各种仪器原理及应用

合集下载

解析各种检测器的原理、用途和作用

解析各种检测器的原理、用途和作用

气相色谱仪-检测系统1.热导检测器热导检测器( Thermal coductivity detector,简称TCD ),是应用比拟多的检测器,不管对有机物还是无机气体都有响应。

热导检测器由热导池池体和热敏元件组成。

热敏元件是两根电阻值完全一样的金属丝(钨丝或白金丝),作为两个臂接入惠斯顿电桥中,由恒定的电流加热。

如果热导池只有载气通过,载气从两个热敏元件带走的热量一样,两个热敏元件的温度变化是一样的,其电阻值变化也一样,电桥处于平衡状态。

如果样品混在载气过测量池,由于样号气和载气协热导系数不同,两边带走的热量不相等,热敏元件的温度和阻值也就不同,从而使得电桥失去平衡,记录器上就有信号产生。

这种检测器是一种通用型检测器。

被测物质与载气的热导系数相差愈大,灵敏度也就愈高。

此外,载气流量和热丝温度对灵敏度也有较大的影响。

热丝工作电流增加—倍可使灵敏度提高3—7倍,但是热丝电流过高会造成基线不稳和缩短热丝的寿命。

热导检测器构造简单、稳定性好,对有机物和无机气体都能进展分析,其缺点是灵敏度低。

2.气相色谱仪氢火焰离子化检测器氢火焰离子化检测器(Flame Ionization Detector,FID) 简称氢焰检测器。

它的主要部件是一个用不锈钢制成的离子室。

离子室由收集极、极化极(发射极)、气体入口及火焰喷嘴组成。

在离子室下部,氢气与载气混合后通过喷嘴,再与空气混合点火燃烧,形成氢火焰。

无样品时两极间离子很少,当有机物进入火焰时,发生离子化反响,生成许多离子。

在火焰上方收集极和极化极所形成的静电场作用下,离子流向收集极形成离子流。

离子流经放大、记录即得色谱峰。

有机物在氢火焰中离子化反响的过程如下:当氢和空气燃烧时,进入火焰的有机物发生高温裂解和氧化反响生成自由基,自由基又与氧作用产生离子。

在外加电压作用下,这些离子形成离子流,经放大后被记录下来。

所产生的离子数与单位时间进入火焰的碳原子质量有关,因此,氢焰检测器是一种质量型检测器。

各种液位计工作原理及适用范围

各种液位计工作原理及适用范围

各种液位计工作原理及适用范围液位计是一种常用的工业测量仪器,用于测量液体或固体粉尘的液位高度。

液位计的工作原理有多种,每种原理适用于不同的应用场景。

下面是常见的几种液位计工作原理及其适用范围。

1.浮子液位计:浮子液位计利用浮子的浮力来测量液位,当浮子浸入液体中时,浮子受到液体的浮力作用,测量液位的高度。

适用范围广泛,尤其适用于中、高粘度液体或易结垢的介质。

2.导电液位计:导电液位计利用导电液体的电导率来测量液位,通过电极测量液体中的电导率变化,从而确定液位高度。

适用范围广泛,适用于常温常压下的导电性液体。

3.电容液位计:电容液位计利用液位高度与电容之间的关系来测量液位。

通过安装在容器底部和液位上方的两个电容传感器,测量液体的电容变化,从而确定液位高度。

适用范围广泛,适用于非导电性液体或易结垢的介质。

4.超声波液位计:超声波液位计利用超声波在液体和空气介质中的传播速度差异来测量液位。

通过发射超声波并接收反射回来的超声波,测量液体与传感器之间的时间差,从而确定液位高度。

适用范围广泛,适用于各种液体、固体或干燥的介质。

