2020-2021无锡外国语学校初三数学下期中一模试题及答案
2020-2021学年江苏省无锡市中考数学第一次模拟试题及答案解析

最新江苏省无锡市中考数学一模试卷一、选择题(本大题共10小题,每题3分,共计30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请用2B铅笔把答题卷上相应的答案涂黑.)1.﹣3的绝对值是()A.3 B.﹣3 C.D.2.计算(﹣xy3)2的结果是()A.x2y6B.﹣x2y6C.x2y9D.﹣x2y93.如图,BC⊥AE于点C,CD∥AB,∠B=40°,则∠ECD的度数是()A.70° B.60° C.50°D.40°4.有6个相同的立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.5.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.了解全国九年级学生身高的现状C.考察人们保护海洋的意识D.检查一枚用于发射卫星的运载火箭的各零部件6.若是关于x、y的二元一次方程ax﹣3y=1的解,则a的值为()A.﹣5 B.﹣1 C.2 D.77.直线y=2x+2沿y轴向下平移6个单位后与y轴的交点坐标是()A.(0,2)B.(0,8)C.(0,4)D.(0,﹣4)8.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是()A.B.C.D.9.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为()A.B.C.D.210.如图,在Rt△ABC中,∠ACB=90°,点D是AB边的中点,过D作DE⊥BC于点E,点P是边BC上的一个动点,AP与CD相交于点Q.当AP+PD的值最小时,AQ与PQ 之间的数量关系是()A.AQ=PQ B.AQ=3PQ C.AQ=PQ D.AQ=4PQ二、填空题(本大题共8小题,每题2分,共计16分.请把答案直接填写在答题卷相应位置上.)11.函数y=中,自变量x的取值范围是.12.分解因式:ab3﹣4ab= .13.2016年我国大学毕业生将达到7650000人,该数据用科学记数法可表示为.14.一个扇形的圆心角为60°半径为6cm,则这个扇形的弧长为cm.(结果保留π)15.已知反比例函数的图象经过点(m,4)和点(8,﹣2),则m的值为.16.如图,△ABC中,D为BC上一点,∠BAD=∠C,AB=6,BD=4,则CD的长为.17.如图,C、D是线段AB上两点,且AC=BD=AB=1,点P是线段CD上一个动点,在AB同侧分别作等边△PAE和等边△PBF,M为线段EF的中点.在点P从点C移动到点D时,点M运动的路径长度为.18.如图坐标系中,O(0,0),A(6,6),B(12,0),将△OAB沿直线线CD折叠,使点A恰好落在线段OB上的点E处,若OE=,则CE:DE的值是.三、解答题(本大题共10小题,共计84分.解答需写出必要的文字说明或演算步骤.)19.(1)计算:﹣|﹣2|+2×(﹣3);(2)化简:(1+)÷.20.(1)解方程:1+=;(2)解不等式组:.21.如图,在▱ABCD中,点E,F在AC上,且∠ABE=∠CDF,求证:BE=DF.22.一个不透明的口袋中装有2个红球(记为红球1、红球2),1个白球、1个黑球,这些球除颜色外都相同,将球搅匀.(1)从中任意摸出1个球,恰好摸到红球的概率是(2)先从中任意摸出一个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表),求两次都摸到红球的概率.23.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).24.某厂生产A,B两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如表统计表及不完整的折线图.A,B产品单价变化统计表第一次第二次第三次A产品单价(元/件) 6 5.2 6.5B产品单价(元/件) 3.5 4 3并求得了A产品三次单价的平均数和方差:=5.9,s A2=[(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]=(1)补全如图中B产品单价变化的折线图.B产品第三次的单价比上一次的单价降低了%(2)求B产品三次单价的方差,并比较哪种产品的单价波动小;(3)该厂决定第四次调价,A产品的单价仍为6.5元/件,B产品的单价比3元/件上调m%(m>0),使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1,求m的值.25.某工厂接受了20天内生产1200台GH型电子产品的总任务.已知每台GH型产品由4个G型装置和3个H型装置配套组成.工厂现有80名工人,每个工人每天能加工6个G型装置或3个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品.(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G型装置的加工,且每人每天只能加工4个G型装置.请问至少需要补充多少名新工人?26.已知边长为3的正方形ABCD中,点E在射线BC上,且BE=2CE,连接AE交射线DC于点F,若△ABE沿直线AE翻折,点B落在点B1处.(1)如图1,若点E在线段BC上,求CF的长;(2)求sin∠DAB1的值;(3)如果题设中“BE=2CE”改为“=x”,其它条件都不变,试写出△ABE翻折后与正方形ABCD公共部分的面积y与x的关系式及自变量x的取值范围(只要写出结论,不需写出解题过程).27.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,且B点的坐标为(3,0),经过A点的直线交抛物线于点D(2,3).(1)求抛物线的解析式和直线AD的解析式;(2)过x轴上的点(a,0)作直线EF∥AD,交抛物线于点F,是否存在实数a,使得以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.28.如图,Rt△ABC中,M为斜边AB上一点,且MB=MC=AC=8cm,平行于BC的直线l从BC的位置出发以每秒1cm的速度向上平移,运动到经过点M时停止.直线l分别交线段MB、MC、AC于点D、E、P,以DE为边向下作等边△DEF,设△DEF与△MBC重叠部分的面积为S(cm2),直线l的运动时间为t(秒).(1)求边BC的长度;(2)求S与t的函数关系式;(3)在整个运动过程中,是否存在这样的时刻t,使得以P、C、F为顶点的三角形为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.(4)在整个运动过程中,是否存在这样的时刻t,使得以点D为圆心、BD为半径的圆与直线EF相切?若存在,请求出t的值;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共10小题,每题3分,共计30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请用2B铅笔把答题卷上相应的答案涂黑.)1.﹣3的绝对值是()A.3 B.﹣3 C.D.【考点】绝对值.【分析】根据一个负数的绝对值等于它的相反数得出.【解答】解:|﹣3|=﹣(﹣3)=3.故选:A.2.计算(﹣xy3)2的结果是()A.x2y6B.﹣x2y6C.x2y9D.﹣x2y9【考点】幂的乘方与积的乘方.【分析】根据幂的乘方和积的乘方的运算方法:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数);求出计算(﹣xy3)2的结果是多少即可.【解答】解:(﹣xy3)2=(﹣x)2•(y3)2=x2y6,即计算(﹣xy3)2的结果是x2y6.故选:A.3.如图,BC⊥AE于点C,CD∥AB,∠B=40°,则∠ECD的度数是()A.70° B.60° C.50°D.40°【考点】平行线的性质;垂线.【分析】由BC与AE垂直,得到三角形ABC为直角三角形,利用直角三角形两锐角互余,求出∠A的度数,再利用两直线平行同位角相等即可求出∠ECD的度数.【解答】解:∵BC⊥AE,∴∠ACB=90°,在Rt△ABC中,∠B=40°,∴∠A=90°﹣∠B=50°,∵CD∥AB,∴∠ECD=∠A=50°,故选C.4.有6个相同的立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据主视图是从正面看得到的图形,可得答案.【解答】解:从正面看第一层三个小正方形,第二层左边一个小正方形,右边一个小正方形.故选:C.5.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.了解全国九年级学生身高的现状C.考察人们保护海洋的意识D.检查一枚用于发射卫星的运载火箭的各零部件【考点】全面调查与抽样调查.【分析】普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A、了解一批圆珠笔芯的使用寿命,由于具有破坏性,应当使用抽样调查,故本选项错误;B、了解全国九年级学生身高的现状,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;C、考察人们保护海洋的意识,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;D、检查一枚用于发射卫星的运载火箭的各零部件,事关重大,应用普查方式,故本选项正确;故选:D.6.若是关于x、y的二元一次方程ax﹣3y=1的解,则a的值为()A.﹣5 B.﹣1 C.2 D.7【考点】二元一次方程的解.【分析】根据题意得,只要把代入ax﹣3y=1中,即可求出a的值.【解答】解:把代入ax﹣3y=1中,∴a﹣3×2=1,a=1+6=7,故选:D,7.直线y=2x+2沿y轴向下平移6个单位后与y轴的交点坐标是()A.(0,2)B.(0,8)C.(0,4)D.(0,﹣4)【考点】一次函数图象与几何变换.【分析】根据平移可得直线y=2x+2沿y轴向下平移6个单位后解析式为y=2x+2﹣6=2x﹣4,再求出与y轴的交点即可.【解答】解:直线y=2x+2沿y轴向下平移6个单位后解析式为y=2x+2﹣6=2x﹣4,当x=0时,y=﹣4,因此与y轴的交点坐标是(0,﹣4),故选:D8.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是()A.B.C.D.【考点】菱形的性质;勾股定理.【分析】根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.【解答】解:∵四边形ABCD是菱形,∴CO=AC=3cm,BO=BD=4cm,AO⊥BO,∴BC==5cm,∴S菱形ABCD==×6×8=24cm2,∵S菱形ABCD=BC×AE,∴BC×AE=24,∴AE=cm,故选D.9.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为()A.B.C.D.2【考点】切线的性质;矩形的性质.【分析】连接OE,OF,ON,OG,在矩形ABCD中,得到∠A=∠B=90°,CD=AB=4,由于AD,AB,BC分别与⊙O相切于E,F,G三点得到∠AEO=∠AFO=∠OFB=∠BGO=90°,推出四边形AFOE,FBGO是正方形,得到AF=BF=AE=BG=2,由勾股定理列方程即可求出结果.【解答】解:连接OE,OF,ON,OG,在矩形ABCD中,∵∠A=∠B=90°,CD=AB=4,∵AD,AB,BC分别与⊙O相切于E,F,G三点,∴∠AEO=∠AFO=∠OFB=∠BGO=90°,∴四边形AFOE,FBGO是正方形,∴AF=BF=AE=BG=2,∴DE=3,∵DM是⊙O的切线,∴DN=DE=3,MN=MG,∴CM=5﹣2﹣MN=3﹣MN,在R t△DMC中,DM2=CD2+CM2,∴(3+NM)2=(3﹣NM)2+42,∴NM=,∴DM=3=,故选A.10.如图,在Rt△ABC中,∠ACB=90°,点D是AB边的中点,过D作DE⊥BC于点E,点P是边BC上的一个动点,AP与CD相交于点Q.当AP+PD的值最小时,AQ与PQ 之间的数量关系是()A.AQ=PQ B.AQ=3PQ C.AQ=PQ D.AQ=4PQ【考点】轴对称-最短路线问题.【分析】如图,作点A关于BC的对称点A′,连接A′D交BC于点P,此时PA+PD最小.作DM∥BC交AC于M,交PA于N,利用平行线的性质,证明AN=PN,利用全等三角形证明NQ=PQ,即可解决问题.【解答】解:如图,作点A关于BC的对称点A′,连接A′D交BC于点P,此时PA+PD 最小.作DM∥BC交AC于M,交PA于N.∵∠ACB=∠DEB=90°,∴DE∥AC,∵AD=DB,∴CE=EB,∴DE=AC=CA′,∵DE∥CA′,∴==,∵DM∥BC,AD=DB,∴AM=MC,AN=NP,∴DM=BC=CE=EB,MN=PC,∴MN=PE,ND=PC,在△DNQ和△CPQ中,,∴△DNQ≌△CPQ,∴NQ=PQ,∵AN=NP,∴AQ=3PQ.故选B.二、填空题(本大题共8小题,每题2分,共计16分.请把答案直接填写在答题卷相应位置上.)11.函数y=中,自变量x的取值范围是x≥﹣2 .【考点】函数自变量的取值范围.【分析】函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数即可求解.【解答】解:根据题意得:x+2≥0,解得x≥﹣2.故答案为:x≥﹣2.12.分解因式:ab3﹣4ab= ab(b+2)(b﹣2).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式ab,再对余下的多项式利用平方差公式继续分解.【解答】解:ab3﹣4ab,=ab(b2﹣4),=ab(b+2)(b﹣2).故答案为:ab(b+2)(b﹣2).13.2016年我国大学毕业生将达到7650000人,该数据用科学记数法可表示为7.65×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将7650000用科学记数法表示为:7.65×106.故答案为:7.65×106.14.一个扇形的圆心角为60°半径为6cm,则这个扇形的弧长为2πcm.(结果保留π)【考点】圆锥的计算.【分析】利用弧长公式是l=,代入就可以求出弧长.【解答】解:弧长是:=2πcm.故答案为:2π.15.已知反比例函数的图象经过点(m,4)和点(8,﹣2),则m的值为﹣4 .【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象上点的坐标特征得到4×m=8×(﹣2),然后解一次方程即可.【解答】解:根据题意得4×m=8×(﹣2),解得m=﹣4.故答案为﹣4.16.如图,△ABC中,D为BC上一点,∠BAD=∠C,AB=6,BD=4,则CD的长为 5 .【考点】相似三角形的判定与性质.【分析】易证△BAD∽△BCA,然后运用相似三角形的性质可求出BC,从而可得到CD的值.【解答】解:∵∠BAD=∠C,∠B=∠B,∴△BAD∽△BCA,∴=.∵AB=6,BD=4,∴=,∴BC=9,∴CD=BC﹣BD=9﹣4=5.故答案为5.17.如图,C、D是线段AB上两点,且AC=BD=AB=1,点P是线段CD上一个动点,在AB同侧分别作等边△PAE和等边△PBF,M为线段EF的中点.在点P从点C移动到点D时,点M运动的路径长度为 2 .【考点】轨迹.【分析】分别延长AE、BF交于点H,易证四边形EPFH为平行四边形,得出M为PH中点,则M的运行轨迹为三角形HCD的中位线GN.再求出CD的长,运用中位线的性质求出GN的长度即可.【解答】解:如图,分别延长AE、BF交于点H,∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EPA=60°,∴BH∥PE,∴四边形EPFH为平行四边形,∴EF与HP互相平分.∵M为EF的中点,∴M正好为PH中点,即在P的运动过程中,M始终为PH的中点,所以M的运行轨迹为三角形HCD的中位线GN.∵CD=6﹣1﹣1=4,∴GN=CD=2,即M的移动路径长为2.故答案为:2.18.如图坐标系中,O(0,0),A(6,6),B(12,0),将△OAB沿直线线CD折叠,使点A恰好落在线段OB上的点E处,若OE=,则CE:DE的值是.【考点】翻折变换(折叠问题);坐标与图形性质.【分析】过A作AF⊥OB于F,根据已知条件得到△AOB是等边三角形,推出△CEO∽△DBE,根据相似三角形的性质得到,设CE=a,则CA=a,CO=12﹣a,ED=b,则AD=b,OB=12﹣b,于是得到24b=60a﹣5ab,36a=60b﹣5ab,两式相减得到36a ﹣24b=60b﹣60a,即可得到结论.【解答】解:过A作AF⊥OB于F,∵A(6,6),B(12,0),∴AF=6,OF=6,OB=12,∴BF=6,∴OF=BF,∴AO=AB,∵tan∠AOB=,∴∠AOB=60°,∴△AOB是等边三角形,∴∠AOB=∠ABO=60°,∵将△OAB沿直线线CD折叠,使点A恰好落在线段OB上的点E处,∴∠CED=∠OAB=60°,∴∠OCE=∠DEB,∴△CEO∽△DBE,∴,设CE=a,则CA=a,CO=12﹣a,ED=b,则AD=b,OB=12﹣b,,∴24b=60a﹣5ab ①,,∴36a=60b﹣5ab ②,②﹣①得:36a﹣24b=60b﹣60a,∴=,即CE:DE=.故答案为:.三、解答题(本大题共10小题,共计84分.解答需写出必要的文字说明或演算步骤.)19.(1)计算:﹣|﹣2|+2×(﹣3);(2)化简:(1+)÷.【考点】分式的混合运算;实数的运算.【分析】(1)根据算术平方根的概念、绝对值的性质以及有理数的乘法法则计算即可;(2)根据分式的通分和约分法则计算.【解答】解:(1)原式=4﹣2﹣6=﹣4;(2)原式=•=.20.(1)解方程:1+=;(2)解不等式组:.【考点】解分式方程;解一元一次不等式组.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(1)去分母,x﹣2+3x=6,解得:x=2,经检验:x=2是原方程的增根,∴原方程无解;(2),由①得,x<﹣1,由②得,x≤﹣8,∴原不等式组的解集是x≤﹣8.21.如图,在▱ABCD中,点E,F在AC上,且∠ABE=∠CDF,求证:BE=DF.【考点】全等三角形的判定与性质;平行四边形的性质.【分析】根据平行四边形的性质,证明AB=CD,AB∥CD,进而证明∠BAC=∠CDF,根据ASA即可证明△ABE≌△CDF,根据全等三角形的对应边相等即可证明.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠BAC=∠CDF,∴△ABE和△CDF中,,∴△ABE≌△CDF,∴BE=DF.22.一个不透明的口袋中装有2个红球(记为红球1、红球2),1个白球、1个黑球,这些球除颜色外都相同,将球搅匀.(1)从中任意摸出1个球,恰好摸到红球的概率是(2)先从中任意摸出一个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表),求两次都摸到红球的概率.【考点】列表法与树状图法;概率公式.【分析】(1)根据4个小球中红球的个数,即可确定出从中任意摸出1个球,恰好摸到红球的概率;(2)列表得出所有等可能的情况数,找出两次都摸到红球的情况数,即可求出所求的概率.【解答】解:(1)4个小球中有2个红球,则任意摸出1个球,恰好摸到红球的概率是;故答案为:;(2)列表如下:红红白黑红﹣﹣﹣(红,红)(白,红)(黑,红)红(红,红)﹣﹣﹣(白,红)(黑,红)白(红,白)(红,白)﹣﹣﹣(黑,白)黑(红,黑)(红,黑)(白,黑)﹣﹣﹣所有等可能的情况有12种,其中两次都摸到红球有2种可能,则P(两次摸到红球)==.23.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).【考点】作图—应用与设计作图.【分析】(1)过点O向线段OM作垂线,此直线与格点的交点为N,连接MN即可;(2)根据勾股定理画出图形即可.【解答】解:(1)如图1所示;(2)如图2、3所示;24.某厂生产A,B两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如表统计表及不完整的折线图.A,B产品单价变化统计表第一次第二次第三次A产品单价(元/件) 6 5.2 6.5B产品单价(元/件) 3.5 4 3并求得了A产品三次单价的平均数和方差:=5.9,s A2=[(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]=(1)补全如图中B产品单价变化的折线图.B产品第三次的单价比上一次的单价降低了25 %(2)求B产品三次单价的方差,并比较哪种产品的单价波动小;(3)该厂决定第四次调价,A产品的单价仍为6.5元/件,B产品的单价比3元/件上调m%(m>0),使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1,求m的值.【考点】方差;统计表;折线统计图;算术平均数;中位数.【分析】(1)根据题目提供数据补充折线统计图即可;(2)分别计算平均数及方差即可;(3)首先确定这四次单价的中位数,然后确定第四次调价的范围,根据“A产品这四次单价的中位数是B产品四次单价中位数的2倍少1”列式求m即可.【解答】解:(1)如图2所示:B产品第三次的单价比上一次的单价降低了=25%,(2)=(3.5+4+3)=3.5,==,∵B产品的方差小,∴B产品的单价波动小;(3)第四次调价后,对于A产品,这四次单价的中位数为=;对于B产品,∵m>0,∴第四次单价大于3,∵﹣1>,∴第四次单价小于4,∴×2﹣1=,∴m=25.25.某工厂接受了20天内生产1200台GH型电子产品的总任务.已知每台GH型产品由4个G型装置和3个H型装置配套组成.工厂现有80名工人,每个工人每天能加工6个G型装置或3个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品.(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G型装置的加工,且每人每天只能加工4个G型装置.请问至少需要补充多少名新工人?【考点】一元一次不等式的应用;一元一次方程的应用.【分析】(1)设有x名工人加工G型装置,则有(80﹣x)名工人加工H型装置,利用每台GH型产品由4个G型装置和3个H型装置配套组成得出等式求出答案;(2)设招聘a名新工人加工G型装置,设x名工人加工G型装置,(80﹣x)名工人加工H型装置,进而利用每天加工的G、H型装置数量正好全部配套组成GH型产品得出等式表示出x的值,进而利用不等式解法得出答案.【解答】解:(1)设有x名工人加工G型装置,则有(80﹣x)名工人加工H型装置,根据题意,=,解得x=32,则80﹣32=48(套),答:每天能组装48套GH型电子产品;(2)设招聘a名新工人加工G型装置仍设x名工人加工G型装置,(80﹣x)名工人加工H型装置,根据题意,=,整理可得,x=,另外,注意到80﹣x≥,即x≤20,于是≤20,解得:a≥30,答:至少应招聘30名新工人,26.已知边长为3的正方形ABCD中,点E在射线BC上,且BE=2CE,连接AE交射线DC于点F,若△ABE沿直线AE翻折,点B落在点B1处.(1)如图1,若点E在线段BC上,求CF的长;(2)求sin∠DAB1的值;(3)如果题设中“BE=2CE”改为“=x”,其它条件都不变,试写出△ABE翻折后与正方形ABCD公共部分的面积y与x的关系式及自变量x的取值范围(只要写出结论,不需写出解题过程).【考点】翻折变换(折叠问题);勾股定理;正方形的性质;锐角三角函数的定义.【分析】(1)利用平行线性质以及线段比求出CF的值;(2)本题要分两种方法讨论:①若点E在线段BC上;②若点E在边BC的延长线上.需运用勾股定理求出与之相联的线段;(3)本题分两种情况讨论:若点E在线段BC上,y=,定义域为x>0;若点E在边BC的延长线上,y=,定义域为x>1.【解答】解:(1)∵AB∥DF,∴=,∵BE=2CE,AB=3,∴=,∴CF=;(2)①若点E在线段BC上,如图1,设直线AB1与DC相交于点M.由题意翻折得:∠1=∠2.∵AB∥DF,∴∠1=∠F,∴∠2=∠F,∴AM=MF.设DM=x,则CM=3﹣x.又∵CF=1.5,∴AM=MF=﹣x,在Rt△ADM中,AD2+DM2=AM2,∴32+x2=(﹣x)2,∴x=,∴DM=,AM=,∴sin∠DAB1==;②若点E在边BC的延长线上,如图2,设直线AB1与CD延长线相交于点N.同理可得:AN=NF.∵BE=2CE,∴BC=CE=AD.∵AD∥BE,∴=,∴DF=FC=,设DN=x,则AN=NF=x+.在Rt△ADN中,AD2+DN2=AN2,∴32+x2=(x+)2,∴x=.∴DN=,AN=sin∠DAB1==;(3)若点E在线段BC上,y=,定义域为x>0;若点E在边BC的延长线上,y=,定义域为x>1.27.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,且B点的坐标为(3,0),经过A 点的直线交抛物线于点D(2,3).(1)求抛物线的解析式和直线AD的解析式;(2)过x轴上的点(a,0)作直线EF∥AD,交抛物线于点F,是否存在实数a,使得以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.【考点】抛物线与x轴的交点;二次函数的性质;待定系数法求二次函数解析式;平行四边形的判定.【分析】(1)把点B和D的坐标代入抛物线y=﹣x2+bx+c得出方程组,解方程组即可;由抛物线解析式求出点A的坐标,设直线AD的解析式为y=kx+a,把A和D的坐标代入得出方程组,解方程组即可;(2)分两种情况:①当a<﹣1时,DF∥AE且DF=AE,得出F(0,3),由AE=﹣1﹣a=2,求出a的值;②当a>﹣1时,显然F应在x轴下方,EF∥AD且EF=AD,设F (a﹣3,﹣3),代入抛物线解析式,即可得出结果.【解答】解:(1)把点B和D的坐标代入抛物线y=﹣x2+bx+c得:,解得:b=2,c=3,∴抛物线的解析式为y=﹣x2+2x+3;当y=0时,﹣x2+2x+3=0,解得:x=3,或x=﹣1,∵B(3,0),∴A(﹣1,0);设直线AD的解析式为y=kx+a,把A和D的坐标代入得:,解得:k=1,a=1,∴直线AD的解析式为y=x+1;(2)分两种情况:如图所示:①当a<﹣1时,DF∥AE且DF=AE,则F点即为(0,3),∵AE=﹣1﹣a=2,∴a=﹣3;②当a>﹣1时,显然F应在x轴下方,EF∥AD且EF=AD,设F (a﹣3,﹣3),由﹣(a﹣3)2+2(a﹣3)+3=﹣3,解得:a=4±;综上所述,满足条件的a的值为﹣3或4±.28.如图,Rt△ABC中,M为斜边AB上一点,且MB=MC=AC=8cm,平行于BC的直线l从BC的位置出发以每秒1cm的速度向上平移,运动到经过点M时停止.直线l分别交线段MB、MC、AC于点D、E、P,以DE为边向下作等边△DEF,设△DEF与△MBC重叠部分的面积为S(cm2),直线l的运动时间为t(秒).(1)求边BC的长度;(2)求S与t的函数关系式;(3)在整个运动过程中,是否存在这样的时刻t,使得以P、C、F为顶点的三角形为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.(4)在整个运动过程中,是否存在这样的时刻t,使得以点D为圆心、BD为半径的圆与直线EF相切?若存在,请求出t的值;若不存在,请说明理由.【考点】几何变换综合题.【分析】(1)利用直角三角形的性质和锐角三角函数即可,(2)分两段求出函数关系式:当0<t≤3时,S=﹣t2+8t,当3<t≤4时,S=3t2﹣24t+48(3)当0<t≤3时,∠FCP≥90°,故△PCF不可能为等腰三角形当3<t≤4时,若△PCF 为等腰三角形,也只能FC=FP,=3(4﹣t),得t=.(4)若相切,利用点到圆心的距离等于半径列出方程即可.【解答】解:(1)∵M为斜边中点,∴∠B=MCB=α,∴∠AMC=2α,∵MC=MA,∴∠A=∠AMC=2α,∴∠B+∠A=90°,∴α+2α=90°,∴α=30°,∴∠B=30°,∵cotB=,∴BC=AC×cotB=8;(2)由题意,若点F恰好落在BC上,∴MF=4(4﹣t)=4,∴t=3.当0<t≤3时,如图,∴BD=2t,DM=8﹣2t,∵l∥BC,∴,∴,∴DE=(8﹣2t).∴点D到EF的距离为FJ=DE=3(4﹣t),∵l∥BC,∴,∵FN=FJ﹣JN=3(4﹣t)﹣t=12﹣4t,∴HG=(3﹣t)S=S梯形DHGE=(HG+DE)×FN=﹣t2+8t当3<t≤4时,重叠部分就是△DEF,S=S△DEF=DE2=3t2﹣24t+48.(3)当0<t≤3时,∠FCP≥90°,∴FC>CP,∴△PCF不可能为等腰三角形当3<t≤4时,若△PCF为等腰三角形,∴只能FC=FP,∴=3(4﹣t),∴t=(4)若相切,∵∠B=30°,∴BD=2t,DM=8﹣2t,∵l∥BC,∴,∴,∴DE=(8﹣2t).∴点D到EF的距离为DE=3(4﹣t)∴2t=3(4﹣t),解得t=.2016年6月9日。
