高中物理常见的临界条件
临界问题分析法

临界问题分析法临界问题的分析方法孟德飞纵观近年来各省高考物理试题,不难发现,各省都越来越重视考查学生对解决物理问题方法的掌握情况。
例如,物理模型法、整体法与隔离法、等效法、图像法、临界问题分析法等。
在问题练习中,同学们要重视解题过程的思维方法训练。
如果同学们能够熟练掌握各种解题方法的特点和技巧,对物理学习就起到事半功倍的效果。
透析近年的高考考题,本文就解决常见的临界问题解题方法进行分析和总结。
临界状态就是指物理现象从一种状态变化成另一种状态的中间过程,这时存在着一个过渡的转折点。
临界问题的分析对象正是临界状态。
与临界状态相关的物理条件则称为临界条件。
临界条件是解决临界问题的突破点,在物理解题中起着举足轻重的作用,解答临界问题的关键是找准临界条件。
临界条件一般是隐藏着的,需要同学们仔细分析题目才能找出来。
但它也有一定规律:题干含有“恰好”、“刚好”、“最小”、“最大”、“至少”、“最多”的词语认真分析找等词语时,该问题一般是临界问题。
审题时,要抓住这些关键出临界条件。
临界问题一般解题模式为:1.找出临界状态及临界条件;2.列出临界点的规3.解出临界量;4.分析临界量列出公式。
律;下面就一些典型试题进行分析总结:一、动力学中的临界问题分析方法动力学中的临界问题比较普遍,例如“物体恰好离开地面”、“物体速度达到最大值时”、“绳刚好碰到钉子”、“物体刚好通过最高点”、“两物体刚好不相撞”、“物体刚好滑出小车”等就是一些题目中常见的临界状态。
相对应的临界条件应该为:临界状态临界条件物体恰好离开(不离开)地面物体不受地面的支持力物体速度达到最大值时物体所受合力为零绳刚好碰到钉子(绳拉物体做圆周运动) 半径突然变小物体刚好通过最高点只有重力提供向心力两物体刚好不相撞两物体接触时速度相等或者最终速度相等物体刚好滑出小车物体滑到小车一端时与车的速度刚好相等例题1. 一条不可伸长的轻绳跨过质量可忽略不计的定滑轮,绳的一端系一质量M=15kg的重物,重物静止于地面上。
高中物理中的临界与极值问题

高中物理中的临界与极值问题宝鸡文理学院附中何治博一、临界与极值概念所谓物理临界问题是指各种物理变化过程中,随着条件的逐渐变化,数量积累达到一定程度就会引起某种物理现象的发生,即从一种状态变化为另一种状态发生质的变化(如全反射、光电效应、超导现象、线端小球在竖直面内的圆周运动临界速度等),这种物理现象恰好发生(或恰好不发生)的过度转折点即是物理中的临界状态。
与之相关的临界状态恰好发生(或恰好不发生)的条件即是临界条件,有关此类条件与结果研究的问题称为临界问题,它是哲学中所讲的量变与质变规律在物理学中的具体反映。
极值问题则是指物理变化过程中,随着条件数量连续渐变越过临界位置时或条件数量连续渐变取边界值(也称端点值)时,会使得某物理量达到最大(或最小)的现象,有关此类物理现象及其发生条件研究的问题称为极值问题。
临界与极值问题虽是两类不同的问题,但往往互为条件,即临界状态时物理量往往取得极值,反之某物理量取极值时恰好就是物理现象发生转折的临界状态,除非该极值是单调函数的边界值。
因此从某种意义上讲,这两类问题的界线又显得非常的模糊,并非泾渭分明。
高中物理中的临界与极值问题,虽然没有在教学大纲或考试说明中明确提出,但近年高考试题中却频频出现。
