取,也可以从第二个盒子里取,这是两大类不同的方法,所以是加法原理的间题。
(2)从两个金子里各取一个小球,这要分两个步骤进行。
可以先从第一个盒子里取球后,再从第二个盒子里取球,这是乘法原理的问题。
小学奥数乘法原理与加法原理完整版

小学奥数乘法原理与加法原理HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】乘法原理与加法原理在日常生活中常常会遇到这样一些问题,就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法,要知道完成这件事一共有多少种方法,就用我们将讨论的乘法原理来解决.例如某人要从北京到大连拿一份资料,之后再到天津开会.其中,他从北京到大连可以乘长途汽车、火车或飞机,而他从大连到天津却只想乘船.那么,他从北京经大连到天津共有多少种不同的走法?分析这个问题发现,某人从北京到天津要分两步走.第一步是从北京到大连,可以有三种走法,即:第二步是从大连到天津,只选择乘船这一种走法,所以他从北京到天津共有下面的三种走法:3×1=3.如果此人到大连后,可以乘船或飞机到天津,那么他从北京到天津则有以下的走法:共有六种走法,注意到3×2=6.在上面讨论问题的过程中,我们把所有可能的办法一一列举出来.这种方法叫穷举法.穷举法对于讨论方法数不太多的问题是很有效的.在上面的例子中,完成一件事要分两个步骤.由穷举法得到的结论看到,用第一步所有的可能方法数乘以第二步所有的可能方法数,就是完成这件事所有的方法数.一般地,如果完成一件事需要n个步骤,其中,做第一步有n1种不同的方法,做第二步有n2种不同的方法,…,做第n步有n n种不同的方法,那么,完成这件事一共有n=n1×n2×……×n n种不同的方法.这就是乘法原理.例1. 某人到食堂去买饭,主食有三种,副食有五种,他主食和副食各买一种,共有多少种不同的买法?补充说明:由例题可以看出,乘法原理运用的范围是:①这件事要分几个彼此互不影响的独立步骤来完成;②每个步骤各有若干种不同的方法来完成.这样的问题就可以使用乘法原理解决问题.例2. 右图中有7个点和十条线段,一只甲虫要从A点沿着线段爬到B点,要求任何线段和点不得重复经过.问:这只甲虫最多有几种不同的走法?例3. 书架上有6本不同的外语书,4本不同的语文书,从中任取外语、语文书各一本,有多少种不同的取法?例4. 王英、赵明、李刚三人约好每人报名参加学校运动会的跳远、跳高、100米跑、200米跑四项中的一项比赛,问:报名的结果会出现多少种不同的情形?例5. 由数字0、1、2、3组成三位数,问:①可组成多少个不相等的三位数?②可组成多少个没有重复数字的三位数?分析在确定由0、1、2、3组成的三位数的过程中,应该一位一位地去确定.所以,每个问题都可以看成是分三个步骤来完成.①要求组成不相等的三位数.所以,数字可以重复使用,百位上,不能取0,故有3种不同的取法;十位上,可以在四个数字中任取一个,有4种不同的取法;个位上,也有4种不同的取法.②要求组成的三位数中没有重复数字,百位上,不能取0,有3种不同的取法;十位上,由于百位已在1、2、3中取走一个,故只剩下0和其余两个数字,故有3种取法;个位上,由于百位和十位已各取走一个数字,故只能在剩下的两个数字中取,有2种取法.例6. 由数字1、2、3、4、5、6共可组成多少个没有重复数字的四位奇数?分析要组成四位数,需一位一位地确定各个数位上的数字,即分四步完成,由于要求组成的数是奇数,故个位上只有能取1、3、5中的一个,有3种不同的取法;十位上,可以从余下的五个数字中取一个,有5种取法;百位上有4种取法;千位上有3种取法,故可由乘法原理解决.例7. 