2020-2021初三数学下期中一模试题(附答案)

2020-2021初三数学下期中一模试题(附答案)一、选择题1.如果反比例函数y =k x (k≠0)的图象经过点(﹣3,2),则它一定还经过( ) A .(﹣12,8) B .(﹣3,﹣2)C .(12,12) D .(1,﹣6)2.如图,123∠∠∠==,则图中相似三角形共有( )A .1对B .2对C .3对D .4对 3.已知线段a 、b ,求作线段x ,使22b x a =,正确的作法是( )A .B .C .D .4.在Rt ABC ∆中,90,2,1C AC BC ∠=︒==,则cos A 的值是( )A 25B 5C 5D .125.若35xx y =+,则xy 等于 ( )A .32B .38 C .23 D .856.如图,△ABC 中,AD 是中线,BC =8,∠B =∠DAC ,则线段 AC 的长为( )A .43B .42C .6D .47.如图,在正方形ABCD 中,N 为边AD 上一点,连接BN .过点A 作AP ⊥BN 于点P ,连接CP ,M 为边AB 上一点,连接PM ,∠PMA =∠PCB ,连接CM ,有以下结论:①△PAM ∽△PBC ;②PM ⊥PC ;③M 、P 、C 、B 四点共圆;④AN =AM .其中正确的个数为( )A .4B .3C .2D .18.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为( )A .五丈B .四丈五尺C .一丈D .五尺9.如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF 来测量操场旗杆AB 的高度,他们通过调整测量位置,使斜边DF 与地面保持平行,并使边DE 与旗杆顶点A 在同一直线上,已知DE=0.5m ,EF=0.25m ,目测点D 到地面的距离DG=1.5m ,到旗杆的水平距离DC=20m ,则旗杆的高度为( )A .5B .(105 1.5) mC .11.5mD .10m10.若270x y -=. 则下列式子正确的是( )A .72x y =B .27x y =C .27x y =D .27x y = 11.如图,∠APD=90°,AP=PB=BC=CD ,则下列结论成立的是( )A .△PAB ∽△PCA B .△ABC ∽△DBA C .△PAB ∽△PDAD .△ABC ∽△DCA12.已知点P 是线段AB 的黄金分割点(AP >PB ),AB=4,那么AP 的长是( ) A .252- B .25- C .251- D .52-二、填空题13.计算:cos 245°-tan30°sin60°=______. 14.如图,在平行四边形ABCD 中,AB =12,AD =8,∠ABC 的平分线交CD 于点F ,交AD 的延长线于点E ,CG ⊥BE ,垂足为G ,若EF =2,则线段CG 的长为_____.15.将一副三角板按如图1位置摆放,使得两块三角板的直角边AC 和MD 重合.已知AB="AC=8" cm,将△MED 绕点A(M)逆时针旋转60°后(图2),两个三角形重叠(阴影)部分的面积是 cm2.16.如图所示的网格是正方形网格,点P 到射线OA 的距离为m ,点P 到射线OB 的距离为n ,则m __________ n .(填“>”,“=”或“<”)17.如图,已知AD AE =,请你添加一个条件,使得ADC AEB △≌△,你添加的条件是_____.(不添加任何字母和辅助线)18.如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为_____.19.已知CD是Rt△ABC斜边上的高线,且AB=10,若BC=8,则cos∠ACD= ______.20.已知线段AB的长为10米,P是AB的黄金分割点(AP>BP),则AP的长_____米.(精确到0.01米)三、解答题21.已知:△ABC中,∠A=36°,AB=AC,用尺规求作一条过点B的直线,使得截出的一个三角形与△ABC相似.(保留作图痕迹,不写作法)22.已知四边形ABCD中,E,F分别是AB,AD边上的点,DE与CF交于点G.(1)如图①,若四边形ABCD是矩形,且DE⊥CF,求证:DE AD CF CD=;(2)如图②,若四边形ABCD是平行四边形,试探究:当∠B与∠EGC满足什么关系时,使得DE ADCF CD=成立?并证明你的结论.23.如图,在Rt△ABC中,CD,CE分别是斜边AB上的高,中线,BC=a,AC=b.(1)若a=3,b=4,求DE的长;(2)直接写出:CD=(用含a,b的代数式表示);(3)若b=3,tan∠DCE=13,求a的值.24.已知:如图,四边形ABCD的对角线AC和BD相交于点E,AD=DC,DC2=DE•DB,求证:(1)△BCE∽△ADE;(2)AB•BC=BD•BE.25.如图,AB与CD相交于点O,△OBD∽△OAC,ODOC=35,OB=6,S△AOC=50,求:(1)AO的长;(2)求S△BOD【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】分别计算各点的横纵坐标之积,然后根据反比例函数图象上点的坐标特征进行判断.【详解】∵反比例函数y=kx(k≠0)的图象经过点(−3,2),∴k=−3×2=−6,∵−12×8=−4≠−6,−3×(−2)=6≠−6,12×12=6≠−6,1×(−6)=−6,则它一定还经过(1,−6).故答案选D.【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是熟练的掌握反比例函数图象上点的坐标特征.2.D解析:D【解析】【分析】根据已知及相似三角形的判定定理,找出题中存在的相似三角形即可.【详解】∵∠1=∠2,∠C=∠C,∴△ACE∽△ECD,∵∠2=∠3,∴DE∥AB,∴△BCA∽△ECD,∵△ACE∽△ECD,△BCA∽△ECD,∴△ACE∽△BCA,∵DE∥AB,∴∠AED=∠BAE,∵∠1=∠2,∴△AED∽△BAE,∴共有4对,故此选D 选项.【点睛】本题考查学生对相似三角形判断依据的理解掌握,也考察学生的看图分辨能力.3.C解析:C【解析】【分析】对题中给出的等式进行变形,先作出已知线段a、b和2b,再根据平行线分线段成比例定理作出平行线,被截得的线段即为所求线段x.【详解】解:由题意,22b xa =∴2a bb x =,∵线段x没法先作出,根据平行线分线段成比例定理,只有C符合.故选C .4.A解析:A【解析】【分析】根据勾股定理,可得AB 的长,根据余弦函数等于邻边比斜边,可得答案.【详解】如图,在Rt △ABC 中,∠C=90°,由勾股定理,得 22=5AC BC +∴cosA=255AC AB ==, 故选A .【点睛】本题考查了锐角三角函数的定义以及勾股定理,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.5.A解析:A【解析】【分析】先根据比例的基本性质进行变形,得到2x=3y ,再根据比例的基本性质转化成比例式即可得.【详解】根据比例的基本性质得:5x=3(x+y ),即2x=3y , 即得32x y =, 故选A .【点睛】本题考查了比例的基本性质,熟练掌握比例的基本性质是解本题的关键.6.B解析:B【解析】【分析】由已知条件可得ABC DAC ~V V ,可得出AC BC DC AC=,可求出AC 的长. 【详解】解:由题意得:∠B =∠DAC ,∠ACB =∠ACD,所以ABC DAC ~V V ,根据“相似三角形对应边成比例”,得AC BC DC AC=,又AD 是中线,BC =8,得DC=4,代入可得AC= 故选B.【点睛】 本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答.7.A解析:A【解析】【分析】根据互余角性质得∠PAM =∠PBC ,进而得△PAM ∽△PBC ,可以判断①;由相似三角形得∠APM =∠BPC ,进而得∠CPM =∠APB ,从而判断②;根据对角互补,进而判断③;由△APB ∽△NAB 得AP AN BP AB =,再结合△PAM ∽△PBC 便可判断④. 【详解】解:∵AP ⊥BN ,∴∠PAM+∠PBA =90°,∵∠PBA+∠PBC =90°,∴∠PAM =∠PBC ,∵∠PMA =∠PCB ,∴△PAM ∽△PBC ,故①正确;∵△PAM ∽△PBC ,∴∠APM =∠BPC ,∴∠CPM =∠APB =90°,即PM ⊥PC ,故②正确;∵∠MPC+∠MBC =90°+90°=180°,∴B 、C 、P 、M 四点共圆,∴∠MPB =∠MCB ,故③正确;∵AP ⊥BN ,∴∠APN =∠APB =90°,∴∠PAN+∠ANB =90°,∵∠ANB+∠ABN =90°,∴∠PAN =∠ABN ,∵∠APN =∠BPA =90°,∴△PAN ∽△PBA , ∴AN PA BA PB=,∴Al AP BC BP=,∴AN AM AB BC=,∵AB=BC,∴AM=AN,故④正确;故选:A.【点睛】本题考查了相似三角形的判定和性质,正方形的性质、四点共圆,同角的余角相等,判断出PM⊥PC是解题的关键.8.B解析:B【解析】【分析】根据同一时刻物高与影长成正比可得出结论.【详解】设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,∴1.5 150.5x=,解得x=45(尺),故选B.【点睛】本题考查了相似三角形的应用举例,熟知同一时刻物髙与影长成正比是解答此题的关键.9.C解析:C【解析】【分析】确定出△DEF和△DAC相似,根据相似三角形对应边成比例求出AC,再根据旗杆的高度=AC+BC计算即可得解.【详解】解:∵∠FDE=∠ADC,∠DEF=∠DCA=90°,∴CDE CD EF A = , 即:0.50.2520AC = , 解得AC=10,∵DF 与地面保持平行,目测点D 到地面的距离DG=1.5米,∴BC=DG=1.5米,∴旗杆的高度=AC+BC=10+1.5=11.5米.故选:C .【点睛】本题考查了相似三角形的应用,主要利用了相似三角形对应边成比例,准确确定出相似三角形是解题的关键.10.A解析:A【解析】【分析】直接利用比例的性质分别判断即可得出答案.【详解】∵2x -7y =0,∴2x =7y .A .72x y =,则2x =7y ,故此选项正确; B .27x y =,则xy =14,故此选项错误; C .27x y =,则2y =7x ,故此选项错误; D .27x y =,则7x =2y ,故此选项错误. 故选A .【点睛】本题考查了比例的性质,正确将比例式变形是解题的关键.11.B解析:B【解析】【分析】根据相似三角形的判定,采用排除法,逐条分析判断.【详解】∵∠APD =90°,而∠P AB ≠∠PCA ,∠PBA ≠∠P AC ,∴无法判定△P AB 与△PCA 相似,故A 错误;同理,无法判定△P AB 与△PDA ,△ABC 与△DCA 相似,故C 、D 错误;∵∠APD =90°,AP =PB =BC =CD ,∴AB =P A ,AC =P A ,AD =P A ,BD =2P A ,∴=,∴,∴△ABC ∽△DBA ,故B 正确.故选B .【点睛】本题考查了相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可根据图形提供的数据计算对应角的度数、对应边的比.本题中把若干线段的长度用同一线段来表示是求线段是否成比例时常用的方法. 12.A解析:A【解析】 根据黄金比的定义得:51AP AB -= ,得514252AP -== .故选A. 二、填空题13.0【解析】【分析】直接利用特殊角的三角函数值代入进而得出答案【详解】=故答案为0【点睛】此题主要考查了特殊角的三角函数值正确记忆相关数据是解题关键解析:0【解析】【分析】直接利用特殊角的三角函数值代入进而得出答案.【详解】2cos 45tan30sin60︒-︒︒=223311022=-= . 故答案为0.【点睛】 此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.14.2【解析】【分析】首先证明CF=BC=12利用相似三角形的性质求出BF 再利用勾股定理即可解决问题【详解】解:∵四边形ABCD 是平行四边形∴AB=CD =12AE∥BCAB∥CD∴∠CFB=∠FBA∵B解析:15【解析】【分析】首先证明CF=BC=12,利用相似三角形的性质求出BF ,再利用勾股定理即可解决问题.【详解】解:∵四边形ABCD是平行四边形,∴AB=CD=12,AE∥BC,AB∥CD,∴∠CFB=∠FBA,∵BE平分∠ABC,∴∠ABF=∠CBF,∴∠CFB=∠CBF,∴CB=CF=8,∴DF=12﹣8=4,∵DE∥CB,∴△DEF∽△CBF,∴EFBF=DFCF,∴2BF=48,∴BF=4,∵CF=CB,CG⊥BF,∴BG=FG=2,在Rt△BCG中,CG=故答案为【点睛】本题考查平行四边形的性质,相似三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.15.【解析】【分析】分析:设BCAD交于点G过交点G作GF⊥AC与AC交于点F根据AC=8就可求出GF的长从而求解【详解】解:设BCAD交于点G过交点G 作GF⊥AC与AC交于点F设FC=x则GF=FC=解析:【解析】【分析】分析:设BC,AD交于点G,过交点G作GF⊥AC与AC交于点F,根据AC=8,就可求出GF的长,从而求解.【详解】解:设BC,AD交于点G,过交点G作GF⊥AC与AC交于点F,设FC=x,则GF=FC=x,∵旋转角为60°,即可得∠FAG=60°,∴AF=GFcot∠FAG=3x.所以,则.所以S △AGC =12×8×(12-43)=48-16316.>【解析】【分析】由图像可知在射线上有一个特殊点点到射线的距离点到射线的距离于是可知利用锐角三角函数即可判断出【详解】由题意可知:找到特殊点如图所示:设点到射线的距离点到射线的距离由图可知【点睛】本 解析:>【解析】【分析】 由图像可知在射线OP 上有一个特殊点Q ,点Q 到射线OA 的距离2QD =,点Q 到射线OB 的距离1QC =,于是可知AOP BOP ∠>∠ ,利用锐角三角函数sin sin AOP BOP ∠>∠ ,即可判断出m n >【详解】由题意可知:找到特殊点Q ,如图所示:设点Q 到射线OA 的距离QD ,点Q 到射线OB 的距离QC由图可知2QD =1QC =∴ 2sin QD AOP OP OP∠== ,1sin QC BOP OP OP ∠== ∴sin sin AOP BOP ∠>∠,∴m n OP OP> ∴m n >【点睛】本题考查了点到线的距离,熟知在直角三角形中利用三角函数来解角和边的关系是解题关键.17.或或【解析】【分析】根据图形可知证明已经具备了一个公共角和一对相等边因此可以利用ASASASAAS 证明两三角形全等【详解】∵∴可以添加此时满足SAS ;添加条件此时满足ASA ;添加条件此时满足AAS 故解析:AB AC =或ADC AEB ∠=∠或ABE ACD ∠=∠.【解析】【分析】根据图形可知证明ADC AEB V V ≌已经具备了一个公共角和一对相等边,因此可以利用ASA 、SAS 、AAS 证明两三角形全等.【详解】∵A A ∠∠= ,AD AE =,∴可以添加AB AC = ,此时满足SAS ;添加条件ADC AEB ∠∠= ,此时满足ASA ;添加条件ABE ACD ∠∠=,此时满足AAS ,故答案为:AB AC =或ADC AEB ∠∠=或ABE ACD ∠∠=;【点睛】本题考查了全等三角形的判定,是一道开放题,解题的关键是牢记全等三角形的判定方法.18.70°【解析】【分析】设∠BEF=α则∠EFC=180°﹣α∠DFE=∠BEF=α∠CFE=40°+α依据∠EFC=∠EFC 即可得到180°﹣α=40°+α进而得出∠BEF 的度数【详解】∵∠C=∠C解析:70°【解析】【分析】设∠BEF=α,则∠EFC=180°﹣α,∠DFE=∠BEF=α,∠C'F E=40°+α,依据∠EFC=∠EFC',即可得到180°﹣α=40°+α,进而得出∠BEF 的度数.【详解】∵∠C'=∠C=90°,∠DMB'=∠C'MF=50°,∴∠C'FM=40°,设∠BEF=α,则∠EFC=180°﹣α,∠DFE=∠BEF=α,∠C'FE=40°+α,由折叠可得,∠EFC=∠EFC',∴180°﹣α=40°+α,∴α=70°,∴∠BEF=70°,故答案为:70°.【点睛】本题考查了矩形的性质、折叠的性质,熟练掌握相关的性质是解题的关键.19.【解析】试题分析:根据同角的余角相等得:∠ACD=∠B 利用同角的余弦得结论解:∵CD 是Rt △ABC 斜边上的高线∴CD ⊥AB ∴∠A+∠ACD=90°∵∠ACB=90°∴∠B+∠A=90°∴∠ACD=∠解析:4 5【解析】试题分析:根据同角的余角相等得:∠ACD=∠B,利用同角的余弦得结论.解:∵CD是Rt△ABC斜边上的高线,∴CD⊥AB,∴∠A+∠ACD=90°,∵∠ACB=90°,∴∠B+∠A=90°,∴∠ACD=∠B,∴cos∠ACD=cos∠B=BCAB=810=45,故答案为:4 5 .20.18【解析】【分析】根据黄金分割定义:列方程即可求解【详解】解:设A P为x米根据题意得整理得x2+10x﹣100=0解得x1=5﹣5≈618x2=﹣5﹣5(不符合题意舍去)经检验x=5﹣5是原方程的解析:18【解析】【分析】根据黄金分割定义:AP BPAB AP=列方程即可求解.【详解】解:设AP为x米,根据题意,得x10 10x x -=整理,得x2+10x﹣100=0解得x1=﹣5≈6.18,x2=﹣5(不符合题意,舍去)经检验x=5是原方程的根,∴AP的长为6.18米.故答案为6.18.【点睛】本题考查了黄金分割的概念,熟练掌握黄金比是解答本题的关键.三、解答题21.答案见解析.【解析】【分析】根据三角形相似的作图解答即可.【详解】解:如图,直线BD即为所求.【点睛】此题主要考查相似图形的作法,关键是根据三角形相似的作图.22.(1)详见解析;(2)当∠B+∠EGC=180°时,DE ADCF DC=成立,理由详见解析.【解析】【分析】(1)根据矩形的性质可得∠A=∠ADC=90°,由DE⊥CF可得∠ADE=∠DCF,即可证得△ADE∽△DCF,从而证得结论;(2)在AD的延长线上取点M,使CM=CF,则∠CMF=∠CFM.根据平行线的性质可得∠A=∠CDM,再结合∠B+∠EGC=180°,可得∠AED=∠FCB,进而得出∠CMF=∠AED即可证得△ADE∽△DCM,从而证得结论;【详解】解:(1)∵四边形ABCD是矩形,∴∠A=∠ADC=90°,∵DE⊥CF,∴∠ADE=∠DCF,∴△ADE∽△DCF,∴DE AD CF DC=(2)当∠B+∠EGC=180°时,DE ADCF DC=成立,证明如下:在AD的延长线上取点M,使CM=CF,则∠CMF=∠CFM.∵AB∥CD.∴∠A=∠CDM.∵AD∥BC,∴∠CFM=∠FCB.∵∠B+∠EGC=180°,∴∠AED=∠FCB,∴∠CMF=∠AED,∴△ADE∽△DCM,∴DE ADCM DC=,即DE ADCF DC=.【点睛】本题是相似形综合题目,考查了相似三角形的判定与性质、等腰三角形的性质以及平行线的性质,熟练掌握等腰三角形的性质,证明三角形相似是解决问题的关键.23.(1)710;(2)22ab a b +;(3)101-. 【解析】【分析】(1)求出BE ,BD 即可解决问题. (2)利用勾股定理,面积法求高CD 即可.(3)根据CD =3DE ,构建方程即可解决问题.【详解】解:(1)在Rt △ABC 中,∵∠ACB =90°,a =3,b =4, ∴2235,cos 5BC AB a b B AC ∴=+===. ∵CD ,CE 是斜边AB 上的高,中线, ∴∠BDC =90°,15BE AB 22==. ∴在Rt △BCD 中, 39cos 355BD BC B =⋅=⨯= 5972510DE BE BD ∴=-=-=(2)在Rt △ABC 中,∵∠ACB =90°,BC =a ,AC =b , 2222AB BC AC a b ∴=+=+ABC 11S AB CD AC BC 22=⋅=⋅V Q 2222AC BC ab a b CD AB a b⋅+∴===+22ab a b + (3)在Rt △BCD 中,22222cos BD BC B a a b a b =⋅==++∴222222222122DE BE BD a b a b a b=-=+=++, 又1tan 3DE DCE CD ∠==, ∴CD =3DE 22222232a b a b =++.∵b =3,∴2a=9﹣a2,即a2+2a﹣9=0.a=-±(负值舍去),由求根公式得110-.即所求a的值是101【点睛】本题考查解直角三角形的应用,直角三角形斜边中线的性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.(1)见解析;(2)见解析.【解析】【分析】(1)由∠DAC=∠DCA,对顶角∠AED=∠BEC,可证△BCE∽△ADE.(2)根据相似三角形判定得出△ADE∽△BDA,进而得出△BCE∽△BDA,利用相似三角形的性质解答即可.【详解】证明:(1)∵AD=DC,∴∠DAC=∠DCA,∵DC2=DE•DB,∴=,∵∠CDE=∠BDC,∴△CDE∽△BDC,∴∠DCE=∠DBC,∴∠DAE=∠EBC,∵∠AED=∠BEC,∴△BCE∽△ADE,(2)∵DC2=DE•DB,AD=DC∴AD2=DE•DB,同法可得△ADE∽△BDA,∴∠DAE=∠ABD=∠EBC,∵△BCE∽△ADE,∴∠ADE=∠BCE,∴△BCE∽△BDA,∴=,∴AB•BC=BD•BE.【点睛】本题考查了相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质求解.25.(1)10;(2)18.【解析】【分析】(1)根据相似三角形对应边之比相等可得BO AO =DO CO =35,再代入BO =6可得AO 长; (2)根据相似三角形的面积的比等于相似比的平方可得BOD AOC S S V V =925,进而可得S △BOD . 【详解】解:(1)∵△OBD ∽△OAC , ∴BO AO =DO CO =35∵BO =6,∴AO =10; (2)∵△OBD ∽△OAC ,DO CO =35∴BOD AOC S S V V =925∵S △AOC =50,∴S △BOD =18.【点睛】此题主要考查相似三角形的性质,解题的关键是熟知相似三角形的面积之比等于相似比的平方.。
2020-2021学年江苏省无锡市中考数学模拟试题及答案解析