从以往的试题形式来看,有些直接在题干中常用“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词语对临界状态给出了明确的暗示,审题时,要抓住这些特定的词语发掘其内含的物理规律,找出相应的临界条件。
也有一些临界问题中并不显含上述常见的“临界术语”,具有一定的隐蔽性,解题灵活性较大,审题时应力图还原习题的物理情景,周密讨论状态的变化。
可用极限法把物理问题或物理过程推向极端,从而将临界状态及临界条件显性化;或用假设的方法,假设出现某种临界状态,分析物体的受力情况及运动状态与题设是否相符,最后再根据实际情况进行处理;也可用数学函数极值法找出临界状态,然后抓住临界状态的特征,找到正确的解题方向。
高中物理常见临界条件

临 界 情 况临 界 条 件速度达到最大 物体所受合外力为零物体所受合外力为零刚好不相撞 两物体最终速度相等或者接触时速度相等刚好不分离两物体仍然接触、弹力为零两物体仍然接触、弹力为零原来一起运动的两物体分离时不只弹力为零且速度和加速度相等为零且速度和加速度相等 运动到某一极端位置粒子刚好飞出(飞不出)两个极板间的匀强电场的匀强电场粒子运动轨迹与极板相切粒子运动轨迹与极板相切粒子刚好飞出(飞不出)磁场粒子刚好飞出(飞不出)磁场 粒子运动轨迹与磁场边界相切粒子运动轨迹与磁场边界相切物体刚好滑出(滑不出)小车物体刚好滑出(滑不出)小车物体滑到小车一端时与小车的速度刚好相等相等刚好运动到某一点(“等效最高点”) 到达该点时速度为零到达该点时速度为零 绳端物体刚好通过最高点绳端物体刚好通过最高点 物体运动到最高点时重力(“等效重力”)等于向心力速度大小为杆端物体刚好通过最高点杆端物体刚好通过最高点 物体运动到最高点时速度为零物体运动到最高点时速度为零某一量达到极大(小)值双弹簧振子弹簧的弹性势能最大双弹簧振子弹簧的弹性势能最大 弹簧最长(短),两端物体速度为零弹簧最长(短),两端物体速度为零 圆形磁场区的半径最小圆形磁场区的半径最小磁场区是以公共弦为直径的圆磁场区是以公共弦为直径的圆 使通电导线在倾斜导轨上静止的最小磁感应强度磁感应强度安培力平行于斜面安培力平行于斜面两个物体距离最近(远)两个物体距离最近(远) 速度相等速度相等 动与静的分界点转盘上“物体刚好发生滑动”转盘上“物体刚好发生滑动” 向心力为最大静摩擦力向心力为最大静摩擦力刚好不上(下)滑刚好不上(下)滑保持物体静止在斜面上的最小水平推力拉动物体的最小力拉动物体的最小力 静摩擦力为最大静摩擦力,物体平衡静摩擦力为最大静摩擦力,物体平衡关于绳的临界问题绳刚好被拉直绳刚好被拉直 绳上拉力为零绳上拉力为零绳刚好被拉断绳刚好被拉断 绳上的张力等于绳能承受的最大拉力绳上的张力等于绳能承受的最大拉力 运动的突变天车下悬挂重物水平运动,天车突停天车下悬挂重物水平运动,天车突停重物从直线运动转为圆周运动,绳拉力增加增加绳系小球摆动,绳碰到(离开)钉子绳系小球摆动,绳碰到(离开)钉子 圆周运动半径变化,拉力突变圆周运动半径变化,拉力突变重力: G = mg (g 随高度、纬度、不同星球上不同) 弹簧的弹力:F= Kx 滑动摩擦力:F 滑= m N静摩擦力:静摩擦力: O£ f 静£ f m万有引力:万有引力: F 引=G 221r m m电场力: F电=q E =q du u库仑力:库仑力: F =K221r q q (真空中、点电荷)磁场力:(1)、安培力:磁场对电流的作用力。