右图中共有16个方格,要把A、B、C、D四个不同的棋子放在方格里,并使每行每列只能出现一个棋子.问:共有多少种不同的放法?分析由于四个棋子要一个一个地放入方格内.故可看成是分四步完成这件事.第一步放棋子A,A可以放在16个方格中的任意一个中,故有16种不同的放法;第二步放棋子B,由于A已放定,那么放A的那一行和一列中的其他方格内也不能放B,故还剩下9个方格可以放B,B有9种放法;第三步放C,再去掉B所在的行和列的方格,还剩下四个方格可以放C,C有4种放法;最后一步放D,再去掉C所在的行和列的方格,只剩下一个方格可以放D,D有1种放法,本题要由乘法原理解决.例8. 现有一角的人民币4张,贰角的人民币2张,壹元的人民币3张,如果从中至少取一张,至多取9张,那么,共可以配成多少种不同的钱数?分析要从三种面值的人民币中任取几张,构成一个钱数,需一步一步地来做.如先取一角的,再取贰角的,最后取壹元的.但注意到,取2张一角的人民币和取1张贰角的人民币,得到的钱数是相同的.这就会产生重复,如何解决这一问题呢?我们可以把壹角的人民币4张和贰角的人民币2张统一起来考虑.即从中取出几张组成一种面值,看共可以组成多少种.分析知,共可以组成从壹角到捌角间的任何一种面值,共8种情况.(即取两张壹角的人民币与取一张贰角的人民币是一种情况;取4张壹角的人民币与取2张贰角的人民币是一种情况.)这样一来,可以把它们看成是8张壹角的人民币.整个问题就变成了从8张壹角的人民币和3张壹元的人民币中分别取钱.这样,第一步,从8张壹角的人民币中取;第二步,从3张壹元的人民币中取共4种取法,即0、1、2、3.但要注意,要求“至少取一张”.生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用我们将讨论的加法原理来解决.例如某人从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不同的走法?分析这个问题发现,此人去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法.上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法.在上面的问题中,完成一件事有两大类不同的方法.在具体做的时候,只要采用一类中的一种方法就可以完成.并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数.一般地,如果完成一件事有n类方法,第一类方法中有n1种不同做法,第二类方法中有n2种不同做法,…,第n类方法中有n n种不同的做法,则完成这件事共有n=n1+n2+⋯…+n n种不同的方法.这就是加法原理.例1. 学校组织读书活动,要求每个同学读一本书.小明到图书馆借书时,图书馆有不同的外语书150本,不同的科技书200本,不同的小说100本.那么,小明借一本书可以有多少种不同的选法?例2. 一个口袋内装有3个小球,另一个口袋内装有8个小球,所有这些小球颜色各不相同.问:①从两个口袋内任取一个小球,有多少种不同的取法?②从两个口袋内各取一个小球,有多少种不同的取法?补充说明:由本题应注意加法原理和乘法原理的区别及使用范围的不同,乘法原理中,做完一件事要分成若干个步骤,一步接一步地去做才能完成这件事;加法原理中,做完一件事可以有几类方法,每一类方法中的一种做法都可以完成这件事.事实上,往往有许多事情是有几大类方法来做的,而每一类方法又要由几步来完成,这就要熟悉加法原理和乘法原理的内容,综合使用这两个原理.例3. 如右图,从甲地到乙地有4条路可走,从乙地到丙地有2条路可走,从甲地到丙地有3条路可走.