5.压阻液位计:压阻液位计是利用液体静压力与液位高度之间的关系来测量液位。

通过测量液体对传感器的压力,从而确定液位高度。

适用范围广泛,尤其适用于高温、高压、腐蚀性介质或粘稠、易结垢的介质。

6.毛细管液位计:毛细管液位计利用毛细管原理来测量液位。

通过毛细管的液位高度与液体的压力之间的关系,从而确定液位高度。

适用范围较窄,主要适用于低温、低压、低粘度的介质。

以上是常见的液位计工作原理及其适用范围。

不同的液位计工作原理适用于不同的场景,选择适合的液位计可以提高测量的精度和可靠性。

在实际应用中,需要综合考虑介质特性、工作环境、工艺要求等因素,选择最合适的液位计。

医疗行业中常见的检测仪器及其原理解析

医疗行业中常见的检测仪器及其原理解析

医疗行业中常见的检测仪器及其原理解析在医疗行业中,检测仪器起着至关重要的作用,它们能够帮助医生准确诊断疾病、评估病情以及监测治疗效果。

本文将介绍医疗行业中常见的几种检测仪器及其原理解析,详细阐述它们的功能和原理,以便读者对它们有更深入的了解。

一、血液分析仪血液分析仪是一种用于分析和诊断血液疾病的仪器,它通过采集血样并进行一系列化学、生化或免疫学测试来评估患者的健康状况。

其中,最常见的就是血常规分析。

血常规分析仪通过测定血液中的红细胞计数、白细胞计数、血红蛋白浓度、血小板计数等指标,可以初步判断患者是否贫血、感染或患有某种血液疾病。

其原理是利用电子技术、光电技术等手段,测量血液中各种成分的浓度和数量。

二、超声检查仪超声检查仪是一种非侵入性的检测仪器,利用超声波来观察和评估人体内部器官的结构和功能。

它广泛应用于妇科、肝脏、胆囊、肾脏等脏器的检查和诊断。

超声检查仪的原理是利用超声波的回声信号来生成图像。

当超声波经过人体组织时,会与组织中的不同结构发生反射或散射,仪器接收到这些回声信号后,通过计算机进行处理并生成图像。

通过观察图像,医生可以判断器官的大小、形状、血流情况等,帮助诊断疾病。

三、心电图仪心电图仪是常用的心血管检测仪器之一,用于检查人体心脏的电活动,评估心脏功能和诊断心脏疾病。

它通过测量心脏产生的电信号,将其转化为波形图,以提供给医生进行分析和诊断。

心电图仪的工作原理基于心脏的电生理过程。

人体心脏产生的电信号经过电极引导到仪器上,仪器将信号放大并绘制成波形图。

波形图上的P波、QRS波群、T波等代表心脏电活动的特征,医生通过对这些特征的分析,可以判断心脏的节律、传导情况以及是否存在异常。

四、血糖仪血糖仪是用于测量人体血液中葡萄糖浓度的仪器,它对于糖尿病患者的日常血糖监测至关重要。

血糖仪通过血液中的葡萄糖氧化反应,测量葡萄糖与试剂之间产生的电流或颜色变化,从而得出血糖浓度值。

血糖仪的原理是利用葡萄糖氧化酶对葡萄糖进行氧化反应产生的氢过氧化物与电极上的测量电流之间的关系,通过测量电流的大小来计算血糖浓度。

实验室中常见的物理实验技术仪器详解

实验室中常见的物理实验技术仪器详解

实验室中常见的物理实验技术仪器详解在物理学研究和实验中,各种实验技术仪器的使用起着至关重要的作用。

本文将详细介绍实验室中常见的物理实验技术仪器,包括光学仪器、电子学仪器以及力学仪器等。

光学仪器是实验室中应用最广泛的一类仪器。

其中,最常见的是显微镜。

显微镜通过光学放大的原理,能够观察微小的物体。

根据其结构和功能的不同,显微镜分为光学显微镜、电子显微镜和原子力显微镜等。

