最优化基础理论与方法分析

合集下载

最优化理论与算法

最优化理论与算法

最优化理论与算法
优化理论与算法研究的目标是解决最优化问题,即给定一定的约束条
件下,求得目标函数的最佳值,优化理论与算法是计算机科学、数学、运
筹学及其它相关学科的重要组成部分,是一个多学科交叉学科。

优化理论
与算法是指对复杂环境、条件、限制等进行模型建立,并以此模型为基础,运用计算机对各种优化问题进行求解,得到最优解的方法。

它在产业中的
应用非常广泛,包括交通系统、排课模式、物流系统、科研计划等,它的
应用领域也不断扩大。

优化理论与算法包括几何优化、数值优化、组合优化、动态规划等,
其中几何优化是指把优化问题转换成几何问题,按照优化准则进行空间,
以求取最优解的方法。

数值优化是指根据给定的模型,使用计算机求解目
标函数的最优解的方法。

组合优化是指求解那些变量数量特别多,而每个
变量又只能取有限的取值,使其能达到最优解的一种技术。

动态规划是指
通过构建有限步骤,每步骤之间相互关联的一个优化过程,以求得最优解
的方法。

优化理论与算法综合利用了统计学、数理统计、概率论、凸分析、数
值分析和计算机程序的优势和特点,能有效地处理实际中复杂的优化问题。

最优化理论与方法概述

最优化理论与方法概述
第一页,编辑于星期五:十点 四分。
1. 最优化问题
最优化问题:求一个一元函数或多元函数的极 值。 在微积分中,我们曾经接触过一些比较简单 的极值问题。下面通过具体例子来看看什么是最 优化问题。
第二页,编辑于星期五:十点 四分。
1.1 最优化问题的例子
例1 对边长为a的正方形铁板,在四个角处剪去相等
、大豆粉的量(磅)。
min Z 0.0164x1 0.0463x2 0.1250x3 s.t. x1 x2 x3 100
0.380 0.380
x1 x1
0.001x2 0.001x2
Байду номын сангаас
0.002x3 0.002x3
0.012 100 0.008100
0.09x2 0.50x3 0.22100
例:求目标函数 f (x) x12 x22 x32 2x1x2 2x2x3 3x3 的梯度和Hesse矩阵。
解:因为
则 又因为:
f X
x1
2
x1
2
x2
f X
x2
2x2
2
x1
2 x3
3
f X 2x1 2x2, 2x2 2x1 2x3 3, 2x3 2x2 T
f X
x3
2
x3
恒有 f x* f x 则称 x*是最优化问题的整体最优解。
定义2:局部最优解:若 x* D,存在某邻域 N ( x*,) 使得对于
一切 x N ( x* ) D ,恒有 f x* f x 则称 x *是最优化问题
的局部最优解。其中 N ( x* ) { x | x x* , 0}
配料
每磅配料中的营养含量

蛋白质
纤维

系统工程导论 第二章系统工程的基础理论与方法论 第一节系统最优化理论

系统工程导论 第二章系统工程的基础理论与方法论 第一节系统最优化理论

n 。最后,也要考虑到xij
的产品数量属性,即 xij 0,i 1, 2, m, j 1, 2, n ,因此,该运
输方案可由以下模型求解得到:
2.1 系统最优化理论
mn
min
cij xij
i 1 j 1
(2-3)
n
s.t. xij ai ,i 1, 2, m j 1 m xij bj , j 1, 2, n i 1 xij 0,i 1, 2, m, j 1, 2, n
2.1 系统最优化理论
mn

首先,在假设运输量为
xij
的条件下其总的运费为 i 1
j 1
cij
xij

其次,要考虑到从任意产地运出的量要等于该产地的产量,即
n
xij ai ,i 1, 2,
j 1
m 。第三,还要考虑到运到任意销地的量要等
m
于该销地能销出的量,即 xij bi , j 1, 2, i 1
不同的方案、设计、措施以达到最优目的。(2)目标函数,如例
2-1
中的 max
, 10x1 18x2

2-2
中的min
mn
cij xij
。目标函数通常是决策变
i 1 j 1
量的函数,表达了“何为最优”的准则和目标,规定了优化问题
的实际意义。
2.1 系统最优化理论
(3)约束条件,如例 2-1 和例 2-2 中由“s.t”规定的部分。 约束条件指决策变量取值时受到的各种资源和条件的限制,表 达了一种“有条件优化”的概念,通常为决策变量的等式或不 等式方程。如果决策变量的取值是连续的,且目标函数和约束 条件都是决策变量的线性函数,则称为线性规划问题。如果决 策变量的取值为整数点,则称为整数规划问题;如果部分决策 变量取值连续而其余取值为整数,则称为混合整数规划问题; 如果目标函数和约束条件中存在任何的非线性因子,则称为非 线性规划问题。