最新江苏省无锡市中考数学模拟试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填写在题答题卡的相应的括号内.1.﹣2的绝对值等于()A.﹣B.C.﹣2 D.22.使有意义的x的取值范围是()A.x>﹣B.x>C.x≥D.x≥﹣3.右图是由4个相同的小正方体组成的几何体,其俯视图为()A. B. C. D.4.为丰富学生课余活动,某校开展校园艺术节十佳歌手比赛,共有18名同学入围,他们的决赛成绩如表:成绩(分)9.40 9.50 9.60 9.70 9.80 9.90人数 2 3 5 4 3 1则入围同学决赛成绩的中位数和众数分别是()A.9.70,9.60 B.9.60,9.60 C.9.60,9.70 D.9.65,9.605.关于x的方程mx﹣1=2x的解为正实数,则m的取值范围是()A.m≥2 B.m≤2 C.m>2 D.m<26.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.7.下列命题中,假命题是()A.经过两点有且只有一条直线B.平行四边形的对角线相等C.两腰相等的梯形叫做等腰梯形D.圆的切线垂直于经过切点的半径8.下列函数的图象在每一个象限内,y值随x值的增大而增大的是()A.y=﹣x+1 B.y=x2﹣1 C. D.9.如图正方形ABCD的边长为2,点E、F、G、H分别在AD、AB、BC、CD上的点,且AE=BF=CG=DH,分别将△AEF、△BFG、△CGH、△DHE沿EF、FG、GH、HE翻折,得四边形MNKP,设AE=x,S四边形MNKP=y,则y关于x的函数图象大致为()A.B.C.D.10.直线y=x+4分别与x轴、y轴相交于点M,N,边长为2的正方形OABC一个顶点O在坐标系的原点,直线AN与MC相交于点P,若正方形绕着点O旋转一周,则点P到点(0,2)长度的最小值是()A.2﹣2 B.3﹣2C.D.1二、填空题(本大题共8小题,每小题2分,共16分,不需要写出解答过程,请把答案填写在答题卡的相应位置的横线上)11.因式分解:x3﹣4x=______.12.某外贸企业为参加2016年中国江阴外贸洽谈会,印制了105 000张宣传彩页.105 000这个数字用科学记数法表示为______.13.若x1,x2是方程x2+2x﹣3=0的两根,则x1+x2=______.14.如图,已知菱形ABCD的边长为5,对角线AC,BD相交于点O,BD=6,则菱形ABCD 的面积为______.15.如图,一个边长为4cm的等边三角形的高与ABC与⊙O直径相等,⊙O与BC相切于点C,⊙O与AC相交于点E,则CE的长为______.16.某商店服装销量较好,于是将一件原标价为1200元的服装加价200元销售仍畅销,在这基础上又涨了10%.现商家决定要回复原价,采用连续两次降价,每次降价的百分率相同的方法,则每次降价的百分率为______(精确到1%).17.两个完全重合的直角三角形Rt△ABC与Rt△DEF两直角边分别为3cm、4cm,点D放置在AB的中点,△DEF可以绕点D转动,当Rt△DEF旋转到一边与AB垂直时,两三角形重叠部分面积为______.18.如图,直线y=4﹣x交x轴、y轴于A、B两点,P是反比例函数y=(x>0)图象上位于直线下方的一点,过点P作x轴的垂线,垂足为点M,交AB于点E,过点P作y轴的垂线,垂足为点N,交AB于点F,则AF•BE=______.三、解答题(本大题共10小题,共84分.请在答题卡题目下方空白处作答,解答时应写出文字说明、证明过程或演算步骤)19.计算(1)tan45°﹣(﹣2)2﹣|2﹣|(2)(2x﹣1)2+(x﹣2)(x+2)﹣4x(x﹣)20.(1)解方程:=2+(2)解不等式组::.21.如图,在▱ABCD中,E、F为对角线BD上的两点.(1)若AE⊥BD,CF⊥BD,证明BE=DF.(2)若AE=CF,能否说明BE=DF?若能,请说明理由;若不能,请画出反例.22.为了解江阴市七年级学生身体素质,从全市七年级学生中随机抽取部分学生进行了一次体育考试科目的测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D 级:不及格),并将测试记录绘成如下两幅完全不同的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生数是______;(2)图1中∠n的度数是______.把图2条形统计图补充完成;(3)江阴市七年级共有9800名学生,如果全部参加这次体育科目测试,请估计不及格的人数.23.某市的育中考采取抽签决定考试项目,有甲、乙、丙三人分别擅长A:游泳;B:50米;C:1000米(假设就这三个项目研究).(1)求学生甲能抽到自己的喜欢的项目的概率;(2)如果甲乙丙三人在抽签时箱内只有个A、B、C不同项目的签,且各自抽签后将考签交给监考老师,求三人至少有一人抽到自己擅长项目的概率.24.“位似变化”是一种重要的几何变化,可以将图形放大或缩小,且与原图形相似.你能用位似变化解决下列问题吗?如图Rt△ABC中,∠C=90°,AC=12,BC=6,有矩形EFGH的一边EF在边AC上,点H在斜边AC上,EF=2,HE=1.(1)请你用圆规和无刻度直尺在Rt△ABC内作一个最大的矩形且与矩形EFGH位似.(不要求写作法,但必须保留作图痕迹)(2)请证明你作图方法的正确性.(3)求最大矩形与矩形EFGH的面积之比.25.公司研究销售策略,如果销售10台A型和20台B型空气净化器的利润为4000元,销售20台A型和10台B型空气净化器的利润为3500元.(1)求每台A型空气净化器和B型空气净化器的销售利润;(2)该公司计划一次购进两种型号的空气净化器共100台,其中B型空气净化器的进货量不超过A型空气净化器的2倍,设购进A型空气净化器x台,这100台空气净化器的销售总利润为y元.①求y关于x的函数关系式;②该公司购进A型、B型空气净化器各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型空气净化器出厂价下调m(0<m<100)元,且限定公司最多购进A型空气净化器70台,若公司保持同种空气净化器的售价不变,请你根据以上信息及(2)中条件,设计出使这100台空气净化器销售总利润最大的进货方案.26.如图,在平面直角坐标系中,O为坐标原点,△ABC的边BC在y轴的正半轴上,点A 在x轴的正半轴上,点C的坐标为(0,8),将△ABC沿直线AB折叠,点C落在x轴的负半轴D(﹣4,0)处.(1)求直线AB的解析式;(2)点P从点A出发以每秒4个单位长度的速度沿射线AB方向运动,过点P作PQ⊥AB,交x轴于点Q,PR∥AC交x轴于点R,设点P运动时间为t(秒),线段QR长为d,求d与t的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,点N是射线AB上一点,以点N为圆心,同时经过R、Q两点作⊙N,⊙N交y轴于点E,F.是否存在t,使得EF=RQ?若存在,求出t的值,并求出圆心N的坐标;若不存在,说明理由.27.△ABC中,AB=5,AC=4,BC=6.(1)如图1,若AD是∠BAC的平分线,DE∥AB,求CE的长与的比值;(2)如图2,将边AC折叠,使得AC在AB边上,折痕为AM,再将边MB折叠,使得MB′与MC′重合,折痕为MN,求AN的长.28.如图,二次函数y=ax2+bx+c的图象过A(6,0)、C(0,﹣3).且抛物线的对称轴为直线x=2,抛物线与x轴的另一个交点为B.(1)求抛物线的解析式;(2)若点F在第四象限的抛物线上,当tan∠FAC=时,求点F的坐标.(3)若点P在第四象限的抛物线,且满足△PAC和△PBC的面积相等.是否能在抛物线上找点Q,使得∠PAQ=∠CAO,求点Q的坐标.参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填写在题答题卡的相应的括号内.1.﹣2的绝对值等于()A.﹣B.C.﹣2 D.2【考点】绝对值.【分析】根据绝对值的性质:一个负数的绝对值是它的相反数解答即可.【解答】解:根据绝对值的性质,|﹣2|=2.故选D.2.使有意义的x的取值范围是()A.x>﹣B.x>C.x≥D.x≥﹣【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件列出不等式,解不等式即可.【解答】解:由题意得,3x﹣1≥0,解得,x≥,故选:C.3.右图是由4个相同的小正方体组成的几何体,其俯视图为()A. B. C. D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可.【解答】解:从上面看可得到从上往下两行正方形的个数依次为2,1,并且在左上方.故选C.4.为丰富学生课余活动,某校开展校园艺术节十佳歌手比赛,共有18名同学入围,他们的决赛成绩如表:成绩(分)9.40 9.50 9.60 9.70 9.80 9.90人数 2 3 5 4 3 1则入围同学决赛成绩的中位数和众数分别是()A.9.70,9.60 B.9.60,9.60 C.9.60,9.70 D.9.65,9.60【考点】众数;中位数.【分析】根据中位数和众数的定义解答.第9和第10个数的平均数就是中位数,9.60出现的次数最多.【解答】解:在这一组数据中9.60是出现次数最多的,故众数是9.60,而这组数据处于中间位置的那两个数是9.60和9.60,那么由中位数的定义可知,这组数据的中位数是9.60.故选B.5.关于x的方程mx﹣1=2x的解为正实数,则m的取值范围是()A.m≥2 B.m≤2 C.m>2 D.m<2【考点】解一元一次不等式;一元一次方程的解.【分析】根据题意可得x>0,将x化成关于m的一元一次方程,然后根据x的取值范围即可求出m的取值范围.【解答】解:由mx﹣1=2x,移项、合并,得(m﹣2)x=1,∴x=.∵方程mx﹣1=2x的解为正实数,∴>0,解得m>2.故选C.6.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.7.下列命题中,假命题是()A.经过两点有且只有一条直线B.平行四边形的对角线相等C.两腰相等的梯形叫做等腰梯形D.圆的切线垂直于经过切点的半径【考点】命题与定理;直线的性质:两点确定一条直线;平行四边形的性质;等腰梯形的判定;切线的性质.【分析】根据直线的性质、平行四边形的性质、等腰梯形的性质和切线的性质判断各选项即可.【解答】解:A、经过两点有且只有一条直线,故本选项正确;B、平行四边形的对角线不一定相等,故本选项错误;C、两腰相等的梯形叫做等腰梯形,故本选项正确D、圆的切线垂直于经过切点的半径,故本选项正确.故选B.8.下列函数的图象在每一个象限内,y值随x值的增大而增大的是()A.y=﹣x+1 B.y=x2﹣1 C. D.【考点】二次函数的性质;一次函数的性质;反比例函数的性质.【分析】一次函数当k大于0时,y值随x值的增大而增大,反比例函数系数k为负时,y 值随x值的增大而增大,对于二次函数根据其对称轴判断其在区间上的单调性.【解答】解:A、对于一次函数y=﹣x+1,k<0,函数的图象在每一个象限内,y值随x值的增大而减小,故本选项错误;B、对于二次函数y=x2﹣1,当x>0时,y值随x值的增大而增大,当x<0时,y值随x值的增大而减小,故本选项错误;C、对于反比例函数,k>0,函数的图象在每一个象限内,y值随x值的增大而减小,故本选项错误;D、对于反比例函数,k<0,函数的图象在每一个象限内,y值随x值的增大而增大,故本选项正确.故选D.9.如图正方形ABCD的边长为2,点E、F、G、H分别在AD、AB、BC、CD上的点,且AE=BF=CG=DH,分别将△AEF、△BFG、△CGH、△DHE沿EF、FG、GH、HE翻折,得四边形MNKP,设AE=x,S四边形MNKP=y,则y关于x的函数图象大致为()A.B.C.D.【考点】动点问题的函数图象.【分析】根据图形得出y=S正方形ABCD﹣2(S△AEF+S△BGF+S△CGH+S△DEH),根据面积公式求出y关于x的函数式,即可得出选项.【解答】解:∵AE=x,∴y=S正方形ABCD﹣2(S△AEF+S△BGF+S△CGH+S△DEH)=2×2﹣2×[•x(2﹣x)+x(2﹣x)+x(2﹣x)+x(2﹣x)]=4x2﹣8x+4=4(x﹣1)2,∵0<x<2,∴0<y<4,∵是二次函数,开口向上,∴图象是抛物线,即选项A、B、C错误;选项D符合,故选D.10.直线y=x+4分别与x轴、y轴相交于点M,N,边长为2的正方形OABC一个顶点O在坐标系的原点,直线AN与MC相交于点P,若正方形绕着点O旋转一周,则点P到点(0,2)长度的最小值是()A.2﹣2 B.3﹣2C.D.1【考点】一次函数图象与几何变换;一次函数图象上点的坐标特征;点、线、面、体.【分析】首先证明△MOC≌△NOA,推出∠MPN=90°,推出P在以MN为直径的圆上,所以当圆心G,点P,C(0,2)三点共线时,P到C(0,2)的最小值.求出此时的PC即可.【解答】解:在△MOC和△NOA中,,∴△MOC≌△NOA,∴∠CMO=∠ANO,∵∠CMO+∠MCO=90°,∠MCO=∠NCP,∴∠NCP+∠CNP=90°,∴∠MPN=90°∴MP⊥NP∴P在以MN为直径的圆上,∵M(﹣4,0),N(0,4),∴圆心G为(﹣2,2),半径为2∴当圆心G,点P,C(0,2)三点共线时,P到C(0,2)的最小值,∵GN=GM,CN=CO=2,∴GC=OM=2,这个最小值为GP﹣GC=2﹣2.故选A.二、填空题(本大题共8小题,每小题2分,共16分,不需要写出解答过程,请把答案填写在答题卡的相应位置的横线上)11.因式分解:x3﹣4x= x(x+2)(x﹣2).【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式x,进而利用平方差公式分解因式得出即可.【解答】解:x3﹣4x=x(x2﹣4)=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).12.某外贸企业为参加2016年中国江阴外贸洽谈会,印制了105 000张宣传彩页.105 000这个数字用科学记数法表示为 1.05×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于105 000有6位,所以可以确定n=6﹣1=5.【解答】解:105 000=1.05×105.故答案为:1.05×105.13.若x1,x2是方程x2+2x﹣3=0的两根,则x1+x2= ﹣2 .【考点】根与系数的关系.【分析】根据一元二次方程根与系数的关系x1+x2=﹣直接代入计算即可.【解答】解:∵x1,x2是方程x2+2x﹣3=0的两根,∴x1+x2=﹣2;故答案为:﹣2.14.如图,已知菱形ABCD的边长为5,对角线AC,BD相交于点O,BD=6,则菱形ABCD 的面积为24 .【考点】菱形的性质.【分析】根据菱形的对角线互相垂直且互相平分可得出对角线AC的长度,进而根据对角线乘积的一半可得出菱形的面积.【解答】解:由题意得:AO==4,∴AC=8,故可得菱形ABCD的面积为×8×6=24.故答案为:24.15.如图,一个边长为4cm的等边三角形的高与ABC与⊙O直径相等,⊙O与BC相切于点C,⊙O与AC相交于点E,则CE的长为3cm .【考点】切线的性质;等边三角形的性质.【分析】连接OC,并过点O作OF⊥CE于F,求出等边三角形的高即可得出圆的直径,继而得出OC的长度,在Rt△OFC中,可得出FC的长,利用垂径定理即可得出CE的长【解答】解:连接OC,并过点O作OF⊥CE于F,∵△ABC为等边三角形,边长为4cm,∴△ABC的高为2cm,∴OC=cm,又∵∠ACB=60°,∴∠OCF=30°,在Rt△OFC中,可得FC=cm,即CE=2FC=3cm.故答案为:3cm.16.某商店服装销量较好,于是将一件原标价为1200元的服装加价200元销售仍畅销,在这基础上又涨了10%.现商家决定要回复原价,采用连续两次降价,每次降价的百分率相同的方法,则每次降价的百分率为12% (精确到1%).【考点】一元二次方程的应用.【分析】设每次降价百分率为x,根据:售价×(1﹣降价百分率)2=原价,列方程求解可得.【解答】解:设每次降价百分率为x,根据题意,得:×(1+10%)(1﹣x)2=1200,解得:x1≈1.88(舍),x2≈0.12=12%,故答案为:12%.17.两个完全重合的直角三角形Rt△ABC与Rt△DEF两直角边分别为3cm、4cm,点D放置在AB的中点,△DEF可以绕点D转动,当Rt△DEF旋转到一边与AB垂直时,两三角形重叠部分面积为、、.【考点】旋转的性质.【分析】分三种情况讨论:①如图1,当DF⊥AB时,重叠部分面积为梯形面积,求出MC、DH和CH代入面积公式计算即可;②如图2,当DE⊥AB时,重叠部分面积为△DMN的面积,求出MN和DG的长;③如图3,当EF⊥AB时,重叠部分面积为△ADH的面积,求出AD和GH的长.【解答】解:分三种情况:①如图1,当DF⊥AB时,则DE⊥AC∴DE∥CB则DE=BC=2,CH=AC=∵∠B=∠B,∠BDM=∠BCA=90°∴△BDM∽△BCA∴=∴=∴BM=∴CM=BC﹣BM=4﹣=∴S重叠部分=S梯形CHDM=×(+2)×=②如图2,当DE⊥AB时,则EF∥AB,∴∠F=∠FDB,过D作DG⊥BC,垂足为G,则AC∥DG,∵D是BC的中点,∴G是BC的中点,∴DG=AC=,BG=CG=2,∵∠F=∠B=∠FDB,∴BN=ND,设DN=x,则BN=DN=x,∴(2﹣x)2+=x2,x=,∴BN=,由①得BM=,∴MN=BM﹣BN=﹣=,∴S重叠部分=S△DMN=×MN×DG=××=;③如图3,当EF⊥AB时,过H作HG⊥AB,则HG∥EF,∵△ABC≌△DFE,∴∠FDE=∠CAB,∴AH=DH,∴DG=AG=AB=,又∵,∴=,GH=,∴S重叠部分=S△ADH=×AD×GH=××=;综上所述:重叠部分的面积为:、、;故答案为:、、.18.如图,直线y=4﹣x交x轴、y轴于A、B两点,P是反比例函数y=(x>0)图象上位于直线下方的一点,过点P作x轴的垂线,垂足为点M,交AB于点E,过点P作y轴的垂线,垂足为点N,交AB于点F,则AF•BE= 4 .【考点】反比例函数与一次函数的交点问题.【分析】过点E作EC⊥OB于C,过点F作FD⊥OA于D,然后由直线y=4﹣x交x轴、y轴于A、B两点,求得点A与B的坐标,则可得OA=OB,即可得△AOB,△BCE,△ADF是等腰直角三角形,则可得AF•BE=CE•DF=2CE•DF,又由四边形CEPN与MDFP是矩形,可得CE=PN,DF=PM,根据反比例函数的性质即可求得答案.【解答】解:过点E作EC⊥OB于C,过点F作FD⊥OA于D,∵直线y=4﹣x交x轴、y轴于A、B两点,∴A(4,0),B(0,4),∴OA=OB,∴∠ABO=∠BAO=45°,∴BC=CE,AD=DF,∵PM⊥OA,PN⊥OB,∴四边形CEPN与MDFP是矩形,∴CE=PN,DF=PM,∵P是反比例函数图象上的一点,∴PN•PM=2,∴CE•DF=2,在Rt△BCE中,BE==CE,在Rt△ADF中,AF==DF,∴AF•BE=CE•DF=2CE•DF=4.故答案为:4.三、解答题(本大题共10小题,共84分.请在答题卡题目下方空白处作答,解答时应写出文字说明、证明过程或演算步骤)19.计算(1)tan45°﹣(﹣2)2﹣|2﹣|(2)(2x﹣1)2+(x﹣2)(x+2)﹣4x(x﹣)【考点】整式的混合运算;实数的运算;特殊角的三角函数值.【分析】(1)根据特殊角的三角函数值、幂的乘方、绝对值可以解答本题;(2)根据完全平方公式、平方差公式、单项式乘以多项式可以解答本题.【解答】解:(1)tan45°﹣(﹣2)2﹣|2﹣|=1﹣4﹣(2﹣)=1﹣4﹣2+=﹣5+;(2)(2x﹣1)2+(x﹣2)(x+2)﹣4x(x﹣)=4x2﹣4x+1+x2﹣4﹣4x2+2x=x2﹣2x﹣3.20.(1)解方程:=2+(2)解不等式组::.【考点】解分式方程;解二元一次方程组.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可确定出不等式组的解集.【解答】解:(1)去分母得:1=2x﹣6﹣x,解得:x=7,经检验x=7是分式方程的解;(2),由①得:x≥1,由②得:x<4,则不等式组的解集为1≤x<4.21.如图,在▱ABCD中,E、F为对角线BD上的两点.(1)若AE⊥BD,CF⊥BD,证明BE=DF.(2)若AE=CF,能否说明BE=DF?若能,请说明理由;若不能,请画出反例.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】(1)证明△AEB≌△CFD,即可得出结论;(2)画出图形说明即可.【解答】解:(1)∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD,在△AEB和△CFD中,,∴△AEB≌△CFD(AAS),∴BE=DF.(2)答:不能.反例:.22.为了解江阴市七年级学生身体素质,从全市七年级学生中随机抽取部分学生进行了一次体育考试科目的测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D 级:不及格),并将测试记录绘成如下两幅完全不同的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生数是40 ;(2)图1中∠n的度数是144°.把图2条形统计图补充完成;(3)江阴市七年级共有9800名学生,如果全部参加这次体育科目测试,请估计不及格的人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据B级的有14人,所占的百分比是35%,据此即可求得测试的总人数;(2)利用360°乘以对应的百分比求得所在扇形的圆心角的度数;(3)利用总人数乘以对应的比例即可求解.【解答】解:(1)本次抽样测试的学生数是:14÷35%=40(人),故答案是40;(2)∠n=360×=144°,C即的人数是:40×20%=8(人),,故答案是:144°;(3)估计不及格的人数是:9800×=490(人),答:估计不及格的人数是490人.23.某市的育中考采取抽签决定考试项目,有甲、乙、丙三人分别擅长A:游泳;B:50米;C:1000米(假设就这三个项目研究).(1)求学生甲能抽到自己的喜欢的项目的概率;(2)如果甲乙丙三人在抽签时箱内只有个A、B、C不同项目的签,且各自抽签后将考签交给监考老师,求三人至少有一人抽到自己擅长项目的概率.【考点】列表法与树状图法;概率公式.【分析】(1)根据概率的定义即可解决.(2)此题需要三步完成;因为有三名学生选择餐厅,可以看做需三次完成的事件,所以需要采用树状图法.【解答】解:(1)∵只有A、B、C三个项目,∴学生甲能抽到自己的喜欢的项目A的概率=.(2)画树状图得,所以三人至少有一人抽到自己擅长项目的概率=.24.“位似变化”是一种重要的几何变化,可以将图形放大或缩小,且与原图形相似.你能用位似变化解决下列问题吗?如图Rt△ABC中,∠C=90°,AC=12,BC=6,有矩形EFGH的一边EF在边AC上,点H在斜边AC上,EF=2,HE=1.(1)请你用圆规和无刻度直尺在Rt△ABC内作一个最大的矩形且与矩形EFGH位似.(不要求写作法,但必须保留作图痕迹)(2)请证明你作图方法的正确性.(3)求最大矩形与矩形EFGH的面积之比.【考点】作图-位似变换;矩形的性质.【分析】(1)作出△ABC的中位线MN,MD即可解决问题.(2)只要证明矩形的两边成比例即可.(3)根据矩形的面积公式求出比值即可.【解答】解:(1)①作AC的垂直平分线,TK,交AB于M,交AC于N,②过点M作MD⊥BC垂足为D,四边形MNCD就是所求.(2)∵MN⊥AC,MD⊥BC,∴∠C=∠MNC=∠CDM=90°,∴四边形MNCD是矩形,∵AN=NC,MN∥BC,∴AM=MB,∵MD∥AC,∴CD=DB,∴MD=AC=6,MN=BC=3,∴MD:CD=2,EF:HE=2,∴=,∴矩形EFGH与矩形MNCD是位似图形.(3)==9.25.公司研究销售策略,如果销售10台A型和20台B型空气净化器的利润为4000元,销售20台A型和10台B型空气净化器的利润为3500元.(1)求每台A型空气净化器和B型空气净化器的销售利润;(2)该公司计划一次购进两种型号的空气净化器共100台,其中B型空气净化器的进货量不超过A型空气净化器的2倍,设购进A型空气净化器x台,这100台空气净化器的销售总利润为y元.①求y关于x的函数关系式;②该公司购进A型、B型空气净化器各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型空气净化器出厂价下调m(0<m<100)元,且限定公司最多购进A型空气净化器70台,若公司保持同种空气净化器的售价不变,请你根据以上信息及(2)中条件,设计出使这100台空气净化器销售总利润最大的进货方案.【考点】一次函数的应用;二元一次方程组的应用.【分析】(1)设每台A型空气净化器的销售利润为a元,每台B型空气净化器的销售利润为b元,根据给定条件“销售10台A型和20台B型空气净化器的利润为4000元,销售20台A型和10台B型空气净化器的利润为3500元”可列出关于a、b的二元一次方程组,解方程组即可得出结论;(2)①根据购进A型空气净化器的台数,找出购进B型空气净化器的台数,根据A、B间的关系可得出关于x的一元一次不等式,解不等式即可得出x的取值范围,再由销售利润=A 型的利润+B型的利润,即可得出y关于x的函数关系式;②结合一次函数的性质以及x的取值范围即可解决最值问题;(3)结合(2)找出y关于x的函数关系式,利用一次函数的性质分m﹣50<0、m﹣50=0和m﹣50>0来解决最值问题.【解答】解:(1)设每台A型空气净化器的销售利润为a元,每台B型空气净化器的销售利润为b元,依题意得:,解得:.答:每台A型空气净化器的销售利润为100元,每台B型空气净化器的销售利润为150元.(2)①设购进A型空气净化器x台,则购进B型空气净化器台,由已知得:100﹣x≤2x,解得:x≥,∴x≥34.∴y=100x+150=﹣50x+15000(x≥34,且x为正整数).②∵y=﹣50x+15000中,k=﹣50<0,∴y随x的增大而减小,∴当x=34时,y取最大值,此时100﹣x=66.故购进34台A型空气净化器和66台B型空气净化器的销售利润最大.(3)由已知得:y=x+150=(m﹣50)x+15000,当m<50时,m﹣50<0,则购进34台A型空气净化器和66台B型空气净化器的销售利润最大;当m=50时,m﹣50=0,则A、B两种空气净化器随意搭配(34≤A型号空气净化器数≤70),销售利润一样多;当m>50时,m﹣50>0,则购进70台A型空气净化器和30台B型空气净化器的销售利润最大.26.如图,在平面直角坐标系中,O为坐标原点,△ABC的边BC在y轴的正半轴上,点A 在x轴的正半轴上,点C的坐标为(0,8),将△ABC沿直线AB折叠,点C落在x轴的负半轴D(﹣4,0)处.(1)求直线AB的解析式;(2)点P从点A出发以每秒4个单位长度的速度沿射线AB方向运动,过点P作PQ ⊥AB,交x轴于点Q,PR∥AC交x轴于点R,设点P运动时间为t(秒),线段QR长为d,求d与t的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,点N是射线AB上一点,以点N为圆心,同时经过R、Q两点作⊙N,⊙N交y轴于点E,F.是否存在t,使得EF=RQ?若存在,求出t的值,并求出圆心N的坐标;若不存在,说明理由.【考点】一次函数综合题.【分析】(1)由C(0,8),D(﹣4,0),可求得OC,OD的长,然后设OB=a,则BC=8﹣a,在Rt△BOD中,由勾股定理可得方程:(8﹣a)2=a2+42,解此方程即可求得B的坐标,然后由三角函数的求得点A的坐标,再利用待定系数法求得直线AB的解析式;(2)在Rt△AOB中,由勾股定理可求得AB的长,继而求得∠BAO的正切与余弦,由PR∥AC与折叠的性质,易证得RQ=AR,则可求得d与t的函数关系式;(3)首先过点分别作NT⊥RQ于T,NS⊥EF于S,易证得四边形NTOS是正方形,然后分别从点N在第二象限与点N在第一象限去分析求解即可求得答案.【解答】解:(1)∵C(0,8),D(﹣4,0),∴OC=8,OD=4,设OB=a,则BC=8﹣a,由折叠的性质可得:BD=BC=8﹣a,在Rt△BOD中,∠BOD=90°,DB2=OB2+OD2,则(8﹣a)2=a2+42,解得:a=3,则OB=3,则B(0,3),tan∠ODB==,由折叠的性质得:∠ADB=∠ACB,则tan∠ACB=tan∠ODB=,在Rt△AOC中,∠AOC=90°,tan∠ACB==,则OA=6,则A(6,0),设直线AB的解析式为:y=kx+b,则,解得:,故直线AB的解析式为:y=﹣x+3;(2)在Rt△AOB中,∠AOB=90°,OB=3,OA=6,则AB==3,tan∠BAO==,cos∠BAO==,在Rt△PQA中,∠APQ=90°,AP=4t,则AQ==10t,∵PR∥AC,∴∠APR=∠CAB,由折叠的性质得:∠BAO=∠CAB,∴∠BAO=∠APR,∴PR=AR,∵∠RAP+∠PQA=∠APR+∠QPR=90°,∴∠PQA=∠QPR,∴RP=RQ,∴RQ=AR,∴QR=AQ=5t,即d=5t;(3)过点分别作NT⊥RQ于T,NS⊥EF于S,∵EF=QR,∴NS=NT,∴四边形NTOS是正方形,则TQ=TR=QR=t,∴NT=AT=(AQ﹣TQ)=(10t﹣t)=t,分两种情况,若点N在第二象限,则设N(n,﹣n),点N在直线y=﹣x+3上,则﹣n=﹣n+3,解得:n=﹣6,故N(﹣6,6),NT=6,即t=6,解得:t=;若点N在第一象限,设N(N,N),可得:n=﹣n+3,解得:n=2,故N(2,2),NT=2,即t=2,解得:t=.故当t=或t=时,QR=EF,N(﹣6,6)或(2,2).27.△ABC中,AB=5,AC=4,BC=6.(1)如图1,若AD是∠BAC的平分线,DE∥AB,求CE的长与的比值;(2)如图2,将边AC折叠,使得AC在AB边上,折痕为AM,再将边MB折叠,使得MB′与MC′重合,折痕为MN,求AN的长.【考点】翻折变换(折叠问题);平行线分线段成比例;相似三角形的判定与性质.【分析】(1)先判定三角形ADE是等腰三角形,再根据平行线分线段成比例定理,求得CE 的长;(2)先根据两角对应相等,判定△ABC∽△NB′C′,再根据相似三角形的对应边成比例,求得NC′与B′N的数量关系,最后结合BC′的长为1,求得NC′的长,进而得到AN的长度.【解答】解:(1)如图1,∵AD是∠BAC的平分线,DE∥AB,∴∠EAD=∠BAD=∠EDA,∴ED=EA,即三角形ADE是等腰三角形,设CE=x,则AE=4﹣x=DE,由DE∥AB,可得=,即=,解得x=,∴CE=,由DE∥AB,可得==,∴;(2)由折叠得,∠B=∠B′,∠C=∠MC′A=∠B′C′N,AC=AC′=4,∴△ABC∽△NB′C′,∴==,设NC′=4a,则BN=B′N=5a,∵BC=AB﹣AC′=5﹣4=1,∴NC′+BN=1,即4a+5a=1,解得a=,∴NC′=,。