光学显微镜是最常见的一种显微镜,它利用透镜组的成像原理放大和观察物体,具有简单易用、成本低廉等优点。

电子显微镜则利用电子束代替了光束,其分辨率更高,可以观察到更小的物体。

原子力显微镜利用原子力测量样品表面的电子云,能够实现原子级的观察。

另一个常见的光学仪器是光谱仪。

光谱仪能够将物体发出的光分解成不同波长的光,以便进行光谱分析。

光谱仪被广泛应用于光谱学、化学分析、天体物理学等领域。

其中,最常见的是分光光度计。

分光光度计通过测量样品对特定波长光的吸收和透射来分析样品的性质。

它的应用非常广泛,可以用于分析化学物质的浓度、天体物理学的光谱分析等。

除了光学仪器,电子学仪器也是实验室中不可或缺的一类仪器。

最常见的电子学仪器是示波器。

示波器是一种用于测量电压信号波形的仪器,广泛应用于电子学、通信等领域。

它能够将电压信号转换成图形显示在屏幕上,可以直观地观察到电压信号的波形和幅度。

示波器根据测量的波形形式可以分为模拟示波器和数字示波器。

模拟示波器采用电子束的偏转和获得图像的方式进行测量,而数字示波器则将电压信号转换为数字信息后进行处理和显示。

力学仪器在物理实验中也扮演着重要的角色。

其中最常见的是天平。

天平通过物体质量对称的原理来测量质量。

它基于力的平衡关系,通过将所测物体与已知质量进行比较,从而求得未知物体的质量。

天平广泛应用于化学实验、物理实验、药物研发等领域。

除了天平,实验室中还有许多其他力学仪器,如测力计、弹簧测量器等。

这些仪器通过测量力的大小和方向来研究和分析力的性质。

各类型折射仪的原理及应用

各类型折射仪的原理及应用

三氯蔗糖:0.00-100.00%
果胶明胶: 0.00-100.00% 氢氧化钠:0.00-55.00%
发烟酸:0.00-70.00%
盐酸:0.00-40.00% 氨水:0.00-30.00%

切削液:0.00-10.00%
乳化液:0.00-10.00%
1.2.4、DSA E-Scan台式数显折射仪特点
折射仪测定折射率的工作即利用了测定临界角 的原理.如下图示:
调整棱镜使折射角β=90°,则sinβ=1, n=1/sinα测 定α角即可计算n值。仪器内部设有换算装置,可直 接读取n值。
1.1.1、ABBE折射仪构造
目镜
锁紧手轮 进光棱 镜座 温度计
色散调节 手轮
恒温器接 头
折射率刻度 调节手轮
•待镜面干燥后,用滴加2~3滴试样于辅助棱镜的镜面 上,合上棱镜,扭紧闭合旋钮。若液体样品易挥发, 则动作要迅速,或在两棱镜接近闭合时从加液小槽中 注入样品,然后再闭合两棱镜,锁紧闭合旋钮。
• 调节反射镜使入射光进入棱镜,同时从目镜中观 察,使视场最亮。调节目镜的焦距,使目镜中“十” 字线清晰明亮。 •调节“棱镜调节旋钮”,使刻度盘标尺上的示值逐 渐增大,直至观察到视场中有半明半暗现象或出现 彩色光带。若出现彩色光带,可调节“消色调节旋 钮”使彩色光带逐渐消失,明暗界线清晰。再转动 “分界线调节旋钮”使明暗界线恰好与“十”字线 交点重合。
各类型折射仪的原理及应用


折射率是表征物质光学特性的重要常数, 借助它可以了解物质的光学性能、纯度、浓 度等。ABBE折射仪是最常用的测量物质折射 率的仪器,在科学研究与石油、油脂、制药、 制漆、食品、制糖、日用化工等行业中有着 极其广泛的应用。