巴班斯基的教学过程最优化理论

巴班斯基的教学过程最优化理论

巴班斯基的教学过程最优化理论尤·克·巴班斯基(1927——1987)是苏联著名教育家、社会活动家、苏联教育科学院正式院士、副院长、教育科学博士。

也是苏联当代教育理论界的权威之一。

巴班斯基的教学过程最优化理论,最大的特色,就是其方法论基础与众不同,即他首次尝试性地使用了辩证的系统结构方法论。

他指出,要使教学过程最优化,就必须以辩证的系统结构方法论来研究教学过程。

在他的这个系统结构方法论之下,还包括如下一些具体观点:整体观,联系观,矛盾观,综合观,真理的具体性原理,划出系统中主要环节的原理等等。

一、教学过程最优化理论概述(一)教学最优化的定义教学最优化是从解决教学任务的有效性和师生时间耗费的合理性着眼,有科学根据地选择和实施该条件下最好的教学方案。

巴班斯基在不同场合对“教学过程最优化”或“教学最优化方案”作了与上述定义基本一致的解释:1、所谓教学教育过程的最优化,就是指教师有目的地选定一种建立教学过程的最佳方案,使能保证在规定时间内解决教养和教育学生的任务,并取得尽所可能最大的效果。

2、教学过程最优化指的是,在全面考虑教学规律、原则、现代教学的形式和方法、该教学系统的特征以及内外部条件的基础上,为了使过程从既定标准看来发挥最有效的作用而组织的控制。