高中物理常见临界条件归纳

关于绳的临界问题
绳刚好被拉直
绳上拉力为零
绳刚好被拉断
绳上的张力等于绳能承受的最大 拉力
运动的突变
天车下悬挂重物水平运动,天车 重物从直线运动转为圆周运动,
突停
绳拉力增加
绳系小球摆动,绳碰到(离开) 圆周运动半径变化,拉力突变 钉子
高中物理常见临界条件归纳
临界情况
临界条件
速度达到最大
物体所受合外力为零
刚好不相撞
两物体最终速度相等或者接触时 速度相等
刚好不分离
两物体仍然接触、弹力为相等
运动到某一极端位置
粒子刚好飞出(飞不出)两个极 粒子运动轨迹与极板相切 板间的匀强电场
粒子刚好飞出(飞不出)磁场 粒子运动轨迹与磁场边界相切
物体刚好滑出(滑不出)小车 物体滑到小车一端时与小车的速 度刚好相等
刚好运动到某一点(“等效最高 到达该点时速度为零 点”)
绳端物体刚好通过最高点
物体运动到最高点时重力(“等 效重力”)等于向心力速度大小 为
杆端物体刚好通过最高点
物体运动到最高点时速度为零
某一量达到极大(小)值
双弹簧振子弹簧的弹性势能最大 弹簧最长(短),两端物体速度 为零
圆形磁场区的半径最小
磁场区是以公共弦为直径的圆
使通电导线在倾斜导轨上静止的 安培力平行于斜面 最小磁感应强度
两个物体距离最近(远)
速度相等
动与静的分界点
转盘上“物体刚好发生滑动” 向心力为最大静摩擦力
刚好不上(下)滑
静摩擦力为最大静摩擦力,物体
保持物体静止在斜面上的最小水 平衡
平推力
拉动物体的最小力
高中物理必修一 第四章 专题强化 动力学临界问题

当汽车向右匀减速行驶时,设小球所受车后壁弹力为0时(临界状态) 的加速度为a0,受力分析如图甲所示. 由牛顿第二定律和平衡条件得: Tsin 37°=ma0, Tcos 37°=mg, 联立并代入数据得: a0=7.5 m/s2.
12345678
当汽车以加速度a1=2 m/s2<a0向右匀减速行驶时,小球受力分析如图 乙所示. 由牛顿第二定律和平衡条件得: T1sin 37°-FN1=ma1, T1cos 37°=mg, 联立并代入数据得: T1=50 N,FN1=22 N, 由牛顿第三定律知,小球对车后壁的压力大小为22 N.
4.解答临界问题的三种方法 (1)极限法:把问题推向极端,分析在极端情况下可能出现的状态,从而 找出临界条件. (2)假设法:有些物理过程没有出现明显的临界线索,一般用假设法,即 假设出现某种临界状态,分析物体的受力情况与题设是否相同,然后再 根据实际情况处理. (3)数学法:将物理方程转化为数学表达式,如二次函数、不等式、三角 函数等,然后根据数学中求极值的方法,求出临界条件.
A.g2
m k
C.g
2m k
√B.g
m 2k
D.2g
m k
12345678
静止时弹簧压缩量 x1=2mk g,分离时 A、B 之间的压 力恰好为零,设此时弹簧的压缩量为 x2,对 B:kx2- mg=ma,得 x2=32mkg,物块 B 的位移 x=x1-x2=m2kg, 由 v2=2ax 得:v=g 2mk,B 正确.
第四章
专题强化
探究重点 提升素养 / 专题强化练
动力学临界问题
学习目标
1.掌握动力学临界问题的分析方法. 2.会分析几种典型临界问题的临界条件.