那么,从甲地到丙地共有多少种走法?分析从甲地到丙地共有两大类不同的走法.第一类,由甲地途经乙地到丙地.第二类,由甲地直接到丙地.例4. 如下页图,一只小甲虫要从A点出发沿着线段爬到B点,要求任何点和线段不可重复经过.问:这只甲虫有多少种不同的走法?分析从A点到B点有两类走法,一类是从A点先经过C点到B点,一类是从A点先经过D点到B点.两类中的每一种具体走法都要分两步完成,所以每一类中,都要用乘法原理,而最后计算从A到B的全部走法时,只要用加法原理求和即可.例5. 有两个相同的正方体,每个正方体的六个面上分别标有数字1、2、3、4、5、6.将两个正方体放到桌面上,向上的一面数字之和为偶数的有多少种情形?分析要使两个数字之和为偶数,只要这两个数字的奇偶性相同,即这两个数字要么同为奇数,要么同为偶数,所以,要分两大类来考虑.例6. 从1到500的所有自然数中,不含有数字4的自然数有多少个?分析从1到500的所有自然数可分为三大类,即一位数,两位数,三位数.一位数中,不含4的有8个,它们是1、2、3、5、6、7、8、9;要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理.要确定一个三位数,可以先取百位数,再取十位数,最后取个位数,应用乘法原理.补充说明:这道题也可以这样想:把一位数看成是前面有两个0的三位数,如:把1看成是001.把两位数看成是前面有一个0的三位数.如:把11看成011.那么所有的从1到500的自然数都可以看成是“三位数”,除去500外,考虑不含有4的这样的“三位数”.百位上,有0、1、2、3这四种选法;十位上,有0、1、2、3、5、6、7、8、9这九种选法;个位上,也有九种选法.所以,除500外,有4×9×9=324个不含4的“三位数”.注意到,这里面有一个数是000,应该去掉.而500还没有算进去,应该加进去.所以,从1到500中,不含4的自然数仍有324个.这是一种特殊的思考问题的方法,注意到当我们对“三位数”重新给予规定之后,问题很简捷地得到解决.例7. 如图,要从A点沿线段走到B,要求每一步都是向右、向上或者向斜上方.问有多少种不同的走法?分析观察下页左图,注意到,从A到B要一直向右、向上,那么,经过下页右图中C、D、E、F四点中的某一点的路线一定不再经过其他的点.也就是说从A到B点的路线共分为四类,它们是分别经过C、D、E、F的路线.自我检测1.某罪犯要从甲地途经乙地和丙地逃到丁地,现在知道从甲地到乙地有3条路可以走,从乙地到丙地有2条路可以走,从丙地到丁地有4条路可以走.问,罪犯共有多少种逃走的方法?2.如右图,在三条平行线上分别有一个点,四个点,三个点(且不在同一条直线上的三个点不共线).在每条直线上各取一个点,可以画出一个三角形.问:一共可以画出多少个这样的三角形?3.在自然数中,用两位数做被减数,用一位数做减数.共可以组成多少个不同的减法算式?4.一个篮球队,五名队员A、B、C、D、E,由于某种原因,C不能做中锋,而其余四人可以分配到五个位置的任何一个上.问:共有多少种不同的站位方法?5.由数字1、2、3、4、5、6、7、8可组成多少个①三位数?②三位偶数?③没有重复数字的三位偶数?④百位为8的没有重复数字的三位数?⑤百位为8的没有重复数字的三位偶数?6.某市的电话号码是六位数的,首位不能是0,其余各位数上可以是0~9中的任何一个,并且不同位上的数字可以重复.那么,这个城市最多可容纳多少部电话机?1.如右图,从甲地到乙地有三条路,从乙地到丙地有三条路,从甲地到丁地有两条路,从丁地到丙地有四条路,问:从甲地到丙地共有多少种走法?2.书架上有6本不同的画报和7本不同的书,从中最多拿两本(不能不拿),有多少种不同的拿法?3.如下图中,沿线段从点A走最短的路线到B,各有多少种走法?4.在1~1000的自然数中,一共有多少个数字0?5.在1~500的自然数中,不含数字0和1的数有多少个?6.十把钥匙开十把锁,但不知道哪把钥匙开哪把锁,问:最多试开多少次,就能把锁和钥匙配起来?。