2020-2021无锡市无锡一中九年级数学下期中第一次模拟试卷附答案

2020-2021无锡市无锡一中九年级数学下期中第一次模拟试卷附答案一、选择题1.若点A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3)都在反比例函数1y x =-的图象上,并且x 1<0<x 2<x 3,则下列各式中正确的是( )A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 1<y 3<y 2D .y 3<y 1<y 2 2.如图,△ABC 的三个顶点A(1,2)、B(2,2)、C(2,1).以原点O 为位似中心,将△ABC 扩大得到△A 1B 1C 1,且△ABC 与△A 1B 1C 1的位似比为1 :3.则下列结论错误的是 ( )A .△ABC ∽△A 1B 1C 1B .△A 1B 1C 1的周长为6+32 C .△A 1B 1C 1的面积为3D .点B 1的坐标可能是(6,6) 3.若37a b =,则b a a -等于( ) A .34 B .43 C .73 D .374.在△ABC 中,若=0,则∠C 的度数是( ) A .45° B .60° C .75° D .105°5.观察下列每组图形,相似图形是( )A .B .C .D .6.如图,过反比例函数的图像上一点A 作AB ⊥轴于点B ,连接AO ,若S △AOB =2,则的值为( )A.2 B.3 C.4 D.57.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数kyx= (x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k的值是( )A.92B.74C.245D.128.若△ABC∽△A′B′C′且34ABA B='',△ABC的周长为15cm,则△A′B′C′的周长为()cm.A.18B.20 C.154D.8039.如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,则△ABC与△DEF 的面积之比为 ( )A.1:2B.1:4C.1:5D.1:610.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条边DF=50cm,EF=30cm,测得边DF离地面的高度AC=1.5m,CD=20m,则树高AB为()A.12m B.13.5m C.15m D.16.5m11.如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上,已知DE=0.5m,EF=0.25m,目测点D到地面的距离DG=1.5m,到旗杆的水平距离DC=20m,则旗杆的高度为( )A.105 m B.(105 1.5)mC.11.5m D.10m12.下列四个几何体中,主视图与左视图相同的几何体有()A.1个B.2个C.3个D.4个二、填空题13.如图,在▱ABCD中,EF∥AB,DE:EA=2:3,EF=4,则CD的长为___________.14.已知点P在线段AB上,且AP:BP=2:3,那么AB:PB=_____.15.已知A(﹣4,y1),B(﹣1,y2)是反比例函数y=﹣4x图象上的两个点,则y1与y2的大小关系为__________.16.一个几何体由若干大小相同的小立方块搭成,如图所示的分别是从它的正面、左面看到的图形,则搭成该几何体最多需要__个小立方块.17.如图,直立在点B处的标杆AB=2.5m,站立在点F处的观测者从点E看到标杆顶A,树顶C在同一直线上(点F,B,D也在同一直线上).已知BD=10m,FB=3m,人的高度EF =1.7 m,则树高DC是________.(精确到0.1 m)18.如图,小军、小珠之间的距离为2.7 m ,他们在同一盏路灯下的影长分别为1.8 m ,1.5 m ,已知小军、小珠的身高分别为1.8 m ,1.5 m ,则路灯的高为____m.19.已知线段a =2厘米,c =8厘米,则线段a 和c 的比例中项b 是______厘米.20.如图,若点 A 的坐标为 ()1,3 ,则 sin 1∠ =________.三、解答题21.如图,直线123l //l //l ,直线AC 依次交1l 、2l 、3l 于A 、B 、C 三点,直线DF 依次交1l 、2l 、3l 于D 、E 、F 三点,若AB 4AC 7=,DE 2=,求EF 的长.22.如图,在平面直角坐标系xOy 中,直线y =x +b 与双曲线y =k x相交于A ,B 两点, 已知A (2,5).求:(1)b 和k 的值;(2)△OAB 的面积.23.如图,某人在山坡坡脚A 处测得电视塔尖点C 的仰角为60°,沿山坡向上走到P 处再测得点C 的仰角为45°,已知OA =100米,山坡坡度(竖直高度与水平宽度的比)i =1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器高度忽略不计,结果保留根号形式)24.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是.25.如图,E为□ABCD的边CD延长线上的一点,连结BE交AC于点O,交AD于点F,求证:BO EO FO BO.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<0<x2<x3即可得出结论.【详解】∵反比例函数y=﹣1x中k=﹣1<0,∴函数图象的两个分支分别位于二、四象限,且在每一象限内,y随x的增大而增大.∵x1<0<x2<x3,∴B、C两点在第四象限,A点在第二象限,∴y2<y3<y1.故选B.【点睛】本题考查了反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.本题也可以通过图象法求解.2.C解析:C【解析】【分析】根据位似图的性质可知,位似图形也是相似图形,周长比等于位似比,面积比等于位似比的平方,对应边之比等于位似比,据此判断即可.【详解】A. △ABC∽△A1B1C1,故A正确;B. 由图可知,AB=2-1=1,BC=2-1=1,,所以△ABC的周长为,由周长比等于位似比可得△A1B1C1的周长为△ABC周长的3倍,即6+B正确;C. S△ABC=1111=22⨯⨯,由面积比等于位似比的平方,可得△A1B1C1的面积为△ABC周长的9倍,即19=4.52⨯,故C错误;D. 在第一象限内作△A1B1C1时,B1点的横纵坐标均为B的3倍,此时B1的坐标为(6,6),故D正确;故选C.【点睛】本题考查位似三角形的性质,熟练掌握位似的定义,以及位似三角形与相似三角形的关系是解题的关键.3.B解析:B【解析】由比例的基本性质可知a=37b,因此b aa-=347337b bb-=.故选B.4.C解析:C【解析】【分析】根据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,根据三角形的内角和定理可得出∠C的度数.【详解】由题意,得 cosA=,tanB=1,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=180°-60°-45°=75°.故选C.5.D解析:D【解析】【分析】根据相似图形的定义,形状相同,可得出答案.【详解】解:A、两图形形状不同,故不是相似图形;B、两图形形状不同,故不是相似图形;C、两图形形状不同,故不是相似图形;D、两图形形状相同,故是相似图形;故选:D.【点睛】本题主要考查相似图形的定义,掌握相似图形形状相同是解题的关键.6.C解析:C【解析】试题分析:观察图象可得,k>0,已知S△AOB=2,根据反比例函数k的几何意义可得k=4,故答案选C.考点:反比例函数k的几何意义.7.C解析:C【解析】设B 点的坐标为(a ,b ),由BD=3AD ,得D (4a ,b ),根据反比例函数定义求出关键点坐标,根据S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE = 9求出k.【详解】 ∵四边形OCBA 是矩形,∴AB=OC ,OA=BC ,设B 点的坐标为(a ,b ),∵BD=3AD ,∴D (4a ,b ), ∵点D ,E 在反比例函数的图象上, ∴4ab =k , ∴E (a , k a), ∵S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE =ab-12•4ab -12•4ab -12•34a •(b-k a )=9, ∴k=245, 故选:C【点睛】 考核知识点:反比例函数系数k 的几何意义. 结合图形,分析图形面积关系是关键.8.B解析:B【解析】∵△ABC ∽△A ′B ′C ′,∴34ABC AB A B C A B ''=''='V V 的周长的周长, ∵△ABC 的周长为15cm ,∴△A ′B ′C ′的周长为20cm .故选B .9.B解析:B【解析】试题分析:利用位似图形的性质首先得出位似比,进而得出面积比.∵以点O 为位似中心,将△ABC 放大得到△DEF ,AD=OA ,∴OA :OD=1:2,∴△ABC 与△DEF 的面积之比为:1:4.故选B .考点:位似变换.10.D解析:D【分析】利用直角三角形DEF 和直角三角形BCD 相似求得BC 的长后加上小明同学的身高即可求得树高AB .【详解】∵∠DEF=∠BCD=90°,∠D=∠D ,∴△DEF ∽△DCB , ∴BC DC EF DE=, ∵DF=50cm=0.5m ,EF=30cm=0.3m ,AC=1.5m ,CD=20m ,∴由勾股定理求得DE=40cm , ∴200.30.4BC =, ∴BC=15米, ∴AB=AC+BC=1.5+15=16.5(米).故答案为16.5m .【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.11.C解析:C【解析】【分析】确定出△DEF 和△DAC 相似,根据相似三角形对应边成比例求出AC ,再根据旗杆的高度=AC+BC 计算即可得解.【详解】解:∵∠FDE=∠ADC ,∠DEF=∠DCA=90°,∴△DEF ∽△DAC , ∴CDE CD EF A = , 即:0.50.2520AC= , 解得AC=10,∵DF 与地面保持平行,目测点D 到地面的距离DG=1.5米,∴BC=DG=1.5米,∴旗杆的高度=AC+BC=10+1.5=11.5米.故选:C .【点睛】本题考查了相似三角形的应用,主要利用了相似三角形对应边成比例,准确确定出相似三角形是解题的关键.12.D解析:D【解析】解:①正方体的主视图与左视图都是正方形;②球的主视图与左视图都是圆;③圆锥主视图与左视图都是三角形;④圆柱的主视图和左视图都是长方形;故选D.二、填空题13.【解析】【分析】【详解】解:∵EF∥AB∴△DEF∽△DAB∴EF:AB=DE:DA=DE:(DE+EA)=2:5∴AB=10∵在▱ABCD中AB=CD∴CD=10故答案为:10【点睛】本题考查①相解析:【解析】【分析】【详解】解:∵EF∥AB,∴△DEF∽△DAB,∴EF:AB=DE:DA=DE:(DE+EA)=2:5,∴AB=10,∵在▱ABCD中AB=CD.∴CD=10.故答案为:10【点睛】本题考查①相似三角形的判定;②相似三角形的性质;③平行四边形的性质.14.5:3【解析】【详解】试题解析:由题意AP:BP=2:3AB:PB=(AP+PB):PB=(2+3):3=5:3故答案为5:3解析:5:3【解析】【详解】试题解析:由题意AP:BP=2:3,AB:PB=(AP+PB):PB=(2+3):3=5:3.故答案为5:3.15.y1<y2【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y1与y2的大小从而可以解答本题详解:∵反比例函数y=--4<0∴在每个象限内y随x的增大而增大∵A(-4y1)B(-1y2)解析:y1<y2【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y1与y2的大小,从而可以解答本题.详解:∵反比例函数y=-4x ,-4<0, ∴在每个象限内,y 随x 的增大而增大,∵A (-4,y 1),B (-1,y 2)是反比例函数y=-4x图象上的两个点,-4<-1, ∴y 1<y 2,故答案为:y 1<y 2.点睛:本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确反比例函数的性质,利用函数的思想解答. 16.14【解析】试题解析:根据主视图和左视图可得:搭这样的几何体最多需要6+3+5=14个小正方体;故答案为:14点睛:主视图是从物体的正面看得到的视图左视图是从物体的左面看得到的视图;注意主视图主要告解析:14【解析】试题解析:根据主视图和左视图可得:搭这样的几何体最多需要6+3+5=14个小正方体;故答案为:14.点睛:主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图;注意主视图主要告知组成的几何体的层数和列数.17.2m 【解析】【详解】解:过点E 作EM⊥CD 交AB 与点N∴故答案为52m 【点睛】本题是考查相似三角形的判定和性质关键是做出辅助线构造相似三角形利用相似三角形的性质得出结论即可这类题型可以作垂直也可以作解析:2m【解析】【详解】解:过点E 作EM ⊥CD,交AB 与点N.∴,EN AN EAN ECM EM CMV V ~∴= 30.82.5, 1.7,0.8,10,313AB m EF m AN m BD m FB m CM ==∴===∴=Q Q ,()3.47CM m ∴≈ ()1.7 3.47 5.2.CD m ∴=+≈故答案为5.2m .【点睛】本题是考查相似三角形的判定和性质.关键是做出辅助线,构造相似三角形,利用相似三角形的性质得出结论即可.这类题型可以作垂直也可以作平行线,构造相似三角形.18.3【解析】试题分析:如图∵CD∥AB∥MN∴△ABE∽△CDE△ABF∽△MNF∴即解得:AB=3m 答:路灯的高为3m 考点:中心投影解析:3【解析】试题分析:如图,∵CD ∥AB ∥MN ,∴△ABE ∽△CDE ,△ABF ∽△MNF , ∴,CD DE FN MN AB BE FB AB ==, 即1.8 1.8 1.5 1.5,1.8 1.5 2.7AB BD AB BD==++-, 解得:AB=3m ,答:路灯的高为3m .考点:中心投影.19.4【解析】∵线段b 是ac 的比例中项∴解得b =±4又∵线段是正数∴b =4点睛:本题考查了比例中项的概念利用比例的基本性质求两条线段的比例中项的时候负数应舍去解析:4【解析】∵线段b 是a 、c 的比例中项,∴216b ac ==,解得b =±4,又∵线段是正数,∴b =4. 点睛:本题考查了比例中项的概念,利用比例的基本性质求两条线段的比例中项的时候,负数应舍去.20.【解析】【分析】根据勾股定理可得OA 的长根据正弦是对边比斜边可得答案【详解】如图由勾股定理得:OA==2sin∠1=故答案为3 【解析】 【分析】根据勾股定理,可得OA 的长,根据正弦是对边比斜边,可得答案.【详解】如图,由勾股定理,得:OA 22OB AB +=2.sin ∠1=3AB OA =3.三、解答题21.5【解析】【分析】 利用平行线分线段成比例定理得到AB DE AC DF=,然后把有关数据代入计算即可. 【详解】 123l //l //l Q ,直线AC 依次交1l 、2l 、3l 于A 、B 、C 三点,直线DF 依次交1l 、2l 、3l 于D 、E 、F 三点,AB DE AC DF ∴=, AB 4AC 7=Q ,DE 2=, 427DF∴=, 解得:DF 3.5=,EF DF DE 3.52 1.5∴=-=-=.【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.22.(1)b=3,k=10;(2)S △AOB =212. 【解析】(1)由直线y=x+b 与双曲线y=k x相交于A 、B 两点,A (2,5),即可得到结论; (2)过A 作AD⊥x 轴于D ,BE⊥x 轴于E ,根据y=x+3,y=10x ,得到(-5,-2),C (-3,0).求出OC=3,然后根据三角形的面积公式即可得到结论.解:(1)把()2,5A 代入y x b =+.∴52b =+∴3b =.把()2,5A 代入k y x =,∴52k =, ∴10k =.(2)∵10yx=,3y x=+.∴103xx=+时,2103x x=+,∴12x=,25x=-.∴()5,2B--.又∵()3,0C-,∴AOB AOC BOCS S S=+V V V353222⨯⨯=+10.5=.23.电视塔OC高为1003米,点P的铅直高度为()100313-(米).【解析】【分析】过点P作PF⊥OC,垂足为F,在Rt△OAC中利用三角函数求出OC=1003,根据山坡坡度=1:2表示出PB=x, AB=2x, 在Rt△PCF中利用三角函数即可求解.【详解】过点P作PF⊥OC,垂足为F.在Rt△OAC中,由∠OAC=60°,OA=100,得OC=OA•tan∠OAC=1003(米),过点P作PB⊥OA,垂足为B.由i=1:2,设PB=x,则AB=2x.∴PF=OB=100+2x,CF=1003﹣x.在Rt△PCF中,由∠CPF=45°,∴PF=CF,即100+2x=1003﹣x,∴x=1003100-,即PB=1003100-米.【点睛】本题考查了特殊的直角三角形,三角函数的实际应用,中等难度,作出辅助线构造直角三角形并熟练应用三角函数是解题关键.24.(1)画图见解析,(2,-2);(2)画图见解析,(1,0);【解析】【分析】(1)将△ABC向下平移4个单位长度得到的△A1B1C1,如图所示,找出所求点坐标即可;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,如图所示,找出所求点坐标即可.【详解】(1)如图所示,画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,-2);(2)如图所示,以B为位似中心,画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0),故答案为(1)(2,-2);(2)(1,0)【点睛】此题考查了作图-位似变换与平移变换,熟练掌握位似变换与平移变换的性质是解本题的关键.25.见解析【解析】【分析】由AB∥CD得△AOB∽△COE,有OE:OB=OC:OA;由AD∥BC得△AOF∽△COB,有OB:OF=OC:OA,进而解答.【详解】∵AB∥CD,∴△AOB∽△COE.∴OE:OB=OC:OA;∵AD∥BC,∴△AOF∽△COB.∴OB:OF=OC:OA.∴OB:OF=OE:OB,即:BO EO FO BO【点睛】本题考查了平行四边形的性质与相似三角形的判定与性质,解题的关键是熟练的掌握行四边形的性质与相似三角形的判定与性质.。
2020-2021九年级数学下期中一模试卷及答案

2020-2021九年级数学下期中一模试卷及答案一、选择题1.若点A(x1,y1)、B(x2,y2)、C(x3,y3)都在反比例函数1yx=-的图象上,并且x1<0<x2<x3,则下列各式中正确的是()A.y1<y2<y3B.y2<y3<y1C.y1<y3<y2D.y3<y1<y22.下列说法正确的是( )A.小红小学毕业时的照片和初中毕业时的照片相似B.商店新买来的一副三角板是相似的C.所有的课本都是相似的D.国旗的五角星都是相似的3.如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB.则cos∠AOB的值等于()A.B.C.D.4.在反比例函数y=1kx-的每一条曲线上,y都随着x的增大而减小,则k的值可以是()A.-1B.1C.2D.35.如图,在平行四边形ABCD中,F是边AD上的一点,射线CF和BA的延长线交于点E,如果12C EAFC CDF=VV,那么S EAFS EBCVV的值是()A.12B.13C.14D.196.已知点C在线段AB上,且点C是线段AB的黄金分割点(AC>BC),则下列结论正确的是()A.AB2=AC•BC B.BC2=AC•BC C.AC=512BC D.BC=512AC7.如图,在同一平面直角坐标系中,反比例函数y=kx与一次函数y=kx﹣1(k为常数,且k>0)的图象可能是()A.B.C.D.8.如图,已知DE∥BC,CD和BE相交于点O,S△DOE:S△COB=4:9,则AE:EC为()A.2:1 B.2:3 C.4:9 D.5:49.河堤横断面如图所示,堤高BC=5米,迎水坡AB的坡比1:3,则AC的长是( )A.10米B.53米C.15米D.103米10.如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE 并延长交DC于点F,则DF:FC=()A.1:3 B.1:4 C.2:3 D.1:211.如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上,已知DE=0.5m,EF=0.25m,目测点D到地面的距离DG=1.5m,到旗杆的水平距离DC=20m,则旗杆的高度为( )A.5B.(105 1.5) mC.11.5m D.10m12.如图,∠APD=90°,AP=PB=BC=CD,则下列结论成立的是()A.△PAB∽△PCA B.△ABC∽△DBA C.△PAB∽△PDA D.△ABC∽△DCA 二、填空题13.若点A(m,2)在反比例函数y=的图象上,则当函数值y≥-2时,自变量x的取值范围是____.14.如图,在▱ABCD中,EF∥AB,DE:EA=2:3,EF=4,则CD的长为___________.15.一个几何体由若干大小相同的小立方块搭成,如图所示的分别是从它的正面、左面看到的图形,则搭成该几何体最多需要__个小立方块.16.如图,在平行四边形ABCD中,AB=12,AD=8,∠ABC的平分线交CD于点F,交AD的延长线于点E,CG⊥BE,垂足为G,若EF=2,则线段CG的长为_____.17.如图,已知两个反比例函数C1:y=1x和C2:y=13x在第一象限内的图象,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形PAOB 的面积为_____.18.如图,在平面直角坐标系中,点A 是函数k y x=(x <0)图象上的点,过点A 作y 轴的垂线交y 轴于点B ,点C 在x 轴上,若△ABC 的面积为1,则k 的值为 ______ .19.如图,若点 A 的坐标为 ()1,3 ,则 sin 1∠ =________.20.如图,已知AD AE =,请你添加一个条件,使得ADC AEB △≌△,你添加的条件是_____.(不添加任何字母和辅助线)三、解答题21.等腰Rt PAB V 中,90PAB ∠=o ,点C 是AB 上一点(与A B 、不重合),连接PC ,将线段PC 绕点C 顺时针旋转90o ,得到线段DC .连接, PD BD . 探究PBD ∠的度数,以及线段AB 与BD BC 、的数量关系.(1)尝试探究:如图(1)PBD ∠= ;AB BC AC =+= ;(2)类比探索:如图(2),点C 在直线AB 上,且在点B 右侧,还能得出与(1)中同样的结论么?请写出你得到的结论并证明:22.已知如图,AD BE CF P P ,它们依次交直线a ,b 于点A 、B 、C 和点D 、E 、F.(1)如果6AB =,8BC =,21DF =,求DE 的长.(2)如果:2:5DE DF =,9AD =,14CF =,求BE 的长.23.已知:如图,在正方形ABCD 中,P 是BC 上的点,Q 是CD 上的点,且∠AQP =900, 求证:△ADQ ∽△QCP .24.如图,某人在山坡坡脚A 处测得电视塔尖点C 的仰角为60°,沿山坡向上走到P 处再测得点C 的仰角为45°,已知OA =100米,山坡坡度(竖直高度与水平宽度的比)i =1:2,且O 、A 、B 在同一条直线上.