医学实验室仪器原理及操作技术

医学实验室仪器原理及操作技术

医学实验室仪器原理及操作技术医学实验室仪器是医学实验室中必不可少的工具,它们通过各种原理和操作技术帮助医生和科研人员进行诊断、研究和分析。

一、仪器原理1. 光学原理:医学实验室中常用的光学仪器包括显微镜、分光光度计等。

显微镜利用物镜和目镜的组合来放大样本的细节,使得人眼能够观察到微观结构。

分光光度计则利用光的吸收和透射原理来测量样本中的化学物质浓度。

2. 电化学原理:电化学仪器如电解质分析仪和电化学传感器利用电流和电势的变化来检测和分析样本中的离子浓度和化学反应。

电解质分析仪通过电导率测定样本中的电解质浓度,而电化学传感器则通过电势变化来检测样本中的特定化学物质。

3. 质谱原理:质谱仪是一种通过测量样品中不同质量的离子来确定化合物的仪器。

它利用样品分子在电场中的离子化和分离,然后通过质谱仪中的磁场和探测器来测量不同离子的质荷比。

根据质谱图谱可以确定样品中的化合物种类和相对含量。

4. 核磁共振原理:核磁共振成像仪(MRI)利用核磁共振现象来获取人体内部组织的高分辨率图像。

核磁共振是一种基于原子核的量子态的技术,通过在强磁场和辅助磁场的作用下,对样本中的原子核进行激发和探测,得到组织结构和功能信息。

二、仪器操作技术1. 样本制备:在医学实验室中,样本制备是仪器操作的第一步。

样本制备的目的是将样本转化为适合仪器检测的形式,如血液样本需离心分离血清或血浆,组织样本需进行切片或研磨等。

2. 仪器校准:在使用仪器前,需要对仪器进行校准,以确保仪器的准确性和可靠性。

校准通常包括调节仪器的参数、检查仪器的灵敏度和响应等。

3. 仪器操作:根据不同的仪器原理和用途,操作技术也会有所不同。

例如,在使用显微镜时,需要调节物镜和目镜的焦距,调节光源亮度和对比度等。

而在使用分光光度计时,需要调节样品的路径长度和选择合适的波长等。

4. 数据分析:仪器操作完成后,需要对仪器输出的数据进行分析和解读。

这需要对仪器的测量原理和样本特性有一定的了解,以正确解读数据结果。

仪器仪表的基础原理和应用

仪器仪表的基础原理和应用

仪器仪表的基础原理和应用在现代工业生产与科学实验中,仪器仪表是不可或缺的重要工具。

它们可以通过物理、化学或电子等原理监测和记录物理量或化学量的变化,并将其转化为人类可以理解的数字或者图形等形式,以便分析和判断,从而实现对产物性质的控制与优化。

本文将介绍仪器仪表的基础原理和应用。

一、能量转换原理仪器仪表的动力来源通常是基于能量转换原理实现的。

在大部分情况下,仪器仪表使用能量转换器将非电能量转换为电能,由电路对电能进行处理。

因此,也可以通过能量转换原理来解释仪器仪表的工作原理。

能量转换器是一类物理机械或电子装置,用于将一种形式的能量转化为另一种形式的能量。

例如,传感器将机械物理量(如压力、温度等)转化为电场物理量(如电压、电流等),执行器反过来将电场物理量转化为机械物理量,如电机转动。

另外,在计量学中使用的传感器还将物理量转换为数字信号。

通过这种能量转换,不仅可以更方便地记录和处理数据,而且可以提高测量精度和稳定性。

二、常见仪表及其原理1.热敏电阻热敏电阻是体积小、响应时间短的温度传感器。

它们的电阻随温度变化,而且有铂电阻、镍电阻、铜电阻、锑电阻等。

这种电阻的原理是材料的电阻随温度升高,其运动电子的热振动增强,导致电阻增加。