奥数第四讲加法和乘法原理

奥数第四讲加法和乘法原理加法原理和乘法原理是数学中常用的计数原理。
它们适用于很多不同的问题,包括排列组合、事件的计数等等。
下面将详细介绍加法原理和乘法原理的定义和应用。
加法原理是指当两个事件A和B无重叠的时候,事件A或B发生的总数等于事件A发生的总数加上事件B发生的总数。
换句话说,如果A事件有m种可能的结果,B事件有n种可能的结果,并且A和B之间没有共同的结果,那么A或B事件的总数就是m+n。
例如,如果从1到6中选取一个数,结果可以是奇数或者大于4的数。
奇数的总数是3(1,3,5),大于4的数的总数是2(5,6)。
根据加法原理,奇数或者大于4的数的总数是3+2=5加法原理也可以扩展到多个事件之间。
如果有三个互不相交的事件A、B和C,它们发生的总数等于事件A发生的总数加上事件B发生的总数再加上事件C发生的总数。
同样的,对于更多的事件也可以类推。
乘法原理是指当两个事件A和B相互独立时,事件A和事件B同时发生的总数等于事件A发生的总数乘以事件B发生的总数。
换句话说,如果事件A有m种可能的结果,事件B有n种可能的结果,并且事件A和事件B之间没有任何依赖关系,那么事件A和事件B同时发生的总数就是m*n。
例如,如果从1到6中选取两个数,第一个数可以是奇数或者大于4的数,第二个数可以是正整数。
根据乘法原理,第一个数和第二个数同时满足条件的总数是3*6=18乘法原理也适用于更多的事件。
如果有三个独立的事件A、B和C,它们同时发生的总数等于事件A发生的总数乘以事件B发生的总数乘以事件C发生的总数,以此类推。
加法原理和乘法原理的应用非常广泛。
在排列组合中,加法原理可以用于计算所有情况的总数,而乘法原理则可以用于计算分成几个步骤的情况的总数。
例如,有两个装有红、白、蓝三种颜色球的箱子,一个球从两个箱子中挑选一个。
根据加法原理,总共有3+3=6种可能的结果。
而如果分成两个步骤,第一步从第一个箱子中挑选,有3种可能的结果,第二步从第二个箱子中挑选,同样有3种可能的结果。
小学五六年级奥数学竞赛第4讲计数原理之加乘原理

【例10】(★★★★) 从1到999这999个自然数中有_____个数的各位数字之和能被4整除。
本讲总结 加法原理:分类计数,类类独立 加法原理 分类计数 类类独立 乘法原理:分步计数,步步相关 关联词区分:可以……也可以…… 关联词区分:可以 也可以 加法原理 先……再……又…… 乘法原理 乘法原理的前提:平等性 常用方法: ①优先排序法 ②排除法 ③分类讨论 重点例题:例5、例7、例8、例9
【例5】(★★★) 在1001,1002,…,2000这1000个自然数中,可以找到多少对相邻的 自然数,使它们相加时不进位?
【例4】(★★★) 【例6】(★★★) 一个至少两位的数,如果满足高数位上的数字总大于低数位上的数字, 一个七位数,其数码只能为1或3,且无两个3是邻的。问这样的七位 如732、85421,我们称之为 ,我们称之为“下降数”,那么“下降数”中一共有 下降数 ,那么 下降数 中 共有 数共有多少个? 有多 _____个偶数。
【例1】(★) 用数字0,1,2,3,4可以组成多少个小于1000的自然数?
【例2】(★★★)(北京市人大附中分班考题) 由0,1,2,3,4,5组成的没有重复数字的六位数中,百位不是2的 奇数有多少个?