3、当代学校教学教育过程的最优化,就是指所选择的教学教育过程的方法,可以使师生耗费最少的必要时间和精力而收到最佳的效果。

4、最优的教学方案,也就是对现有条件来说,对现阶段来说,从其效果和师生的时耗角度看,为最佳的教学方案。

(二)教学最优化的标准通过上述定义和解释可以看出,教学结果和教学时耗量,是评定、选择、实施最优化教学方案时必须考虑的因素。

这就涉及教学最优化的标准问题。

教学最优化的第一个标准是,每个学生都在教养、教育、发展上达到符合他最近发展区内实际学习可能性的水平。

这里强调的不是现有的实际学习可能性,而是在最近发展区内的实际学习可能性。

最优化基础理论与方法分析

最优化基础理论与方法分析

最优化基础理论与方法分析在当今的科技与工程领域,最优化问题无处不在。

从资源分配到生产流程优化,从物流路径规划到金融投资策略制定,我们都在追求某种意义上的“最优解”。

那么,什么是最优化?简单来说,就是在一定的约束条件下,找到使目标函数达到最大值或最小值的变量取值。

为了实现这一目标,人们发展出了一系列的最优化基础理论与方法。

最优化问题可以大致分为两类:无约束优化问题和约束优化问题。

无约束优化问题相对简单,只需要在整个变量空间中寻找目标函数的极值点。

而约束优化问题则要复杂得多,因为我们不仅要考虑目标函数的值,还要满足给定的约束条件。

让我们先来看看一些常见的最优化基础理论。

首先是梯度下降法,这是一种求解无约束优化问题的经典方法。

它的基本思想是沿着目标函数的负梯度方向不断迭代,逐步逼近最小值点。

想象一下你在一个山坡上,想要走到山底,你会选择朝着最陡峭的下坡方向前进,这就是梯度下降法的直观理解。

与梯度下降法相对应的是牛顿法。

牛顿法利用了目标函数的二阶导数信息,能够更快地收敛到极值点。

但它的计算复杂度较高,对初始点的选择也比较敏感。

在约束优化问题中,拉格朗日乘子法是一个重要的理论工具。

通过引入拉格朗日乘子,将约束条件融入到目标函数中,从而将约束优化问题转化为无约束优化问题。

除了这些理论,还有一些常见的最优化方法。

比如,线性规划是一种特殊的约束优化问题,其目标函数和约束条件都是线性的。

单纯形法是求解线性规划问题的有效方法,通过不断调整可行解的顶点,找到最优解。

而对于非线性规划问题,常用的方法有惩罚函数法和序列二次规划法等。

惩罚函数法通过对违反约束条件的解施加惩罚,将约束问题转化为一系列无约束问题来求解。

序列二次规划法则是将非线性规划问题在当前点进行线性近似,然后通过求解一系列二次规划子问题来逐步逼近最优解。

在实际应用中,选择合适的最优化方法至关重要。

这需要考虑问题的规模、性质、计算资源等多方面因素。

比如,对于大规模的优化问题,可能需要采用分布式计算或者近似算法来提高计算效率。

优化设计-最优化基础理论+对分法

优化设计-最优化基础理论+对分法

1. 最优化技术的理论基础
1.4 Lagrange乘数法
在许多极值问题中,函数的自变量往往要受到一些条件的限制,其
一般形式是在条件
限制下,求函数 的极值。
条件极值与无条件极值的区别:条件极值是限制在一个子流形上的
极值,条件极值存在时无条件极值不一定存在,即使存在二者也不一定 相等。
Title in here
对分法
1.8.1.2 对分法迭代步骤 已知 (t ) , (t ) 表达式,终止限 . (1)确定初始搜索区间 [a, b,要求 ] '(a) 0, '(b) 0 (2) 计算[a, b] 的中点 c 1 (a b) . 2 a c ( c ) 0 (3) 若 ,则 ,转(4); 若 (c) 0 ,则 t * c,转(5); 若 (c) 0 ,则 b c ,转(4). (4) 若| a b | ,则 t * 1 (a b) ,转(5);否则转(2). 2 * (5) 打印t ,停机.
然后用这条切线与横轴交点的横坐标t k 1作为根的新的近 似(如图).它可由方程(4.4)在令 y 0 的解出来, 即 (t k )
t k 1 t k
(t k )
这就是Newton切线法迭代公式.
Newton切线法
1.8.2.2 Newton切线法迭代步骤 已知 (t ) , (t ) 表达式,终止限 . (1) 确定初始搜索区间 [a, b] ,要求 '(a) 0, '(b) 0 (2) 选定 t 0 . (3) 计算t t0 '(t0 ) / "(t0 ) . (4) 若| t t 0 | ,则 t 0 t ,转(3);否则转(5). (5) 打印t, (t ) ,停机.

最优化理论与方法

最优化理论与方法

课程报告题目最优化理论与方法学生姓名学号院系专业二O一二年十一月十日最优化理论与方法综述最优化方法是近几十年形成的,它主要运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。

最优化方法的主要研究对象是各种管理问题及其生产经营活动。

最优化方法的目的在于针对所研究的系统,求得一个合理运用人力、物力和财力的最佳方案,发挥和提高系统的效能及效益,最终达到系统的最优目标。

实践表明,随着科学技术的日益进步和生产经营的日益发展,最优化方法已成为管理科学的重要理论基础和不可缺少的方法,被人们广泛地应用到公共管理、经济管理、工程建设、国防等各个领域,发挥着越来越重要的作用。

这就是我理解的整个课程的流程。

在这整个学习的过程当中,当然也会遇到很多的问题,不论是从理论上的还是从实际将算法编写出程序来解决一些问题。

下面给出学习该课程的必要性及结合老师讲解以及在作业过程中遇到的问题来阐述自己对该课程的理解。

20世纪40年代以来,由于生产和科学研究突飞猛进地发展,特别是电子计算机日益广泛应用,使最优化问题的研究不仅成为一种迫切需要,而且有了求解的有力工具。

因此最优化理论和算法迅速发展起来,形成一个新的学科。

至今已出现线性规划、整数规划、非线性规划、几何规划、动态规划、随机规划、网络流等许多分文。

最优化理论与算法包括线性规划单纯形方法、对偶理论、灵敏度分析、运输问题、内点算法、非线性规划K-T条件、无约束最优化方法、约束最优化方法、参数线性规划、运输问题、线性规划路径跟踪法、信赖域方法、二次规划路径跟踪法、整数规划和动态规划等内容。

最优化理论所研究的问题是讨论在众多的方案中什么样的方案最优以及怎样找出最优方案。

这类问题普遍存在。

例如,工程设计中怎样选择设计参数,使得设计方案满足设计要求,又能降低成本;资源分配中,怎样分配有限资源,使得分配方案既能满足各方面的基本要求,又能获得好的经济效益;生产评价安排中,选择怎样的计划方案才能提高产值和利润;原料配比问题中,怎样确定各种成分的比例,才能提高质量,降低成本;城建规划中,怎样安排基本单位的合理布局,才能方便群众,有利于城市各行各业的发展;农田规划中,怎样安排各种农作物的合理布局,才能保持高产稳产,发挥地区优势;军事指挥中,怎样确定最佳作战方案,才能有效地消灭敌人,保存自己,有利于战争的全局;在人类活动的各个领域中,诸如此类,不胜枚举。