应用领域广泛,例如医疗电气或家用电器中均有应用。

2.光电二极管光电二极管可以转换光量为电流或电压。

它可以用于光谱学、剂量计等领域。

基于反向饱和电流,可以将光能转化为电能。

主要分为二极管和四极半导体器件两类,应用范围广泛。

3.压电传感器压电传感器也是常见的传感器之一,可以将受到的力、压力或扭矩等机械作用转换为电信号。

其运作原理是正压作用下产生电荷,压电晶体释放负电荷。

压电传感器广泛应用于测力、压力和加速度中。

三、应用领域仪器仪表在日常生活和各行各业中有着广泛的应用。

在工业产品的生产过程中,如汽车、航空航天、武器装备、电气电子等行业,仪器仪表是必不可少的。

此外,在自动化、实验室、环境监测、医疗设备等领域,仪器仪表也被广泛使用。

仪器分析知识点

仪器分析知识点

仪器分析知识点仪器分析是现代化学分析的重要方法之一,它利用各种仪器设备对物质进行定性、定量或结构分析。

仪器分析知识点包括仪器分类、操作原理、常见仪器和技术应用等内容。

一、仪器分类根据分析原理和操作方法,仪器可以分为光谱仪器、色谱仪器、电化学仪器、质谱仪器、质量分析仪器等多种类型。

1. 光谱仪器:光谱仪器是利用物质对光的吸收、发射或散射特性,通过测量光的强度变化来分析物质的组成和性质。

常见光谱仪器包括紫外-可见光谱仪、红外光谱仪、核磁共振仪等。

2. 色谱仪器:色谱仪器是通过物质溶解度、吸附性、分配系数等特性进行分离和分析的仪器。

常见色谱仪器包括气相色谱仪、液相色谱仪、高效液相色谱仪等。

3. 电化学仪器:电化学仪器是利用物质在电场或电流作用下的电化学过程进行分析的仪器。

常见电化学仪器包括电解池、电化学电位计、电导仪等。

4. 质谱仪器:质谱仪器是通过将物质分子进行解离和碎裂,然后测量碎片的质量和相对丰度来分析物质的组成和结构的仪器。

常见质谱仪器包括质谱仪、飞行时间质谱仪、四极质谱仪等。

5. 质量分析仪器:质量分析仪器是利用物质分子的质量进行分析与鉴定的仪器。

常见质量分析仪器包括质谱仪、原子吸收光谱仪、电感耦合等离子体质谱仪等。

二、操作原理不同的仪器有着不同的操作原理,下面以常见的光谱仪器和色谱仪器为例进行介绍。

1. 紫外-可见光谱仪的操作原理:紫外-可见光谱仪是通过将被测溶液或物质吸收或透射的光强度与波长进行测量,从而分析物质的组成和性质。

其操作原理基于光的吸收定律和比尔定律。

2. 气相色谱仪的操作原理:气相色谱仪利用样品在固定填充物上的吸附和解吸特性进行物质分离和分析。

其操作原理是将样品蒸发为气态后进入色谱柱,样品在色谱柱中与固定相发生作用,从而实现物质分离。

三、常见仪器1. 光谱仪器:紫外-可见光谱仪、红外光谱仪、核磁共振仪等。

2. 色谱仪器:气相色谱仪、液相色谱仪、高效液相色谱仪等。

3. 电化学仪器:电解池、电化学电位计、电导仪等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

紫外可见分光光度计的原理与应用1.原理物质的吸收光谱本质上就是物质中的分子和原子吸收了入射光中的某些特定波长的光能量,相应地发生了分子振动能级跃迁和电子能级跃迁的结果。

由于各种物质具有各自不同的分子、原子和不同的分子空间结构,其吸收光能量的情况也就不会相同,因此,每种物质就有其特有的、固定的吸收光谱曲线,可根据吸收光谱上的某些特征波长处的吸光度的高低判别或测定该物质的含量,这就是分光光度定性和定量分析的基础。