【例3】(★★★) 一个三位数,其反序数也是一个三位数,用这个三位数减去它的反序 数得到的差大于0,且为4的倍数,满足条件的三位数有_____个。
例4例4一个至少两位的数如果满足高数位上的数字总大于低数位上的数字7我那一一如73285421我们称之为下降数那么下降数中共有个偶数
计数原理之加乘原理
加油站 加法原理:分类计数,类类独立 乘法原理 分步计数 步步相关 乘法原理:分步计数,步步相关 关联词区分:可以……也可以…… 加法原理 先……再……又…… 乘法原理
四年级奥数加法原理和乘法原理

四年级奥数加法原理和乘法原理今天我们来聊一聊四年级数学里两个超级有趣的概念——加法原理和乘法原理。
听起来是不是有点高大上?别担心,这些东西一点也不难,关键是要懂得怎么去用,怎么去看待。
来吧,跟我一起看一看,加法原理和乘法原理到底是怎么回事,顺便也说几句我们平时不太注意的数学趣事。
你们知道吗?这些原理其实就像我们在厨房做饭一样,分步骤来,就能做好一锅好菜。
加法原理和乘法原理不就是生活中那些简单的道理嘛,只不过它们是用数学的语言告诉我们怎么做事,怎么计划。
好,先来说说加法原理。
说得简单点,就是当你在做事情的时候,如果选择了几种不同的方式,每一种方式都有若干个可能的结果,而你可以选择其中的一种结果,那么这些不同的选择加起来就是所有的可能性。
比如说,假设你今天早上有两种早餐选择:一个是煎饼果子,一个是包子。
如果你去买煎饼果子,你有三种不同口味可以选:甜的、咸的、辣的。
哦,别忘了包子,包子你有两种口味可以选:肉包或者菜包。
这时你一共能选择几种早餐呢?嘿嘿,简单!就是3种(煎饼果子的口味)加2种(包子的口味),一共是5种不同的选择。
这不就像你走进超市,看到架子上满是各种商品,你看着都眼花缭乱,最后你就能从每种商品里选出一个,合起来就是你能拿到的不同组合。
再说乘法原理。
这个呀,更简单了。
乘法原理告诉我们,如果一个事件有几种方式可以发生,而每一种方式都能与另外一些独立的事件组合成结果,那么所有可能的组合数就是各个事件方式数的乘积。
说得更直白点,就是每种选择背后可能会有更多的选择。
比方说,假如你有两个衬衫,三条裤子,和四双鞋子。
那么你穿上哪一件衬衫,都可以和三条裤子搭配,而且每条裤子又能和四双鞋子搭配。
你是不是已经开始在脑袋里琢磨,你能穿几套衣服了?对!你一共可以搭配2×3×4=24套衣服!这就是乘法原理啦!看,你平时是不是也有“拿起了筷子就要点菜”的那种冲动,恨不得所有的美食都尝个遍,那种把不同东西结合起来的感觉,想想就过瘾!这两种原理虽然名字不同,但它们就像是数学中的兄弟,互相配合,互相补充。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学奥数:加法原理
在日常生活与实践中,我们经常会遇到分组、计数的问题。
解答这一类问题,我们通常运用加法与那里与乘法原理这两个基本的计数原理。
熟练掌握这两个原理,不仅可以顺利解答这类问题,而求可以为今后升入中学后学习排列组合等数学知识打下好的基础。
什么叫做加法原理呢?我们先来看这样一个问题:
从到上海,可以乘火车,也可以乘汽车、轮船或者飞机。
假如一天中到上海有4班火车、6班汽车,3班轮船、2班飞机。
那么一天中乘做这些交通工具从到上海共有多少种不同的走法?
我们把乘坐不同班次的火车、汽车、轮船、飞机称为不同的走法,那么从到上海,乘火车有4种走法,乘汽车有6种走法,乘轮船有3种走法,乘坐飞机有2种走法。
因为每一种走法都可以从到上海,因此,一天中从到上海共有4+6+3+2 = 15 (种)不同的走法。
我们说,如果完成某一种工作可以有分类方法,一类方法中又有若干种不同的方法,那么完成这件任务工作的方法的总数就等于各类完成这件工作的总和。
即N = m1 + m2 + …+ m n (N代表完成一件工作的方法的总和,m1,m2, …m n 表示每一类完成工作的方法的种数)。
这个规律就乘做加法原理。
例题与方法:
例1书架上有10本故事书,3本历史书,12本科普读物。
志远
任意从书架上取一本书,有多少种不同的取法?
例2一列火车从上上海到,中途要经过6个站,这列火车要准备多少中不同的车票?