最优化:建模、算法与理论

最优化:建模、算法与理论

最优化:建模、算法与理论
最优化技术是一种用于解决复杂问题的算法,它能够在搜索范围内找到最佳解决方案。

它也被称作凸优化,随着现代技术的发展,现在已经成为研究和实际应用的热门话题。

这篇文章将介绍最优化技术的建模、算法和理论。

首先要介绍的是建模,最优化问题的建模是将该问题转换成方程式的过程,而这些方程式又是由用户输入的数据而创建的。

建模的目的是将问题从数学的角度转化成实施的方式,处理数据的方法包括线性规划、混洗整数规划、连续最优化及其他一些更加复杂的方法。

其次,最优化算法也是实现最优解决方案的重要一步,它以数学上方程式为基础而完成有限步伐的运算,从而寻找到目标函数的最优解。

主要的最优化算法可以分为几类:梯度下降法、二次规划、拉格朗日乘子法及其他几种较为复杂的算法。

最后,最优化理论是指对最优化问题的数学研究,它将深入研究最优化的结构特性,研究上述算法的性质,并尝试提高它们的效率。

有许多研究发现,对于复杂问题,可以提出新的最优化理论或技术,用以改进原有算法的性能。

总之,最优化技术已在现代科技中取得了巨大的成就,它能够提高许多现代技术的效率,为人类社会带来许多好处。

本文重点介绍了最优化技术的建模、算法及理论,希望能够对此领域的研究者有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录1.最优化的概念与分类 (2)2. 最优化问题的求解方法 (3)2.1线性规划求解 (3)2.1.1线性规划模型 (3)2.1.2线性规划求解方法 (3)2.1.3 线性规划算法未来研究方向 (3)2.2非线性规划求解 (4)2.2.1一维搜索 (4)2.2.2无约束法 (4)2.2.3约束法 (4)2.2.4凸规划 (5)2.2.5二次规划 (5)2.2.6非线性规划算法未来研究方向 (5)2.3组合规划求解方法 (5)2.3.1 整数规划 (5)2.3.2 网络流规划 (7)2.4多目标规划求解方法 (7)2.4.1 基于一个单目标问题的方法 (7)2.4.2 基于多个单目标问题的方法 (8)2.4.3多目标规划未来的研究方向 (8)2.5动态规划算法 (8)2.5.1 逆推解法 (8)2.5.2 顺推解法 (9)2.5.3 动态规划算法的优点及研究方向 (9)2.6 全局优化算法 (9)2.6.1 外逼近与割平面算法 (9)2.6.2 凹性割方法 (9)2.6.3 分支定界法 (9)2.6.4 全局优化的研究方向 (9)2.7随机规划 (9)2.7.1 期望值算法 (10)2.7.2 机会约束算法 (10)2.7.3 相关机会规划算法 (10)2.7.4 智能优化 (10)2.8 最优化软件介绍 (11)3 最优化算法在电力系统中的应用及发展趋势 (12)3.1 电力系统的安全经济调度问题 (12)3.1.1电力系统的安全经济调度问题的介绍 (12)3.1.2电力系统的安全经济调度问题优化算法的发展趋势 (12)2. 最优化问题的求解方法 最优化方法是近几十年形成的,它主要运用数学方法研究各种优化问题的优化途径及方案,为决策者提供科学决策的依据。

最优化方法的主要研究对象是各种有组织系统的管理问题及其生产经营活动。

最优化方法的目的在于针对所研究的系统,求得一个合理运用人力、物力和财力的最佳方案,发挥和提高系统的效能及效益,最终达到系统的最优目标。

实践表明,随着科学技术的日益进步和生产经营的日益发展,最优化方法已成为现代管理科学的重要理论基础和不可缺少的方法,被人们广泛地应用到公共管理、经济管理、工程建设、国防等各个领域,发挥着越来越重要的作用。