分光光度分析就是根据物质的吸收光谱研究物质的成分、结构和物质间相互作用的有效手段。

紫外可见分光光度法的定量分析基础是朗伯-比尔(Lambert-Beer)定律。

即物质在一定浓度的吸光度与它的吸收介质的厚度呈正比2 应用2.1 检定物质根据吸收光谱图上的一些特征吸收,特别是最大吸收波长虽ax 和摩尔吸收系数是检定物质的常用物理参数。

这在药物分析上就有着很广泛的应用。

在国内外的药典中,已将众多的药物紫外吸收光谱的最大吸收波长和吸收系数载入其中,为药物分析提供了很好的手段。

2.2 与标准物及标准图谱对照将分析样品和标准样品以相同浓度配制在同一溶剂中,在同一条件下分别测定紫外可见吸收光谱。

若两者是同一物质,则两者的光谱图应完全一致。

如果没有标样,也可以和现成的标准谱图对照进行比较。

这种方法要求仪器准确,精密度高,且测定条件要相同。

2.3 比较最大吸收波长吸收系数的一致性2.4 纯度检验2.5 推测化合物的分子结构2.6 氢键强度的测定实验证明,不同的极性溶剂产生氢键的强度也不同,这可以利用紫外光谱来判断化合物在不同溶剂中氢键强度,以确定选择哪一种溶剂。

2.7 络合物组成及稳定常数的测定2.8 反应动力学研究2.9 在有机分析中的应用有机分析是一门研究有机化合物的分离、鉴别及组成结构测定的科学,它是在有机化学和分析化学的基础上发展起来的综合性学科。

原子吸收分光光度计工作原理原子吸收分光光度计又称为原子吸收光谱仪,是利用光源发出被测的特征光谱辐射,被经过原子化器后的样品蒸气中的待测元素基态原子所吸收,通过测定特征辐射被吸收的大小,来求出被测元素的含量。

原子吸收光谱仪主要由光源、原子化系统、光学系统、电学系统等四个基本部分组成,其工作原理:光源发出特征光谱辐射,经过原子化器室后,由分光系统得到单色光经过光电倍增管后到达检测器,终端电脑从检测器得到信号,进一步转化为数据进行处理,因为原子化器没有进样时,光通过原子化器时没有被吸收,透光率为100%,而当原子化器进样时,光通过原子化器时有一部分被吸收,透光率减小。

根据朗伯-比尔定律,吸光度与样品浓度成正比,因此参照标准,根据吸光度可得出样品的浓度。

NDJ-1旋转式粘度计的工作原理及操作使用方法技术参数:测定范围:10 ~1×105 mPa.s转子规格:0、1、2、3、4、号五种转子(0号转子是选件,可测低粘度至0.1 mPa.s)仪器转速:6转/分、12转/分、30转/分、60转/分测量误差:±5%(牛顿液体)电源:220V ±10V;50Hz净重:1.5 Kg外形尺寸:400×370×150NDJ-1旋转式粘度计工作原理:仪器由同步电机以稳定的速度旋转, 连接刻度圆盘,再通过游丝和转轴带动转子旋转,如果转子未受到液体的阻力,则游丝、指针与刻度盘同速旋转,指针在刻度盘上指出的读数为”0”.反之,如果转子受到液体的粘滞阻力,则游丝产生扭矩,与粘滞阻力抗衡最后达到平衡,这时与游丝连接的指针在刻度盘上指示一定的读数(即游丝的扭转角).将读数乘上特定的系数即得到液体的粘度. 本仪器转速由齿轮系统及离合器通过调速旋钮进行变速, 附有1-4号四种转子,可根据被测液体的高低随同转速配合选用;其装有指针固定控制机构,为精确读数用,当转速较快时(30转/分、60转/分)无法在旋转时进行读数,这时可轻轻按下指针控制杆,使指针固定下来,便于读数;还配有固定支架及升降机构,一般在实验室中进行小量和定温测定时应固定.把仪器固定于支架上以保证测量精确度;斜齿轮及阻尼升降机构,确保仪器升降平稳;引伸索便于在被测液体之容器较大而液面又较低时,及被测液体温度过高情况下使用。