求电视塔OC 的高度以及此人所在位置点P 的铅直高度.(测倾器高度忽略不计,结果保留根号形式)25.如图,四边形ABCD 中,AC 平分DAB ∠,2AC AB AD =⋅;90ADC ∠=o ,E 为AB 的中点,()1求证:ADC ACB △∽△;(2)CE 与AD 有怎样的位置关系?试说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<0<x2<x3即可得出结论.【详解】∵反比例函数y=﹣1x中k=﹣1<0,∴函数图象的两个分支分别位于二、四象限,且在每一象限内,y随x的增大而增大.∵x1<0<x2<x3,∴B、C两点在第四象限,A点在第二象限,∴y2<y3<y1.故选B.【点睛】本题考查了反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.本题也可以通过图象法求解.2.D解析:D【解析】【分析】观察图形,看它们的形状是否相同,形状相同的两个图形是相似图形.【详解】A.小明上幼儿园时的照片和初中毕业时的照片,形状不相同,不相似;B.商店新买来的一副三角板,形状不相同,不相似;C.所有的课本都是相似的,形状不相同,不相似;D.国旗的五角星都是相似的,形状相同,相似.故选D.【点睛】本题考查了相似图形,相似图形是指形状相同的图形,仔细观察看每组图形是否相同,如果相同就相似,否则就不相似.3.B解析:B【解析】【分析】根据作图可以证明△AOB是等边三角形,则∠AOB=60°,据此即可求解.【详解】连接AB,由图可知:OA=0B,AO=AB∴OA=AB=OB,即三角形OAB为等边三角形,∴∠AOB=60°,∴cos∠AOB=cos60°=.故选B.【点睛】本题主要考查了特殊角的三角函数值,正确理解△ABC是等边三角形是解题的关键.4.A解析:A【解析】【分析】利用反比例函数的增减性,y随x的增大而减小,则求解不等式1-k>0即可.【详解】∵反比例函数y=1−kx图象的每一条曲线上,y随x的增大而减小,∴1−k>0,解得k<1.故选A.【点睛】此题考查反比例函数的性质,解题关键在于根据其性质求出k的值.5.D解析:D【解析】分析:根据相似三角形的性质进行解答即可.详解:∵在平行四边形ABCD中,∴AE∥CD,∴△EAF∽△CDF,∵12EAFCDFCCVV,=∴12 AFDF=,∴11123 AFBC==+,∵AF∥BC,∴△EAF∽△EBC,∴21139EAF EBC S S ⎛⎫== ⎪⎝⎭V V , 故选D.点睛:考查相似三角形的性质:相似三角形的面积比等于相似比的平方. 6.D解析:D【解析】【分析】根据黄金分割的定义得出BC AC AC AB ==,从而判断各选项. 【详解】∵点C 是线段AB 的黄金分割点且AC >BC ,∴BC AC AC AB ==,即AC 2=BC•AB,故A 、B 错误;AB ,故C 错误;BC=12AC ,故D 正确; 故选D .【点睛】本题考查了黄金分割,掌握黄金分割的定义和性质是解题的关键.7.B解析:B【解析】当k >0时,直线从左往右上升,双曲线分别在第一、三象限,故A 、C 选项错误; ∵一次函数y=kx-1与y 轴交于负半轴,∴D 选项错误,B 选项正确,故选B .8.A解析:A【解析】试题解析:∵ED ∥BC ,.DOE COB AED ACB ∴V V V V ∽,∽:4:9DOE BOC DOE COB S S V V Q V V ∽,,=:2:3.ED BC ∴=AED ACB QV V ∽,::.ED BC AE AC ∴=:2:3,?::ED BC ED BC AE AC Q ,==:2:3AE AC ∴=,:2:1.AE EC ∴=故选A.点睛:相似三角形的性质:相似三角形的面积比等于相似比的平方.9.B解析:B【解析】【分析】Rt △ABC 中,已知了坡比是坡面的铅直高度BC 与水平宽度AC 之比,通过解直角三角形即可求出水平宽度AC 的长.【详解】Rt △ABC 中,BC=5米,tanA=1;∴AC=BC÷ 故选:B .【点睛】此题主要考查学生对坡度坡角的掌握及三角函数的运用能力.10.D解析:D【解析】解:在平行四边形ABCD 中,AB ∥DC ,则△DFE ∽△BAE ,∴DF :AB =DE :EB .∵O 为对角线的交点,∴DO =BO .又∵E 为OD 的中点,∴DE =14DB ,则DE :EB =1:3,∴DF :AB =1:3.∵DC =AB ,∴DF :DC =1:3,∴DF :FC =1:2.故选D . 11.C解析:C【解析】【分析】确定出△DEF 和△DAC 相似,根据相似三角形对应边成比例求出AC ,再根据旗杆的高度=AC+BC 计算即可得解.【详解】解:∵∠FDE=∠ADC ,∠DEF=∠DCA=90°,∴△DEF ∽△DAC , ∴CDE CD EF A = , 即:0.50.2520AC = , 解得AC=10,∵DF与地面保持平行,目测点D到地面的距离DG=1.5米,∴BC=DG=1.5米,∴旗杆的高度=AC+BC=10+1.5=11.5米.故选:C.【点睛】本题考查了相似三角形的应用,主要利用了相似三角形对应边成比例,准确确定出相似三角形是解题的关键.12.B解析:B【解析】【分析】根据相似三角形的判定,采用排除法,逐条分析判断.【详解】∵∠APD=90°,而∠P AB≠∠PCA,∠PBA≠∠P AC,∴无法判定△P AB与△PCA相似,故A错误;同理,无法判定△P AB与△PDA,△ABC与△DCA相似,故C、D错误;∵∠APD=90°,AP=PB=BC=CD,∴AB=P A,AC=P A,AD=P A,BD=2P A,∴=,∴,∴△ABC∽△DBA,故B正确.故选B.【点睛】本题考查了相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可根据图形提供的数据计算对应角的度数、对应边的比.本题中把若干线段的长度用同一线段来表示是求线段是否成比例时常用的方法.二、填空题13.x≤-2或x>0【解析】【分析】先把点A(m2)代入解析式得A(22)再根据反比例函数的对称性求出A点关于原点的对称点A(-2-2)再根据函数图像即可求出函数值y≥-2时自变量的取值【详解】把点A(解析:x≤-2或x>0【解析】【分析】先把点A(m,2)代入解析式得A(2,2),再根据反比例函数的对称性求出A点关于原点的对称点A’(-2,-2),再根据函数图像即可求出函数值y≥-2时自变量的取值.【详解】把点A(m,2)代入y=,得A(2,2),∵点A(2,2)关于原点的对称点A’为(-2,-2),故当函数值y≥-2时,自变量x的取值范围为x≤-2或x>0.【点睛】此题主要考查反比例函数的图像,解题的关键是利用反比例函数的中心对称性. 14.【解析】【分析】【详解】解:∵EF∥AB∴△DEF∽△DAB∴EF:AB=DE:DA=DE:(DE+EA)=2:5∴AB=10∵在▱ABCD中AB=CD∴CD=10故答案为:10【点睛】本题考查①相解析:【解析】【分析】【详解】解:∵EF∥AB,∴△DEF∽△DAB,∴EF:AB=DE:DA=DE:(DE+EA)=2:5,∴AB=10,∵在▱ABCD中AB=CD.∴CD=10.故答案为:10【点睛】本题考查①相似三角形的判定;②相似三角形的性质;③平行四边形的性质.15.14【解析】试题解析:根据主视图和左视图可得:搭这样的几何体最多需要6+3+5=14个小正方体;故答案为:14点睛:主视图是从物体的正面看得到的视图左视图是从物体的左面看得到的视图;注意主视图主要告解析:14【解析】试题解析:根据主视图和左视图可得:搭这样的几何体最多需要6+3+5=14个小正方体;故答案为:14.点睛:主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图;注意主视图主要告知组成的几何体的层数和列数.16.2【解析】【分析】首先证明CF=BC=12利用相似三角形的性质求出BF再利用勾股定理即可解决问题【详解】解:∵四边形ABCD是平行四边形∴AB=CD=12AE∥BCAB∥CD∴∠CFB=∠FBA∵B解析:【解析】【分析】首先证明CF=BC=12,利用相似三角形的性质求出BF,再利用勾股定理即可解决问题.【详解】解:∵四边形ABCD是平行四边形,∴AB=CD=12,AE∥BC,AB∥CD,∴∠CFB=∠FBA,∵BE平分∠ABC,∴∠ABF=∠CBF,∴∠CFB=∠CBF,∴CB=CF=8,∴DF=12﹣8=4,∵DE∥CB,∴△DEF∽△CBF,∴EFBF=DFCF,∴2BF=48,∴BF=4,∵CF=CB,CG⊥BF,∴BG=FG=2,在Rt△BCG中,CG=故答案为【点睛】本题考查平行四边形的性质,相似三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.17.【解析】【分析】根据反比函数比例系数k的几何意义得到S△AOC=S△BOD=S矩形PCOD=1然后利用矩形面积分别减去两个三角形的面积即可得到四边形PAOB的面积【详解】∵PC⊥x轴PD⊥y轴∴S△解析:2 3【解析】【分析】根据反比函数比例系数k的几何意义得到S△AOC=S△BOD=111236⨯=,S矩形PCOD=1,然后利用矩形面积分别减去两个三角形的面积即可得到四边形P AOB的面积.【详解】∵PC⊥x轴,PD⊥y轴,∴S△AOC=S△BOD=11||23⋅=111236⨯=,S矩形PCOD=1,∴四边形P AOB的面积=1﹣2×16=23.故答案为:23.【点睛】本题考查了反比函数比例系数k的几何意义.掌握反比函数比例系数k的几何意义是解答本题的关键.反比函数比例系数k 的几何意义:在反比例函数k y x=图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k |. 18.-2【解析】【分析】根据已知条件得到三角形ABC 的面积=得到|k|=2即可得到结论【详解】解:∵AB⊥y 轴∴AB∥CO∴∴∵∴故答案为:-2【点睛】本题考查了反比例函数系数k 的几何意义明确是解题的关解析:-2【解析】【分析】根据已知条件得到三角形ABC 的面积=1•=12AB OB ,得到|k|=2,即可得到结论. 【详解】解:∵AB ⊥y 轴,∴AB ∥CO , ∴111•1222ABC S AB OB x y k ====g 三角形 , ∴2k =,∵0k <,∴2k =-,故答案为:-2.【点睛】本题考查了反比例函数系数k 的几何意义,明确1•=12ABC S AB OB =V 是解题的关键. 19.【解析】【分析】根据勾股定理可得OA 的长根据正弦是对边比斜边可得答案【详解】如图由勾股定理得:OA==2sin∠1=故答案为【解析】【分析】 根据勾股定理,可得OA 的长,根据正弦是对边比斜边,可得答案.【详解】如图,由勾股定理,得:OA =2.sin ∠1=2AB OA =,故答案为2.20.或或【解析】【分析】根据图形可知证明已经具备了一个公共角和一对相等边因此可以利用ASASASAAS 证明两三角形全等【详解】∵∴可以添加此时满足SAS ;添加条件此时满足ASA ;添加条件此时满足AAS 故解析:AB AC =或ADC AEB ∠=∠或ABE ACD ∠=∠.【解析】【分析】根据图形可知证明ADC AEB V V ≌已经具备了一个公共角和一对相等边,因此可以利用ASA 、SAS 、AAS 证明两三角形全等.【详解】∵A A ∠∠= ,AD AE =,∴可以添加AB AC = ,此时满足SAS ;添加条件ADC AEB ∠∠= ,此时满足ASA ;添加条件ABE ACD ∠∠=,此时满足AAS ,故答案为:AB AC =或ADC AEB ∠∠=或ABE ACD ∠∠=;【点睛】本题考查了全等三角形的判定,是一道开放题,解题的关键是牢记全等三角形的判定方法.三、解答题21.(1)90o ,2BC ;(2)结论:90PBD ∠=︒, 2AB BD BC =-,理由详见解析【解析】【分析】(1)由题意得:△PCD 为等腰直角三角形,且∠PCD=90°则∠CPD=45°=∠APB ,证明△PAC ∽△PBD ,得出∠PBD=∠PAC=90°,2AC BD =,因此2AC =,即可得出结论;(2)由题意得:△PCD 为等腰直角三角形,且∠PCD=90°则∠CPD=45°=∠APB ,证明△PAC ∽△PBD ,得出∠PBD=∠PAC=90°,22AC BD =,因此22AC BD =,即可得出结论.【详解】解:(1)PCD QV 为等腰直角三角形,且90PCD ∠=︒,45CPD APB ∴∠=︒=∠,CPD BPC APB BPC ∴∠+∠=∠+∠,即BPD APC ∠=∠, 又PA PB =Q ,~PAC PBD ∴∆∆2=,2AC BD ∴=,∴2AC BD =,∴2AB BC AC BC BD =+=+,故答案为90o ,BC +,(2)结论:90PBD ∠=︒; AB BC =-;理由如下: PCD QV 为等腰直角三角形,且90PCD ∠=︒,45CPD APB ∴∠=︒=∠,CPD BPC APB BPC ∴∠+∠=∠+∠,即BPD APC ∠=∠, 又PA PC PB PD ==Q ,PAC PBD ∴V V ∽2=,90PBD PAC ∴∠=∠=︒,AC BD =,2AC BD ∴=,2AB AC BC BD BC ∴=-=-. 【点睛】 本题是相似形综合题,主要考查了等腰直角三角形的性质、相似三角形的判定与性质等知识;熟练掌握等腰直角三角形的性质,证明三角形相似是解决问题的关键.22.(1)DE 的长为9;(2)BE 的长为11;【解析】【分析】(1)由果6AB =,8BC =,可得AC=14,然后根据平行线等分线段定理得到6=14DE AB DF AC =,然后将已知条件代入即可求解; (2)过D 作DH∥AC,分别交BE,CF 于H ,说明四边形ABGD 和四边形BCHG 是平行四边形,然后根据平行四边形的性质得CH=BG=AD=9;进一步说明FH=CF-DH=5,然后再按照平行线等分线段定理得到:2:5DE DF =,最后代入已知条件求解即可.【详解】(1)∵6AB =,8BC =,∴AC=AB+BC=14∵AD BE CF P P∴6=14DE AB DF AC = ∴662191414DE DF ==⨯= (2)过D 作DH∥AC,分别交BE,CF 于H.∵AD BE CF P P∴四边形ABGD 和四边形BCHG 是平行四边形,∴CH=BG=AD=9∴FH=CF -DH=5∵:2:5DE DF =∴:2:5GE HF =∴225255GE HF ==⨯= ∴BE=BG+GE=9+2=11.【点睛】本题主要考查平行线分线段成比例的知识,关键是掌握三条平行线截两条直线,所得的对应线段成比例.23.证明见解析【解析】试题分析:本题利用等角的余角相等得出一对相等的角,加上直角得出相似三角形.试题解析:在Rt△ADQ与Rt△QCP中,∵∠AQP=90°,∴∠AQP+∠PQC=90°,又∵∠PQC+∠QPC=90°,∴∠AQP=∠QPC,∴Rt△ADQ∽Rt△QCP.24.电视塔OC高为1003米,点P的铅直高度为()100313-(米).【解析】【分析】过点P作PF⊥OC,垂足为F,在Rt△OAC中利用三角函数求出OC=1003,根据山坡坡度=1:2表示出PB=x, AB=2x, 在Rt△PCF中利用三角函数即可求解.【详解】过点P作PF⊥OC,垂足为F.在Rt△OAC中,由∠OAC=60°,OA=100,得OC=OA•tan∠OAC=1003(米),过点P作PB⊥OA,垂足为B.由i=1:2,设PB=x,则AB=2x.∴PF=OB=100+2x,CF=1003﹣x.在Rt△PCF中,由∠CPF=45°,∴PF=CF,即100+2x=1003﹣x,∴x=1003100-,即PB=1003100-米.【点睛】本题考查了特殊的直角三角形,三角函数的实际应用,中等难度,作出辅助线构造直角三角形并熟练应用三角函数是解题关键.25.(1)详见解析;(2)CE∥AD,理由见解析.【解析】【分析】(1)证明∠DAC=∠CAB,∠ADC=∠ACB=90°,即可解决问题;(2)根据直角三角形的性质,可得CE与AE的关系,根据等腰三角形的性质,可得∠EAC=∠ECA,根据角平分线的定义,可得∠CAD=∠CAB,根据平行线的判定,可得答案.【详解】证明:()1∵AC 平分DAB ∠, ∴DAC CAB ∠=∠,∵90ADC ACB ∠=∠=o , ∴ADC ACB △∽△. (2)//CE AD ;∵E 是AB 的中点, ∴12CE AB AE ==, ∴EAC ECA ∠=∠. ∵AC 平分DAB ∠, ∴CAD CAB ∠=∠, ∴CAD ECA =∠,∴//CE AD .【点睛】本题考查了相似三角形的判定与性质,解题的关键是熟练的掌握相似三角形的判定与性质.。
2020-2021学年江苏省无锡市九年级一模数学试题及答案解析

(第8题图)(第7题图)(第9题图)CDOA PBOABxyCF E(第10题图)中考数学模拟试题注意事项: 1.本卷满分130分.考试时间为120分钟.2.卷中除要求近似计算的结果取近似值外,其余各题均应给出精确结果.一、选择题(本大题共10题,每小题3分,共计30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请用2B 铅笔把答题卡上相应的答案.........涂黑.) 1.-8的相反数是………………………………………………………………………( ▲ )A .8B .-8C .0.8D .-182.若式子a -3在实数范围内有意义,则a 的取值范围是…………………………( ▲ ) A .a >3 B .a ≥3 C .a <3 D .a ≤33.若等腰三角形的顶角为80º,则它的底角度数为…………………………………( ▲ ) A .20º B .50º C .80º D .100º4.下列运算正确的是……………………………………………………………………( ▲ ) A .x -2x =x B .(xy)2=xy 2C .(-2)2=4D .2×3= 6 5.已知实数a 、b ,若a >b ,则下列结论正确的是……………………………………( ▲ )A .a -5<b -5B .2+a <2+bC .-a 3>-b3D .3a >3b6.一组数据3,5,7,m ,n 的平均数是6,则m ,n 的平均数是………………………( ▲ )A .6B .7C .7.5D .157.如图⊙O 中,直径AB 垂直于弦CD ,垂足为P .若CD =8,OP =3,则半径为( ▲ )A.10 B.8 C.5 D.38.如图,在Rt△ABC中,∠B=90º,AB=3,BC=4,点D在BC上,以AC为对角线的所有□ADCE 中,DE的最小值是……………………………………………………(▲)A.2 B.3 C.4 D.59.如图,梯形ABCD中,AD∥BC,对角线AC和BD交于点O,延长BA和CD交于点P,已知△PAD和△ODC的面积分别为20和6,则△PBC的面积为………………(▲)A.40 B.42 C.45 D.4810.如图,点A是函数y=1x图象上的一点,点B、C的坐标分别为B(-2,-2),C(2,2).试利用性质:“y=1x图象上的任意一点P都满足|PB-PC|=22”求解下面问题:作∠BAC的内角平分线AE,过B作AE的垂线交AE于F.当点A在函数y=1x图象上运动时,点F也总在一图形上运动,该图形为………………(▲)A.圆B.双曲线C.抛物线D.直线二、填空题(本大题共8小题,每小题2分,共计16分.请把答案直接填写在答题卡相应位置.......上.)11.若分式x 2-1x +1的值为0,则实数x 的值为 ▲ .12.因式分解:x 3-9x = ▲ .13.已知点P (a ,b )在一次函数y =2x +3的图象上,则2a -b 的值为 ▲ .14.据国家旅游部门统计,今年“五一”小长假期间,全国旅游市场趋势良好,假期旅游总收入达到32100万亿元,将32100万亿用科学记数法表示为 ▲ 万亿. 15.已知圆锥的母线长为5cm ,侧面积是15πcm 2,则它的底面半径是 ▲ cm.16.如图,△ABC 中,∠A =90º,点D 在AC 边上,DE ∥BC ,若∠1=155º,则∠B 的度数为 ▲ . 17.如图,在矩形ABCD 中,E 是BC 边上的点,连接AE 、DE ,将△DEC 沿线段DE 翻折,点C恰好落在线段AE 上的点F 处.若AB =6,BE :EC =4 :1,则线段DE 的长为 ▲ .18.在平面直角坐标系中,直角梯形AOBC 的位置如图所示,∠OAC =90°,AC ∥OB ,OA =4,AC=5,OB =6.M 、N 分别是线段AC 、线段BC 上的动点,当△MON 的面积最大且周长最小时,点M 的坐标为 ▲ .三、解答题(本大题共10小题,共计84分.解答需写出必要的文字说明或演算步骤.) 19.(本题满分8分)计算:(1)2-2+8-12sin30º; (2)(1+1x -1)÷x x 2-1.(第16题图)AOBxy 11C MN(第18题图)AEDF(第17题图)CB(第24题图)20.(本题满分8分)(1)解方程:x 2-2x =2x -1; (2)解不等式组:⎩⎪⎨⎪⎧-3x <6 x 2≤x 3+1.21.(本题满分8分)如图,△ABC 中,∠ABC =∠ACB =45º,直线l 经过A 点,BD ⊥l ,CE ⊥l ,垂足分别为D 、E , 先证明△BDA ≌△AEC ,然后直接写出BD 、DE 、EC 之间的数量关系.22.(本题满分8分)一不透明的袋子中装有3个大小、质地都相同的乒乓球,球面上分别标有数字1、2、3.先从袋中任意取出一球后放回,搅匀后再从袋中任意取出一球.若把两次号码之积作为一个两位数的十位上的数字,两次号码之和作为这个两位数的个位上的数字,求所组成的两位数是偶数的概率.(请用“画树状图”或“列表”的方法给出分析过程,并写出结果)23.(本题满分8分)某厂为了解工人在单位时间内加工同一种零件的技能水平,随机抽取了50名工人加工的零件进行检测,统计出他们各自加工的合格品数是1-8这8个整数,现提供统计图的部分信息如图,请解答下列问题:lADEC(1)根据统计图,求这50名工人加工出的合格品数的中位数; (2)写出这50名工人加工出的合格品数的众数的可能取值;(3)厂方认定,工人在单位时间内加工出的合格品数不低于3件为技能合格,否则,将接受技能再培训.已知该厂有同类工人400名,请估计该厂将接受技能再培训的人数.24.(本题满分8分)如右上图,某景区内一酒楼的顶部竖有一块宣传牌CD .现在前方山坡的坡脚A 处测得牌子底部D 的仰角为60º,沿山坡向上走到B 处测得牌子顶部C 的仰角为45º.已知山坡AB 的坡度i =1:3,AB =10米,AE =15米,求这块宣传牌CD 的高度.(测角仪的高度忽略不计,结果精确到0.1米.参考数据:2≈1.414,3≈1.732)25.(本题满分8分)某物流公司的甲、乙两辆货车分别从A 、B 两地同时相向而行,并以各自的速度匀速行驶,途经配货站C ,甲车先到达C 地,并在C 地用1小时配货,然后按原速度开往B 地,乙车从B 地直达A 地,下图是甲、乙两车间的距离y (千米)与乙车出发x (时)的函数的部分图像.(1)A 、B 两地的距离是_________千米,甲车出发_________小时到达C 地;(2)求乙车出发2小时后直至到达A 地的过程中,y 与x 的函数关系式及x 的取值范围,并在图中补全函数图像;30030y (千米)x (时21.5 O(第25题图)(3)乙车出发多长时间,两车相距150千米?26.(本题满分10分)如图,在直角三角形ABC 中,∠C =90º,∠A =30º,AC =4,将△ABC 绕点A 逆时针旋转60º,使点B 落在点E 处,点C 落在点D 处.P 、Q 分别为线段AC 、AD 上的两个动点,且AQ =2PC ,连接PQ 交线段AE 于点M .(1)设AQ =x ,△APQ 面积为y ,求y 关于x 的函数关系式,并写出x 的取值范围; (2)若以点P 为圆心,PC 为半径的圆与边AB 相切,求AQ 的长;(3)是否存在点Q ,使得△AQM 、△APM 和△APQ 这三个三角形中一定有两个三角形相似?若存在,请求出AQ 的长;若不存在,请说明理由.27.(本题满分10分)如图,在平面直角坐标系中,O 为坐标原点,Rt △OAB 的直角边OA 在x轴正半轴上,且OA =4,AB =2,将△OAB 沿某条直线翻折,使OA 与y 轴正半轴的OC 重合.点B 的对应点为点D ,连接AD 交OB 于点E . (1)求经过O 、A 、D 三点的抛物线的解析式;(2)若动点P 从点A 出发,以每秒1个单位的速度沿射线AO 运动,线段AP 的垂直平分线交直线AD 于点M ,交(1)中的抛物线于点N ,设线段MN 的长为d (d ≠0),点P 的运动时间为t 秒,求d 与t 之间的函数关系式(直接写出自变量t 的取值范围);B CD E PQM(第26题图)ABCD EE ’A ’ ’C ’’ (第28题图)AOCxE BD(第27题图)y(3)在(2)的条件下,连接PM,当t为何值时,直线PM与过D、E、O三点的圆相切,并求出此时切点的坐标.28.(本题满分8分)如图所示,五边形ABCDE的每条边所在直线沿该边垂直方向向外平移4个单位,得到新的五边形A’B’C’D’E’.(1)图中5块阴影部分能拼成一个五边形吗?说明理由;(2)证明五边形A’B’C’D’E’的周长比五边形ABCDE的周长至少增加25个单位.初三数学适应性考试参考答案与评分标准一、选择题:(每题3分) 1 2 3 4 5 6 7 8 9 10 ABBDDCCBCA三、解答题:19.(共8分)(1)解:原式=14+22-14……………(3分) =22…………… (4分)(2)解:原式=x x -1×(x +1)(x -1)x ……………………(3分) =x +1…………… (4分)20.(共8分)(1)化简,得 x 2-4x -1=0……………………………………… (1分) 解得 x =4±202………… (3分),即x =2±5…………… (4分)(2)由①解得,x >-2……………………………………………………………… (1分)由②解得,x ≤6………………………………………………………………… (3分) 故原不等式组的解集是-2<x ≤6………………………………………………(4分) 21.(共8分)证明全等………………………………………………………………(5分)线段间数量关系BD +CE =DE ……………………………………… (8分)22.(共8分)(1)只需按“求和”画树状图或列表,略…………………………(4分) 由树状图(或表格)可知共有等可能的结果9种…………….………….………(5分) 其中个位数字是偶数的结果有5种,………………………………………………(6分)P (组成的两位数是偶数)=59………………………………………………………(8分)23.(共8分)(1)4……………………………………………………………………(2分) (2)众数可能为4,5,6………………………………………………………………(5分) (3)这50名工人中,合格品低于3件的人数为2+6=8(人)……………………(6分)故该厂将接受再培训的人数约有400×850=64(人)…………………………(8分)24.(共8分)作BG ⊥CE 于G ,BH ⊥AE 于H ………………………………………(1分)在Rt △ABH 中,AB =10,i =tan ∠BAH =33,∴BH =5,AH =53…………(2分) 在Rt △ADE 中,AE =15,∠DAE =60º,∴DE =153………………………(3分) 在Rt △CBE 中,BG =HE =53+15,∠CBG =45º,∴CG =53+15…………(4分) ∴CD =CG +BH -DE =53+15+5-153=20-103≈2.7(米)……………(7分) 答:这块宣传牌CD 的高度约为2.7米………………………………………………(8分) 25.(共8分)(1)300,1.5………………………………………………………………(2分)(2)y =⎩⎨⎧60x -120,2≤x ≤2.5180x -420,2.5<x ≤3.560x ,3.5<x ≤5…………………………………………………………(5分)………………………………(6分)(3)乙车出发56或316小时,两车相距150千米.26.(共10分)(1)y =-38x 2+3x (0<x ≤4)………………………………………(3分) (2)此时,BP =AP ,由x 2+x =4,解得x =83,即AQ 为83………………………………(5分)(3)①若△AQM 与△APM 相似,恰好全等,则AP =AQ =x ,x 2+x =4,故x =83……(6分)②若△AQM 与△APQ 相似,只能△AQM ∽△PQA ,∴∠APQ =∠MAQ =30º………(7分) ∴PQ ⊥AD ,于是AC =x 2+2x =4,故x =85……………………………………………(8分)③若△APM 与△APQ 相似,只能△APM ∽△QPA ,∴∠AQP =∠MAP =30º………(9分) ∴PQ ⊥AC ,于是AC =x 2+x2=4,故x =4……………………………………………(10分)综上所述,当AQ 的长为83或85或4时,△AQM 、△APM 和△APQ 这三个三角形中一定有两个三角形相似.27.(共10分)(1)y =-x 2+4x …………………………………………………………(2分) (2)当0<t <4时,d =-14t 2+t …………………………………………………………(4分)当t >4时,d =14t 2-t …………………………………………………………………(6分)(3)当t =32时,切点(3,1)……………………………………………………………(8分)当t =132时,切点(-1,3)………………………………………………………(10分)28.(共8分)(1)图中5块阴影部分能拼成一个五边形…………………………… (1分) 说明两点:一是长为4的一些边的重合,二是五个中心角合成360º…………… (4分) (2)画出5块阴影部分拼成一个五边形的示意图(可放大)………………………… (5分)。