例3、4 x 4的方格图中(如下图),共有多少个形?
例4、妈妈,爸爸,和小明三人去公园照相:共有多少种不同的照法?
练习与思考:
1.从甲城到乙城,可乘汽车,火车或飞机。
已知一天中汽车有2班,火车有4班,甲城到乙城共有()种不同的走法。
2.一列火车从上海开往,中途要经过4个站,沿途应为这列火车准备____种不同的车票。
3.下面图形中共有____个形。
4.图中共有_____个角。
5.书架上共有7种不同的的故事书,中层6本不同的科技书,下层有4钟不同的历史书。
如果从书架上任取一本书,有____种不同的取法。
6.平面上有8个点(其中没有任何三个点在一条直线上),经过每两个点画一条直线,共可以画_____条直线。
7.图中共有_____个三角形。
8.图中共有____个形.
9.从2,3,5,7,11,13,这六个数中,每次取出两个数分别作为一个分数的分子和分母,一共可以组成_____个真分数.
10.某铁路局从A站到F站共有6个火车站(包括A站和F站)铁路局要为在A站到F站之间运行的火车准备_____种不同的车票,其中票价不相同的火车票有_____种。
乘法原理
上一讲我们学习了用“加法原理”计数,这一讲我们学习“乘法原理”。
什么是乘法原理呢?我们来看这样一个问题:
从甲地到乙地有3条不同的道路,从乙地到丙地有4条不同的道路。
从甲地经过乙地到丙地,共有多少种走法?
我们这样思考:从甲地到乙地的3条道路中任意选一条都可以从甲地到乙地,再从乙地大丙地的4条道路中任意选一条都可以从乙地到丙地,那么,从甲地到乙地的3条道地第一条到达乙地后,可以走从乙地到丙地的任意一条路,这样就有了4种不同的走法。
从甲地到乙地的第二条、第三条路到达乙地后,仍可以从乙地到丙地的4条路中任选一条到丙地,如图所示:
从图中可以看出,从甲地到丙地共有3 X 4 =12(种)走法。
如
果完成一件事情需要几个步,完成第一步有m1 种不同的方法,完成第二步有m2 种不同的方法,…那么,完成这件工作共有N =m1 x m2 x m3 x …x m n 种不同的方法。
这就是乘法原理。
例题与方法:
例1书架上有4本故事书,7本科普书,志远从书架上任取一本故事书和一本科普书,共有多少种不同的取法?
例2从2、3、5、7、11这五个数字中每次取出2个数字,分别作为一个分数的分子和分母,一共可以组从多少个分数?其中有多少个真分数?
例3用9、8、7、6这四个数可以组成多少个没有重复数字的三位数?这些位数的和是多少?
例4如图,A、B 、C、D四个区域分别用红、黄、蓝、白四种颜色中的某一种染色。
若要求相邻的区域染不同的颜色,问:共有多少种不同的染色方法?
练习与思考:
1.从甲地到乙地有两条河,从乙地到丙地有3条路可走,从甲
地经乙地到丙地共有种走法。
2.书架的上、中、下层各有3本、5本、、4本故事书。
若要从每层书架上任取一个本书,共有种不同的取法。
3.有1,2,3,三数字,一共可以组成个没有重复数字的三位数。
4.两个班级进行乒乓球比赛,每班选3人,每人都要和对方的每个选手赛一场,一共要赛场。
5.从5,7,11,13这四个数中每次取2个数组成分数,一共可以组成个分数,其中真分数有个。
6.图中一共有个不同的长方形。
7.一个口袋里装有5个小球,另7一个口袋里装有4个小球。
这些小球的颜色互不相同。
(1)从两个口袋里任意取一个小球,有种不同的取法。
(2)从两个口袋各取一个小球,有种不同的取法。
8.某信号兵用红、黄、蓝三面棋从上到下挂在旗杆上的三个位置表示信号。
每次可挂一面、二面或三面,并且不同的顺序、不同的位置表示不同的信号。
一共可以表示种不同的信号。