高中物理临界问题

高中物理临界问题引言:高中物理中,临界问题是一个重要的概念,它涉及到电流、温度、速度等多个领域。
临界问题在物理学的研究中有着广泛的应用,对于理解和解决实际问题具有重要意义。
本文将围绕高中物理临界问题展开讨论,介绍其基本概念和相关应用。
一、临界问题的基本概念临界问题是指在某种条件下,系统的一些物理性质会发生剧变或突变的问题。
具体而言,临界问题可以分为电流临界、温度临界和速度临界等。
在临界点上,系统的某个物理量会发生突变,从而导致系统的性质发生改变。
1.1 电流临界问题电流临界是指在电路中,当电流达到一定数值时,电路中的元器件或电源会发生突变或破坏,从而导致电路的性质发生改变。
举个例子,当我们连接一个电阻到电路中时,如果电流超过了电阻的最大承受电流,电阻就会发热并可能烧坏。
1.2 温度临界问题温度临界是指在物质的温度达到某个特定值时,物质的性质会发生剧变。
例如,当我们加热水至100摄氏度时,水的状态会发生改变,从液态变为气态,这是水的临界温度。
1.3 速度临界问题速度临界是指在物体运动中,当速度达到某一特定值时,物体的性质会发生剧变。
例如,当我们抛出一个物体时,物体的速度达到一定值时,会克服空气的阻力,进入自由落体状态,这是速度临界的一个实例。
二、临界问题的应用临界问题在物理学的研究和实际应用中具有重要意义,下面将分别介绍电流临界、温度临界和速度临界的应用。
2.1 电流临界的应用电流临界在电路设计和电器安全方面有着重要的应用。
例如,在电路设计中,我们需要根据电子元器件的电流承受能力来选择合适的元器件,以避免电路发生过载或短路的现象。
在电器安全方面,了解电器的电流临界值可以帮助我们正确使用和维护电器设备,避免因电流过大导致的安全事故。
2.2 温度临界的应用温度临界在材料科学和物理实验中有着广泛的应用。
例如,在材料科学中,了解材料的临界温度可以帮助我们选择合适的材料用于不同的环境和工艺要求。
在物理实验中,控制温度临界可以使实验结果更加准确和可靠,避免温度对实验结果的影响。
高中物理力学中几种常见的临界问题

高中物理力学中几种常见的临界问题高中物理力学中几种常见的临界问题临界问题是高中物理中常见的一个问题,所谓临界状态是指当物体从一种运动状态(或物理现象)转变为另一种运动状态(或物理现象)的转折状态,可理解“恰好出现”或“恰好不出现”,至于出不出现要由题目的具体情况而定。
它往往是多个物理过程之间发生变化的转折点,在这个点的两侧,物体的某些物理条件一般都要发生变化。
临界问题,就是指当物体从一种状态转变为另一状态,某些物理量达到极限取值时,物体所处的状态或条件发生突变。
一、有明显临界词语的临界问题许多临界问题常在题目中出现“恰好”“刚好”“刚要”“最大”“至少”“最高”“不相撞”“不脱离”等词语,对临界问题给出了明确的提示,我们称之为临界词语,审题时只要抓住了这些特定词语其内含规律就能找到临界条件,从而找到问题的突破口。
例题:如图1所示,光滑水平面AB与竖直面内的半圆形导轨在B点相接,导轨半径为R,一个质量为m的物体将弹簧压缩至A点后由静止释放,在弹力作用下物体获得某一向右速度后脱离弹簧,脱离弹簧后当它经过B点进入导轨瞬间对导轨的压力为其重力的7倍,之后向上运动完成半个圆周运动恰好到达C点。
试求:物体从B点运动至C点克服阻力做的功。
对物体P由牛顿第二定律可得: F+N-mg=ma,在0.2时N=0,即mg=F,所以求得x=mg/k。
而,所以求得a=7.5m/s2。
当P开始运动时拉力最小,此时Fmin=90N;当P与盘分离时拉力F最大,此时Fmax= 210N。
授人以渔,故掌握一种方法才是最重要的,让学生学会解决问题的方法比学会知识更重要。
学生一旦归纳和熟悉了临界状态的力、运动的特征,就能更加快速、准确地找出其关系,列出方程,进而掌握解决这种题型的技巧。
高中物理常见的重要临界状态及极值条件

1.雨水从水平长度一定的光滑斜面形屋顶流淌时间最短——屋面倾角为45°。
2.从长斜面上某点平抛出的物体距离斜面最远——速度与斜面平行时刻。