2020-2021学年江苏省无锡市中考数学第一次模拟试题及答案解析一

最新江苏省无锡市中考数学一模试卷一、选择题(本大题共10小题,每题3分,共30分)1.2的相反数是()A.2 B.﹣2 C.﹣D.2.函数y=中,自变量x的取值范围是()A.x≥﹣5 B.x≤﹣5 C.x≥5 D.x≤53.截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为()A.14×104B.1.4×105C.1.4×106D.14×1064.下列说法正确的是()A.一个游戏中奖的概率是,则做100次这样的游戏一定会中奖B.为了了解全国中学生的心理健康状况,应采用普查的方式C.一组数据0,1,2,1,1的众数和中位数都是1D.若甲组数据的方差S甲2=0.2,乙组数据的方差S乙2=0.5,则乙组数据比甲组数据稳定5.将二次函数y=x2﹣2x+3化为y=(x﹣h)2+k的形式,结果为()A.y=(x+1)2+4 B.y=(x+1)2+2 C.y=(x﹣1)2+4 D.y=(x﹣1)2+26.在平面直角坐标系中,把点P(﹣3,2)绕原点O顺时针旋转180°,所得到的对应点P′的坐标为()A.(3,2)B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)7.在边长为1的小正方形组成的网格中,有如图所示的A,B两点,在格点上任意放置点C,恰好能使得△ABC的面积为1的概率为()A.B.C.D.8.在长方形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D做匀速运动,那么△ABP的面积S与点P运动的路程x之间的函数图象大致为()A.B.C.D.9.如图,以平行四边形ABCD的边CD为斜边向内作等腰直角△CDE,使AD=DE=CE,∠DEC=90°,且点E在平行四边形内部,连接AE、BE,则∠AEB的度数是()A.120°B.135°C.150°D.45°10.如图,AB为直径,AB=4,C、D为圆上两个动点,N为CD中点,CM⊥AB于M,当C、D在圆上运动时保持∠CMN=30°,则CD的长()A.随C、D的运动位置而变化,且最大值为4B.随C、D的运动位置而变化,且最小值为2C.随C、D的运动位置长度保持不变,等于2D.随C、D的运动位置而变化,没有最值二、填空题(本大题共8小题,每题2分,共16分)11.分解因式:5x2﹣10x+5= .12.化简得.13.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数关系是y=x+32,如果某一温度的摄氏度数是25℃,那么它的华氏度数是℉.14.若反比例函数的图象经过第一、三象限,则k的取值范围是.15.如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5= .16.如图,已知AD、BC相交于点O,AB∥CD∥EF,如果CE=2,EB=4,FD=1.5,那么AD= .17.如图,等边△ABC中,D是边BC上的一点,且BD:DC=1:3,把△ABC折叠,使点A 落在边BC上的点D处,那么的值为.18.若m1,m2,…m2016是从0,1,2这三个数中取值的一列数,若m1+m2+…+m2016=1546,(m1﹣1)2+(m2﹣1)2+…+(m2016﹣1)2=1510,则在m1,m2,…m2016中,取值为2的个数为.三、解答题(本大题共10小题,共84分)19.计算:(1)()﹣1﹣+(5﹣π)0+6tan60°(2)(x+1)2﹣2(x﹣2).20.(1)解方程:+=1(2)解不等式组:.21.如图,在平行四边形ABCD中,已知点E在AB上,点F在CD上,且AE=CF.求证:DE=BF.22.如图,AB是半圆O的直径,点P在BA的延长线上,PD切⊙O于点C,BD⊥PD,垂足为D,连接BC.(1)求证:BC平分∠PBD;(2)求证:BC2=AB•BD;(3)若PA=6,PC=6,求BD的长.23.四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:(Ⅰ)本次接受随机抽样调查的学生人数为,图①中m的值是;(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.24.九(1)班组织班级联欢会,最后进入抽奖环节,每名同学都有一次抽奖机会,抽奖方案如下:将一副扑克牌中点数为“2”,“3”,“3”,“5”,“6”的五张牌背面朝上洗匀,先从中抽出1张牌,再从余下的4张牌中抽出1张牌,记录两张牌点数后放回,完成一次抽奖,记每次抽出两张牌点数之差为x,按表格要求确定奖项.奖项一等奖二等奖三等奖|x| |x|=4 |x|=3 1≤|x|<3(1)用列表或画树状图的方法求出甲同学获得一等奖的概率;(2)是否每次抽奖都会获奖,为什么?25.甲、乙两人匀速从同一地点到1500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲、乙两人相距s(米),甲行走的时间为t(分),s关于t的函数图象的一部分如图所示.(1)求甲行走的速度;(2)在坐标系中,补画s关于t的函数图象的其余部分;(3)问甲、乙两人何时相距360米?26.某地质公园为了方便游客,计划修建一条栈道BC连接两条进入观景台OA的栈道AC和OB,其中AC⊥BC,同时为减少对地质地貌的破坏,设立一个圆形保护区⊙M(如图所示),M是OA上一点,⊙M与BC相切,观景台的两端A、O到⊙M上任意一点的距离均不小于80米.经测量,OA=60米,OB=170米,tan∠OBC=.(1)求栈道BC的长度;(2)当点M位于何处时,可以使该圆形保护区的面积最大?27.如图,在平面直角坐标系xOy内,正方形AOBC顶点C的坐标为(2,2),过点B的直线∥OC,P是直线上一个动点,抛物线y=ax2+bx过O、C、P三点.(1)填空:直线的函数解析式为;a,b的关系式是.(2)当△PBC是等腰Rt△时,求抛物线的解析式;(3)当抛物线的对称轴与正方形有交点时,直接写出点P横坐标x的取值范围.28.在初中数学中,我们学习了“两点间的距离”、“点到直线的距离”、“平行线之间的距离”,距离的本质是“最短”,图形之间的距离总可以转化为两点之间的距离,如“垂线段最短”的性质,把点到直线的距离转化为点到点(垂足)的距离.一般的,一个图形上的任意点A与另一个图形上的任意点B之间的距离的最小值叫做两个图形的距离.(1)如图1,过A,B分别作垂线段AC、AD、BE、BF,则线段AB和直线l的距离为垂线段的长度.(2)如图2,Rt△ABC中,∠ACB=90°,∠B=30°,CD⊥AB,AD=2,那么线段AD与线段BC 的距离为.(3)如图3,若长为1cm的线段CD与已知线段AB的距离为1.5cm,请用适当的方法表示满足条件的所有线段CD.注:若满足条件的线段是有限的,请画出;若满足条件的线段是无限的,请用阴影表示其所在区域.(保留画图痕迹)参考答案与试题解析一、选择题(本大题共10小题,每题3分,共30分)1.2的相反数是()A.2 B.﹣2 C.﹣D.【考点】相反数.【分析】根据相反数的概念作答即可.【解答】解:根据相反数的定义可知:2的相反数是﹣2.故选:B.2.函数y=中,自变量x的取值范围是()A.x≥﹣5 B.x≤﹣5 C.x≥5 D.x≤5【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x﹣5≥0,解得x≥5.故选:C.3.截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为()A.14×104B.1.4×105C.1.4×106D.14×106【考点】科学记数法—表示较大的数.【分析】将140000用科学记数法表示即可.【解答】解:140000=1.4×105,故选B.4.下列说法正确的是()A.一个游戏中奖的概率是,则做100次这样的游戏一定会中奖B.为了了解全国中学生的心理健康状况,应采用普查的方式C.一组数据0,1,2,1,1的众数和中位数都是1D.若甲组数据的方差S甲2=0.2,乙组数据的方差S乙2=0.5,则乙组数据比甲组数据稳定【考点】概率的意义;全面调查与抽样调查;中位数;众数;方差.【分析】根据概率、方差、众数、中位数的定义对各选项进行判断即可.【解答】A、一个游戏中奖的概率是,则做100次这样的游戏有可能中奖一次,该说法错误,故本选项错误;B、为了了解全国中学生的心理健康状况,应采用抽样调查的方式,该说法错误,故本选项错误;C、这组数据的众数是1,中位数是1,故本选项正确;D、方差越大,则平均值的离散程度越大,稳定性也越小,则甲组数据比乙组稳定,故本选项错误;故选C.5.将二次函数y=x2﹣2x+3化为y=(x﹣h)2+k的形式,结果为()A.y=(x+1)2+4 B.y=(x+1)2+2 C.y=(x﹣1)2+4 D.y=(x﹣1)2+2【考点】二次函数的三种形式.【分析】根据配方法进行整理即可得解.【解答】解:y=x2﹣2x+3,=(x2﹣2x+1)+2,=(x﹣1)2+2.故选:D.6.在平面直角坐标系中,把点P(﹣3,2)绕原点O顺时针旋转180°,所得到的对应点P′的坐标为()A.(3,2)B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)【考点】坐标与图形变化-旋转.【分析】将点P绕原点O顺时针旋转180°,实际上是求点P关于原点的对称点的坐标.【解答】解:根据题意得,点P关于原点的对称点是点P′,∵P点坐标为(﹣3,2),∴点P′的坐标(3,﹣2).故选:D.7.在边长为1的小正方形组成的网格中,有如图所示的A,B两点,在格点上任意放置点C,恰好能使得△ABC的面积为1的概率为()A.B.C.D.【考点】概率公式;三角形的面积.【分析】按照题意分别找出点C所在的位置:当点C与点A在同一条直线上时,AC边上的高为1,AC=2,符合条件的点C有2个;当点C与点B在同一条直线上时,BC边上的高为1,BC=2,符合条件的点C有2个,再根据概率公式求出概率即可.【解答】解:可以找到4个恰好能使△ABC的面积为1的点,则概率为:4÷16=.故选:C.8.在长方形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D做匀速运动,那么△ABP的面积S与点P运动的路程x之间的函数图象大致为()A.B.C.D.【考点】动点问题的函数图象.【分析】运用动点函数进行分段分析,当P在BC上与CD上时,分别求出函数解析式,再结合图象得出符合要求的解析式.【解答】解:∵AB=2,BC=1,动点P从点B出发,P点在BC上时,BP=x,AB=2,∴△ABP的面积S=×AB×BP=×2x=x;动点P从点B出发,P点在CD上时,△ABP的高是1,底边是2,所以面积是1,即s=1;∴s=x时是正比例函数,且y随x的增大而增大,s=1时,是一个常数函数,是一条平行于x轴的直线.所以只有C符合要求.故选C.9.如图,以平行四边形ABCD的边CD为斜边向内作等腰直角△CDE,使AD=DE=CE,∠DEC=90°,且点E在平行四边形内部,连接AE、BE,则∠AEB的度数是()A.120°B.135°C.150°D.45°【考点】平行四边形的性质;等腰三角形的性质;等腰直角三角形.【分析】先证明AD=DE=CE=BC,得出∠DAE=∠AED,∠CBE=∠CEB,∠EDC=∠ECD=45°,设∠DAE=∠AED=x,∠CBE=∠CEB=y,求出∠ADC=225°﹣2x,∠BAD=2x﹣45°,由平行四边形的对角相等得出方程,求出x+y=135°,即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,∠BAD=∠BCD,∠BAD+∠ADC=180°,∵AD=DE=CE,∴AD=DE=CE=BC,∴∠DAE=∠AED,∠CBE=∠CEB,∵∠DEC=90°,∴∠EDC=∠ECD=45°,设∠DAE=∠AED=x,∠CBE=∠CEB=y,∴∠ADE=180°﹣2x,∠BCE=180°﹣2y,∴∠ADC=180°﹣2x+45°=225°﹣2x,∠BCD=225°﹣2y,∴∠BAD=180°﹣=2x﹣45°,∴2x﹣45°=225°﹣2y,∴x+y=135°,∴∠AEB=360°﹣135°﹣90°=135°;故选:B.10.如图,AB为直径,AB=4,C、D为圆上两个动点,N为CD中点,CM⊥AB于M,当C、D在圆上运动时保持∠CMN=30°,则CD的长()A.随C、D的运动位置而变化,且最大值为4B.随C、D的运动位置而变化,且最小值为2C.随C、D的运动位置长度保持不变,等于2D.随C、D的运动位置而变化,没有最值【考点】轨迹.【分析】连接OC、ON、OD,由垂径定理可知ON⊥CD,∠CON=∠DON,然后由∠ONC+∠CMO=180°,可证明O、N、C、M四点共圆,从而可得到∠NOC=∠NMC=30°,于是可证明△OCD为等边三角形,从而得到CD=2.【解答】解;连接:OC、ON、OD.∵N是CD的中点,∴ON⊥CD,∠CON=∠DON.又∵CM⊥AB,∴∠ONC+∠CMO=180°.∴O、N、C、M四点共圆.∴∠NOC=∠NMC=30°.∴∠COD=60°.又∵OC=OD,∴△OCD为等边三角形.∴CD=.故选:C.二、填空题(本大题共8小题,每题2分,共16分)11.分解因式:5x2﹣10x+5= 5(x﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】观察原式5x2﹣10x+5,找到公因式5后,提出公因式后发现x2﹣2x+1是完全平方公式,利用完全平方式继续分解即可.【解答】解:5x2﹣10x+5,=5(x2﹣2x+1),=5(x﹣1)2.12.化简得.【考点】约分.【分析】首先分别把分式的分母、分子因式分解,然后约去分式的分子与分母的公因式即可.【解答】解:==故答案为:.13.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数关系是y=x+32,如果某一温度的摄氏度数是25℃,那么它的华氏度数是77 ℉.【考点】函数值.【分析】把x的值代入函数关系式计算求出y值即可.【解答】解:当x=25°时,y=×25+32=77,故答案为:77.14.若反比例函数的图象经过第一、三象限,则k的取值范围是k<.【考点】反比例函数的性质.【分析】先根据反比例函数的性质列出关于k的不等式,求出k的取值范围即可.【解答】解:∵反比例函数的图象经过第一、三象限,∴1﹣3k≥0,解得k<.故答案为:k<.15.如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5= 360°.【考点】多边形内角与外角.【分析】首先根据图示,可得∠1=180°﹣∠BAE,∠2=180°﹣∠ABC,∠3=180°﹣∠BCD,∠4=180°﹣∠CDE,∠5=180°﹣∠DEA,然后根据三角形的内角和定理,求出五边形ABCDE的内角和是多少,再用180°×5减去五边形ABCDE的内角和,求出∠1+∠2+∠3+∠4+∠5等于多少即可.【解答】解:∠1+∠2+∠3+∠4+∠5=++++=180°×5﹣(∠BAE+∠ABC+∠BCD+∠CDE+∠DEA)=900°﹣(5﹣2)×180°=900°﹣540°=360°.故答案为:360°.16.如图,已知AD、BC相交于点O,AB∥CD∥EF,如果CE=2,EB=4,FD=1.5,那么AD= 4.5 .【考点】平行线分线段成比例.【分析】根据平行线分线段成比例、比例的基本性质求得AF=3,则AD=AF+FD=4.5即可.【解答】解:∵AB∥EF,∴,则,又EF∥CD,∴,则,∴,即,解得:AF=3,∴AD=AF+FD=3+1.5=4.5,即AD的长是4.5;故答案为:4.5.17.如图,等边△ABC中,D是边BC上的一点,且BD:DC=1:3,把△ABC折叠,使点A落在边BC上的点D处,那么的值为.【考点】翻折变换(折叠问题).【分析】由BD:DC=1:3,可设BD=a,则CD=3a,根据等边三角形的性质和折叠的性质可得:BM+MD+BD=5a,DN+NC+DC=7a,再通过证明△BMD∽△CDN即可证明AM:AN的值.【解答】解:∵BD:DC=1:3,∴设BD=a,则CD=3a,∵△ABC是等边三角形,∴AB=BC=AC=4a,∠ABC=∠ACB=∠BAC=60°,由折叠的性质可知:MN是线段AD的垂直平分线,∴AM=DM,AN=DN,∴BM+MD+BD=5a,DN+NC+DC=7a,∵∠MDN=∠BAC=∠ABC=60°,∴∠NDC+∠MDB=∠BMD+∠MBD=120°,∴∠NDC=∠BMD,∵∠ABC=∠ACB=60°,∴△BMD∽△CDN,∴(BM+MD+BD):(DN+NC+CD)=AM:AN,即AM:AN=5:7,故答案为.18.若m1,m2,…m2016是从0,1,2这三个数中取值的一列数,若m1+m2+…+m2016=1546,(m1﹣1)2+(m2﹣1)2+…+(m2016﹣1)2=1510,则在m1,m2,…m2016中,取值为2的个数为520 .【考点】规律型:数字的变化类.【分析】解决此题可以先设0有a个,1有b个,2有c个,根据据题意列出方程组求解即可.【解答】解:设0有a个,1有b个,2有c个,由题意得,解得,故取值为2的个数为502个,故答案为:520.三、解答题(本大题共10小题,共84分)19.计算:(1)()﹣1﹣+(5﹣π)0+6tan60°(2)(x+1)2﹣2(x﹣2).【考点】特殊角的三角函数值;实数的运算;整式的混合运算;零指数幂.【分析】(1)根据负整数指数幂与正整数指数幂互为倒数,开平方运算,非零的零次幂等于1,特殊角三角函数值,可得答案;(2)根据完全平方公式,整式的加减,可得答案.【解答】解:(1)原式=4﹣3+1+6×=5+3.(2)原式=x2+2x+1﹣2x+4=x2+5.20.(1)解方程:+=1(2)解不等式组:.【考点】解一元一次不等式组;解分式方程.【分析】(1)方程两边都乘以x﹣3,化分式方程为整式方程,解整式方程求得x的值,再检验即可;(2)分别求出每一个不等式的解集,根据口诀:大小小大中间找,确定不等式组的解集.【解答】解:(1)去分母得2﹣x﹣1=x﹣3.解得:x=2,经检验,x=2都是原方程的根.(2)解不等式2(x﹣2)≤4x﹣3,得:x≥﹣;解不等式2x﹣5<1﹣x,得x<2;∴此不等式组的解集为:﹣≤x<2.21.如图,在平行四边形ABCD中,已知点E在AB上,点F在CD上,且AE=CF.求证:DE=BF.【考点】平行四边形的判定与性质.【分析】由“平行四边形ABCD的对边平行且相等”的性质推知AB=CD,AB∥CD.然后根据图形中相关线段间的和差关系求得BE=FD,易证四边形EBFD是平行四边形.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∵AE=CF.∴BE=FD,BE∥FD,∴四边形EBFD是平行四边形,∴DE=BF.22.如图,AB是半圆O的直径,点P在BA的延长线上,PD切⊙O于点C,BD⊥PD,垂足为D,连接BC.(1)求证:BC平分∠PBD;(2)求证:BC2=AB•BD;(3)若PA=6,PC=6,求BD的长.【考点】切线的性质;相似三角形的判定与性质.【分析】(1)连接OC,由PD为圆O的切线,利用切线的性质得到OC垂直于PD,由BD垂直于PD,得到OC与BD平行,利用两直线平行得到一对内错角相等,再由OC=OB,利用等边对等角得到一对角相等,等量代换即可得证;(2)连接AC,由AB为圆O的直径,利用直径所对的圆周角为直角得到△ABC为直角三角形,根据一对直角相等,以及第一问的结论得到一对角相等,确定出△ABC与△BCD相似,由相似得比例,变形即可得证;(3)由切割线定理列出关系式,将PA,PC的长代入求出PB的长,由PB﹣PA求出AB的长,确定出圆的半径,由OC与BD平行得到△PCO与△DPB相似,由相似得比例,将OC,OP,以及PB的长代入即可求出BD的长.【解答】(1)证明:连接OC,∵PD为圆O的切线,∴OC⊥PD,∵BD⊥PD,∴OC∥BD,∴∠OCB=∠CBD,∵OC=OB,∴∠OCB=∠OBC,∴∠CBD=∠OBC,则BC平分∠PBD;(2)证明:连接AC,∵AB为圆O的直径,∴∠ACB=90°,∵∠ACB=∠CDB=90°,∠ABC=∠CBD,∴△ABC∽△CBD,∴=,即BC2=AB•BD;(3)解:∵PC为圆O的切线,PAB为割线,∴PC2=PA•PB,即72=6PB,解得:PB=12,∴AB=PB﹣PA=12﹣6=6,∴OC=3,PO=PA+AO=9,∵△OCP∽△BDP,∴=,即=,则BD=4.23.四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:(Ⅰ)本次接受随机抽样调查的学生人数为50 ,图①中m的值是32 ;(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图;加权平均数;中位数;众数.【分析】(1)根据条形统计图即可得出样本容量根据扇形统计图得出m的值即可;(2)利用平均数、中位数、众数的定义分别求出即可;(3)根据样本中捐款10元的人数,进而得出该校本次活动捐款金额为10元的学生人数.【解答】解:(1)根据条形图4+16+12+10+8=50(人),m=100﹣20﹣24﹣16﹣8=32;(2)∵=(5×4+10×16+15×12+20×10+30×8)=16,∴这组数据的平均数为:16,∵在这组样本数据中,10出现次数最多为16次,∴这组数据的众数为:10,∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是15,∴这组数据的中位数为:(15+15)=15;(3)∵在50名学生中,捐款金额为10元的学生人数比例为32%,∴由样本数据,估计该校1900名学生中捐款金额为10元的学生人数比例为32%,有1900×32%=608,∴该校本次活动捐款金额为10元的学生约有608名.故答案为:50,32.24.九(1)班组织班级联欢会,最后进入抽奖环节,每名同学都有一次抽奖机会,抽奖方案如下:将一副扑克牌中点数为“2”,“3”,“3”,“5”,“6”的五张牌背面朝上洗匀,先从中抽出1张牌,再从余下的4张牌中抽出1张牌,记录两张牌点数后放回,完成一次抽奖,记每次抽出两张牌点数之差为x,按表格要求确定奖项.奖项一等奖二等奖三等奖|x| |x|=4 |x|=3 1≤|x|<3(1)用列表或画树状图的方法求出甲同学获得一等奖的概率;(2)是否每次抽奖都会获奖,为什么?【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲同学获得一等奖的情况,再利用概率公式即可求得答案;(2)由树状图可得:当两张牌都是3时,|x|=0,不会有奖.【解答】解:(1)画树状图得:∵共有20种等可能的结果,甲同学获得一等奖的有2种情况,∴甲同学获得一等奖的概率为:=;(2)不一定,当两张牌都是3时,|x|=0,不会有奖.25.甲、乙两人匀速从同一地点到1500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲、乙两人相距s(米),甲行走的时间为t(分),s关于t的函数图象的一部分如图所示.(1)求甲行走的速度;(2)在坐标系中,补画s关于t的函数图象的其余部分;(3)问甲、乙两人何时相距360米?【考点】一次函数的应用.