2.1 线性规划求解2.1.1线性规划模型线性规划模型的一般表达方式如下所示:112211221122min .. , 1,2,, 0 , 1, , 1, 0 , 1,2,, , n ni i in n i i i in n i j j z c x c x c x s t a x a x a x b i pa x a x a xb j i p m x j qq n x =++⋅⋅⋅+++==⋅⋅=⋅++≥=+⋅⋅⋅≥+⋅=⋅⋅⋅⋅⋅¤(2.1)其中,j x (1,2,,j n =⋅⋅⋅)为待定的决策变量,己知的系数ij a 组成的矩阵A 称为约束矩阵。

A 的列向量记为j A (1,2,,j n =⋅⋅⋅)。

A 的行向量记为T i A (1,2,,i m =⋅⋅⋅)。

目标函数记为1nj j j c x =∑,向量()12,,Tn C c c c =⋅⋅⋅称为价值向量,j c 称为价值系数;向量12(,)T m b b b b =⋅⋅⋅称为右端向量。

条件0j x ≥称为非负约束;0j x ¤表示变量可取正值、负值、或零值,称这样的变量为自由变量。

2.1.2线性规划求解方法 2.1.2.1 单纯形法求解线性规划问题的基本方法是单纯形法,是研究得最为透彻的一个方向,且至今仍是最好的应用最广泛的算法之一,已有单纯形法的标准软件,可在电子计算机上求解约束条件和决策变量数达 10000个以上的线性规划问题。

它的理论根据是:线性规划问题的可行域是 n 维向量空间R n 中的多面凸集,其最优值如果存在必在该凸集的某顶点处达到。

顶点所对应的可行解称为基本可行解。

单纯形法的基本思想是:先找出一个基本可行解,对它进行鉴别,看是否是最优解;若不是,则按照一定法则转换到另一改进的基本可行解,再鉴别;若仍不是,则再转换,按此重复进行。