3.物体以初速度沿固定斜面恰好能匀速下滑(物体冲上固定斜面时恰好不再滑下)—μ=tgθ。
4.物体刚好滑动——静摩擦力达到最大值。
5.两个物体同向运动其间距离最大(最小)——两物体速度相等。
6.两个物体同向运动相对速度最大(最小)——两物体加速度相等。
7.位移一定的先启动后制动分段运动,在初、末速及两段加速度一定时欲使全程历时最短——中间无匀速段(位移一定的先启动后制动分段匀变速运动,在初速及两段加速度一定时欲使动力作用时间最短——到终点时末速恰好为零)8.两车恰不相撞——后车追上前车时两车恰好等速。
9.加速运动的物体速度达到最大——恰好不再加速时的速度。
10.两接触的物体刚好分离——两物体接触但弹力恰好为零。
11.物体所能到达的最远点——直线运动的物体到达该点时速度减小为零(曲线运动的物体轨迹恰与某边界线相切)12.在排球场地3米线上方水平击球欲成功的最低位置——既触网又压界13.木板或传送带上物体恰不滑落——物体到达末端时二者等速。
14.线(杆)端物在竖直面内做圆周运动恰能到圆周最高点—最高点绳拉力为零(=0v杆端)15.竖直面上运动的非约束物体达最高点——竖直分速度为零。
16.细线恰好拉直——细线绷直且拉力为零。
17.已知一分力方向及另一分力大小的分解问题中若第二分力恰为极小——两分力垂直。
18.动态力分析的“两变一恒”三力模型中“双变力”极小——两个变力垂直。
19.欲使物体在1F2F两个力的作用下,沿与1F成锐角的直线运动,已知1F为定值,则2F最小时即恰好抵消1F在垂直速度方向的分力。
20.渡河中时间最短——船速垂直于河岸,即船速与河岸垂直(相当于静水中渡河)。
21.船速大于水速的渡河中航程最短——“斜逆航行”且船速逆向上行分速度与水速抵消。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理常见的“临界条件”
一、刚好不相撞
两物体最终速度相等或者接触时速度相等。
二、刚好不分离
两物体仍然接触、弹力为零,且速度和加速度相等。
三、刚好不滑动
1.转盘上“物体刚好发生滑动”:向心力为最大静摩擦力。
2.斜面上物体刚好不上(下)滑:静摩擦力为最大静摩擦力,物体平衡。
3.保持物体静止在斜面上的最小水平推力: 静摩擦力为最大静摩擦力,物体平衡。
4.拉动物体的最小力:静摩擦力为最大静摩擦力,物体平衡。
四、运动到某一极端位置
1.绳端物体刚好通过最高点(等效最高点):物体运动到最高点时重力(等效重力)等于向心力,速度大小为(gR)1/2[(gˊR)1/2].
2.杆端物体刚好通过最高点:物体运动到最高点时速度为零。
3.刚好运动到某一点:到达该点时速度为零。
4.物体刚好滑出(不滑出)小车:物体滑到小车一端时与小车速度刚好相等。
5.粒子刚好飞出(飞不出)两个极板间的匀强电场:粒子沿极板的边缘射出(粒子运动轨迹与极板相切)。
6.粒子刚好飞出(飞不出)磁场:粒子运动轨迹与磁场边界相切。
五、速度达到最大或最小时:物体所受的合外力为零,即加速度为零
1.机车启动过程中速度达最大匀速行驶:牵引力和阻力平衡。
2.导体棒在磁场中做切割运动时达稳定状态:感应电流产生的安培力和其他力的合力平衡。
六、某一量达到极大(小)值
1.两个物体距离最近(远):速度相等。
2.圆形磁场区的半径最小:磁场区是以公共弦为直径的圆。
3.使通电导线在倾斜导轨上静止的最小磁感应强度:安培力平行于斜面。
4.穿过圆形磁场区域时间最长:入射点和出射点分别为圆形直径两端点。
七、绳的临界问题
1.绳刚好被拉直:绳上拉力为零。
2.绳刚好被拉断:绳上的张力等于绳能承受的最大拉力。
3.绳子突然绷紧:速度突变,沿绳子径向方向的速度减为零。
八、运动的突变
1.天车下悬挂重物水平运动,天车突停:重物从直线运动转为圆周运动,绳拉力增加。
2.绳系小球摆动,绳碰到(离开)钉子:圆周运动半径变化,拉力突变。
3.物体运动到曲面和水平面的交界处:对支持面的压力突变。
4.稳定轨道上运行的卫星突然加速或减速:卫星变轨,做离心运动或近心运动。