【分析】(1)由图象可知t=5时,s=150米,根据速度=路程÷时间,即可解答;(2)根据图象提供的信息,可知当t=35时,乙已经到达图书馆,甲距图书馆的路程还有=450米,甲到达图书馆还需时间;450÷30=15(分),所以35+15=50(分),所以当s=0时,横轴上对应的时间为50.(3)分别求出当12.5≤t≤35时和当35<t≤50时的函数解析式,根据甲、乙两人相距360米,即s=360,分别求出t的值即可.【解答】解:(1)甲行走的速度:150÷5=30(米/分);(2)当t=35时,甲行走的路程为:30×35=1050(米),乙行走的路程为:(35﹣5)×50=1500(米),∴当t=35时,乙已经到达图书馆,甲距图书馆的路程还有=450米,∴甲到达图书馆还需时间;450÷30=15(分),∴35+15=50(分),∴当s=0时,横轴上对应的时间为50.补画的图象如图所示(横轴上对应的时间为50),(3)如图2,设乙出发经过x分和甲第一次相遇,根据题意得:150+30x=50x,解得:x=7.5,7.5+5=12.5(分),由函数图象可知,当t=12.5时,s=0,∴点B的坐标为(12.5,0),当12.5≤t≤35时,设BC的解析式为:s=kt+b,(k≠0),把C(35,450),B(12.5,0)代入可得:解得:,∴s=20t﹣250,当35<t≤50时,设CD的解析式为s=k1x+b1,(k1≠0),把D(50,0),C(35,450)代入得:解得:∴s=﹣30t+1500,∵甲、乙两人相距360米,即s=360,解得:t1=30.5,t2=38,∴当甲行走30.5分钟或38分钟时,甲、乙两人相距360米.26.某地质公园为了方便游客,计划修建一条栈道BC连接两条进入观景台OA的栈道AC和OB,其中AC⊥BC,同时为减少对地质地貌的破坏,设立一个圆形保护区⊙M(如图所示),M是OA上一点,⊙M与BC相切,观景台的两端A、O到⊙M上任意一点的距离均不小于80米.经测量,OA=60米,OB=170米,tan∠OBC=.(1)求栈道BC的长度;(2)当点M位于何处时,可以使该圆形保护区的面积最大?【考点】解直角三角形的应用;切线的性质.【分析】(1)过C点作CE⊥OB于E,过A作AF⊥CE于F,设出AF,然后通过解直角三角形求得CE,进一步得到BE,然后由勾股定理得出答案;(2)设BC与⊙M相切于Q,延长QM交直线BO于P,设OM=x,把PB、PQ用含有x的代数式不是,再结合观景台的两端A、O到⊙M上任意一点的距离均不小于80米列式求得x 的范围,得到x取最小值时圆的半径最大,即圆形保护区的面积最大.【解答】解:(1)如图1,过C点作CE⊥OB于E,过A作AF⊥CE于F,∵∠ACB=90°∠BEC=90°,∴∠ACF=∠CBE,∴tan∠ACF=tan∠OBC=,设AF=4x,则CF=3x,∵∠AOE=∠AFE=∠OEF=90°,∴OE=AF=4x,EF=OA=60,∴CE=3x+60,∵tan∠OBC=.∴BE=CE=x+45,∴OB=OE+BE=4x+x+45,∴4x+x+45=170,解得:x=20,∴CE=120(米),BE=90(米),∴BC==150(米).(2)如图2,设BC与⊙M相切于Q,延长QM交直线BO于P,∵∠POM=∠PQB=90°,∴∠PMO=∠CBO,∴tan∠OBC=.∴tan∠PMO=.设OM=x,则OP=x,PM=x,∴PB=x+170,在RT△PQB中,tan∠PBQ==.∴=,∴PQ=(x+170)=x+136,设⊙M的半径为R,∴R=MQ=x+136﹣x=136﹣x,∵A、O到⊙M上任意一点的距离均不小于80米,∴R﹣AM≥80,R﹣OM≥80,∴136﹣x﹣(60﹣x)≥80,136﹣x﹣x≥80,解得:10≤x≤35,∴当且仅当x=10时R取最大值,∴OM=10米时,保护区的面积最大.27.如图,在平面直角坐标系xOy内,正方形AOBC顶点C的坐标为(2,2),过点B的直线∥OC,P是直线上一个动点,抛物线y=ax2+bx过O、C、P三点.(1)填空:直线的函数解析式为y=x﹣2 ;a,b的关系式是2a+b=1 .(2)当△PBC是等腰Rt△时,求抛物线的解析式;(3)当抛物线的对称轴与正方形有交点时,直接写出点P横坐标x的取值范围≤x≤,且x≠0和2 .【考点】二次函数综合题.【分析】(1)根据题意求得B(2,0)和直线OC的解析式为y=x,设直线l的解析式为y=x+b,根据待定系数法即可求得直线的函数解析式,把C的坐标代入y=ax2+bx即可求得a,b的关系式;(2)分两种情况求得P的坐标,利用待定系数法即可求得;(3)求得抛物线是顶点为C时的抛物线的解析式求得与直线l的交点坐标即可求得符合题意的点P横坐标x的取值范围.【解答】解:(1)∵正方形AOBC顶点C的坐标为(2,2),∴B(2,0),∵直线OC的解析式y=x,∴设直线l的解析式为y=x+b,∴0=2+b,∴b=﹣2,∴直线l的函数解析式为y=x﹣2,把(2,2)代入y=ax2+bx得,2=4a+2b∴2a+b=1;(2)当∠BCP=90°时,则P的坐标为(4,2),如图2,把C(2,2),P(4,2)代入y=ax2+bx得,解,∴抛物线的解析式为y=﹣x2+x;当∠BPC=90°时,则P的坐标为(3,1),如图3,把C(2,2),P(3,1)代入y=ax2+bx得解得,∴抛物线的解析式为;(3)当抛物线的顶点为C时,﹣=2,∴b=﹣4a,∵2a+b=1,∴a=﹣,b=2,∴抛物线的解析式为y=﹣x2+2x,解得x=1±,∴点P横坐标x的取值范围≤x≤,且x≠0和2.故答案为:y=x﹣2,2a+b=1,≤x≤,且x≠0和2.28.在初中数学中,我们学习了“两点间的距离”、“点到直线的距离”、“平行线之间的距离”,距离的本质是“最短”,图形之间的距离总可以转化为两点之间的距离,如“垂线段最短”的性质,把点到直线的距离转化为点到点(垂足)的距离.一般的,一个图形上的任意点A与另一个图形上的任意点B之间的距离的最小值叫做两个图形的距离.(1)如图1,过A,B分别作垂线段AC、AD、BE、BF,则线段AB和直线l的距离为垂线段AC 的长度.(2)如图2,Rt△ABC中,∠ACB=90°,∠B=30°,CD⊥AB,AD=2,那么线段AD与线段BC 的距离为 3 .(3)如图3,若长为1cm的线段CD与已知线段AB的距离为1.5cm,请用适当的方法表示满足条件的所有线段CD.注:若满足条件的线段是有限的,请画出;若满足条件的线段是无限的,请用阴影表示其所在区域.(保留画图痕迹)【考点】作图—应用与设计作图;直线的性质:两点确定一条直线;垂线段最短;点到直线的距离;平行线之间的距离.【分析】(1)根据两图形之间距离定义,得出线段AB和直线l的距离即可;(2)首先过点D作DE⊥BC于点E,进而利用直角三角形中30°所对的边等于斜边的一半,进而求出DE的长;(3)根据两图形之间距离定义,利用CD的长为1cm,且线段CD与已知线段AB的距离为1.5cm,得出符合题意的图形是两个半圆以及矩形组成的图形.【解答】解:(1)如图所示:过A,B分别作垂线段AC、AD、BE、BF,则线段AB和直线l的距离为垂线段为:AC的长度;故答案为:AC;(2)如图2,过点D作DE⊥BC于点E,∵∠ACB=90°,∠B=30°,CD⊥AB,AD=2,∴∠A=60°则∠ACD=30°,∴AC=2AD=4,∴AB=2AC=8,∴BD=6,则DE=BD=3;故答案为:3;(3)如图3所示:.2016年6月3日。
2020-2021初三数学下期中一模试卷含答案(4)

2020-2021初三数学下期中一模试卷含答案(4)一、选择题1.已知一次函数y 1=x -1和反比例函数y 2=2x 的图象在平面直角坐标系中交于A 、B 两点,当y 1>y 2时,x 的取值范围是( )A .x >2B .-1<x <0C .x >2,-1<x <0D .x <2,x >0 2.如图,123∠∠∠==,则图中相似三角形共有( )A .1对B .2对C .3对D .4对 3.如图,平面直角坐标系中,点A 是x 轴上任意一点,BC 平行于x 轴,分别交y=3x (x >0)、y=k x(x <0)的图象于B 、C 两点,若△ABC 的面积为2,则k 值为( )A .﹣1B .1C .12-D .124.如图,在△ABC 中,DE ∥BC ,12AD DB =,DE=4,则BC 的长是( )A .8B .10C .11D .125.如图,在平行四边形ABCD 中,F 是边AD 上的一点,射线CF 和BA 的延长线交于点E ,如果12C EAF C CDF =V V ,那么S EAF S EBCV V 的值是( )A .12B .13C .14D .196.在△ABC 中,若=0,则∠C 的度数是( ) A .45° B .60° C .75° D .105°7.如图所示,在平行四边形ABCD 中,AC 与BD 相交于点O ,E 为OD 的中点,连接AE 并延长交DC 于点F ,则DF :FC=( )A .1:3B .1:4C .2:3D .1:28.如图,BC 是半圆O 的直径,D ,E 是»BC上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE ,如果70A ∠︒=,那么DOE ∠的度数为( )A .35︒B .38︒C .40︒D .42︒9.若反比例函数2y x=-的图象上有两个不同的点关于y 轴的对称点都在一次函数y =-x +m 的图象上,则m 的取值范围是( ) A .22m >B .-22m <C .22-22m m >或<D .-2222m <<10.若△ABC ∽△A′B′C′且34AB A B ='',△ABC 的周长为15cm ,则△A′B′C′的周长为( )cm.A .18B .20C .154D .80311.若270x y -=. 则下列式子正确的是( ) A .72x y = B .27x y = C .27x y = D .27x y =12.如图,在△ABC 中,M 是AC 的中点,P ,Q 为BC 边上的点,且BP=PQ=CQ ,BM 与AP ,AQ 分别交于D ,E 点,则BD ∶DE ∶EM 等于A .3∶2∶1B .4∶2∶1C .5∶3∶2D .5∶2∶1二、填空题13.一个4米高的电线杆的影长是6米,它临近的一个建筑物的影长是36米.则这个建筑的高度是_____m .14.如图,是由一些大小相同的小正方体搭成的几何体分别从正面看和从上面看得到的平面图形,则搭成该几何体的小正方体最多是_______个.15.如图,矩形ABCD 中,AD=2,AB=5,P 为CD 边上的动点,当△ADP 与△BCP 相似时,DP=__.16.已知AB ∥CD ,AD 与BC 相交于点O.若BO OC =23,AD =10,则AO =____.17.在ABC ∆中,若45B ∠=o ,102AB =,55AC =,则ABC ∆的面积是______.18.如图,在平面直角坐标系中,点A 是函数k y x=(x <0)图象上的点,过点A 作y 轴的垂线交y 轴于点B ,点C 在x 轴上,若△ABC 的面积为1,则k 的值为 ______ .19.如图,在△ABC 中,∠C =90°,BC =16 cm ,AC =12 cm ,点P 从点B 出发,沿BC 以2 cm/s 的速度向点C 移动,点Q 从点C 出发,以1 cm/s 的速度向点A 移动,若点P 、Q 分别从点B 、C 同时出发,设运动时间为ts ,当t =__________时,△CPQ 与△CBA 相似.20.将一副三角板按如图1位置摆放,使得两块三角板的直角边AC 和MD 重合.已知AB="AC=8" cm,将△MED 绕点A(M)逆时针旋转60°后(图2),两个三角形重叠(阴影)部分的面积是 cm2.三、解答题 21.如图,△ABC 中,CD 是边AB 上的高,且AD CD CD BD=.(1)求证:△ACD ∽△CBD ;(2)求∠ACB 的大小.22.计算:cos 45tan 45sin 60cot 60cot 452sin 30︒⋅︒-︒⋅︒︒+︒. 23.如图,在平面直角坐标系中,正方形OABC 的顶点O 与坐标原点重合,其边长为2,点A ,点C 分别在轴,轴的正半轴上.函数2y x =的图象与CB 交于点D ,函数k y x=(k 为常数,0k ≠)的图象经过点D ,与AB 交于点E ,与函数2y x =的图象在第三象限内交于点F ,连接AF 、EF .(1)求函数k y x=的表达式,并直接写出E 、F 两点的坐标. (2)求△AEF 的面积.24.在学习了矩形这节内容之后,明明同学发现生活中的很多矩形都很特殊,如我们的课本封面、A4 的打印纸等,这些矩形的长与宽之比都为2:1,我们将具有这类特征的矩形称为“完美矩形”如图(1),在“完美矩形”ABCD 中,点P 为AB 边上的定点,且AP=AD.(1)求证:PD=AB.(2)如图(2),若在“完美矩形“ABCD 的边BC 上有一动点E,当BECE的值是多少时,△PDE 的周长最小?(3)如图(3),点Q 是边AB 上的定点,且BQ=BC.已知AD=1,在(2)的条件下连接DE 并延长交AB 的延长线于点F,连接CF,G 为CF 的中点,M、N 分别为线段QF 和CD 上的动点,且始终保持QM=CN,MN 与DF 相交于点H,请问GH 的长度是定值吗?若是,请求出它的值,若不是,请说明理由.25.已知锐角三角形ABC内接于⊙O(AB>AC),AD⊥BC于点D,BE⊥AC于点E,AD、AE交于点F.(1)如图1,若⊙O直径为10,AC=8,求BF的长;(2)如图2,连接OA,若OA=F A,AC=BF,求∠OAD的大小.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】因为一次函数和反比例函数交于A 、B 两点,可知x-1=2x,解得x=-1或x=2,进而可得A 、B 两点的坐标,据此,再结合函数解析式画图,据图可知当x>2时,以及当-1<x<0时,y 1>y 2.【详解】解方程x −1=2x,得 x =−1或x =2,那么A 点坐标是(−1,−2),B 点坐标是(2,1),如右图,当x >2时, 12y y >,以及当−1<x <0时, 12y y >.故选C.【点睛】本题考查了反比例函数与一次函数交点问题,解题的关键是能根据解析式画出函数的图象,并能根据图象解決问题2.D解析:D【解析】【分析】根据已知及相似三角形的判定定理,找出题中存在的相似三角形即可.【详解】∵∠1=∠2,∠C =∠C ,∴△ACE ∽△ECD ,∵∠2=∠3,∴DE ∥AB ,∴△BCA ∽△ECD ,∵△ACE ∽△ECD ,△BCA ∽△ECD ,∴△ACE ∽△BCA ,∵DE ∥AB ,∴∠AED =∠BAE ,∵∠1=∠2,∴△AED ∽△BAE ,∴共有4对,故此选D 选项.【点睛】本题考查学生对相似三角形判断依据的理解掌握,也考察学生的看图分辨能力.3.A 解析:A【解析】 【分析】连接OC 、OB ,如图,由于BC ∥x 轴,根据三角形面积公式得到S △ACB =S △OCB ,再利用反比例函数系数k 的几何意义得到12×|3|+12•|k|=2,然后解关于k 的绝对值方程可得到满足条件的k的值.【详解】连接OC、OB,如图,∵BC∥x轴,∴S△ACB=S△OCB,而S△OCB=12×|3|+12•|k|,∴12×|3|+12•|k|=2,而k<0,∴k=﹣1,故选A.【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k|,且保持不变.4.D解析:D 【解析】【分析】根据ADDB=12,可得ADAB=13,再根据DE∥BC,可得DEBC=ADAB;接下来根据DE=4,结合上步分析即可求出BC的长.【详解】∵ADDB=12,∴ADAB=13,∵在△ABC中,DE∥BC,∴DEBC=ADAB=13.∵DE=4,∴BC=3DE=12.故答案选D.【点睛】本题考查了平行线分线段成比例的知识,解题的关键是熟练的掌握平行线分线段成比例定理.5.D解析:D【解析】分析:根据相似三角形的性质进行解答即可.详解:∵在平行四边形ABCD中,∴AE∥CD,∴△EAF∽△CDF,∵12EAFCDFCCVV,=∴12 AFDF=,∴11123 AFBC==+,∵AF∥BC,∴△EAF∽△EBC,∴21139EAFEBCSS⎛⎫==⎪⎝⎭VV,故选D.点睛:考查相似三角形的性质:相似三角形的面积比等于相似比的平方.6.C解析:C【解析】【分析】根据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,根据三角形的内角和定理可得出∠C的度数.【详解】由题意,得 cosA=,tanB=1,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=180°-60°-45°=75°.故选C.7.D解析:D【解析】解:在平行四边形ABCD中,AB∥DC,则△DFE∽△BAE,∴DF:AB=DE:EB.∵O为对角线的交点,∴DO=BO.又∵E为OD的中点,∴DE=14DB,则DE:EB=1:3,∴DF:AB=1:3.∵DC=AB,∴DF:DC=1:3,∴DF:FC=1:2.故选D.8.C解析:C【解析】【分析】连接CD,由圆周角定理得出∠BDC=90°,求出∠ACD=90°-∠A=20°,再由圆周角定理得出∠DOE=2∠ACD=40°即可,【详解】连接CD,如图所示:∵BC是半圆O的直径,∴∠BDC=90°,∴∠ADC=90°,∴∠ACD=90°-∠A=20°,∴∠DOE=2∠ACD=40°,故选C.【点睛】本题考查了圆周角定理、直角三角形的性质;熟练掌握圆周角定理是解题的关键.9.C解析:C【解析】【分析】根据题意可知反比例函数2yx=-的图象上的点关于y轴的对称的点在函数2yx=上,由此可知反比例函数2yx=的图象与一次函数y=-x+m的图象有两个不同的交点,继而可得关于x的一元二次方程,再根据根的判别式即可求得答案.【详解】∵反比例函数2yx=-上有两个不同的点关于y轴对称的点在一次函数y=-x+m图象上,∴反比例函数2yx=与一次函数y=-x+m有两个不同的交点,联立得2y x y x m ⎧=⎪⎨⎪=-+⎩,消去y 得:2x m x =-+, 整理得:220x mx -+=,∵有两个不同的交点∴220x mx -+=有两个不相等的实数根,∴△=m 2-8>0,∴m >m <故选C.【点睛】本题考查了反比例函数图象上点的坐标特征,关于x 轴、y 轴对称的点的坐标,熟练掌握相关内容、正确理解题意是解题的关键.10.B解析:B【解析】∵△ABC ∽△A ′B ′C ′,∴34ABC AB A B C A B ''=''='V V 的周长的周长, ∵△ABC 的周长为15cm ,∴△A ′B ′C ′的周长为20cm .故选B .11.A解析:A【解析】【分析】直接利用比例的性质分别判断即可得出答案.【详解】∵2x -7y =0,∴2x =7y .A .72x y =,则2x =7y ,故此选项正确; B .27x y =,则xy =14,故此选项错误; C .27x y =,则2y =7x ,故此选项错误; D .27x y =,则7x =2y ,故此选项错误. 故选A .【点睛】本题考查了比例的性质,正确将比例式变形是解题的关键.12.C解析:C【解析】【分析】过A 作AF ∥BC 交BM 延长线于F ,设BC=3a ,则BP=PQ=QC=a ;根据平行线间的线段对应成比例的性质分别求出BD 、BE 、BM 的长度,再来求BD ,DE ,EM 三条线段的长度,即可求得答案.【详解】过A 作AF ∥BC 交BM 延长线于F ,设3BC a =,则BP PQ QC a ===;∵AM CM =,AF ∥BC , ∴1AF AM BC CM==, ∴3AF BC a ==,∵AF ∥BP , ∴133BD BP a DF AF a ===, ∴34DF BF BD ==, ∵AF ∥BQ , ∴2233BE BQ a EF AF a ===, ∴23EF BE =,即25BF BE =, ∵AF ∥BC , ∴313BM BC a MF AF a===, ∴BM MF =,即2BF BM =, ∴235420BF BF BF DE BE BD =-=-=,22510BF BF BF EM BM BE =-=-=, ∴3::::?53242010BF BF BF BD DE EM ==::. 故选:C .【点睛】 本题考查了平行线分线段成比例定理以及比例的性质,正确作出辅助线是关键.二、填空题13.24米【解析】【分析】先设建筑物的高为h米再根据同一时刻物高与影长成正比列出关系式求出h的值即可【详解】设建筑物的高为h米由题意可得:则4:6=h:36解得:h=24(米)故答案为24米【点睛】本题解析:24米.【解析】【分析】先设建筑物的高为h米,再根据同一时刻物高与影长成正比列出关系式求出h的值即可.【详解】设建筑物的高为h米,由题意可得:则4:6=h:36,解得:h=24(米).故答案为24米.【点睛】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.14.7【解析】【分析】首先利用从上面看而得出的俯视图得出该几何体的第一层是由几个小正方体组成然后进一步根据其从正面看得出的主视图得知其第二层最多可以放几个小正方体然后进一步计算即可得出答案【详解】根据俯解析:7【解析】【分析】首先利用从上面看而得出的俯视图得出该几何体的第一层是由几个小正方体组成,然后进一步根据其从正面看得出的主视图得知其第二层最多可以放几个小正方体,然后进一步计算即可得出答案.【详解】根据俯视图可得出第一层由5个小正方体组成;再结合主视图,该正方体第二层最多可放2个小正方体,+=,∴527∴最多是7个,故答案为:7.【点睛】本题主要考查了三视图的运用,熟练掌握三视图的特性是解题关键.15.1或4或25【解析】【分析】需要分类讨论:△APD∽△PBC和△PAD∽△PBC 根据该相似三角形的对应边成比例求得DP的长度【详解】设DP=x则CP=5-x本题需要分两种情况情况进行讨论①当△PAD解析:1或4或2.5.【解析】【分析】需要分类讨论:△APD ∽△PBC 和△PAD ∽△PBC ,根据该相似三角形的对应边成比例求得DP 的长度.【详解】设DP=x ,则CP=5-x ,本题需要分两种情况情况进行讨论,①、当△PAD ∽△PBC 时,AD BC =DP CP∴225x x=-,解得:x=2.5; ②、当△APD ∽△PBC 时,AD CP =DP BC ,即25x -=2x , 解得:x=1或x=4,综上所述DP=1或4或2.5【点晴】本题主要考查的就是三角形相似的问题和动点问题,首先将各线段用含x 的代数式进行表示,然后看是否有相同的角,根据对应角的两边对应成比例将线段写成比例式的形式,然后分别进行计算得出答案.在解答这种问题的时候千万不能出现漏解的现象,每种情况都要考虑到位. 16.【解析】∵AB ∥CD 解得AO=4故答案是:4【点睛】运用了平行线分线段成比例定理灵活运用定理找准对应关系是解题的关键解析:【解析】∵AB ∥CD ,223103AO BO AO OD OC AO ∴===-,即, 解得,AO=4,故答案是:4.【点睛】运用了平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键. 17.75或25【解析】【分析】过点作于点通过解直角三角形及勾股定理可求出的长进而可得出的长再利用三角形的面积公式即可求出的面积【详解】解:过点作垂足为如图所示在中;在中∴∴或∴或25故答案为:75或25解析:75或25【解析】【分析】过点A 作AD BC ⊥于点D ,通过解直角三角形及勾股定理可求出AD ,BD ,CD 的长,进而可得出BC 的长,再利用三角形的面积公式即可求出ABC ∆的面积.【详解】解:过点A 作AD BC ⊥,垂足为D ,如图所示.在Rt ABD ∆中,sin 10AD AB B =⋅=,cos 10BD AB B =⋅=;在Rt ACD ∆中,10AD =,55AC =,∴225CD AC AD =-=,∴15BC BD CD =+=或5BC BD CD =-=,∴1752ABC S BC AD ∆=⋅=或25. 故答案为:75或25.【点睛】本题考查了解直角三角形、勾股定理以及三角形的面积,通过解直角三角形及勾股定理,求出AD ,BC 的长度是解题的关键. 18.-2【解析】【分析】根据已知条件得到三角形ABC 的面积=得到|k|=2即可得到结论【详解】解:∵AB⊥y 轴∴AB∥CO∴∴∵∴故答案为:-2【点睛】本题考查了反比例函数系数k 的几何意义明确是解题的关解析:-2【解析】【分析】根据已知条件得到三角形ABC 的面积=1•=12AB OB ,得到|k|=2,即可得到结论. 【详解】解:∵AB ⊥y 轴,∴AB ∥CO , ∴111•1222ABC S AB OB x y k ====g 三角形 , ∴2k =,∵0k <,∴2k =-,故答案为:-2.【点睛】本题考查了反比例函数系数k 的几何意义,明确1•=12ABC S AB OB =V 是解题的关键. 19.8或【解析】【分析】根据题意可分两种情况①当CP 和CB 是对应边时△CPQ∽△CBA 与②CP 和CA 是对应边时△CPQ∽△CAB 根据相似三角形的性质分别求出时间t 即可【详解】①CP 和CB 是对应边时△CP解析:8或64 11【解析】【分析】根据题意可分两种情况,①当CP和CB是对应边时,△CPQ∽△CBA与②CP和CA是对应边时,△CPQ∽△CAB,根据相似三角形的性质分别求出时间t即可.【详解】①CP和CB是对应边时,△CPQ∽△CBA,所以CPCB=CQCA,即16216t-=12t,解得t=4.8;②CP和CA是对应边时,△CPQ∽△CAB,所以CPCA=CQCB,即16212t-=16t,解得t=64 11.综上所述,当t=4.8或6411时,△CPQ与△CBA相似.【点睛】此题主要考查相似三角形的性质,解题的关键是分情况讨论.20.【解析】【分析】分析:设BCAD交于点G过交点G作GF⊥AC与AC交于点F根据AC=8就可求出GF的长从而求解【详解】解:设BCAD交于点G过交点G作GF⊥A C与AC交于点F设FC=x则GF=FC=解析:【解析】【分析】分析:设BC,AD交于点G,过交点G作GF⊥AC与AC交于点F,根据AC=8,就可求出GF的长,从而求解.【详解】解:设BC,AD交于点G,过交点G作GF⊥AC与AC交于点F,设FC=x,则GF=FC=x,∵旋转角为60°,即可得∠FAG=60°,∴AF=GFcot∠.所以x+33x=8,则x=12-43.所以S△AGC=12×8×(12-43)=48-163三、解答题21.(1)证明见试题解析;(2)90°.【解析】试题分析:(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明△ACD∽△CBD;(2)由(1)知△ACD∽△CBD,然后根据相似三角形的对应角相等可得:∠A=∠BCD,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°.