色素提取方法提取色素有二种方法,一是直接提取,用水煮出汁,滤去杂质,浓缩即可,一是要借助某些助剂或多次提取。

如用红蓝花制作胭脂,在《齐民要术》里记载:“杀花法:摘取即碓捣使熟,以水淘,布袋绞去黄汁,更捣,以粟饭浆清而醋者淘之,又以布袋绞汁即收取染红勿弃也。

绞讫著瓮中,以布盖上,鸡鸣更捣以栗令均,于席上摊而曝干,胜作饼,作饼者,不得干,令花浥郁也。

”同书又记“作燕支法”:“预烧落藜、藜、藿及蒿作灰[无者即草灰亦得],以汤淋取清汁,揉花[十许遍,势尽乃生],布袋绞取纯汁著瓮器中,取醋石榴两三个(引者按:《天工开物》中用乌梅水),擘取子,捣破少著粟饭浆水极酸者和之,布绞取沈,以和花汁[若无醋石榴者,以好醋和饭浆亦得,若复无醋者,清饭浆极酸者亦得,空用之],下白米粉大如酸枣[粉多则白],……痛搅,盖冒至夜,泻去上清汁至淳处止,倾著白练角袋子中悬之,明日干浥浥时,捻作小瓣如半麻子,阴干之则成矣。

”对于某些难溶性植物色素的提取还需用乙醇代替水作溶剂, 将植物粉碎后,放入密闭容器中,倒入95%的乙醇,浸渍24小时后,将溶液倒出,再用同样的乙醇浸渍6小时,重复两次。

最后将所有的溶液混合后,进行过滤,即可作为染液。

蔬菜中色素的提取食品的色泽是食品的重要感官指标,食品工业中广泛使用着人工合成的色素来增加色泽,但研究表明,一般合成的色素都有不同程度的毒性,有的甚至有致癌性。

因此开发天然无害的食用色素对保证人类健康有重要意义。

蔬菜种类繁多,色彩纷呈,是色素的巨大资源库,从蔬菜中提取的天然食用色素,不仅具有较高的安全性,有的还具有一定的营养价值和保健作用。

且天然色素价格昂贵,市场前景广阔,能够促使蔬菜增值,是蔬菜深加工的一个发展方向。

本文将介绍几种蔬菜中的色素及其提取方法。

一、从番茄中提取番茄红素1.番茄红素的性质及功用番茄红素(Lycopene)是油溶性色素,对光线、氧和热都比较敏感,为类胡萝卜素的一种,也是一种强抗氧化剂,抗氧化能力是维生素E的100多倍,远远超过其他诸如。

胡萝卜素、β胡萝卜素的生物活性,能够有效清除体内的自由基,预防和修复细胞损伤,抑制DNA的氧化从而预防癌症的发生。

目前,番茄红素作为色素少量用于番茄酱和番茄汁制品中,多用于保健食品和制药行业。

2.茄红素的提取番茄红素的提取一般分为有机溶剂提取和二氧化碳超临界萃取两种方法,二氧化碳超临界萃取在大规模生产上有难度,目前主要采取有机溶剂提取,首先将番茄加工成番茄酱或番茄粉,用乙酸乙酯、乙醇或正己烷等溶剂进行提取,后经过滤浓缩得到番茄红素粗产品----含量6%以下的含油树脂,进一步冷冻结晶可以得到纯度较高的产品。