因基本可行解的个数有限,故经有限次转换必能得出问题的最优解。

如果问题无最优解也可用此法判别。

单纯形法的一般解题步骤可归纳如下:①把线性规划问题的约束方程组表达成典范型方程组,找出基本可行解作为初始基可行解。

①若基本可行解不存在,即约束条件有矛盾,则问题无解。

①若基本可行解存在,从初始基本可行解作为起点,根据最优性条件和可行性条件,引入非基变量取代某一基变量,找出目标函数值更优的另一基本可行解。

①按步骤3进行迭代,直到对应检验数满足最优性条件(这时目标函数值不能再改善),即得到问题的最优解。

①若迭代过程中发现问题的目标函数值无界,则终止迭代。

2.1.2.2 内点算法除了单纯形算法之外,现在经常使用的线性规划求解方法还包括内点算法,内点算法中的代表即Karmarkar 算法。

Karmarkar 算法运用了求解非线性规划问题的思想来解决线性规划问题。

这种算法是在把一般线性规划问题转化为Karmarkar 所特有的标准型,再利用一种求解这种标准型的算法最终求出最优解。

2.1.3 线性规划算法未来研究方向内点法是最新的设计,实际应用上它也可以与单纯形法相抗衡,不少商业化软件已经上市,前景甚佳。

目前线性规划的内点法也趋于成熟,这方面的研究者们目前大都致力于以线性规划作为特例的锥规划,以及如何利用线性规划松弛求解整数规划等方面的研究。

2.2非线性规划求解非线性规划问题的求解一般要比线性规划困难很多,而且目前尚没有适合于各类非线性问题的一般算法,每种算法都有自己的特定的使用范围。

有些情况下,为方便计算,也会把非线性规划问题近似为线性规划问题进行求解。

2.2.1一维搜索一维搜索是求解单变量非线性规划问题的方法。

这类方法不仅有实用价值,而且大量多维最优化方法都依赖于一系列的一维最优化。

常用的一维最优化方法有黄金分割法、切线法和插值法。

2.2.1.1黄金分割法黄金分割法又称0.618法。

它适用于单峰函数。

其基本思想是:在初始寻查区间中设计一列点,通过逐次比较其函数值,逐步缩小寻查区间,以得出近似最优值点。

2.2.1.2切线法又称牛顿法。

它也是针对单峰函数的。

其基本思想是:在一个猜测点附近将目标函数的导函数线性化,用此线性函数的零点作为新的猜测点,逐步迭代去逼近最优点。

2.2.1.3插值法又称多项式逼近法。

其基本思想是用多项式(通常用二次或三次多项式)去拟合目标函数。

此外,还有斐波那契法、割线法、有理插值法、分批搜索法等。

2.2.2无约束法无约束法是求解无约束条件的非线性规划问题的方法,指寻求n元实函数f在整个n维向量空间Rn上的最优值点的方法。

这类方法的意义在于:虽然实用规划问题大多是有约束的,但许多约束最优化方法可将有约束问题转化为若干无约束问题来求解。

无约束最优化方法大多是逐次一维搜索的迭代算法。

这类迭代算法可分为两类。

一类需要用目标函数的导函数,称为解析法。

另一类不涉及导数,只用到函数值,称为直接法。

这些迭代算法的基本思想是:在一个近似点处选定一个有利搜索方向,沿这个方向进行一维寻查,得出新的近似点。

然后对新点施行同样手续,如此反复迭代,直到满足预定的精度要求为止。

根据搜索方向的取法不同,可以有各种算法。

属于解析型的算法有:①梯度法:又称最速下降法。

这是早期的解析法,收敛速度较慢。

②牛顿法:收敛速度快,但不稳定,计算也较困难。

③共轭梯度法:收敛较快,效果较好。

④变尺度法:这是一类效率较高的方法。

其中达维登-弗莱彻-鲍威尔变尺度法,简称DFP法,是最常用的方法。

属于直接型的算法有交替方向法(又称坐标轮换法)、模式搜索法、旋转方向法、鲍威尔共轭方向法和单纯形加速法等。

2.2.3约束法指前述一般非线性规划模型的求解方法。

常用的约束最优化方法有4种。

①拉格朗日乘子法:它是将原问题转化为求拉格朗日函数的驻点。

②制约函数法:又称系列无约束最小化方法,简称SUMT法。

它又分两类,一类叫惩罚函数法,或称外点法;另一类叫障碍函数法,或称内点法。

它们都是将原问题转化为一系列无约束问题来求解。

③可行方向法:这是一类通过逐次选取可行下降方向去逼近最优点的迭代算法。

如佐坦迪克法、弗兰克-沃尔夫法、投影梯度法和简约梯度法都属于此类算法。

④近似型算法:这类算法包括序贯线性规划法和序贯二次规划法。

前者将原问题化为一系列线性规划问题求解,后者将原问题化为一系列二次规划问题求解。

2.2.4凸规划这是一类特殊的非线性规划。

在前述非线性规划数学模型中,若f 是凸函数,诸i g 都是凹函数,诸j h都是一次函数,则称之为凸规划。

所谓f 是凸函数,是指f 有如下性质:它的定义域是凸集,且对于定义域中任意两点x 和y 及任一小于1的正数α,下式都成立:((1)x y)(1)(x)(y)f f f ααααα-+≤-+(2.1) 将上述不等式中的不等号反向即得凹函数的定义。

所谓凸集,是指具有如下性质的集合:连结集合中任意两点的直线段上的点全部属于该集合。

对于一般的非线性规划问题,局部解不一定是整体解。

但凸规划的局部解必为整体解,而且凸规划的可行集和最优解集都是凸集。

2.2.5二次规划二次规划是一类特殊的非线性规划。

它的目标函数是二次函数,约束条件是线性的。

求解二次规划的方法很多。

常用方法是拉格朗日法,较简便易行的是沃尔夫法。

它是依据库恩-塔克条件,在线性规划单纯形法的基础上加以修正而成的。

此外还有莱姆基法、毕尔法、凯勒法等。

2.2.6非线性规划算法未来研究方向就算法的发展来看,早期的方法以最速下降法和共轭梯度法为主,目前,序贯二次规划法是一类被用于广泛求解一般非线性规划的有效算法,同时也还有许多研究者在为改善这类算法作努力,其中包括序列线性规划算法以及内点算法等。

非线性规化算法通常使用线搜索策略选取步长,或通过求解信赖域子问题而得到新的迭代点。

这两个方面的研究非常基本,但仍有改善的空间。

对于大规模问题,如何设计子空间算法;以及如何有效求解一般非线性规划的全局最优,和一些来自于图像处理等领域的特殊的非光滑问题是目前非线性规划比较重要的研究问题。

总之,尽管在表面上看非线性规划已经有许许多多的研究,但由于非线性的存在,好的研究结果还将会不断出现,并且随着问题的不同而产生更加具有针对性的特殊算法。

2.3组合规划求解方法组合优化是20世纪60年代逐渐发展起来的一个交叉学科分支,它的研究对象是有限集合上的极值问题。

一个组合优化问题由三部分构成:已知条件的输入、可行解的描述、目标函数的定义。

经典的组合优化问题包括网络流、旅行商、排序、装箱、着色、覆盖、最短网络等等。

相关文档
最新文档