试题解析:(1)∵CD是边AB上的高,∴∠ADC=∠CDB=90°,∵AD CD CD BD=.∴△ACD∽△CBD;(2)∵△ACD∽△CBD,∴∠A=∠BCD,在△ACD中,∠ADC=90°,∴∠A+∠ACD=90°,∴∠BCD+∠ACD=90°,即∠ACB=90°.考点:相似三角形的判定与性质.22.214-.【解析】试题分析:把特殊角的三角函数值代入运算即可.试题解析:原式23321121 22322.124 122=⋅-⋅--==+⨯23.(1)2yx=,E(2,1),F(-1,-2);(2)32.【解析】【分析】(1)先得到点D的坐标,再求出k的值即可确定反比例函数解析式;(2)过点F作FG⊥AB,与BA的延长线交于点G.由E、F两点的坐标,得到AE=1,FG=2-(-1)=3,从而得到△AEF的面积.【详解】解:(1)∵正方形OABC的边长为2,∴点D的纵坐标为2,即y=2,将y=2代入y=2x,得到x=1,∴点D的坐标为(1,2).∵函数kyx=的图象经过点D,∴21k=,∴k=2,∴函数kyx=的表达式为2yx=.(2)过点F作FG⊥AB,与BA的延长线交于点G.根据反比例函数图象的对称性可知:点D与点F关于原点O对称∴点F的坐标分别为(-1,-2),把x=2代入2yx=得,y=1;∴点E的坐标(2,1);∴AE=1,FG=2-(-1)=3,∴△AEF的面积为:12AE•FG=131322⨯⨯=.24.(1)证明见解析(2)222-(32【解析】【分析】(1)根据题中“完美矩形”的定义设出AD与AB,根据AP=AD,利用勾股定理表示出PD,即可得证;(2)如图,作点P关于BC的对称点P′,连接DP′交BC于点E,此时△PDE的周长最小,设AD=PA=BC=a,表示出AB与CD,由AB-AP表示出BP,由对称的性质得到BP=BP′,由平行得比例,求出所求比值即可;(3)GH=2,理由为:由(2)可知BF=BP=AB-AP,由等式的性质得到MF=DN,利用AAS得到△MFH≌△NDH,利用全等三角形对应边相等得到FH=DH,再由G为CF中点,得到HG为中位线,利用中位线性质求出GH的长即可.【详解】(1)在图1中,设AD=BC=a,则有AB=CD=2a,∵四边形ABCD是矩形,∴∠A=90°,∵PA=AD=BC=a,∴PD=22AD PA+=2a,∵AB=2a,∴PD=AB;(2)如图,作点P关于BC的对称点P′,连接DP′交BC于点E,此时△PDE的周长最小,设AD=PA=BC=a,则有2,∵BP=AB-PA,∴2a-a,∵BP′∥CD,∴22222BE BP aCE CD a===;(3)2,理由为:由(2)可知BF=BP=AB-AP,∵AP=AD,∴BF=AB-AD,∵BQ=BC,∴AQ=AB-BQ=AB-BC,∵BC=AD,∴AQ=AB-AD,∴BF=AQ,∴QF=BQ+BF=BQ+AQ=AB ,∵AB=CD ,∴QF=CD ,∵QM=CN ,∴QF-QM=CD-CN ,即MF=DN ,∵MF ∥DN ,∴∠NFH=∠NDH ,在△MFH 和△NDH 中,{MFH NDHMHF NHD MF DN∠∠∠∠=== ,∴△MFH ≌△NDH (AAS ),∴FH=DH ,∵G 为CF 的中点,∴GH 是△CFD 的中位线,∴GH=12CD=122⨯×2=2. 【点睛】 此题属于相似综合题,涉及的知识有:相似三角形的判定与性质,全等三角形的判定与性质,勾股定理,三角形中位线性质,平行线的判定与性质,熟练掌握相似三角形的性质是解本题的关键.25.(1)BF =6;(2)∠OAD =30°.【解析】【分析】(1)如图1中,作⊙O 的直径CM ,连接AM ,BM .利用勾股定理求出AM ,证明四边形AMBF 是平行四边形即可解决问题;(2)如图2中,作⊙O 的直径CM ,连接AM ,BM ,设AD 交CM 于J .证明AO ⊥CM .推出∠OAD =∠BCM ,解直角三角形求出∠BCM 即可解决问题.【详解】(1)如图1中,作⊙O 的直径CM ,连接AM ,BM .∵CM 是直径,∴∠CAM =∠CBM =90°,∵CM =10,AC =8,∴AM =22CM AC -=22108-=6,∵AD ⊥CB ,BE ⊥AC ,∴∠ADC =∠MBC =90°,∠BEC =∠MAC =90°,∴AD ∥BM ,AM ∥BE ,∴四边形AMBF 是平行四边形,∴BF =AM =6.(2)如图2中,作⊙O 的直径CM ,连接AM ,BM ,设AD 交CM 于J .由(1)可知四边形AMBF 是平行四边形,∴AM =BF ,AF =BM ∵AC =BF ,∴AC =AM ,∵∠MAC =90°,MO =OC ,∴AO ⊥CM ,∵AD ⊥BC ,∴∠AOJ =∠CDJ =90°,∵∠AJO =∠CJD ,∴∠DCJ =∠JAO ,∵AF =OA ,AF =BM ,∴OA =BM ,∴CM =2BM ,∵∠CBM =90°,∴sin ∠BCM =BM CM =12, ∴∠BCM =30°,∴∠OAD =∠BCM =30°.【点睛】 本题属于圆综合题,考查了圆周角定理,平行四边形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线面构造特殊四边形解决问题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021无锡外国语学校初三数学下期中一模试题及答案一、选择题1.在反比例函数y=1kx-的每一条曲线上,y都随着x的增大而减小,则k的值可以是()A.-1B.1C.2D.32.如图,已知直线a∥b∥c,直线m、n与直线a、b、c分别交于点A、C、E、B、D、F,AC=4,CE=6,BD=3,则BF=()A.7B.7.5C.8D.8.53.在函数y=21ax+(a为常数)的图象上有三个点(﹣1,y1),(﹣14,y2),(12,y3),则函数值y1、y2、y3的大小关系是()A.y2<y1<y3B.y3<y2<y1C.y1<y2<y3D.y3<y1<y2 4.在△ABC中,若=0,则∠C的度数是()A.45°B.60°C.75°D.105°5.反比例函数kyx=与1(0)y kx k=-+≠在同一坐标系的图象可能为()A.B.C.D.6.如果两个相似三角形对应边之比是1:3,那么它们的对应中线之比是()A.1:3B.1:4C.1:6D.1:97.如图,线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,则端点C的坐标分别为()A .(4,4)B .(3,3)C .(3,1)D .(4,1)8.如图所示,在平行四边形ABCD 中,AC 与BD 相交于点O ,E 为OD 的中点,连接AE 并延长交DC 于点F ,则DF :FC=( )A .1:3B .1:4C .2:3D .1:29.如图,△ABC 中AB 两个顶点在x 轴的上方,点C 的坐标是(﹣1,0),以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A′B′C′,且△A′B′C′与△ABC 的位似比为2:1.设点B 的对应点B′的横坐标是a ,则点B 的横坐标是( )A .12a -B .1(1)2a -+C .1(1)2a --D .1(3)2a -+ 10.如图,BC 是半圆O 的直径,D ,E 是»BC上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE ,如果70A ∠︒=,那么DOE ∠的度数为( )A .35︒B .38︒C .40︒D .42︒ 11.如图,AB 是⊙O 的直径,弦CD 交AB 于点P ,AP=2,BP=6,∠APC=30°,则CD 的长为( )A 15B .5C .15D .812.若270x y -=. 则下列式子正确的是( )A .72x y =B .27x y =C .27x y =D .27x y = 二、填空题13.如图,P (m ,m )是反比例函数9y x =在第一象限内的图象上一点,以P 为顶点作等边△PAB ,使AB 落在x 轴上,则△POB 的面积为_____.14.如图,已知AD 为ABC ∆的角平分线,DE AB ∥,如果23AE EC =,那么AE AB=______.15.若△ABC ∽△A’B’C’,且△ABC 与△A’B’C’的面积之比为1:4,则相似比为____.16.如图,已知一次函数y=kx ﹣3(k≠0)的图象与x 轴,y 轴分别交于A ,B 两点,与反比例函数y=12x(x >0)交于C 点,且AB=AC ,则k 的值为_____.17.如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的P 点处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为________米.18.在ABC ∆中,若45B ∠=o ,102AB =,55AC =ABC ∆的面积是______.19.如图所示的网格是正方形网格,点P 到射线OA 的距离为m ,点P 到射线OB 的距离为n ,则m __________ n .(填“>”,“=”或“<”)20.如图,若点 A 的坐标为 ()1,3 ,则 sin 1∠ =________.三、解答题 21.如图,一次函数y =mx +5的图象与反比例函数y =k x(k≠0)在第一象限的图象交于A(1,n)和B(4,1)两点,过点A 作y 轴的垂线,垂足为M.(1)求一次函数和反比例函数的解析式;(2)求△OAM 的面积S ;(3)在y 轴上求一点P ,使PA +PB 最小.22.如图,AD 是△ABC 的中线,tan B =13,cos C =2,AC =2.求: (1)BC 的长;(2)sin ∠ADC 的值.23.计算:(1)203)330π︒-+(2)21445|5|2-︒⎛⎫+- ⎪⎝⎭(3)已知α为锐角,()2sin 152α︒-=,计算2cos 3tan 12αα-+-的值. 24.如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A(-2,1),B(-1,4),C(-3,2).(1)以原点O 为位似中心,位似比为1∶2,在y 轴的左侧,画出△ABC 放大后的图形△A 1B 1C 1,并直接写出C 1点的坐标;(2)如果点D(a ,b)在线段AB 上,请直接写出经过(1)的变化后点D 的对应点D 1的坐标.25.如图,一次函数y =kx +2的图象与反比例函数y =m x的图象交于点P ,点P 在第一象限.P A ⊥x 轴于点A ,PB ⊥y 轴于点B .一次函数的图象分别交x 轴、y 轴于点C 、D ,且S △PBD =4,12OC OA =. (1)求点D 的坐标; (2)求一次函数与反比例函数的解析式;(3)根据图象写出当x >0时,一次函数的值大于反比例函数的值的x 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】利用反比例函数的增减性,y随x的增大而减小,则求解不等式1-k>0即可.【详解】∵反比例函数y=1−kx图象的每一条曲线上,y随x的增大而减小,∴1−k>0,解得k<1.故选A.【点睛】此题考查反比例函数的性质,解题关键在于根据其性质求出k的值.2.B解析:B【解析】【分析】由直线a∥b∥c,根据平行线分线段成比例定理,即可得AC BDCE DF=,又由AC=4,CE=6,BD=3,即可求得DF的长,则可求得答案.【详解】解:∵a∥b∥c,∴AC BD CE DF=,∵AC=4,CE=6,BD=3,∴436DF =,解得:DF=92,∴937.52BF BD DF=+=+=.故选B.考点:平行线分线段成比例.3.A解析:A【解析】【分析】先根据反比例函数的解析式判断出反比例函数的图象所在的象限及增减性,再根据各点横坐标的值判断出y1,y2,y3的大小关系即可.【详解】∵反比例函数的比例系数为a2+1>0,∴图象的两个分支在一、三象限,且在每个象限y随x的增大而减小.∵﹣114-<<0,∴点(﹣1,y1),(14-,y2)在第三象限,∴y2<y1<0.∵12>0,∴点(12,y3)在第一象限,∴y3>0,∴y2<y1<y3.故选A.【点睛】本题考查了反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式.4.C解析:C【解析】【分析】根据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,根据三角形的内角和定理可得出∠C的度数.【详解】由题意,得 cosA=,tanB=1,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=180°-60°-45°=75°.故选C.5.B解析:B【解析】【分析】根据反比例函数和一次函数的性质逐个对选项进行分析即可.【详解】A 根据反比例函数的图象可知,k>0,因此可得一次函数的图象应该递减,但是图象是递增的,所以A错误;B根据反比例函数的图象可知,k>0,,因此一次函数的图象应该递减,和图象吻合,所以B正确;C根据反比例函数的图象可知,k<0,因此一次函数的图象应该递增,并且过(0,1)点,但是根据图象,不过(0,1),所以C错误;D根据反比例函数的图象可知,k<0,因此一次函数的图象应该递增,但是根据图象一次函数的图象递减,所以D错误.故选B【点睛】本题主要考查反比例函数和一次函数的性质,关键点在于系数的正负判断,根据系数识别图象.6.A解析:A【解析】∵两个相似三角形对应边之比是1:3,∴它们的对应中线之比为1:3.故选A.点睛: 本题考查相似三角形的性质,相似三角形的对应边、对应周长,对应高、中线、角平分线的比,都等于相似比,掌握相似三角形的性质及灵活运用它是解题的关键.7.A解析:A【解析】【分析】利用位似图形的性质结合对应点坐标与位似比的关系得出C点坐标.【详解】∵以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,∴A点与C点是对应点,∵C点的对应点A的坐标为(2,2),位似比为1:2,∴点C的坐标为:(4,4)故选A.【点睛】本题考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键.8.D解析:D【解析】解:在平行四边形ABCD中,AB∥DC,则△DFE∽△BAE,∴DF:AB=DE:EB.∵O为对角线的交点,∴DO=BO.又∵E为OD的中点,∴DE=14DB,则DE:EB=1:3,∴DF:AB=1:3.∵DC=AB,∴DF:DC=1:3,∴DF:FC=1:2.故选D.9.D解析:D【解析】【分析】设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似变换的概念列式计算.【详解】设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣12(a+3),故选:D.【点睛】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.10.C解析:C【解析】【分析】连接CD,由圆周角定理得出∠BDC=90°,求出∠ACD=90°-∠A=20°,再由圆周角定理得出∠DOE=2∠ACD=40°即可,【详解】连接CD,如图所示:∵BC是半圆O的直径,∴∠BDC=90°,∴∠ADC=90°,∴∠ACD=90°-∠A=20°,∴∠DOE=2∠ACD=40°,故选C.【点睛】本题考查了圆周角定理、直角三角形的性质;熟练掌握圆周角定理是解题的关键.11.C解析:C【解析】【分析】作OH⊥CD于H,连结OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA-AP=2,接着在Rt△OPH中根据含30°的直角三角形的性质计算出OH=12OP=1,然后在Rt△OHC中利用勾股定理计算出CH=15,所以CD=2CH=215.【详解】作OH⊥CD于H,连结OC,如图,∵OH⊥CD,∴HC=HD ,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA ﹣AP=2,在Rt △OPH 中,∵∠OPH=30°,∴∠POH=30°,∴OH=12OP=1, 在Rt △OHC 中,∵OC=4,OH=1,∴∴故选C .【点睛】本题主要考查圆中的计算问题,熟练掌握垂径定理、含30°的直角三角形的性质以及勾股定理等知识点,掌握数形结合的思想是解答的关键12.A解析:A【解析】【分析】直接利用比例的性质分别判断即可得出答案.【详解】∵2x -7y =0,∴2x =7y .A .72x y =,则2x =7y ,故此选项正确; B .27x y =,则xy =14,故此选项错误; C .27x y =,则2y =7x ,故此选项错误; D .27x y =,则7x =2y ,故此选项错误. 故选A .【点睛】本题考查了比例的性质,正确将比例式变形是解题的关键.二、填空题13.【解析】【详解】如图过点P 作PH⊥OB 于点H∵点P (mm )是反比例函数y=在第一象限内的图象上的一个点∴9=m2且m >0解得m=3∴PH=OH=3∵△PAB是等边三角形∴∠PAH=60°∴根据锐角三 解析:933+ . 【解析】 【详解】如图,过点P 作PH ⊥OB 于点H ,∵点P (m ,m )是反比例函数y=9x在第一象限内的图象上的一个点, ∴9=m 2,且m >0,解得,m=3.∴PH=OH =3.∵△P AB 是等边三角形,∴∠P AH =60°. ∴根据锐角三角函数,得3∴OB 3∴S △POB =12OB•PH =9332+. 14.【解析】【分析】由证得【详解】∵∴△CED ∽△CAB ∴∵∴∵为的角平分线∴∠ADE=∠BAD=∠DAE ∴故填:【点睛】此题考查相似三角形的判定与性质根据平行线证得三角形相似由此得到边的比值关系推导出解析:35【解析】 【分析】由DE AB ∥证得【详解】 ∵DE AB ∥,∴△CED ∽△CAB, ∴DE CE AB AC =, ∵23AE EC =, ∴35DE CE AB AC ==, ∵AD 为ABC ∆的角平分线,DE AB ∥,∴∠ADE=∠BAD=∠DAE,∴AEAB=35DE CEAB AC==,故填:3 5 .【点睛】此题考查相似三角形的判定与性质,根据平行线证得三角形相似,由此得到边的比值关系,推导出AEAB的值.15.1:2【解析】【分析】由△ABC相似△A′B′C′面积比为1:4根据相似三角形的面积比等于相似比的平方即可求解【详解】解:∵△ABC相似△A′B′C′面积比为1:4∴△ABC与△A′B′C′的相似比解析:1:2【解析】【分析】由△ABC相似△A′B′C′,面积比为1:4,根据相似三角形的面积比等于相似比的平方,即可求解.【详解】解:∵△ABC相似△A′B′C′,面积比为1:4,∴△ABC与△A′B′C′的相似比为:1:2,故答案为: 1:2.【点睛】本题主要考查的是相似三角形的性质,解决本题的关键是要熟知相似三角形面积的比等于相似比的平方.16.k=【解析】试题分析:如图:作CD⊥x轴于D则OB∥CD∴△AOB∽△ADC∴∵AB=AC∴OB=CD由直线y=kx﹣3(k≠0)可知B(0﹣3)∴OB=3∴CD=3把y=3代入y=(x>0)解得x解析:k=3 2【解析】试题分析:如图:作CD⊥x轴于D,则OB∥CD,∴△AOB∽△ADC,∴,∵AB=AC,∴OB=CD,由直线y=kx﹣3(k≠0)可知B(0,﹣3),∴OB=3,∴CD=3,把y=3代入y=(x>0)解得,x=4,∴C(4,3),代入y=kx﹣3(k≠0)得,3=4k﹣3,解得k=,故答案为.考点:反比例函数与一次函数的交点问题.17.5【解析】根据题意画出图形构造出△PCD∽△PAB利用相似三角形的性质解题解:过P作PF⊥AB交CD于E交AB于F如图所示设河宽为x米∵AB∥CD∴∠PDC=∠PBF∠PCD=∠PAB∴△PDC∽△解析:5【解析】根据题意画出图形,构造出△PCD∽△PAB,利用相似三角形的性质解题.解:过P作PF⊥AB,交CD于E,交AB于F,如图所示设河宽为x米.∵AB∥CD,∴∠PDC=∠PBF,∠PCD=∠PAB,∴△PDC∽△PBA,∴AB PF CD PE=,∴AB15x CD15+=,依题意CD=20米,AB=50米,∴15205015x=+,解得:x=22.5(米).答:河的宽度为22.5米.18.75或25【解析】【分析】过点作于点通过解直角三角形及勾股定理可求出的长进而可得出的长再利用三角形的面积公式即可求出的面积【详解】解:过点作垂足为如图所示在中;在中∴∴或∴或25故答案为:75或25解析:75或25【解析】【分析】过点A 作AD BC ⊥于点D ,通过解直角三角形及勾股定理可求出AD ,BD ,CD 的长,进而可得出BC 的长,再利用三角形的面积公式即可求出ABC ∆的面积.【详解】解:过点A 作AD BC ⊥,垂足为D ,如图所示.在Rt ABD ∆中,sin 10AD AB B =⋅=,cos 10BD AB B =⋅=;在Rt ACD ∆中,10AD =,55AC =,∴225CD AC AD =-=,∴15BC BD CD =+=或5BC BD CD =-=, ∴1752ABC S BC AD ∆=⋅=或25. 故答案为:75或25.【点睛】本题考查了解直角三角形、勾股定理以及三角形的面积,通过解直角三角形及勾股定理,求出AD ,BC 的长度是解题的关键.19.>【解析】【分析】由图像可知在射线上有一个特殊点点到射线的距离点到射线的距离于是可知利用锐角三角函数即可判断出【详解】由题意可知:找到特殊点如图所示:设点到射线的距离点到射线的距离由图可知【点睛】本 解析:>【解析】【分析】由图像可知在射线OP 上有一个特殊点Q ,点Q 到射线OA 的距离2QD =Q 到射线OB 的距离1QC =,于是可知AOP BOP ∠>∠ ,利用锐角三角函数sin sin AOP BOP ∠>∠ ,即可判断出m n >【详解】由题意可知:找到特殊点Q ,如图所示:设点Q 到射线OA 的距离QD ,点Q 到射线OB 的距离QC 由图可知2QD =,1QC = ∴ 2sin QD AOP OP ∠== ,1sin QC BOP OP OP ∠== ∴sin sin AOP BOP ∠>∠,∴m n OP OP> ∴m n >【点睛】本题考查了点到线的距离,熟知在直角三角形中利用三角函数来解角和边的关系是解题关键.20.【解析】【分析】根据勾股定理可得OA 的长根据正弦是对边比斜边可得答案【详解】如图由勾股定理得:OA==2sin ∠1=故答案为解析:3 【解析】 【分析】根据勾股定理,可得OA 的长,根据正弦是对边比斜边,可得答案.【详解】如图,由勾股定理,得:OA =22OB AB +=2.sin ∠1=3AB OA =,故答案为3.三、解答题21.(1)y=4x;y=-x+5(2)2(3)(0,175)【解析】分析:(1)根据待定系数法分别求出反比例函数与一次函数解析式即可;(2)根据反比例函数的性质,xy=k<直接求出面积即可;(3)作点A关于y轴的对称点N,则N(-1,4),连接BN交y轴于点P,点P即为所求.详解:(1)将B(4,1)代入y=kx得:1=4k,∴k=4,∴y=4x,将B(4,1)代入y=mx+5,得:1=4m+5,∴m=-1,∴y=-x+5,(2)在y=4x中,令x=1,解得y=4,∴A(1,4),∴S=12×1×4=2,(6分)(3)作点A关于y轴的对称点N,则N(-1,4),连接BN交y轴于点P,点P即为所求.设直线BN的关系式为y=kx+b,由414k bk b==+⎧⎨-+⎩,得35175kb⎧-⎪⎪⎨⎪⎪⎩==,∴y=−35x+175,∴P(0,175) 点睛:此题主要考查了待定系数法求一次函数与反比例函数解析式以及作对称点问题,根据已知得出对称点是解决问题的关键.22.(1)BC =4;(2)sin ∠ADC =22. 【解析】(1)如图,作AE⊥BC,∴CE =AC •cos C =1,∴AE =CE =1,1tan 3B =, ∴BE =3AE =3,∴BC =4;(2)∵AD 是△ABC 的中线,∴DE =1,∴∠ADC =45°,∴2sin ADC ∠=23.(1)72.(2)7;(3)﹣3 【解析】【分析】(1)先计算乘方和三角函数值,再计算加减法即可;(2先计算乘方和三角函数值、绝对值,再计算加减法即可;(3)先由特殊角的三角函数值计算出α,再代入求值即可.【详解】解:(1)原式=3﹣33 =2+32 =72. (2)原式=4﹣2×1+5 =4﹣2+5=7.(3)∵α为锐角,()2sin 15α︒-=∴α﹣15°=45°.∴α=60°.∴2cos 3tan 12αα-+- =﹣2×12+3×3﹣23=﹣1+33﹣23=﹣1+3.【点睛】本题考查了含特殊角的三角函数值的四则运算,掌握特殊角的三角函数值是解题的关键.24.(1)图见解析,C 1(-6,4);(2)D 1(2a ,2b).【解析】【分析】(1)连接OB 并延长,使BB 1=OB ,连接OA 并延长,使AA 1=OA ,连接OC 并延长,使CC 1=OC ,确定出△A 1B 1C 1,并求出C 1点坐标即可; (2)根据A 与A 1坐标,B 与B 1坐标,以及C 与C 1坐标的关系,确定出变化后点D 的对应点D 1坐标即可.【详解】(1)根据题意画出图形,如图所示:则点C 1的坐标为(-6,4);(2)变化后D 的对应点D 1的坐标为:(2a ,2b ).【点睛】运用了作图-位似变换,画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.25.(1)D (0,2); (2)22y x =+;12y x =;(3)2x > 【解析】【分析】(1)在y=kx+2中,只要x=0得y=2即可得点D 的坐标为(0,2).(2)由AP ∥OD 得Rt △PAC ∽Rt △DOC ,又12OC OA =,可得13OD OC AP AC ==,故AP=6,BD=6-2=4,由S△PBD=4可得BP=2,把P(2,6)分别代入y=kx+2与myx=可得一次函数解析式为y=2x+2反比例函数解析式为12yx =;(3)当x>0时,一次函数的值大于反比例函数的值的x的取值范围由图象能直接看出x >2.【详解】解:(1)在y=kx+2中,令x=0得y=2,∴点D的坐标为(0,2)(2)∵AP∥OD,∴∠CDO=∠CPA,∠COD=∠CAP,∴Rt△PAC∽Rt△DOC,∵12OCOA=,即13OD OCAP AC==,∴13 OD OC AP AC==∴AP=6,又∵BD=6-2=4,∴由142PBDS BP BD=⋅=V,可得BP=2,∴P(2,6)(4分)把P(2,6)分别代入y=kx+2与m yx =可得一次函数解析式为:y=2x+2,反比例函数解析式为:12 yx =(3)由图可得x>2.【点睛】考查反比例函数和一次函数解析式的确定、图形的面积求法、相似三角形等知识及综合应用知识、解决问题的能力.有点难度.。