二、从辣椒中提取辣椒红素1.辣椒红素的性质辣椒红素(Capsanthin)又名椒红素、辣椒红,纯的辣椒红素为深胭脂红色针状晶体。

用于食品添加剂等方面的辣椒红素为暗红色油膏状,有辣味。

其主要成分为辣椒红素、类胡萝卜素、辣椒碱和植物油等,不溶于水,易溶于植物油和乙醇,在pH值为3--12时,色调不变化,耐光性和耐热性较好,耐酸碱,耐氧化,可用于罐头、糕点上彩装,也可用于油脂食品、调味品、果汁和冰激淋中。

2.辣椒红素的提取常见的提取辣椒红素的方法大致可分为3种油溶法、溶剂法和超临界流体萃取法。

目前生产上主要采用溶剂法,用有机溶剂(二氯甲烷、三氯乙烯、丙酮、2-丙醇、甲醇、正己烷、乙醇)萃取辣椒属的果实,然后除去有机溶剂的油溶性制品,使用乳糖、阿拉伯胶等赋型剂及蔗糖脂肪酸酯可以制得水分散制品。

三、从紫苏中提取紫苏色素1.紫苏色素的性质紫苏叶中含有的大量的花色素苷称为紫苏色素(perilla colour),每100g干燥的紫苏叶中含有1.9g花色素苷,由紫苏素和紫苏宁组成,纯净的紫苏色素为紫色粉末,是水溶性色素,酸性时为红色,中性时呈紫色,碱性时呈绿色,由于此特性,该色素常被用作酸碱指示剂。

紫苏色素作为食用红色素用于咸梅干、腌菜、粉末果汁中,除了呈色之外,它还具有一定的防腐作用。

2.紫苏色素的提取紫苏叶经夏季自然干燥后,再于90℃条件下干燥1h,磨成粉末。

用稀盐酸-乙醇提取其色素,经过滤、减压浓缩,蒸馏出乙醇、添加赋型剂、杀菌、喷雾干燥、筛分、调整色调而成。

四、从红甜菜中提取甜菜红色素1.甜菜红色素的性质甜菜红色素(beet root red)是由红甜菜(俗称紫菜头)制取的一种天然红色素,主要成分是甜菜红苷(Betanin),易溶于水和牛奶,在酸性和中性的条件下;呈稳定的紫红色,在碱性的条件下变成黄色,不易被氧化。

在食品工业领域多用于果味水、果汁、糖果、糕点、罐头、酸奶等产品中。

3.甜菜红色素的提取用水萃取红甜菜根,在萃取前用2%亚硫酸氢钠溶液在95--98℃热烫10--15min灭酶,提取液经浓缩成深红色浆料,进一步干燥为红色粉末,制造过程中采用过滤、絮凝等方法除去蛋白质和糖类,在最终产品中添加一定的柠檬酸或者维生素C作为pH调节剂和稳定剂。

五、从红球甘蓝中提取卷心菜红色素1.卷心菜红色素的性质卷心菜红色素(red cabbage pigment)又称红球甘蓝色素,主要成分由多种花色素苷复合构成,也含有少量的黄酮和单宁,溶于水,不溶于油脂,在酸性条件下呈紫红色,中性条件下呈紫至青紫色,碱性条件下呈暗绿色。

耐热、耐光性良好,酸性的乳酸饮料中表现为稳定的红色,用于豆沙馅中使其呈良好的暗紫红色。

2.卷心菜红色素的提取将卷心菜打浆,然后用水反复抽提,经过滤、离心等精制过程去除纤维素、蛋白质等杂质,经过浓缩、杀菌得到色素水溶液,进一步经过喷雾干燥成粉末。

此外,从甘薯中可提取红色素和紫色素,菠菜、甘蓝中可提取叶绿素,紫色菜薹、茄子皮可以提取紫色色素,姜黄中可以提取姜黄素,胭脂萝卜中可以提取胭脂红色素,苋菜中也可以提取苋菜红色素等等。

大量的研究与实践证实,从蔬菜中可以提取多种天然食用色素,随着人们生活水平的提高和安全意识的增强,蔬菜色素将会有更广阔的市场空间。

相关文档
最新文档